

MontiArc - Architectural Modeling and Simulation

of Interactive Distributed Systems

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der

RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Dipl.-Wirt.-Inf.

Arne Haber

aus Wolfsburg

Berichter: Universitätsprofessor Dr. rer. nat. Bernhard Rumpe

Universitätsprofessorin Dr.-Ing. Ina Schaefer

Tag der mündlichen Prüfung: 22. März 2016

Die Druckfassung dieser Dissertation ist unter der ISBN 978-3-8440-4697-7 erschienen.

[Hab16] A. Haber:
MontiArc - Architectural Modeling and Simulation of Interactive Distributed Systems.
Shaker Verlag, ISBN 978-3-8440-4697-7. Aachener Informatik-Berichte, Software Engineering, Band 24. 2016.
www.se-rwth.de/publications/

Abstract

Software architecture is the essence of a system and determines important functional as well

as non-functional properties [BCK03]. It decomposes the system into small, manageable sub-

systems respectively components that interact over well defined interfaces. Formal architecture

description languages (ADLs) offer great potential to model and analyse the architecture of a

system, predict the overall performance of a system using simulations, and even allow to auto-

matically generate parts of the implementation.

Nevertheless, ADLs are rather not used in industrial practice since several problems of ar-

chitectural modeling hinder to exploit their potential to the full extend. Either an ADL is too

general to provide enough information for formal analyses, or it is tailored well to a specific

domain and development process, so it cannot be easily applied to another context. Beside lan-

guage barriers caused by uncommon languages, most ADLs are regarded to be complex and

heavyweight [MLM+13]. Good modeling tools are missing [Pan10] and existing tools cannot

be easily integrated into existing tool chains [WH05]. Also, incremental modeling and model

reuse is most often not supported.

This thesis elaborates the design of an ADL that copes with these impediments of architec-

tural modeling in practice. Therefore, the design of a lightweight and easy to learn ADL is

derived which also provides well defined extension points to be adapted to a certain domain

or development process. Controlled reuse of architectural models is explored. Furthermore, it

is investigated how architectural modeling can be enriched with agile development methods to

support incremental modeling and the validation of system architectures.

Therefore, a detailed set of requirements for architectural modeling and the simulation of sys-

tem architectures is defined. Based on these requirements, MontiArc, a concrete ADL to model

logical architectures of distributed, interactive systems, is derived. The language is based on

the mathematical FOCUS [BS01] framework, which allows to simulate modeled systems in an

event-based style. Code generators and a simulation framework provide means to continuously

refine and test architectural models.

The language and the corresponding tools provide extension points to easily add new features

to the language or even adapt it to a new domain. For this purpose, a corresponding language

extension method is presented to extend the syntax, language processing tools, and code genera-

tors of the ADL. Furthermore, a lightweight model library concept is presented which allows to

develop and reuse component models and their implementation in a controlled and transparent

way. The developed language, the simulator, and the language extension techniques have been

examined in several case studies which either used or extended MontiArc.

i

ii

Danksagung

An dieser Stelle möchte ich mich herzlich bei den Menschen bedanken, die zur Fertigstellung

und zum Gelingen dieser Dissertation beigetragen haben.

Besonderer Dank gilt meinem Doktorvater Prof. Dr. Bernhard Rumpe für die Betreuung

dieser Dissertation. Durch zahlreiche konstruktive Diskussionen mit Bernhard und seine wert-

vollen Ratschläge hat er entscheidend zum Gelingen der Promotion beigetragen. Ebenfalls be-

danken möchte ich mich für die Möglichkeit in vielen Industrie- und Forschungsprojekten Er-

fahrungen außerhalb des akademischen Elfenbeinturms zu sammeln. Diese Erfahrungen haben

maßgeblich zu meinem weiteren Werdegang beigetragen.

Weiterer Dank gebührt Prof. Dr.-Ing. Ina Scheafer für die gemeinsamen spannenden Arbeiten

und Projekte im Bereich der Varianten- und Deltamodellierung. Über ihre Bereitschaft meine

Dissertation als Zweitgutachterin zu betreuen, habe ich mich besonders gefreut. Prof. Dr. Ir.

Joost-Pieter Katoen möchte ich für die Leitung der Promotionskommission sowie für die Ab-

nahme der Prüfung in der theoretischen Informatik danken. Herrn Prof. Dr. Stefan Decker

danke ich für die Bereitschaft mich in der praktischen Informatik zu prüfen.

Natürlich möchte ich mich sehr herzlich bei meinen Kollegen bedanken, mit denen ich die

Zeit am Lehrstuhl, beim Kickerspielen oder bei abendlicher Zerstreuung verbracht habe. Ihr

habt dazu beigetragen, dass Aachen ein Stückchen Heimat für mich wurde, auch wenn ich dem

Karneval nie etwas abgewinnen konnte. Für das Korrekturlesen früher Fassungen der Disser-

tation bedanke ich mich bei Lars Hermerschmidt, Andreas Horst, Thomas Kurpick, Markus

Look, Klaus Müller, Pedram Mir Seyed Nazari, Antonio Navarro Pérez und Andreas Wort-

mann. Da sich die entsprechenden Unterlagen bereits im Keller befinden (wer eine Disserta-

tion geschrieben hat, kann das sicherlich nachvollziehen), habe ich hier hoffentlich niemanden

vergessen. Für das Anhören des Probevortrags und hilfreiches Feedback möchte ich Achim

Lindt, Markus Look und Andreas Wortmann danken.

Dr. Jan Oliver Ringert danke ich für die gemeinsame Arbeit am MontiArc Sprachdesign

und dem technischen Bericht. Darüber hinaus nochmal vielen Dank an die “Technologiesau”

Antonio und Andreas H. für euren stetigen Kampf für Maven und die Unterstützung bei der

Umstellung von MontiArc auf dieses Buildsystem. Dr. Holger Krahn, Dr. Steven Völkel und Dr.

Martin Schindler gilt mein Dank für ihre Arbeiten an MontiCore, auf deren Basis meine Arbeit

aufgesetzt hat. Marita Breuer und Galina Volkova danke ich für den technischen MontiCore-

Support. Bei Sylvia Gunder und (Dr.) Holger Rendel bedanke ich mich für die Unterstützung

bei der organisatorischen Vorbereitung von Holgers und meiner Promotionsprüfungen, die am

selben Tag durchgeführt wurden.

Bedanken möchte ich mich ebenfalls bei den vielen Studenten, die mich in ihrer Abschlussar-

beit oder als Hiwi bei der Implementierung in und um MontiArc oder bei Projekten, unterstützt

haben. Hierzu gehören: Markus Arndt, Paul Chomicz, Christoph Hommelsheim, Tim Ix, Oliver

iii

Kautz, Alexander Kogaj, Thomas Kutz, Juha Veikko Lauttamus, mein späterer Kollege Pedram

Mir Seyed Nazari, Rajeevan Rabindran, Sebastian Roidl, Stefan Schubert und Minh Quan Tran.

Bei Claas Oppitz bedanke ich mich für das Design und die Erstellung des MontiArc Logos.

Abschließend möchte ich meinen Eltern und meiner Familie für die Unterstützung auf meinem

Lebensweg danken. Ihr habt mir das Studium und die anschließende Promotion ermöglicht und

mich stets in meinem Vorhaben bestärkt. Besonderer Dank gebührt natürlich Nathalie, die mich

nicht nur unterstützt, sondern auch meine Laune bei der Erstellung dieser Arbeit aufgeheitert

hat. Danke, dass Du gemeinsam mit mir für die Zeit der Promotion nach Aachen gezogen bist.

Ohne Dich wäre diese Arbeit nicht möglich gewesen.

Braunschweig, Juli 2016

Arne Haber

iv

Contents

1 Introduction 1

1.1 Terms and Definitions . 2

1.2 Motivation . 4

1.3 Context . 5

1.4 Objectives . 6

1.5 Main Results . 8

1.6 Thesis’ Structure . 8

2 Requirements for Architectural Modeling and Simulation 11

2.1 Requirements for Architectural Modeling . 11

2.2 Simulation Requirements . 15

2.3 Currently existing architecture description languages (ADLs) 17

2.3.1 AADL . 18

2.3.2 Acme and xADL . 22

2.3.3 AutoFocus 3 . 24

2.3.4 ArchJava and Java/A . 26

2.3.5 Ptolemy II . 28

2.3.6 UML and SysML . 30

2.3.7 Summary . 33

3 MontiArc ADL 39

3.1 A MontiArc Example . 40

3.2 Basic Architectural Model Elements . 42

3.2.1 Component Type Definition . 42

3.2.2 Component Interface . 44

3.2.3 Architectural Configuration . 45

3.3 Advanced Architectural Model Elements . 47

3.3.1 Component Timing . 47

3.3.2 Autoconnect . 47

3.3.3 Autoinstantiate . 48

3.3.4 Constraints . 48

3.4 MontiArc Language Definition . 49

3.4.1 Foundations: MontiCore 3 . 50

3.4.2 Language Structure . 52

3.4.3 Architecture Diagram Grammar Walk-Through 53

3.4.4 MontiArc Grammar Walk-Through 56

v

3.5 Context Conditions . 57

3.5.1 General Conditions . 57

3.5.2 Connections . 60

3.5.3 Referential Integrity . 62

3.5.4 Conventions . 70

3.5.5 Code Generation . 73

3.6 AADL Compatibility . 74

3.6.1 AADL Components . 74

3.6.2 AADL Interfaces . 77

3.6.3 AADL Architectural Configuration 78

3.6.4 Further AADL Modeling Elements 80

3.6.5 Summary . 81

4 Simulating MontiArc Models 85

4.1 Foundations for the Simulator . 85

4.2 Runtime Environment . 89

4.2.1 Intended Object Structure @Runtime 89

4.2.2 Simulation Runtime Environment . 93

4.3 Scheduling . 96

4.3.1 Scheduling of Data Messages . 98

4.3.2 Scheduling of Ticks . 100

4.3.3 Scheduling already Scheduled or Blocked Ports 102

4.3.4 Waking up Ports . 103

4.4 Timing Classification . 105

4.4.1 Instant Timing . 106

4.4.2 Delayed Timing . 108

4.4.3 Untimed . 108

4.4.4 Synchronous Timing . 109

4.4.5 Causal Synchronous Timing . 110

4.4.6 Timing Domain Overview . 110

4.5 Optimization and Runtime Measurement . 110

4.5.1 Simple Round Robin Scheduling . 111

4.5.2 Further Optimization potential . 114

4.5.3 Scheduler Variants . 114

4.5.4 Comparison Setup . 116

4.5.5 Results . 117

4.5.6 Discussion of the Results . 119

4.6 Technical Design Decisions . 121

5 Technical Realization of MontiArc 125

5.1 Model Processing . 125

5.2 Symbol Table . 129

5.2.1 Foundations . 130

5.2.2 Symbol Table Construction . 131

vi

5.2.3 MontiArc Symbol Table: Namespace Hierarchy 133

5.2.4 MontiArc Symbol Table: Structure 135

5.2.5 MontiArc Symbol Table: Model Interfaces 138

5.3 Transformations . 140

5.3.1 Pre Context-Condition Transformations 140

5.3.2 Pre Code Generation Transformations 144

5.3.3 Implementation . 148

5.4 Generation of Simulation Code . 149

5.4.1 Component Interfaces . 150

5.4.2 Atomic Components . 151

5.4.3 Decomposed Components . 156

5.5 Atomic Component Behavior Implementation 160

5.5.1 Implementation . 160

5.5.2 Integration of Handwritten Code . 165

5.5.3 Components with Side-Effects . 167

5.6 Reduction of Redundant Objects . 169

5.6.1 Atomic Components with a Single Incoming Port 169

5.6.2 Reduction of ForwardPorts in Decomposed Components 171

5.6.3 Reuse of Tick Objects . 172

5.7 MontiArc Tools . 173

5.7.1 Command Line Interface . 173

5.7.2 MontiArc Maven Plugin . 176

5.7.3 Eclipse IDE . 178

6 Tutorial: Development and Simulation of MontiArc Components 181

6.1 Getting Started . 182

6.2 Illustrative Example - Alternating Bit Protocol 183

6.2.1 Requirements . 184

6.2.2 Example Setup . 185

6.2.3 Modeling . 186

6.3 Behavior Implementation . 191

6.3.1 Behavior Implementation in Java . 191

6.3.2 Native Behavior Implementation . 192

6.4 Validation of MontiArc Models . 196

6.4.1 Model-Based Black-box Tests . 196

6.4.2 White-box Testing of Decomposed Models 200

6.5 Generalize Components . 205

6.6 Optimization Testing . 209

6.7 Documentation of MontiArc Models . 212

6.7.1 Enabling the Documentation Generator 212

6.7.2 Document Components . 213

6.7.3 Index Page Design . 216

6.7.4 Package Documentation . 217

vii

6.8 MontiArc Libraries . 217

6.8.1 Structure of a Model Library . 217

6.8.2 Predefined Libraries . 218

6.8.3 Creating a Library . 219

6.8.4 Using a Library . 219

6.9 Distributed Simulation . 220

7 MontiArc Extension Method 225

7.1 Model Processing Extension . 226

7.1.1 Add Execution Unit . 227

7.1.2 Add Transformation . 229

7.2 Simulation Extension . 230

7.2.1 Handle Extended Syntax . 230

7.2.2 Add Feature . 230

7.2.3 Extend Scheduling . 232

7.2.4 Code Generator Extension . 232

7.3 Language Extension . 234

7.3.1 Syntax Extension . 234

7.3.2 Symbol Table Extension . 240

8 Case Studies Using MontiArc 245

8.1 Overview . 245

8.2 Modeling and Simulation of the TCP/IP Stack 246

8.2.1 The TCP/IP Stack - An Introduction 246

8.2.2 TCP/IP Stack Layers in MontiArc . 247

8.2.3 Conclusion . 250

8.3 FlexRay Communication Simulation Using MontiArc 250

8.3.1 FlexRay Introduction . 251

8.3.2 The Running Example . 253

8.3.3 Deployment and FlexRay components 253

8.3.4 The MontiArc FlexRay Generator . 254

8.3.5 Conclusion . 256

9 Language Extension Case Studies 257

9.1 Overview . 257

9.2 AJava . 259

9.2.1 Example . 260

9.2.2 Language and Tool Extensions . 262

9.2.3 Conclusion . 264

9.3 MontiArcAutomaton . 265

9.3.1 Example . 265

9.3.2 Language Extensions . 266

9.3.3 Conclusion . 268

viii

9.4 Process Network Simulation . 269

9.4.1 Example . 269

9.4.2 Discuss Language Extension . 271

9.4.3 Conclusion . 274

10 Discussion and Conclusion 275

10.1 Requirements for Architectural Modeling . 275

10.1.1 LRQ1: Architectural Style . 275

10.1.2 LRQ2: Usability . 278

10.1.3 LRQ3: Reusability and Extensibility 279

10.1.4 LRQ4: Type System . 279

10.1.5 LRQ5: Libraries . 279

10.2 Simulation Requirements . 280

10.2.1 SRQ1: Platform Independence . 281

10.2.2 SRQ2: External Component Implementation 281

10.2.3 SRQ3: Mathematical Foundation . 282

10.2.4 SRQ4: Component Timing Classification 283

10.2.5 SRQ5: Simulation Time . 283

10.2.6 SRQ6: Distribution . 283

10.2.7 SRQ7: Component Testing . 284

10.2.8 SRQ8: Extensibility . 285

10.2.9 SRQ9: Scheduler . 285

10.2.10 SRQ10: Optimizations . 286

10.3 Conclusion . 286

A Index of Abbreviations 293

B Diagram and Listing Tags 295

C Grammars 297

C.1 Architectural Diagrams Grammar . 297

C.2 MontiArc Grammar . 302

C.3 I/O Test Language Grammar . 305

C.4 Process Network Simulation Grammar . 312

D AADL Examples 313

E Tutorial Material 317

E.1 Implementations . 317

E.2 I/O-Test Models . 320

E.3 White-Box Tests . 324

E.4 Generalized Components . 328

E.5 Optimization Testing . 329

E.6 Distributed Simulation . 335

ix

F Language Extension Material 337

G Curriculum Vitae 343

Bibliography 345

List of Figures 365

Listings 369

List of Tables 373

x

Chapter 1

Introduction

Modern software systems are becoming more and more complex. For example, modern car

systems contain up to 80 interacting control devices which realize advanced features, such as

lane keeping assistants, automatic parking, and adaptive cruise control, whose functionalities

are mostly provided by software [RSG+08]. In interactive systems, complex functions are of-

ten realized by cooperating components. Such components can include and depend on software

which is running on control devices and hardware such as sensors and actuators [BS01]. Con-

sidering that components are used in different car series, evolve during the life-cycles of the

series, and have to be tailored to dedicated variants, ensuring the compatibility of components

and integrating them to complete system is an inherently complex task.

Of course, a complex software system requires a software development process which is able

to handle this complexity. During the last decades, many approaches have been developed to

manage the rising complexity of software systems. Most traditional development processes, such

as the waterfall model [Roy70], the spiral model [Boe88], or the V-model XT [BR05, FHKS09],

have in common, that the process is separated into distinct phases. In the design phase, the

structure of the system under development (SUD) is defined in terms of a software architecture.

According to Bass et al. [BCK03], the software architecture is very important due to its three

main cases of application: communication among stakeholders, early design decisions, and a

transferable abstraction of the SUD.

The software architecture of a SUD decomposes the system into small, manageable subsys-

tems respectively components that interact over well defined interfaces. This explicit definition

of interfaces between components effects the system development in several positive ways. It

facilitates reuse of development artifacts and methods since their interfaces serve as contracts

between the components and their user. Controlled reuse of well tested components lead to

reduced costs, a decreased time to market, and improved quality [Lim94, MBB95]. Also archi-

tectural patterns can be reused, which provide widely used and accepted solutions for recurring

problems during the architectural system design [FK05].

Further, the hierarchical decomposition of a system into components with well defined inter-

faces also decomposes the complex system development task into a set of smaller and manage-

able component development tasks. Consequently, these components can be developed indepen-

dently in concurrent activities which reduces the overall time to market.

Software architecture is the essence of a system and determines important functional as well as

non-functional properties [BCK03]. Consequently, according to Garlan et al. [GMW97], a well

defined architecture can lead to a product that satisfies the given requirements, while an inap-

propriate architecture can be devastating. Depending on the development process, architectural

1

1.1. TERMS AND DEFINITIONS

descriptions can be used for communication or constructively, e.g., in the Model-Driven Archi-

tecture (MDA) approach [MSUW02, KM05], to generate implementation parts of the SUD.

To avoid misunderstandings in the communication between developers and to make architec-

tural descriptions available for automatic processing, a well defined modeling language is needed

which allows to describe SUDs and their configuration in a meaningful way. These languages,

commonly known as architecture description languages (ADLs), allow a high level description

of systems with a well defined and precise textual or graphical notation. An architectural de-

scription not only defines the structure of a system but also includes its behavior and patterns of

interaction [BCK03]. In this way, ADLs also enable reasoning about specific system properties

in early development stages [GMW97].

The topics of this thesis are architectural modeling and ADL engineering. To give a common

understanding of the used terms, they are introduced in the following section. Afterwards, the

thesis is motivated in Section 1.2 and the concrete context is described in Section 1.3. Then, the

objectives are described and the main results are concluded. Finally, the structure of the thesis

is outlined in Section 1.6.

1.1 Terms and Definitions

In the following, a list of terms and definitions is given that are used in this thesis.

• The Software Architecture of a system is the structural description of elements from

which the system is built and the interaction among the contained elements. Patterns in

the defined architecture and externally visible properties of architectural elements impose

constraints on how elements of a system can be composed and connected [SG96, BCK03].

• The Logical Architecture of a system is a logical viewpoint on a system. In contrast to the

structural focus of a software architecture, which exclusively contains software elements

of a system, logical architectures describe logical functions and their interaction. These

functions, which may be realized by hardware or software deployed on different hardware,

must cooperate to achieve the common task of the system [GHK+07]. Consequently,

aspects of deployment and distribution are not part of the logical architecture.

• An Architecture Description Language (ADL) provides means to describe the software

architecture of a system with

– components as architectural elements,

– component interfaces, which define the externally visible parts of a component,

– connectors, which model the interaction between components, and

– the architectural configuration of a system, which defines the structural composition

of elements [AAG93, MT00].

Beside the concrete syntax that is used to describe elements of a system and their interac-

tion, an ADL provides a conceptual framework [GMW97] which reflects characteristics

of the ADL’s application domain and the corresponding architectural style [MT00].

• Since systems from different domains have fundamental differences in their structure and

communication, Architectural Styles are used to tailor an ADL to a specific application

domain [SG96, MT00, DvdHT01]. For example, the architecture of an enterprise infor-

2

1.1. TERMS AND DEFINITIONS

mation system cannot be described with the same means as the architecture of an em-

bedded, interactive system. The fundamental syntax of ADLs usually comprises boxes,

to model components, and lines, to express communication between components. The

architectural style of an ADL assigns a specific semantics to these model elements which

allows to interpret architectural models in a uniform and unambiguous way [AAG93].

Beside the structural definition, an architectural style inheres a communication seman-

tics that describes patterns of runtime control and data transfer. In particular, it describes

how components perform computations and which kind of communication is modeled

with connectors. Further, an architectural style can impose constraints to the underlying

meta-model which determine semantically valid models.

• A Component is a unit of computation or data storage which interacts with its environ-

ment via well defined interfaces [MT00]. It accomplishes its tasks with internal compu-

tations and external communication with other components [AAG93]. A component may

scale from a single procedure to an entire application or subsystems and usually corre-

sponds to a compilation unit in the modeled system [MT00].

• A Component Interface defines a set of interaction points between the component and

its context as externally visible properties. It specifies the services which a component

provides and the services which are required by the component to fulfill its functionality.

Most often, services are messages, operations, or variables [MT00].

• Connectors are used to model inter-component communication. Depending on the ADL,

connectors are implicitly (in the architectural style) or explicitly (as first level elements)

associated with a set of rules that govern those interactions. Depending on those rules,

connectors can represent complex interaction patterns, such as communication protocols,

and communication styles, such as message passing or function calls [MT00].

• An Architectural Configuration describes the topology respectively decomposition of

a system or component as a connected graph of components and connectors [AAG93,

MT00]. This structural definition is used to determine whether connected components

are compatible and their interfaces match. Further, architectural analyses are possible

for adherence to design heuristics, metrics, and architectural style constraints [MT00].

This thesis distinguishes between Component Type Definitions (or short Components,

see above) and Subcomponent Declarations (or short Subcomponents). The former

define the interface and architectural configuration of a component, the latter instantiate a

component type definition as an element of another component type definition.

• A Decomposed Component is a component with a given architectural configuration. The

behavior of a decomposed component is rendered by the composed behavior of the con-

tained subcomponents.

• An Atomic Component is not decomposed. It rather has a corresponding implementation

that renders the behavior of the component.

• An Architectural Programming Language (APL) introduces architectural modeling el-

ements, i.e., components, interfaces, connectors, and architectural configuration, into a

general purpose language (GPL) [BHH+06]. Thus, it can be regarded as an ADL com-

bined with programming concepts to implement component behavior. The main goals of

architectural programming are: First, architectural design decisions are explicitly present

3

1.2. MOTIVATION

in the implementation and the architectural design is enforced. Second, architectural ero-

sion of the implementation, which is caused by software evolution [PW92], is encountered

since architecture and implementation consistently evolve [ACN02b].

1.2 Motivation

Development processes, as already mentioned, structure the software development into distinct

phases to increase controllability and to improve the predictability of the development process.

For example, a well established process in the domain of interactive systems, e.g., in the automo-

tive domain, is the V-Model that logically arranges activities in form of a “V”. The left branch

of the V contains successive design and development activities: requirements engineering, sys-

tem design, software architecture design, software component design, and the implementation

phase at the bottom of the V. The right branch contains corresponding test activities: unit, in-

tegration, system, and acceptance testing. Since the architectural design is located early in the

sketched development process, it has a huge impact on the SUD and the following development

activities. An inappropriate architectural design is repeated in the implementation and can be

initially discovered by system and acceptance testing activities. Garlan et al. [GMW97] even

consider architecture as the essence of a system which significantly influences whether the given

requirements are met or not.

Several studies summarized by Galin [Gal04] and Feiler [Fei14] outline that 50 % of the

defects in software systems are introduced by invalid requirements, an inaccurate system re-

spectively architectural design. 35 % of these defects are detected during the integration and

system testing. 15 % are not discovered until a product is released. Since many activities in the

development process have to be repeated, correcting these defects causes high costs. According

to an IBM white paper presented by Briski et al. [BCH+08], the costs to fix defects of an already

released product are up to 30 times higher than if the same defect would have been fixed in the

design phase of the development. Galin [Gal04] even reports an average relative defect cost of

40 times if a defect is detected during system integration tests. It is even 110 times higher if it is

detected in the operation phase of a software product.

As a consequence, the early validation of software architectures, automatic code generation

from logical and physical ADLs to enforce architectural properties within the system implemen-

tation, as well as controlled reuse of well defined architectural components yield great potential

to decrease development costs and improve the quality of a system. Nevertheless, several prob-

lems of architectural modeling in practice hinder to exploit this potential to the full extent:

• In practice, architectures are most often modeled using general purpose languages, such

as the Unified Modeling Language (UML), which allow to design the architecture and

communicate it to the developers [MLM+13]. Since the underlying architectural style is

rather general, constructive use, e.g., for code generation, analyses of system properties,

impact, or dependency analyses, is not automatically applicable for such languages.

• The software architecture of a system is designed initially and, at best, the implementa-

tion is created in conformance to the initial design. Thus, the architecture is also present in

the code [TMD09], even if an explicit mapping is missing. Discovered defects, changing

requirements, or the evolution of a software system might lead to changes in the architec-

4

1.3. CONTEXT

ture. Due to hard development deadlines, these architectural changes are directly realized

in the code and not reflected back into the architectural model, which leads to architectural

erosion [PW92].

• Architectural erosion may further lead to incompatible interfaces of component imple-

mentations. If continuous integration services are not available, which immediately inte-

grate changed component implementations with their environment, these incompatibilities

are revealed when manually integrating the system. Consequently, the integration effort is

hard to predict.

• Software architecture connects system requirements with the concrete implementation

[GHK+07]. If the used modeling tool does not support tracing from requirements to

architecture to code and vice versa, these relations have to be documented externally, e.g.,

in formal review documents. Caused by architectural erosion, these manually created

mappings are blurred over time.

1.3 Context

In practice, distinct system kinds and domains require different means and notations for archi-

tectural modeling. This thesis focuses on architectural modeling of interactive systems. Since

the focus is set on the logical software architecture of such systems, the concrete deployment of

components and aspects of the involved hardware are not considered. According to Broy and

Stølen [BS01], an interactive system consists of distributed components which communicate

with asynchronous message passing over buffered and directed channels. Due to the underly-

ing distribution, components cannot implicitly share their state and do not access shared data

synchronously. Since no effort is needed to synchronize data access, this architectural style also

eases the development of parallel, non-distributed systems. Generally, the software part of Cyber

Physical Systems [Lee10] can be considered as an interactive system [TMD09].

Typical examples for interactive systems are:

• telecommunication systems,

• distributed business applications based on a service oriented architecture or in the cloud,

• multi-core architectures, and

• control devices in automotive systems or manufacturing lines.

A more concrete example for an interactive system taken from the automotive domain is given

in Figure 1.1. It depicts the logical architecture of component LightCtrl, the interior light

control of a car. The interface of the component is given by three incoming ports on the left side

and one outgoing port on the right side. All depicted ports have a type which denotes the type

of the message that can be received or sent. In the used graphical notation, the message type of

the ports is annotated on the outgoing or incoming connectors.

The architectural configuration of component LightCtrl is given by a set of subcom-

ponents that instantiate other component definitions. In this way, the component definitions

Arbiter, DoorEval, and AlarmCheck are reused as subcomponents. The architectural

configuration is completed by connectors which connect ports of LigthCtrl’s interface with

ports provided by the interfaces of the subcomponents. Also subcomponents can be directly

connected, as for example subcomponent DoorEval and Arbiter. Since the model is asso-

5

1.4. OBJECTIVES

ciated with the aforementioned architectural style of interactive systems, all depicted connectors

model asynchronous message passing between the depicted components.

1.4 Objectives

Current ADLs for the modeling of interactive systems, which focus on the problems described

in Section 1.2, are rarely used in industrial practice. A survey based on interviews of 48 prac-

titioners from 40 different IT companies presented by Malavolta et al. [MLM+13] revealed,

that most often generic UML tools are used in industrial architectural modeling. This mainly is

caused by the following reasons:

• Language barrier: UML is a widely known modeling language which is taught to many

engineers.

• Complexity: Most ADLs are regarded to be complex and heavyweight, which deters prac-

titioners to use them [MLM+13].

• Modeling tools: Only few ADLs are supported by satisfactory tools [Pan10].

• Tool integration: If ADL tools exist, they are not (well) integrated into existing desktop

environments that are already in use [WH05].

• Incremental modeling: ADLs do not provide support for incremental adaption since they

are not well integrated into the development process respectively the used tool chains

[Woo05]. Furthermore, a modular design of component models with loose coupling to

other component models is a precondition for incremental modeling, analyses, and code

generation.

• Unspecific architectural style: Some ADLs are too generic and lack domain specific en-

tities which are important to architects [WH05]. Since they are not tailored to a certain

architectural style, they do not provide enough information for automatic analyses or code

generation. Thus, they need to be extended, which may result in ambiguous or unclear

semantics.

• Fixed architectural style: Other ADLs often make restrictive assumptions and impose a

particular architectural style. These assumptions may be (slightly) inappropriate for a

specific use case [Pan10]. If an ADL cannot be easily adjusted to a current use case, it

LightCtrl

BlinkRequest

AlarmCheck(5)

ac
AlarmStatus

Arbiter
SwitchStatus OnOffCmd

cmd

DoorStatus DoorEval(3)
OnOffRequest

MA

Figure 1.1: Component type definition LightCtrl that defines the architecture of the interior

light control of a car.

6

1.4. OBJECTIVES

cannot be used. Furthermore, it is not economically efficient to learn a distinct ADLs for

each needed architectural style.

• Model reuse: While architectural modeling eases reuse of developed software compo-

nents, the architectural models are most often not reusable in a controlled manner [Woo05].

This thesis addresses the question, how to design an ADL which copes with the aforemen-

tioned impediments for architectural modeling in practice. An ADL for the modeling of logical

architectures of interactive systems is presented. To efficiently support the system development

within early development phases, it allows to analyze, explore, and validate the SUD in an agile

way. Therefore, a simulation has been constructed which allows to validate a system and predict

its properties. The developed language and corresponding tools serve as a case study to validate

the derived concepts of architectural modeling.

Both, the architectural style of the ADL and the corresponding simulation are based on a

formal semantics named FOCUS [BDD+93, BS01]. FOCUS provides several advantages:

• System and component specifications with a precise semantics expressed in predicate

logic.

• A development process for interactive systems based on controlled and verifiable system

refinement.

• A formal model of communication that allows to describe and reason about communica-

tion channels and event traces.

• Mathematical foundations to describe time within the communication model.

Due to this formal foundations, the developed architectural style already provides enough infor-

mation to analyze and simulate interactive systems. Nevertheless, it is also possible to extend

and refine the developed language and tooling to tailor the ADL to specific needs. In this way,

concrete implementation languages or new modeling elements can be introduced into the lan-

guage easily.

Admittedly, FOCUS provides a well-defined semantics for architectural modeling. Neverthe-

less, since it is a formal and theoretical framework, a workbench is needed to use it in practice

and benefit from its advantages. To avoid the aforementioned drawbacks of heavy-weight ADL

tools, this thesis further poses the question, how architectural modeling in early development

phases can be combined with agile methods. Thus, the developed language is inspired by agile

methods which heavily depend on automatically executed tests. By directly implementing the

behavior of components in an asynchronous, event-based way, rapid prototyping of interactive

software architectures is simplified. These models can be automatically analyzed and validated

with simulations without user interaction, which simplifies distributed development of architec-

tures. Since architectural models are first-level artifacts, they are continuously aligned with the

simulation code, which prevents architectural erosion.

Another important aspect of the developed ADL is reuse. It provides syntactical elements

which increase the reusability of components. Similar to Java’s jar archives, components and

the corresponding simulation code can be packaged together in component libraries, which can

be easily reused in other development projects.

Summing up, this thesis poses the research question: How to design an ADL that copes

with the impediments of architectural modeling in practice? This question is refined into the

following subquestions:

7

1.5. MAIN RESULTS

RQ1 How to design a lightweight and easy to learn ADL?

RQ2 How to design an extendable ADL which allows to reuse as much tooling as possible?

RQ3 Which concepts can be applied to an ADL to support reuse of architectural models?

RQ4 How to integrate agile development methods with architectural modeling to allow for in-

cremental modeling and early validation of the architecture?

1.5 Main Results

The main results of this these are:

• A concrete ADL to model logical architectures of distributed, interactive systems. Its

architectural style is based on the mathematical FOCUS framework.

• A FOCUS based simulation of ADL models that allows to validate and explore the inter-

action of system components.

• An Eclipse-based integrated development environment (IDE) to simplify modeling.

• A structured ADL extension method to refine and adjust the given architectural style.

• Language processing tools extendable and adjustable to be reused for extended languages.

This comprises a symbol table, context conditions for model analysis, a transformation

framework, and code generators for architectural simulation. In this way, analysis for

customized languages can be developed easily and the simulation can be tailored to also

interpret newly added elements.

• Finally, the developed language can also be regarded as a case study for the compositional

development of languages and tools [Völ11, HLMSN+15].

1.6 Thesis’ Structure

The thesis is structured as follows:

• Chapter 2 defines important requirements for architectural modeling and simulation. Fur-

ther, existing ADLs are reviewed regarding these requirements.

• Chapter 3 presents the developed ADL named MontiArc and its architectural style. Be-

side its defining grammars, the context conditions are presented which are used for model

analysis. Finally, the compatibility of MontiArc and the Architecture Analysis and De-

sign Language (AADL) [FGH06], one of the mostly used ADLs in industrial practice, is

discussed.

• Chapter 4 presents the MontiArc simulation. For this, the needed FOCUS foundations

are discussed, the scheduling approach, the runtime environment (RTE), and supported

timing domains are presented.

• Chapter 5 documents the technical realization of MontiArc. This comprises aspects of

model processing, the symbol table as the foundation of an extendable language, pro-

vided transformations and generators. Further, the mechanisms to implement and inte-

grate atomic component implementations, and the available MontiArc modeling tools are

presented.

8

1.6. THESIS’ STRUCTURE

• Chapter 6 contains a tutorial that explains how to model and simulate interactive systems

using MontiArc. This comprises: modeling, behavior implementation, validation and

optimization testing, documentation, library development, and the distribution of simula-

tions.

• Chapter 7 presents a structured method for the extension of MontiArc. It allows to extend

the model processing to develop new analysis, metrics, and transformations. Further,

extension methods for the simulation are presented. Finally, a method to extend the syntax

of MontiArc is given.

• Chapter 8 presents selected case studies in which MontiArc has been used to simulate

software architectures.

• Chapter 9 gives an overview of selected languages which extended MontiArc.

• Chapter 10 contains a discussion whether the defined language and simulation require-

ments are fulfilled by MontiArc and the corresponding modeling tools. Further, the thesis

is concluded and outlook for possible future work is given.

9

10

Chapter 2

Requirements for Architectural Modeling

and Simulation

The software architecture of a system determines important quality attributes such as extensibil-

ity, robustness, and fault tolerance [BCK03]. Architectural modeling with architecture descrip-

tion languages (ADLs), which have a well defined architectural style, offers the possibility to

design the system under development (SUD) in an unambiguous way. Further, automatic analy-

ses of important system properties in an early development phase and code generation are made

possible. Nevertheless, as discussed in Chapter 1, ADLs are rather not used in industrial practice

due to missing language features or unpractical handling of the corresponding tools. A recent

study in industry by Malavolta et al. [MLM+13] identified a well-defined semantics, tool sup-

port, analysis, versioning, collaborative development, and extensibility among the most useful

and desirable features of an ADL. Since these features are most often missing in existing ADLs,

rather general purpose modeling languages, e.g., the Unified Modeling Language (UML), are

used for architectural modeling.

The posed research questions and listed ADL features are broken down into requirements

which determine important properties of the ADL in Section 2.1 and requirements for the simu-

lation of architectural models in Section 2.2. The chapter concludes with an overview of existing

ADLs and corresponding simulation approaches.

2.1 Requirements for Architectural Modeling

The following list of language requirements (LRQs) defines important properties of ADLs for

interactive systems. The defined properties are derived from the posed research question RQ1,

RQ2, and RQ3. Hence, they are inspired by the aforementioned impediments for using ADLs

in practice (see Section 1.4). The LRQs also define a basic architectural style that is suitable for

the modeling of interactive systems.

LRQ1 Architectural Style: To be well suited for modeling of interactive systems and for

rapidly prototyping a SUD, a core architectural style has to provide means for modeling

of the most important artifacts of interactive systems. To be easy to use, it is necessary

to not overload an ADL with a rich set of specialized model elements. Nevertheless,

an architectural model has to provide enough information to analyze and validate mod-

eled systems. In accordance to the classification of Medvidovic and Taylor [MT00],

mandatory ADL elements are: component definitions, their interfaces, connectors, and

11

2.1. REQUIREMENTS FOR ARCHITECTURAL MODELING

the architectural configuration of components to define the composition of a system. The

following LRQs further define important properties of these architectural elements.

LRQ1.1 Components: Component definitions have to fulfill the following properties:

LRQ1.1.1 Component Reuse: Modeled components have to be reusable in different

contexts. Therefore, it is necessary to provide suitable techniques which allow

to instantiate existing component definitions and to adjust them in a controlled

way. Furthermore, it is necessary to provide techniques for defining compo-

nents based on existing component definitions without replicating the model.

LRQ1.1.2 Packages and Compilation Units: To support collaborative development and

reuse of components, it is necessary to unambiguously identify components

and the location of the corresponding defining model (compilation unit).

LRQ1.1.3 Timing Classification: A classification of component timings is necessary to

analyze and simulate the behavior of complex composed components. A com-

ponent belongs to a timing domain which defines the component’s awareness

of time and how it processes messages.

LRQ1.1.4 Inner Component Definitions: Sometimes, components are not intended for

reuse but are rather used to structure big components into manageable parts.

To easily model architectures with singleton-alike components, it is necessary

to provide modeling techniques for the definition of inner components that are

only visible within the component in which they are defined. Further modeling

techniques are nececarry to simplify the instantiation of inner components in

a controllable way.

LRQ1.1.5 No Shared State: A component encapsulates its internal state and does not

share it directly with other components. If shared information is needed, com-

ponents explicitly synchronize by exchanging messages.

LRQ1.2 Interface: Interactive systems communicate with asynchronous messages that are

transmitted over typed channels. Thus, the interface of an interactive component,

which defines a set of typed incoming and outgoing ports, can serve as connec-

tion points for channels. Furthermore, concepts for adapting a component to the

current context (see requirement LRQ1.1.1) need to be part of a component’s inter-

face. Since they have to be used when a component is instantiated, they cannot be

encapsulated into the component’s internal representation.

LRQ1.3 Architectural Configuration: An ADL has to provide means to define the archi-

tectural configuration of a component. This comprises the internal structure of a

component and communication paths within this structure. The architectural con-

figuration is not part of a component’s interface. Thus, it shall not be accessible for

other components. Consequently, decomposed and atomic components need not

be distinguished when they are instantiated as a subcomponent or as a system.

LRQ1.4 Synonymously Used Type and Name: In practice, static architectures rarely con-

tain multiple instances of the same component. For example, in automotive sys-

tems developed with Matlab/Simulink, a subsystem block represents type and in-

stance of a component type. Thus, type and name of a component are often used as

12

2.1. REQUIREMENTS FOR ARCHITECTURAL MODELING

synonyms. Consequently, a port or a subcomponent in a component type definition

with a unique type (its type is only used once) does not need an explicit name.

LRQ1.5 Autoconnect: Experiences have shown that sender and receiver of a connector

often have the same port name in practice. If these names are unique, the connector

can be derived automatically. If autoconnect is active, it is necessary to inform the

modeler about derived connection.

LRQ1.6 Constraints: Component constraints are useful to restrict the valid behavior or

state of components on the architectural layer. For an extendable ADL (see re-

quirement LRQ3), a flexible integration mechanism is necessary to integrate differ-

ent constraint definition languages.

LRQ1.7 Documentation: To simplify reuse of component definitions, it is necessary to

document their interface and provided behavior. An in place documentation, which

is tightly coupled to the component model, supports collaborative development and

is more likely kept in sync with the component.

LRQ1.8 Compatibility to AADL: The Architecture Analysis and Design Language (AADL)

is one of the most popular ADLs in industrial practice [MLM+13]. To be able to

reuse existing analyses and tools of the AADL, the essential core concepts have to

be compatible to a selected set of AADL model elements and vice versa.

LRQ2 Usability: ADLs and architectural programming languages (APLs) have to be easily

usable. This comprises the following aspects of tool support and collaborative develop-

ment:

LRQ2.1 Tool Infrastructure: To support agile component development, a tool infrastruc-

ture which allows to process component models without user interaction is nec-

essary. This comprises parsing, symbol table construction, and context condition

checking (language front end), as well as simulation code generation (language

back end) and test execution.

LRQ2.2 IDE: An integrated development environment (IDE) is crucial for the acceptance

of a programming or modeling language. A text editor with syntax highlighting,

an outline, and active specification with auto-completion supports the modeler to

create valid models. Integrated component documentation eases reuse of library

components.

LRQ2.3 Context Conditions: Context conditions of an ADL define modeling constraints

of the associated architectural style. They define which models are well-formed.

This comprises the correct usage of connections as well as the integrity of refer-

ences within a model. Automatically validated context conditions are necessary

to support distributed, agile component development. Therefore, context condition

checks need to be integrated in the IDE (see requirement LRQ2.2).

LRQ2.4 Wizard: To quickly get started, a project wizard is necessary that sets up a devel-

opment project for architectural modeling.

LRQ2.5 Distributed Development: To support distributed development of architectural

models, it is necessary to integrated distributed revision control clients into the

IDE. Further, it is crucial to be able to merge different development versions of a

model and automatically validate if current changes render a valid model.

13

2.1. REQUIREMENTS FOR ARCHITECTURAL MODELING

LRQ2.6 Tutorial: To introduce developers to an ADL and to guide them through the de-

velopment of components, a tutorial is necessary. This especially includes how to:

• technically install the ADL IDE (see requirement LRQ2.2),

• configure the build infrastructure (see requirement LRQ2.1),

• model an illustrative example,

• implement behavior of atomic components (see requirement SRQ2),

• validate the interface behavior of components and signal flows within compo-

nents (see requirement SRQ7),

• document components (see requirement LRQ1.7), and

• create and use component libraries (see requirement LRQ5).

LRQ3 Reusability and Extensibility: An impediment for the use of ADLs in practice is that

they either have an architectural style which is too generic [WH05] or have a fixed ar-

chitectural style [Pan10]. Consequently, the architectural style of an ADL needs to be

adjustable to tailor the ADL to specific needs or domains. This comprises the following

requirements:

LRQ3.1 Add or Refine Model Elements: To adjust an ADL to a certain domain, e.g.,

architectures of robotics or cloud applications, it is necessary to add new kinds of

architectural elements and thus extended the language. In addition, it further has to

be possible to refine or replace language elements.

LRQ3.2 Behavior Description Extension Point: Components do not necessarily contain

constructive definitions of their behavior. To allow the uniform integration of ab-

stract behavior descriptions, e.g., specification automata, or concrete behavior im-

plementations given in general purpose language (GPL) code, a predefined exten-

sion point is suitable.

LRQ3.3 Modularity: To allow for reuse of language processing tools within the tooling

of an extended language, it is necessary to develop these tools in a modular way.

This comprises context conditions, the symbol table, transformations, and code

generators.

LRQ4 Type System: A type system is required to instantiate component and data type defi-

nitions and is thus a precondition for reuse. Further, an important feature of ADLs is

the analysis of modeled systems [MT00]. To support static validations of architectural

models, a type system is needed which comprises strongly typed data types, ports, and

components. Type checking of architectures then ensures the consistency of a model.

The following properties of type systems further support extensibility of ADLs:

LRQ4.1 External Data Type Integration: Many ADLs provide a fixed set of data types

or allow to add user-defined data types described in an integrated, proprietary type

definition language. This has the drawback, that all communication data types have

to be realized twice: once for the architectural model and once for the concrete im-

plementation. This redundant task can be avoided if an ADL is able to integrate

externally defined data type definitions into its type system. Nevertheless, an ab-

stract data type system still has to enable the development of type checks as well

14

2.2. SIMULATION REQUIREMENTS

as language processing tools which have to be independent from a concrete type

definition language.

LRQ4.2 Available Default Data Type System: A default data type system is necessary for

an ADL which is ready to use. Thus, a default implementation of the external data

type system is needed. Suitable type definition languages for this purpose are, e.g.,

the target implementation language of the modeled system or an abstract modeling

language which can also be used to generate concrete data type definitions.

LRQ5 Libraries: Another impediment for the application of ADLs in practice is missing or

complicated reusability of architectural models [Woo05]. To enable controlled reuse,

modular models which can be packaged into libraries are needed. McVeigh et al.

[MKM06] define requirements for component reuse that have to be fulfilled by a library

concept for ADLs. These are:

Alter: Alteration of library components to adapt them for reuse in the context of another

system has to be possible.

NoImpact: Alterations of a component must neither impact other users of the compo-

nent nor the provider of the library.

NoSource: Reuse has to work even if the source code is not available.

Upgrade: It has to be possible for users of a library component to accept an update of

the component. Even if the updated component has been locally altered for reuse.

While the requirements Alter and NoImpact mostly impose requirements on the un-

derlying ADL, the other requirements affect the technical realization of a component

library. Thus, they are integrated into the following subrequirements:

LRQ5.1 Version Control: To unambigously indentify a library, it has to have a unique

name and a version number. In this way, library users are able to explicitly choose

which version of a library is used.

LRQ5.2 Transparent: Adapted from the library concept of Java, it has to be transparent

for the modeler whether a subcomponent instantiates a component provided by a

library or a locally defined component. Thus, the integration of library components

has to be realized on a transparent technical layer.

LRQ5.3 Intellectual Property: It has to be possible to release closed source libraries with-

out the source code of the models and component implementations. Further, it has

to be irrelevant to the library user whether the library provides its sources or not.

By applying object oriented encapsulation properties to model libraries, the intel-

lectual property of the contained components and implementations can be retained.

2.2 Simulation Requirements

Simulations of architectural models can be used to explore and validate models of interactive

systems in an agile manner. Thus, they are suitable to validate models in an early development

stage (see RQ4). To simplify the implementation of atomic components, architectural modeling

can be combined with architectural programming. According to Baumeister et al. [BHH+06],

APLs enforce the properties of architectural descriptions, such as strong encapsulation and type

15

2.2. SIMULATION REQUIREMENTS

safe communication, on the programming level. This is achieved by integrating architectural

modeling languages into GPLs. A loose coupling to the concrete behavior implementations

avoids restricting such an ADL to a single target GPL. Thus, an agile workbench is necessary

in which architectural models are the main development artifacts and behavior implementations

can be flexibly integrated into a derived simulation. In the following, simulation specific re-

quirements are listed which determine important properties of architecture simulations.

SRQ1 Platform Independence: In distributed development teams, heterogeneous computing

platforms can be in use. This comprises distinct processor architectures as well as operat-

ing systems. To support distributed development of architectural models, it is necessary

that architectural simulations are executable on various computing platforms. Especially,

if component libraries (see requirement LRQ5) contain generated or handwritten simula-

tion specific implementations, it is very expensive to compile these implementations for

every used computing platform. Thus, a computing platform independent implementa-

tion language is most suitable to implement architectural simulations.

SRQ2 External Component Implementation: To avoid a binding of an extendable ADL to

a concrete target GPL, it is necessary to define the implementation of atomic compo-

nents in external artifacts. Hence, mechanisms are needed to transparently integrate

these external behavior implementations into the simulation. To support validation of

components (see requirement SRQ7), the component tester has to be able to interchange

implementations before execution-time, e.g., with mock implementations.

SRQ3 Mathematical Foundation: To allow for early validations of components a simulation

is necessary which is based on a mathematical framework. For the architectural style

of interactive systems, the simulation has to support asynchronous, timed, and paral-

lel event processing. Simulated timed streams with explicit messages allow to simulate

communication as well as time progress. These streams model the communication his-

tory between connected components (see [BS01, Chapter 4]).

SRQ4 Component Timing Classification: To allow simulation of systems which contain com-

binations of components with different timings, it is necessary to support all timing do-

mains of the architectural style (see requirement LRQ1.1.3).

SRQ5 Simulation Time: To decouple an architectural simulation from real time, it is necessary

to explicitly simulate time (simulation time). In this way, timed behavior of components

of an interactive system can be validated and the simulation can be executed much faster

than real time.

SRQ6 Distribution: By distributing the simulation of components of a complex, computation

intense system to distinct physical nodes, the overall execution time of the simulation is

reduced. Nevertheless, distribution also introduces additional overhead caused by mes-

sage transmission between the physical nodes. To reduce this overhead, synchronization

of the simulation time between the distinct physical nodes should not cause any addi-

tional overhead compared to a non-distributed simulation.

SRQ7 Component Testing: To validate components and architectures in early development

stages, they have to be testable. Automatic test execution further supports distributed

and agile component development, since all developers are able to execute tests defined

by other developers. The following properties have to hold.

16

2.3. CURRENTLY EXISTING ADLs

SRQ7.1 Determinism: A deterministic simulation is necessary to achieve repeatable tests.

Thus, repeatedly executed system-simulations with the same input always produce

the same simulation results. This, however, does not hold if non-deterministic

components are involved in the simulated system.

SRQ7.2 Black-box Behavior: To verify whether the behavior of an atomic or decomposed

component corresponds to its requirements, component black-box tests are neces-

sary. Black-box tests compare actual with expected reactions of components that

are stimulated with a given input.

SRQ7.3 White-box Behavior: To verify the interaction of subcomponents in a decom-

posed architecture, e.g., to check, whether expected signal flows are present within

a component, it is necessary to support white-box tests.

SRQ7.4 Mocks: For testing decomposed architectures it is necessary to substitute subcom-

ponents by mocks. In this way, irrelevant or non-deterministic subcomponents can

be replaced.

SRQ7.5 Timed Behavior: To validate, whether certain non-functional timing related re-

quirements are held by a component or a composition of components, the timing

of messages has to be explicitly testable.

SRQ8 Extensibility: To adjust the simulation to an extended variant of the ADL (see require-

ment LRQ3), the simulation infrastructure has to be extendable, too.

SRQ9 Scheduler: To decouple simulation time from real time (see requirement SRQ5) and

to assure deterministic simulation results (see requirement SRQ7.1), explicit simulation

scheduling is necessary. Further, the following subrequirements allow to adjust the sim-

ulation with custom schedulers.

SRQ9.1 Default: To simulate stream-based message passing as well as the progress of time,

a default scheduler is necessary. In this way, generated simulations are ready to use.

SRQ9.2 Customized Schedulers: Customized schedulers in the simulation are necessary to

integrate new scheduling strategies for extended ADL variants into the simulation.

SRQ9.3 Multiple Active Schedulers: Every scheduled component is controlled solely by a

single scheduler. However, by using multiple schedulers in the simulation of a de-

composed architecture, it is possible to optimize schedulers to specific component

types.

SRQ10 Optimizations: By optimizing runtime and memory use, a fast execution of the sim-

ulation is possible. Optimization strategies can be realized by the simulation runtime

infrastructure, the generator, and the default scheduler.

2.3 Currently existing ADLs

In the last decades a broad set of ADLs and corresponding tools have been developed. These

can be grouped into first and second generation ADLs [AS10]. The former mostly focus on

a specific architectural style or have a certain unique feature [MT00, DvdHT02]. A selected

set of first generation ADLs has been compared by Medvidovic and Tayler with a well defined

classification and comparison framework in [MT00]. Among these are:

17

2.3. CURRENTLY EXISTING ADLs

• Aesop [GAO94, Gar95] which allows to define architectural styles. An Aesop style en-

forces certain architectural rules and properties similar to context conditions, to support

software architects in modeling specific architectures.

• Darwin [MDEK95, MK96] aims at modeling distributed, dynamic systems. It is based on

an underlying operation model that is described in the π-calculus.

• MetaH [BEJV93] focuses on the interaction between software and hardware in real-time

systems.

• Rapide [LKA+95, LV95] is designed to model event-based architectures. It provides tools

that simulate the interaction between modeled components using partially ordered event

sets.

• Wright [All97, AG97] introduces explicit connectors as first level modeling elements.

Connector specifications can be designed and checked with a variant of the CSP [Hoa85].

Since these languages do not focus on extensibility (see requirement LRQ3) and mostly can-

not be used as an APL (see Section 2.2), they can be neglected in the following. In contrast,

second generation ADLs took over fundamental architectural concepts common to first genera-

tion ADLs and further add concepts that allow architectural interchange and extensions [AS10].

Among these are:

• the AADL [FGH06, FG12, SAE12],

• Acme [GMW97, www14t],

• ADML [www14c],

• xADL [DvdHT01, DvdHT02, DvdHT05, www14x], as well as

• UML [OMG11b] and SysML [OMG12].

Since MontiArc also aims at architectural programming, it has to be compared with languages

that can be classified as APLs, too. APLs are GPLs with integrated architectural elements as

primitive language constructs [BHH+06]. They lift the advantages of ADLs to the programming

level to enforce strong encapsulation and type safe communication. Nevertheless, in a more

abstract view, also ADLs that provide target code generation or (interactive) simulations, that

allow to rapidly explore the behavior of the modeled architecture, can be regarded as an APL.

Thus, the compared APLs are:

• ArchJava [ACN02b, ACN02a] and JAVA/A [BHH+06],

• AutoFocus [BHS99, HF10, HST10], and

• Ptolemy II [EJL+03, Pto14, www11].

In the following sections, the listed second generation ADLs and APLs are compared to Mon-

tiArc considering the requirements given in Section 2.1 and 2.2.

2.3.1 AADL

The Architecture Analysis and Design Language (AADL) [FGH06, FG12, SAE12] is an ADL

standardized by the Society for Automotive Engineers. It focuses on the early analysis of timing

and scheduling properties of static hardware and software architectures of real-time embed-

ded systems, e.g., from the automotive, avionic, robotics, and aerospace domain [HWF+10,

www14b]. According to an industrial survey performed by Malavolta et al. [MLM+13], the

AADL is one of the top-used ADLs in industry. It is designed as an extendable ADL. There-

18

2.3. CURRENTLY EXISTING ADLs

fore, it provides the annex concept, which can be used to refine and adapt the given architectural

style. Beside its application in industry, AADL is also used and extended in many industrial and

scientific projects. For instance, the COMPASS Project [BCK+09, www14g], which focuses

on specification and analysis techniques, developed formal methods to enable safety, depend-

ability, and performance analyses of AADL models [BCK+14, NBKN14]. AADS [VGV09]

provides a simulation of AADL models by transforming them to SystemC [IEE11]. It supports

performance analyses of modeled architectures and the validation of timing constraints. The

open-source toolchain TASTE [www14s] combines AADL with other languages, such as Mod-

elica [www14l], SysML [OMG12], or Matlab/Simulink [www13d], to a toolchain for embedded

software development. The stand-alone AADL model processors Ocarina [www14m] provides

target code generators for ADA and C as well as analyses tools.

AADL models are mostly defined textual. A compilation unit (i.e., a file) represents the

definition of a package with public and private areas. The Graphical AADL Notation Annex

defines a standardized graphical notation and the XML/XMI Interchange Format Annex defines

a XML format which is used to interact with other tools. Both annexes are standardized in

[SAE14]. The following analysis is based on [FGH06, FG12, www14b] and the open-source

AADL tool Osate2 [www14o].

Architectural Style: The AADL modeling language provides a complex architectural style

which focuses on the development of embedded real-time systems. Modeled components can

either represent application software, the execution platform, or a composition of components.

AADL explicitly distinguishes between component interfaces and component implementations.

The former define a set of features as interaction points with the environment. The latter imple-

ment a component interface and define the architectural configuration of a component.

A rich set of predefined properties, such as memory use or execution time, allow to model

the execution behavior of soft- and hardware components in detail. Advanced modeling con-

cepts like modes or message flows are provided that allow to model different operation modes

of components or to analyze communication properties of the modeled system. AADL also

provides four different connection kinds: port, parameter, and component access connections as

well as subprogram calls. Port connections, which represent delayed or immediate transmission,

are further grouped into unqueued data connections, queued event connections, and event data

connections. Compared to the FOCUS architectural style, immediate event data connections

correspond to FOCUS channels (see requirement LRQ1.3). Parameter connections model data

for accessing subprograms, component access connections model direct access to contained sub-

components, e.g., access to data or a bus. Finally, subprogram calls model the call sequence of

contained subprogram components.

A timing classification concept (see requirement LRQ1.1.3) does not exist in AADL. Nev-

ertheless, the component execution semantics is based on a thread execution model [FGH06].

By analyzing the used port kinds (delayed or undelayed) and properties, such as the execution

frequency of components, over- and undersampling components can be identified and execu-

tion schedules can be calculated [FGH06]. Also structural or behavioral constraints over AADL

models can be defined using the Constraint Annex [HG13]. The former are used to define

project specific rules for AADL properties, the latter are used to define assume/guarantee style

specifications for components and systems.

19

2.3. CURRENTLY EXISTING ADLs

Overall, the AADL architectural style allows to model embedded real-time systems in great

detail, which comprises the interaction between software and hardware, implementation details

of software components, and concrete software deployment. Since this thesis focuses on the

logical interaction of interactive systems (see requirement LRQ1), most of these detailed model

elements are not necessary for this purpose. Especially, concepts, such as component access

connections, which reveal internal implementation details, and data ports, that model shared

data (see requirement LRQ1.1.5), are not carried over.

Usability: By default, Osate2 does not provide a command line interface (CLI) that allows to

automate analyses or code generation tasks. Nevertheless, several other tools are able to process

AADL models with provided CLIs for batch processing. Among these are commercial tools,

such as the AADL Inspector [www14a], focusing on the analysis of AADL models, or open

source tools, like Ocarina [www14m] or RAMESES [www14p], providing several analyses,

transformations, and C code generation. Since many AADL components and implementations

are defined in a single model file, modular processing of AADL components is not possible.

The Osate2 IDE provides rudimentary active specification such as keyword proposals or an

integrated validation of context conditions. The latter, which mostly focuses on the composition

of categories and the validation of connections, are automatically checked in Osate2. Also

approaches like the annex language REAL [GH10], which is integrated in Ocarina, allow to

define implied semantics of properties or patterns. Thus, it can be used to define user-specific

adaptions of the AADL architectural style. However, since AADL models are usually pretty

large, a more sophisticated active specification which allows to create valid connections or helps

to define flows, would be helpful. Neither contained comments are used to further support the

modeler nor is the modeler automatically informed about unconnected ports or subcomponents.

To support distributed development, Osate2 can be extended with a revision control system

(RCS) client since it is based on the Eclipse platform. Automatic validations of merged models

are not available. Due to the large AADL community, many tutorials in the Internet help to

model with AADL. These range from small getting started tutorials to tutorials that detail certain

aspects of modeling.

Reusability and Extensibility: AADL is designed as an extendable language. On the one

hand, it inherently supports the extension with new property sets. On the other hand, its concrete

syntax can be extended with annexes [FGH06]. As already mentioned, several annexes exist in

practice, some of them are even standardized by the SAE [SAE11, SAE14]. Osate2 implements

the AADL language with Xtext [www13e]. Consequently, language elements can be added in a

sublanguage that, e.g., defines an annex. Nevertheless, according to Völkel [Völ11, Chapter 9]

this only affects the concrete and abstract syntax of the language. Infrastructure for compo-

sitional tool development is not provided. Also, developing a language extension for AADL

requires the complete Osate2 source code [www14o] which leads to a heavy weight extension

process.

The AADL itself does not provide an explicit extension point for behavioral definitions. Nev-

ertheless, behavioral languages can be embedded into an annex. For example the standardized

Behavior Annex [SAE11] provides a state-machine notation which can be used to implement the

behavior of components. Several approaches [YHMP09, ÖBM10] define a formal semantics for

the Behavior Annex with transformations to formally defined languages such as Timed Abstract

20

2.3. CURRENTLY EXISTING ADLs

State Machines [OL07a, OL07b] or Real-Time Maude [ÖM07]. The transformed models are

most often used for simulation or model checking (see below).

Type System: AADL provides a proprietary data type system integrated into the AADL

language. This data type system allows to model custom data types using data components.

Complex data types can be defined by aggregating data components in data component imple-

mentations. Since Osate2 is realized with Xtext, no support for language aggregation is available

(see [Völ11]). Thus, external data type languages cannot be integrated.

Libraries: Osate2 is delivered with a set of libraries such as basic data types or default

property sets. The contained models can be reused by importing a library into a package and

referencing the models with their fully qualified name. Consequently, transparent reuse is only

partially possible. Since the source code of a model has to be available for processing, it is not

possible to release libraries in a binary form to protect the intellectual property of the models.

Consequently, controlled reuse according to [MKM06] is also not possible.

Simulation: Several approaches and tools exist which allow to simulate AADL models. Most

of these approaches translate AADL models into execution models which can then be explored

in the corresponding tooling. Among these are:

• AADS [VGV09] and its successor AADS+ [VGV10]. Both translate AADL into a SCoPE

[www14r] model in order to validate if AADL constraints are fulfilled for concrete de-

ployments. SCoPE is a C++ library that extends SystemC [IEE11]. It allows to simulate

C/C++ software code in hardware models described in SystemC. AADS initially focuses

on the validation of global performance constraints and timing constraints of the contained

components. AADS+ further translates abstract state machines defined in the AADL Be-

havior Annex [SAE11] to take concrete component behavior definitions into account.

• AADLtoTASM [BGL09]. An Osate2 plug-in that translates AADL models into equivalent

Timed Abstract State Machines (TASMs) [OL07a, OL07b] which can then be simulated

using the TASM Toolset. This translation allows to analyze timed properties of AADL

models in a timed simulation of the equivalent TASM. A TASM specification is a set of

machines, sub machines, and function machines which interact using shared variables.

AADLtoTASM is based on an extended version of the AADL Behavior Annex which al-

lows to annotate transitions with timing intervals that model the duration of the transition.

• Chkouri et al. [CRBS09] present an approach that translates AADL models into Behavior

Interaction Priority (BIP) [BBS06] models. In this way, BIP’s formal operational seman-

tics based on labelled transition systems, is assigned to AADL. Using provided BIP tools

allows to validate the transformed models and to ensure that properties, such as state in-

variants, deadlock-freedom, and schedulability, are met.

• Ocarina [www14m] is a stand-alone AADL model processor which provides code gen-

erators for C and Ada targets. This allows to explore the modeled system in the target

language. The Ocarina tool-suite also contains mappings to timed and colored petri nets.

In this way, model checking tools, such as TINA [www14v] or CPN-AMI [www14h], can

be used to evaluate properties such as invariants, deadlock-freedom, liveness, and timed

relations between events. Also the state space of the transformed models can be explored.

Another approach is elaborated by ADeS [TSS08]. This simulator aims at supporting all

behavior information provided in AADL models. It is available as an Osate2 plugin, and, in

21

2.3. CURRENTLY EXISTING ADLs

contrast to the previous approaches, interprets an AADL model and does not transform it to

another execution model. It simulates active component categories such as threads, passive

component categories like data components, and communication specific components such as

bus components. It also considers modes and a simplified version of the Behavior Annex. ADeS

does not support the integration of external component implementations natively, but in [TSS08]

it is mentioned, that the simulation can be extended to also consider further AADL extension.

However, a documentation of the needed extension points is not provided. Since the simulator

exports simulation traces in an open XML format, custom simulation analysis tools can be de-

veloped more easily. The centralized trace generation, however, has the drawback that complex

simulations cannot be distributed to distinct physical nodes.

The ADeS simulator is developed in Java as an Eclipse plugin. It is based on the infrastruc-

ture (parser, abstract syntax tree (AST), etc.) provided by Osate2. Thus, it can be executed by

any computation platform which is supported by the Osate2 IDE. It implements an event-based

simulation approach which completely decouples the simulation from real-time. The simulation

is controlled by an integrated scheduler which cannot be exchanged easily with a custom sched-

uler. ADeS is tailored to an interactive analysis of the produced simulation traces and not for

automatically executed component tests. Thus, exchanging components of a simulated system

with mocks is not possible.

2.3.2 Acme and xADL

Acme [GMW97, www14t] and xADL [DvdHT01, DvdHT02, DvdHT05, www14x] are both

designed to be extendable. Both offer a set of basic architectural modeling elements which are

not tailored, but can be extended and adapted, to a certain system domain. To achieve this goal,

both ADLs follow a different approach.

Acme has been initially designed to define an architectural interchange format which allows

to translate architectural models from one ADL to another. It is a basic textual ADL defined

with a BNF grammar and comes with an IDE named AcmeStudio [www14u] that provides a

graphical front end for architectural modeling. Architectural styles are used to tailor the basic

ADL to a certain domain. Such a style is defined by a family which declares new types such as

components, connectors, ports, roles, and other elements, allowing to adjust Acme to a certain

domain.

Two different approaches extend Acme with XML representations. The Architecture De-

scription Markup Language (ADML) [www14c] defines the structure of the representation with

a Document Type Definition (DTD). It can be extended to new languages, but the extensions

cannot be used in existing tools [DvdHT01]. In contrast, xAcme [Sch01] defines the language

using XML schemas as an extension of xArch [www14y], which itself already provides an

XML syntax for basic architectural elements. In this way, existing xArch tooling can be reused

for xAcme models.

For the same reason, xADL has been developed as an extension of xArch [DvdHT01]. Beside

an improved extension mechanism (see below), it adds means to model architectural variants

and versions. Further, it adds a generic placeholder for implementations of components and

connectors. The IDE ArchStudio [www14e] integrates several xADL tools.

22

2.3. CURRENTLY EXISTING ADLs

Architectural Style: Both languages, Acme and xADL, do not provide a predefined architec-

tural style. However, they provide integrated mechanisms to define custom architectural styles.

Both miss a concept to instantiate component definitions in another component. Consequently,

each used component corresponds to a component definition that cannot be reused easily in an-

other context. On that account, advanced concepts which improve reusability, e.g., configuration

parameters, generic types, or inheritance, are not available. Acme defines component interfaces

using directed ports that instantiate a port type from the current family. In xADL, interfaces only

define an interaction point with other components. It is neither directed, nor typed. Both lan-

guages and the corresponding tools provide means to statically analyze models similar to context

conditions. Acme (AcmeStudio) allows to define and attach invariants to model elements that

are evaluated to check certain properties of the model. In this way, it is possible to tailor a fam-

ily to a certain domain, e.g., by restricting which port types can be connected or which relations

are allowed between elements of the family. In xADL (ArchStudio), a set of so called critics is

provided for this purpose. It can be extended by installing new analysis tools. A list of default

critics is given in [DvdHT05].

Usability: Both IDEs do not provide build infrastructure to automatically process models

without user interaction and are delivered without an RCS client. However, since both tools are

Eclipse-based, an RCS client can be installed manually. Active specification is not available in

both IDEs. This further complicates modeling, since a huge number of options are available

in the extendable IDEs. Distributed development of Acme models is simplified by the under-

lying textual syntax. In contrast, the XML syntax of xADL complicates distributed modeling

[BLF14]. Both languages are introduced by tutorials. Unfortunately, these do not cover the rich

set of available tool and modeling possibilities.

Reusability and Extensibility: Acme allows to define new families that add new component,

connector, port, role, and element types to the language. A new type can extend an existing type

and inherit its properties. However, this extension mechanism is restricted to the addition of

properties and invariants. The set of core elements cannot be extended. Due to this restriction, it

is not possible to easily integrate arbitrary behavior definition languages into Acme. Neverthe-

less, the described extension mechanism is directly integrated into AcmeStudio, which allows

to immediately use the extended language.

In contrast, xADL allows to add and refine new language elements freely by defining a new

XML Schema that extends the xADL Schema. It even provides an abstract implementation

placeholder for component and connector implementations. It can be used to extend the lan-

guage with concrete behavior definition languages. By default, Java can be used to add imple-

mentation details. Naslavsky et al. [NXD+04] present an extension for statecharts. Although

it is possible to use extended languages in ArchStudio, some integration effort has to be carried

out and existing tools have to be adjusted (see [www14x]).

Type System: Both languages do not offer a data type system that allows to restrict the com-

munication type of ports. It should be possible to extend xADL with typed ports and analyses

that ensure type-safe connections. However, a flexible integration of different data type systems

is not possible due to the missing support for language aggregation.

Libraries: Instantiation of components is not supported in both languages (see above). Con-

sequently, a library mechanism is not provided.

23

2.3. CURRENTLY EXISTING ADLs

Simulation: A simulation of xADL or an extension is not available. Aldrich et al. [AGST04,

AAAG+05] demonstrate a combination of Acme and ArchJava. The presented approach al-

lows to synchronize Acme models with ArchJava components and thus execute Acme models

as ArchJava components. More details of the ArchJava component execution are given in Sec-

tion 2.3.4.

2.3.3 AutoFocus 3

AutoFocus 3 (AF3) [HST10, HF10, www14f] is a model-based development tool for embedded,

reactive systems that aims at supporting all phases of the development process. It has been

initially developed at the TU Munich [BHS99, Wil06] in cooperation with the spinoff Validas

AG[www14w] and is now developed by the spinoff fortiss[www14i]. The graphical AF3 ADL

mainly targets static architectures, but it is capable to model dynamic aspects with modes. AF3

provides a rich set of features to support consistent model-based development.

• Requirements and use cases can be defined and linked to architectural modeling elements

with traces.

• Integrated checklists support the requirement definition process.

• The completeness of defined requirements and use cases can be automatically reviewed.

• Logical system architectures can be specified with a FOCUS [BDD+93, BS01] based

ADL.

• The embedded target platform and the deployment can be specified. Based on this speci-

fication, the target schedule can be generated.

• An integrated FOCUS simulator [HST10] allows interactively explore the specified sys-

tem.

• Target code generators are provided for Java and C.

• The model checker NuSMV [www15d] and the theorem prover Z3 [www15e] are inte-

grated with AF3.

• Non-determinism analyses can be executed on system specifications.

Architectural Style: The architectural style of AF3 ADL is based on the FOCUS modeling

framework [BS01] and implements the time-synchronous frame [HST10]. AF3 components are

defined within Component Architecture Roots that correspond to a system component. Interfaces

are defined by a set of directed and typed ports. Decomposition is achieved by defining inner

components and their connection. Consequently, component instantiation is only partially sup-

ported (see libraries). The behavior of atomic components can be defined using automata. Since

all elements of an AF3 project are stored in a single XML file, the concept of a compilation unit

does not exist. It is not possible to define generic or configurable components and inheritance is

not supported.

AF3 is based on a synchronous component execution semantics. Since AF3 components pro-

cess time-synchronous streams and are either strongly or weakly causal [HST10], components

can be executed with a static sequential schedule. An active component synchronously reads all

its input values and writes all its output values in the current (weakly causal) or next (strongly

causal) step. Furthermore, the behavior of components can be formally constrained with as-

sumptions and guarantees, contracts, as well as patterns. Static analyses are available that, e.g.,

24

2.3. CURRENTLY EXISTING ADLs

validate created connections or identify weakly causal feedback cycles. Documentation of com-

ponents is achieved by linking requirements to a component and by adding comments within the

property view of a component. These comments are shown when hovering over the component.

Nevertheless, comments from a library component (see below) are not transferred to an instance

of the library component.

Usability: The introduction to AF3 an the corresponding Eclipse-based rich client IDE is

supported by a set of tutorials, picture books (e.g., [HLP+14]), and screen casts. AF3 does

not provide a build infrastructure that enables model processing in an automated way. Execut-

ing test suits or performing model analyses rather depends on user interaction within the IDE.

Furthermore, active specification is not supported by AF3, which complicates the definition of

well-formed models. However, the aforementioned static analyses are automatically executed

to inform the modeler about mistakes. Distributed development of AF3 models is not supported

since a) no RCS client is integrated into AF3, b) the used XML data structure cannot be easily

merged [BLF14], and c) automatically executed quality checks are not available.

Reusability and Extensibility: The AF3 ADL is not designed to be freely extendable. Con-

sequently, it is not easily possible to add or refine language elements or add new behavior defini-

tion languages. At least no public documentation, methods, or tutorials are available. However,

the AF3 architecture is designed in a modular way, divided into the following projects: archi-

tectural modeling, code behavior specifications, simulator, and code generators. Consequently,

these modules should be reusable in another context.

Type System: AF3 provides an internal data type system that is restricted to the basic types

int, boolean, double, and custom type definitions. The latter can be designed in a Data Dictio-

nary that allows to model enumerations, structs, and functions. However, these are restricted

to a combination of the mentioned basic types. It is not possible to integrate external data type

systems into AF3.

Libraries: AF3 provides a library concept which allows to import components defined within

the current model into the library and export them to other projects. Components from a library

can be instantiated in other components and can only be modified within the library view. This

guarantees, that a library component does not differ in distinct architectures or projects. Nev-

ertheless, this concept has room for improvement. First, libraries can contain components with

identical names. Second, libraries do not have a dedicated version number. Third, the sources

of a library always have to be available. Consequently, according to McVeigh et al. [MKM06],

reusing AF3 components is only possible in a restricted way.

Simulation AF3 contains a simulator which allows to perform an interactive, step-wise sim-

ulation of modeled systems. All input values of a system can be manually set, the values trans-

mitted over channels can be displayed on all levels of the architecture, and active states and

transitions of behavior defining state machines are highlighted. In this way, the interaction be-

tween contained components as well as modeled behavior can be interactively explored.

AF3 is developed as an Eclipse based rich client in Java for the most common operating

systems Windows, Linux, and Mac. 32- and 64-Bit versions are available on the AF3 web-

site [www14f]. Since the simulation is executed within the graphical AutoFOCUS client, it is

restricted to these computing platforms with a connected screen device. It is not possible to

distribute an AF3 simulation to distinct physical nodes.

25

2.3. CURRENTLY EXISTING ADLs

The implementation of atomic AutoFOCUS components is given by state machines or a tab-

ular behavior specification [HF10]. The latter can be used to implement stateless components

with input/output relations. Beyond, it is not possible to attach an external implementation in

the GPL of the target system to AutoFOCUS components. Alternative behavior definitions can

be activated using modes. Nevertheless, the implementation of atomic and decomposed compo-

nents cannot be freely exchanged before test execution.

The AF3 simulation is based on the time-synchronous FOCUS frame. Thus, it is possible to

simulate asynchronous, timed, and parallel event processing. AF3 provides two timing domains

for components: the weakly and the strongly causal time-synchronous domain. Components,

which are able to process multiple messages within a time interval and components which are

not aware of time cannot be modeled. AF3’s simulation time is decoupled from real time. The

simulation time is given by a global clock. Due to the time-synchronous foundation, this clock

corresponds to the current simulation step.

Beside the interactive execution of a simulation, it is also possible to define tests that stimulate

the modeled system or a single component to compare the actual with expected output. Tests

are defined as a table which contains the stimuli as well as expected values for each time step of

the testee [BMR12]. All tests of an AF3 project can be automatically executed within the AF3

client and produce deterministic test results. Thus, the timed black-box behavior of atomic and

decomposed components and the complete system can be automatically tested. White-box tests

that validate certain signal flows within a system cannot be defined.

AF3 provides a built-in simulation scheduler that executes the simulation. It analyzes the

model and computes a static schedule in which the components are successively executed for

each simulation step. It cannot be replaced with a custom scheduler to integrate scheduling

strategies of the target system. Since the AF3 ADL does not focus on extensibility, the simulation

cannot be extended as well.

2.3.4 ArchJava and Java/A

ArchJava [ACN02b, ACN02a] and JAVA/A [BHH+06] are APLs which both integrate architec-

tural model elements as primitive language constructs into Java. Their main goal is to counter

architectural erosion which is caused by software evolution [PW92]. Since architecture and im-

plementation are combined in the same artifacts, both evolve jointly and erosion is prevented.

Both languages allow to change the architecture of a system at runtime. In contrast to ArchJava,

Java/A supports the definition of protocol state machines that can be model checked to validate

whether components are deadlock-free.

Architectural Style: ArchJava and Java/A aim at defining local systems which communi-

cate in a synchronous way. They define components as an instantiable type that can itself be

composed to subcomponents. The component interface is defined by a set of required and pro-

vided ports that are internally connected to implementation methods. Consequently, a connector

in both languages corresponds to a method call. Since parameters can be added to component

constructors, configurable components can be implemented. However, generic components are

not available in both languages. Only ArchJava supports component inheritance. Context con-

ditions are defined by a formal semantics for Java/A [BHH+06] and a set of semantic rules for

ArchJava [AJ002]. However, in Java/A it is possible to define syntactically correct models that

26

2.3. CURRENTLY EXISTING ADLs

are compiled to invalid Java code. For example, missing types and duplicate variables are not

checked. In ArchJava these flaws are detected before the Java code is generated.

Usability: Both languages provide a CLI that allows to compile the developed programs to

regular Java code. ArchJava has been integrated into the AcmeStudio [AGST04] once. However,

this integration is outdated and does not work with the most recent versions of AcmeStudio and

ArchJava. Consequently, ArchJava and Java/A programs have to be developed in a plain text

editor, which is an error-prone and cumbersome task. Beyond, no tutorials are available that

guide the user through the languages. Nevertheless, both CLIs can be integrated in automatic

builds and the textual languages can easily be controlled by an RCS.

Reusability and Extensibility: Both languages are not designed to be extended.

Type System: Both languages use the Java type system for data types which cannot be re-

placed with an external type system.

Libraries: Theoretically, it should be possible to bundle components together with the gen-

erated and compiled Java code in a jar file and add it to the Java classpath. However, tests have

shown that ArchJava and Java/A cannot handle references to components within a jar file.

Simulation: Both languages provide a compiler which translates components into plain Java

code that depends on classes of a static runtime environment (RTE). In this way, ArchJava

and Java/A aim at target code generation and not at simulating the modeled system. Since

components from both architectural styles synchronously interact with direct method calls and

no scheduler is available to decouple components, system execution is coupled to real time.

Timing domains that influence timed component behavior cannot be selected.

Both compilers produce plain Java code which solely depends on the corresponding RTE.

Thus, the generated code can be executed on any computation platform with an available

Java Virtual Machine (JVM). It can be tested like any regular Java program, e.g., with JUnit

[www13c]. In both modeling languages, subcomponents are directly instantiated with a new

statement which is directly reflected in the generated code. In the generated code of Arch-

Java, subcomponents are represented by a static final field. Thus, they cannot be replaced with

mocks for testing. In contrast, subcomponents in the generated code of Java/A are managed by

a component manager which allows to reconfigure components at runtime. In this way, subcom-

ponents can be replaced with mocks for testing. This mechanism can also be used to replace the

generated implementation of a component with an external one.

ArchJava and Java/A components are usually restricted to a single execution thread and can-

not be distributed easily. Nevertheless, components can be developed that provide means for

distributed communication, e.g., using TCP ports. This communication, however, is not type-

checked anymore and thus can break architectural integrity of the developed system.

The RTEs of both languages can be extended using class inheritance. To use the extended

RTEs, the compilers need to be adjusted. However, these are not documented and do not provide

suitable extension points for this purpose. Theoretically, an extended ArchJava compiler can be

derived from the available ArchJava source code. The sources of the Java/A compiler are not

available.

27

2.3. CURRENTLY EXISTING ADLs

2.3.5 Ptolemy II

Ptolemy II [EJL+03, Pto14, www11] is a framework developed by the EECS Department of the

University of California that supports graphical modeling, interactive simulation, and design of

concurrent, real-time, embedded systems. The runtime semantics of a model is defined by so

called directors which implement a model of computation. The provided Discrete Event director

is most suitable to model distributed, event-processing systems. One key feature of Ptolemy II is

the hierarchical combination and exploration of different directors, e.g., to model cyber-physical

systems [Lee10].

Architectural Style: Ptolemy II aims at modeling concurrent, real-time, embedded systems.

It focuses on the mixture of mechanic, electric, electronic, and software components. A Ptolemy

II model corresponds to a decomposed component. Its configuration is given by decomposition

to interacting actors. Composite actors can be further decomposed with actors instantiated from

predefined libraries (sinks, sources, etc.). The execution semantic of an actor is controlled with

directors. The behavior of actors can be defined with ModalModels that contain state machines

or by implementing the behavior, e.g., in Java or Python. The interface of an actor can be

defined by directed ports. Nevertheless, the data type of a port is not defined explicitly. It is

rather automatically determined when connecting it to another port. On that account, most of

the consistency rules are not checked during modeling time. They are not checked until the

model is executed, which often leads to invalid models. Since ports are nearly untyped, generic

actors are not needed. A model corresponds to an XML file that stores the contained actors.

Further, actors can be stored in a user library that is realized as a regular model, too. Ptolemy

II supports actor instantiation and inheritance. Unfortunately, both relations are not visible to

the modeler in the concrete syntax. Furthermore, configuration parameters as well as constraints

can be defined for actors and a documentation can be attached.

Usability: Ptolemy II provides a graphical user interface named Vergil that can be regarded

as an IDE. The introduction to Ptolemy II and Vergil is supported by tutorials (e.g., [Pto14,

Chapter 2]) that introduce to the modeling and director concepts. Vergil does not provide any

automatic build infrastructure for model processing and therefore depends on user interaction.

Furthermore, distributed development of models is complicated due to a missing integrated RCS

client and the underlying XML model format.

Reusability and Extensibility: Ptolemy II can be extended with new directors or custom

actors. Beyond, it is not designed to extend the language itself. Consequently, it is not possible

to add or refine language elements or add new behavior definition languages. Further, it is not

possible to reuse single parts of Ptolemy II or Vergil, since it is not structured into independent

modules.

Type System: Ptolemy II provides an internal data type system initially presented in [Xio02].

Data types are not explicitly declared, e.g., for ports, but inferred based on their usage [Pto14,

Chapter 14]. The type system is checked just prior to the execution of a model and not during

design-time. The type system itself can be extended [Xio02]. Nevertheless, it is not designed to

adapt external type systems such as class diagrams (CDs).

Libraries: Vergil contains a library concept that allows to store user defined actors within a

library to reuse them in different models. Instantiating such a library actor creates a copy of the

actor in the current model. Consequently, the relation to the library actor is lost and changes

28

2.3. CURRENTLY EXISTING ADLs

made in the library actor or in its instance do not affect the other one. Hence, it is possible to

alter a library actor, but if the library actor is updated, there is no easy way to reintegrate these

updates into the instance. Furthermore, libraries do not have a version number and at least the

XML representation of a library has to be present in source form. Summing up, only restricted

reuse according to [MKM06] is possible.

Simulation: Vergil provides a simulation engine which allows to interactively simulate mod-

eled actors within their corresponding domains. Since Vergil is developed in Java, the modeling

IDE as well as the simulation are platform independent and can be executed on various comput-

ing platforms.

The behavior of user defined actors can be implemented with modal models or externally, e.g.,

in Java or Python. Even though Vergil allows to integrate actors developed in Java, no concrete

support for Java actor development is integrated. In fact, Java actors have to be developed in

an external IDE, such as Eclipse, compiled, and manually added to Vergil’s classpath [Pto14,

Section 12.4], which is a quite cumbersome process. Furthermore, it is possible to implement

actors in Java that break the type system. Since the type of a port is not fixed at design-time, an

untyped token object is used to represent messages between actors. Consequently, it is possible

to send messages with the wrong data type with a Java actor which leads to runtime exceptions.

In Ptolemy II simulations time is hierarchically controlled by the director of the top level

hierarchy. A director on a lower hierarchy level obtains the current model from the director

on the next higher level. Ptolemy II supports a model of superdense time [Pto14, Section 1.7]

where a time value is a pair (t, n), a combination of the model time t and a microstep n. It is

comparable to the time model of FOCUS, where t corresponds to the number of a time interval

and n corresponds to the index of a message within a time interval. The simulation time is

decoupled from real time with a default time resolution of one tenth of a nanosecond.

The provided directors offer a concept similar to component timing domains. Each director

implements a suitable scheduling strategy for the corresponding domain. Since new domains

can be integrated and domains can be hierarchically combined, customized schedulers can be

introduced and multiple schedulers can be executed in a single simulation.

The discrete-event (DE) director simulates timed, asynchronous, event-based communication

of (weakly) causal actors. The DE domain corresponds to the timed FOCUS domain. The

simulation is executed with a global event queue which propagates events to actors according

to their time stamp. In the homogeneous synchronous dataflow domain (SDF), actors consume

a single token (event) on each input port and produce a token on each output port. Each actor

is triggered once in a statically computed schedule. By default, the SDF domain does not use a

notion of time. Nevertheless, it can be configured to advance the simulation time by a fix amount

in each simulation step. This domain corresponds to the time-synchronous FOCUS domain in

which each time interval contains a single data message. The process network (PN) domain

models concurrent processes which communicate synchronously with message passing. Since

this domain is untimed, it corresponds to the FOCUS domain of untimed streams.

Vergil does not directly support a distribution of the simulation to distinct physical nodes.

While the process network domain is naturally suitable to be distributed, each actor is executed

in a single thread, the other domains are not. The underlying event scheduling with a global

event queue as well as complex interactions between directors of different domains hamper a

29

2.3. CURRENTLY EXISTING ADLs

distributed simulation.

Ptolemy II focuses on the interactive exploration of modeled systems. Admittedly, the simu-

lation is deterministic, but Vergil does not provide means for automated test executions. Further,

the implementation of an actor cannot be mocked without changing the model.

2.3.6 UML and SysML

The Unified Modeling Language (UML) [OMG11b], which is standardized by the Object Man-

agement Group (OMG), is a collection of 14 different diagram types that allow to model the

structure and behavior of software systems. Although it has some shortcomings for the pur-

pose of system engineering [Hau06], it is considered as ADL in many works [Sel98, ICG+04,

MDT07, MLM+13]. According to [MLM+13], UML is the mostly used set of languages for

architectural modeling in industry. However, due to some limitations, it is rather used for design

and documentation of architectures and not for automatic analyses or code generation.

To overcome these drawbacks of UML, the System Modeling Language (SysML) [OMG12]

has been introduced by the OMG in 2006. It defines an UML 2.0 profile which consists of a

subset of UML diagrams, adds new diagrams, and modifies existing diagrams to tailor UML

for system engineering [OMG12]. However, due to its generic nature it still does not define a

concrete architectural style for a specific domain.

Consequently, UML and SysML can be regarded as generic ADLs, whose constructs lack in

formal semantics and therefore may become a source of ambiguity and inconsistency in some

cases [Pan10]. Further, Petre [Pet13] reported that caused by concerns with model consistency,

more than half of developers do not have a real interest in modeling technology. To overcome the

issue of ambiguity, some approaches, such as the system model [BCR06, BCR07a, BCR07b],

define a formal and extendable semantics for UML diagrams. However, it only covers a subset

of the available diagrams such as CDs [CGR08a] or statecharts (SCs) [CGR08b].

Architectural Style: As already mentioned, UML and SysML have a rather generic architec-

tural style. Nevertheless, several profiles exist that tailor UML or SysML to a specific domain.

Kukkala et al. [KRH+05] provide an UML 2.0 profile for the design of embedded systems.

Cechticky et al. [CEP+06] defined a profile that focuses on reusability of components. MARTE

[OMG11a] is an UML profile for modeling and analysis of real-time embedded systems. A

prominent UML profile named UML-RT is defined by Selic [Sel98]. It provides the concepts

originally defined in the ROOM modeling language [SGW94] by introducing stereotypes and

constraints to model protocols, protocol roles, ports, and components as a capsule that hides its

internal implementation. It is, for example, supported by the proprietary IBM Rational Rose and

the open source tool Papyrus [www15b].

Usability: A large set of different tools support modeling with UML and SysML. Enterprise

Architect, Rational Rhapsody Developer, and MagicDraw are popular commercial tools. Pa-

pyrus [www15b] is an open source tool that is also considered for the following comparison. It

is part of the PolarSys [www15c] platform, the successor of TOPCASED, which combines open

source tools for the development of embedded systems. Most of these tools have a different fo-

cus. While Enterprise Architect focuses on constructive modeling and code generation, Papyrus

concentrates on model synchronization aspects and the integration of user-defined profiles.

30

2.3. CURRENTLY EXISTING ADLs

The majority of these tools are not suitable to automatically process models without user inter-

action [Pan10]. Since most of them persist produced models in the XMI format, a standardized

XML format which is mostly used to interchange UML models, external tools can be used to

automatically process the produced models. However, these external tools have to interpret cus-

tom profiles the same way as the used IDE, which is not always the case. Most often, context

condition checks are directly integrated into the IDE. These are either executed automatically in

the background or manually. Integrated Wizards and tutorials support the modeler while creating

new modeling projects or models.

Due to the textual notation, models stored in XML can be managed in an RCS. Nevertheless,

comparison of different versions requires extra effort with tools such as EMF compare, and

merging of XML models is not recommended [AP11]. An alternative to textual revision control

is provided by the CDO Model Repositories [www15a]. It offers persistence of and access to

EMF models to support the collaboration of Eclipse-based modeling tools. The concrete model

is managed on the server and accessed with atomic transactions. APIs are provided to compare

and merge different branches of a model. Thus, it solves the aforementioned XML drawbacks

by adding another tooling and complexity layer.

Reusability and Extendability: The UML provides an extension mechanism to define pro-

files that allow to specialize the generic forms of UML modeling elements to more application-

specific variants [Hau06]. The intention of the profile mechanism is to adapt an existing meta-

model by adding new constructs and not by modifying existing modeling elements [OMG11b].

It allows to add new syntax to the language, to define and refine the semantics of language el-

ements, and to add constraints that restrict the way how language elements can be used. This

light-weight extension mechanism is often used to tailor the UML for architectural modeling

and system engineering [Hau06]. For example Kukkala et al. [KRH+05] defined a profile that

aims at architectural modeling of embedded systems and Ivers et al. [ICG+04] describe how to

use UML for the documentation of component and connector architectures. Most often, these

profiles lead to non-standard UML. Standard and non-standard model kinds cannot reference

each other. Since concrete implementation of extension mechanisms are tool dependent, the

interchange of models between different UML tools is hindered [Hau06].

Type System: Flow ports of SysML block diagrams reference flow properties which specify

the concrete item flow between ports. Thus, SysML flow ports reference model elements which

are based on the same meta-model. Conceptually, this meta-model can be extended and a custom

meta-class for flow properties can be defined as a subclass of the flow property meta-class.

In contrast to the light-weight profiling extension mechanism, UML meta-model extensions

are rather not supported by existing UML modeling tools. Consequently, UML and SysML

modeling tools provide a default data type system based on the implemented meta-model which

cannot be easily extended.

Libraries: UML and SysML support the instantiation of types by references to the type

definition. Thus, the implementation of a library mechanism depends on the concretely used

modeling tool. If a tool is able to resolve external models, a library concept which fulfills the

requirements given by McVeigh et al. [MKM06] can be realized. E.g., Papyrus does not provide

any means to use models of another project respectively library within the current project. It

integrates the CDO repository infrastructure, but it is solely used for cooperative modeling of

31

2.3. CURRENTLY EXISTING ADLs

a single project. Since the UML/P [Rum11, Rum12, Sch12] is developed based on the same

technical foundation as MontiArc, i.e., MontiCore [Kra10], it also allows to reference models

which have been packaged in jar files. In this way, reusable libraries can be developed.

Simulation: The aforementioned missing concrete architectural style of UML hampers the

possibility to simulate UML models. Common UML models are rather used for the communica-

tion of the system design. Nevertheless, several approaches define a more concrete architectural

style with an UML profile which assigns a concrete runtime-semantic and provides a simula-

tion or target code generation. In the following, three different approaches are summarized: the

UML/P, OMNeT++, and a SysML simulation.

The UML/P provides a method for the generative development of object oriented systems

based on a reduced set of UML diagrams. Therefore, CDs are used to constructively define

the structure of a system, SCs define the behavior of methods. A combination of object di-

agrams (ODs), sequence diagrams (SDs), and a test-specification language is used to specify

tests in a model-based way. All these languages are combined with an action language that al-

lows to directly implement complex actions within models. It further allows to easily integrate

handwritten code into the generated system, which can be used to integrate external behavior

implementations. The UML/P itself is developed in Java and the provided generators produce

Java code. Thus, it is considered to be platform independent. Since the UML/P provides a con-

structive way for model-based system development, the generated code depends on a concrete

RTE that is rather not suited for simulations. Thus, no scheduler is provided which decouples

system execution from real-time and a timing cannot be selected. However, the language in-

frastructure presented in [Sch12] provides an extendable set of languages and an extendable

language processing framework, which can be tailored to specific needs of a system-simulation.

Other approaches transform (profiled) UML models to more formal or executable languages,

which allows to simulate the modeled system. For example Michael et al. [MSMB04] trans-

form UML/RT models to OMNeT++ [www14n], a discrete event simulator, primarily designed

for the simulation of network protocols within parallel, distributed systems, which is available

since 1997 [VH08]. OMNeT++ is developed in C++. Thus, specific compilation is needed

and existing simulation models for protocols have to be imported and compiled for the current

computation platform. Compound modules are defined in the NED language, a domain spe-

cific language (DSL) for the definition of simulations. The implementation of simple modules

(comparable to atomic components) is directly given in C++. Nevertheless, the JSimpleModule

extension allows to implement simple modules in Java and the CSharpSimpleModule extension

provides this feature for C#.

OMNeT++ is not based on a formally defined semantics and modules are not classified to

distinct timings. The simulation time is represented by a global clock which decouples the

simulation from real-time. Time-stamps are assigned to every event which is processed by the

simulation. Şekercioğlu et al. [ŞVE03] present an approach to distribute compound OMNeT++

modules to distinct physical nodes. The modules are synchronized over named pipes or files.

Since events are stored and organized in a future event set, synchronization of time needs some

extra effort [Cra96].

The aim of OMNeT++ is to gather simulation results and analyse them afterwards in a graph-

ical way [VH08]. Nevertheless, it provides the opp test tool to define and execute simulations

32

2.3. CURRENTLY EXISTING ADLs

and compare the output with predefined patterns [Var14, Chapter 15]. It is mostly suitable for

black-box tests of modules. To implement white-box tests, new compound modules have to be

created to manually replace some of the involved modules with mocks. Thus, this approach

cannot be applied without changing the original compound module or a copy of it. Since time is

an attribute of the exchanged events in OMNeT++, the timed behavior can be tested.

OMNeT++ provides a plug-in extension mechanism which allows to extend the existing sim-

ulation in a modular way [Var14, Chapter 17]. It allows to add new random number generators,

schedulers, configuration providers, output and snapshot managers. A set of default schedulers

is provided, e.g., a sequential scheduler, and a real-time scheduler, and can be selected before the

simulation is started. Only a single scheduler can be active during the execution of a simulation.

SysML introduces parametric diagrams, a specialized form of internal block diagrams, which

allow to model relations between properties of system parts [OMG12]. Constraints are modeled

as a block containing an equation. Parameters are variables within constraints which are mod-

eled as incoming ports. Value properties are quantifiable characteristics of system parts which

are calculated as the result of a constraint. Thus, complex (physical) properties can be aggre-

gated by combining constraint blocks and regular block. Parametric diagrams can be simulated

by parametric solvers such as IBM Rational Melody, which is based on the approach presented

in [PBF+07a, PBF+07b]. SysML SDs are used as a test language which interrelate requirement

diagrams and blocks to simulate the latter. Constraints are calculated by external tools such as

Mathematica or OpenModelica. The simulation of time is not yet supported. Kawahara et al.

[KND+09] present another approach which focuses on the concrete combination of SysML with

numerical solvers such as Matlab/Simulink or Modellica. Event-based interaction and commu-

nication between blocks is modeled in SysML, the implementation of continuous processes is

given in Matlab/Simulink. In contrast to [PBF+07a], the time management of the Simulink

simulation is explicitly controlled by a provided time management. In this way, SysML and

Simulink are synchronized and the simulation time is decoupled from real-time. Nevertheless,

both approaches rather focus on the simulation of physical properties than on the interaction

between logical system parts.

2.3.7 Summary

The features of the related languages and corresponding simulation frameworks are summarized

in Table 2.1 and Table 2.2. Please note, Acme and xADL are not considered in the latter table

since no simulation environments exist for these languages. It is shown, that none of the com-

pared ADLs and APLs fulfills all requirements given in Section 2.1 and 2.2 to the full extent.

Most of them are capable to express the structure of interactive systems and are therefore suitable

to communicate their design. Some lack in usability, some cannot be extended to define new ar-

chitectural styles, and almost all do not provide a well defined library mechanism that simplifies

reuse and distributed development. Also the non-interactive execution and validation of simula-

tions, which further supports collaborative, distributed, and agile development of components, is

rather not provided by the examined frameworks. In fact, they rely on user-interaction to execute

or analyse the produced simulation results.

One practical way to fulfill the listed requirements could be to extend an existing ADL and

the corresponding tools. Most suitable candidates which provide extensibility are AADL, Acme

33

2.3. CURRENTLY EXISTING ADLs

and xADL. The AADL OSATE2 implementation is realized with XText. It admittedly allows to

extend the syntax of a language but does not support the compositional development of extended

tools [Völ11, Chapter 9]. Acme defines a common architectural interchange format with a BNF

grammar. The provided tooling, however, is based on handwritten parsers which cannot be

easily extended. Thus, the complete language processing tooling for an extension of Acme has

to be developed from the scratch. xADL can be extended by defining new XML schemas that

extend the xADL base schema. Even though extended xADL dialects can be used in the existing

IDE ArchStudio, existing tools have to be adjusted for every dialect. Further, xADL models

are stored in XML syntax, which on the one hand forces the use of a heavy-weight graphical

modeling editor, and on the other hand hampers distributed development.

34

2
.3

.
C

U
R

R
E

N
T

L
Y

E
X

IS
T

IN
G

A
D

L
s

Feature AADL Acme xADL AutoFocus3 ArchJava &

Java/A

Ptolemy II UML &

SysML

Architectural Style embedded

real-time

systems

generic generic interactive

systems

local, syn-

chronous

Java systems

concurrent

embedded

real-time

systems, CPS

generic

Usability

IDE various, e.g.,

Osate2

AcmeStudio ArchStudio AF3 AcmeStudio /

no

Vergil various, e.g.,

Papyrus

Active Spec. partial no no no no no partial

Tool Infrastructure no, external no, external

CLI

no no CLI no no, external

Context Conditions yes extendable extendable yes few no yes

Wizard yes yes yes yes no yes yes

Distributed Dev. partial yes partial no yes no partial, CDO

MR1

Tutorial yes partial partial yes no yes yes

Reusability and

Extensibility

property sets

& annex

family XML

schema ext.

no no no profile, meta-

model

Model Elements annex

or Xtext

extension

refine ex-

isting, add

properties,

invariants

yes no no no add new

Behavior Ext. Point annex no yes no no no no

Modularity partial yes yes partial no no partial

Table 2.1 continued on next page

1CDO Model Repositories: http://www.eclipse.org/cdo/documentation/

3
5

http://www.eclipse.org/cdo/documentation/

2
.3

.
C

U
R

R
E

N
T

L
Y

E
X

IS
T

IN
G

A
D

L
s

Feature AADL Acme xADL AutoFocus3 ArchJava &

Java/A

Ptolemy II UML &

SysML

Type System

External Data TS no no yes, n/a no no no meta-model

extension, n/a

Default Data TS proprietary no no proprietary Java proprietary proprietary,

meta-model

based

Libraries

Version Control t.d., manual2 no no no no no t.d., no3

Transparent t.d., partial no no partial no no t.d., no

Intellectual Property t.d., no no no no no no t.d., no

Table 2.1: Overview of language features provided by the examined related work.

Feature AADL AutoFocus3 ArchJava &

Java/A

Ptolemy II UML & SysML

Considered ADeS

[TSS08]

AF3 [HF10] Compiler &

RTE

Vergil

[Pto14]

UML/P

[Sch12]

OMNeT++

[MSMB04]

SysML

[PBF+07a]

Platform Indep. partial, OS-

ATE plugin

mostly Java Java Java rather not:

C++

no

Ext. Comp. Impl. no no yes yes yes yes no

Table 2.2 continued on next page

2Tool dependent. Manual version control in Osate2.
3Tool dependent. No explicit library concept in Papyrus.

3
6

2
.3

.
C

U
R

R
E

N
T

L
Y

E
X

IS
T

IN
G

A
D

L
s

Feature AADL AutoFocus3 ArchJava &

Java/A

Ptolemy II UML & SysML

Math. Foundation informal,

event-based

time-sync.

FOCUS

informal,

method calls

director

based

informal,

method

calls

informal,

event-based

parametric

equations

Comp. Timing

Classification

no weakly,

strongly

causal time-

sync.

no directors: DE

= timed, SDF

= time-sync.,

PN = untimed

no no no

Simulation Time yes, global

clock

yes, global

clock

no yes, global,

hierarchical

clock

no yes, global

clock

no, yes in

[KND+09]

Distribution no no manual no manual yes, extra

effort for

time sync.

solver

dependent

Comp. Testing trace analysis table based Java JUnit interactive

exploration

test spec +

ODs + SDs

opp test tool SysML

SDs and

requirement

diagrams

Determinism yes yes yes yes yes yes yes

Black-box Behavior partial yes yes no yes yes yes

White-box Behavior partial no no yes no yes yes yes

Mocks no partial,

modes

no yes no yes no no

Timed Behavior partial yes, sim. step

= time

no yes no yes partial

Table 2.2 continued on next page

3
7

2
.3

.
C

U
R

R
E

N
T

L
Y

E
X

IS
T

IN
G

A
D

L
s

Feature AADL AutoFocus3 ArchJava &

Java/A

Ptolemy II UML & SysML

Extensibility mentioned,

not docu-

mented

no no directors and

actors

custom

generators,

handwritten

code

plug-in

mechanism

solver

Scheduler

Default internal internal no directors no yes yes

Custom Schedulers no no no directors no yes no

Mult. Act. Sched. no no no yes no no solver &

SysML

scheduler

Table 2.2: Overview of simulation features provided by the examined related work.

3
8

Chapter 3

MontiArc ADL

As discussed in Chapter 1, architecture description languages (ADLs) are rarely used in indus-

trial practice due to several reasons. In Chapter 2, requirements for an ADL are derived which

encounter the identified weaknesses and an overview of currently used ADLs and architectural

programming languages (APLs) is given. It is shown that none of the regarded languages fulfills

the derived requirements to the full extend and an extension of these languages is not promising.

On this account, the MontiArc language and corresponding tools have been developed from

the scratch using the language workbench MontiCore [KRV06, Kra10]. Since MontiCore sup-

ports various kinds of language extension and composition mechanisms, it is well suited to

realize an extendable ADL. Further, good concepts from the aforementioned ADLs have been

integrated into MontiArc. Among them are the light-weight textual notation of the Architecture

Analysis and Design Language (AADL) and Acme, architectural extensibility of xADL, the

mathematical foundations of FOCUS, concepts of architectural programming from ArchJava

and Java/A, and the flexible combination of different time domains from Ptolemy II.

The ADL MontiArc aims at modeling logical architectures of interactive, distributed systems.

Its architectural style is based on the FOCUS framework [BS01]. Thus, MontiArc components

correspond to distributed actors which asynchronously communicate with message passing over

directed channels. Considering the requirements for architectural modeling which are given

in the previous chapter, MontiArc is constructed with a small set of modeling elements which

are based on the formal semantics taken from FOCUS. As a result, MontiArc is easy to learn,

yet powerful enough to simulate the communication of architectural models. MontiArc’s most

fundamental features are:

• A simple core architectural style based on FOCUS.

• A modular and extendable language design to enable refinements and adaptions to tailor

the architectural style to further domains.

• Suitability for distributed, collaborative, and agile modeling with a set of model analyses

which can be executed without user interaction.

• A FOCUS based simulation of MontiArc models and automatic component tests (see

Chapter 4).

• High degree of model-reusability with configurable and generic components as well as

component libraries.

• Integrated modeling comfort functions.

• Compatibility to AADL [FGH06].

This chapter is structured as follows. First, the MontiArc ADL is introduced with an initial

39

3.1. A MONTIARC EXAMPLE

example. Then, the concepts of architectural model elements provided by MontiArc and the sim-

ulation specific extension are discussed in Section 3.2 and Section 3.3. The concrete MontiArc

language and its defining grammars are presented in Section 3.4. Context conditions that are

used to analyse and validate MontiArc models are defined and explained in Section 3.5. Finally,

a mapping to the popular AADL is proposed in Section 3.6.

3.1 A MontiArc Example

The syntax of MontiArc is introduced by means of an architectural model which defines the log-

ical architecture of an automotive function. The component LightCtrl controls the interior

light of a car and provides the following behavior that depends on received messages as well as

time events:

• If an alarm is active, the light blinks with a configurable interval.

• It turns on the light if the status of the switch is on.

• It turns off the light if the status of the switch is off.

• If the switch status is door dependent, the state of the doors is determining its behavior.

Consequently, if the door is opened, the light is turned on. If the door is closed, the light

is turned off after a configurable delay.

A MontiArc component that defines the architecture of the light control function is depicted

in Listing 3.1. The illustrated model contains the most frequently used elements of MontiArc.

Similar to Java, components are organized in packages that represent the folder structure Mon-

tiArc models are located in (cf. l. 1). As shown in l. 2, MontiArc allows to import all types of

a package at once using a star import. This way, all data as well as component types defined in

package ila.signals can be referenced in an unqualified way within the current component

definition. Direct type imports are also supported.

The depicted component definition contains three subcomponents that instantiate component

types. An alarm check subcomponent (l. 22) interprets the alarm status of the car and causes the

interior light to blink if an alarm is present. The door status is evaluated by another subcompo-

nent that realizes a door dependent switching of the interior light (l. 23). These contradictory

resulting requests are deliberated by an arbiter subcomponent to compute the resulting com-

mand for the interior light. The configurable component DoorEval is additionally configured

with the value of parameter fadeOutTime (l. 23) which is a configuration parameter of com-

ponent LightCtrl (l. 4). This way, the light fade-out time after closing a door is set to

fadeOutTime time intervals and can be configured when instantiating the modeled system.

Subcomponent ac is configured with the same parameter and an added value of 2 (l. 22). The

type of the Arbiter subcomponent is, in contrast to the aforementioned subcomponents, de-

fined as an inner component definition (ll. 14 – 20). Since the autoinstantiate feature

is activated (l. 5), inner component Arbiter is automatically instantiated as subcomponent

arbiter.

The component LightCtrl can only be accessed via messages on its incoming ports. If the

name of a port is omitted, it is implicitly named after its type. Hence, its incoming ports are

named switchStatus, alarmStatus and doorStatus (ll. 9 – 11). The computed result

40

3.1. A MONTIARC EXAMPLE

MA1 package ila;

2 import ila.signals.*;

3

4 component LightCtrl[int fadeOutTime] {

5 autoinstantiate on;

6 autoconnect port;

7

8 port

9 in SwitchStatus,

10 in AlarmStatus,

11 in DoorStatus,

12 out OnOffCmd cmd;

13

14 component Arbiter {

15 port

16 in SwitchStatus,

17 in BlinkRequest,

18 in OnOffRequest,

19 out OnOffCmd;

20 }

21

22 component AlarmCheck(fadeOutTime + 2) ac;

23 component DoorEval(fadeOutTime);

24

25 connect arbiter.onOffCmd -> cmd;

26 }

Listing 3.1: Component LightCtrl with its inner component definition Arbiter in

textual MontiArc syntax. The contained subcomponents are automatically

connected using the autoconnect feature.

will then be sent via an outgoing port of type OnOffCmd that is named cmd (l. 12). The ports of

the contained subcomponents are connected to each other and to the outer ports via connectors.

Connectors are directed and always connect one sending port with an arbitrary number of re-

ceiving ports of compatible data types. Two ports can be connected if either their data types are

identical or the data type of the receiver is a supertype of the sender’s data type. The connector

in l. 25 connects the outgoing port onOffCmd that belongs to subcomponent arbiter with

the outgoing port cmd. Since the autoconnect feature of the MontiArc language is activated (l.

6), all other ports of the example are automatically connected. In MontiArc, communication is

unidirectional. If a response is needed from a connected subcomponent, this has to be modeled

as a feedback via another communication channel. MontiArc assumes asynchronous communi-

cation, which is also implemented in the MontiArc simulation (see Chapter 4), since it is better

suited for modeling parallel and distributed computations.

41

3.2. BASIC ARCHITECTURAL MODEL ELEMENTS

3.2 Basic Architectural Model Elements

Considering RQ1 and requirement LRQ1, MontiArc is designed to be simple on the one hand,

so it can be used as an APL to teach and explore interactive systems. On the other hand, it

is a complete and functional ADL that is capable to model and simulate distributed interactive

systems in the style of an APL. To achieve this goal, MontiArc is split into two language com-

ponents: an architectural base language and a simulation specific extension. The former named

Architecture Diagram (ArcD) language comprises all basic architectural elements. That way,

it provides a very compact notation for a subset of the most relevant modeling elements of the

AADL with the same semantics and domain (see Section 3.6). The MontiArc language extends

the ArcD language to add simulation and timing specific model information (see Section 3.4.2)

and further adds comfort modeling features.

The basic elements of the ArcD language are, according to requirement LRQ1.1, component

type definitions with ports that define their interfaces (requirement LRQ1.2) and subcompo-

nent declarations that instantiate further component definitions. Subcomponents are part of the

architectural configuration of a component type. The configuration is supplemented by con-

nectors that unidirectionally connect ports of components and subcomponents (see requirement

LRQ1.3). These model elements are presented in the following. Since the MontiArc language

is an extension of the ArcD language, and consequently contains the same model elements, the

term MontiArc is used synonymously for both languages.

3.2.1 Component Type Definition

Component type definitions (or short components) introduce new component types that are iden-

tified by unique qualified names (see requirement LRQ1.1.2) that provide an interface via which

the component interacts with its environment (see Section 3.2.2).

In MontiArc, components can either be implemented directly (as atomic components) or de-

fined to be a composition of other components. These decomposed components are hierarchi-

cally structured into further subcomponents (as for example LightCtrl in Listing 3.1) and

thus have their behavior derived from the composition of their subcomponents. For atomic

components, a reaction to incoming messages can be specified directly. Since the interfaces of

atomic and decomposed components are their only interaction points with the environment, both

component kinds can be equally treated in an architectural model. Thus, all subcomponents can

be regarded as black boxes whose observable behavior conforms to their interface.

A simple definition of a component type in MontiArc syntax is given in Listing 3.2. After

the declaration of the package, a component definitions starts with the keyword component

followed by the component’s name. The qualified name of the depicted component type is com-

posed of the package (l. 1) and the component’s name (l.3) to ma.snippets.comp.A. The

component body embraces the model elements with curly brackets which define the component’s

interface and architectural configuration (see below).

MontiArc provides a structural inheritance mechanism that allows to define a component as

an extension of another component type (see requirement LRQ1.1.1). The new type inherits the

interface as well as the architectural configuration from the supercomponent. Thus, all ports,

inner component type definitions, subcomponents, and connectors are inherited. An example is

42

3.2. BASIC ARCHITECTURAL MODEL ELEMENTS

MA

�

1 package ma.snippets.comp;

2 component A {

3 }

Listing 3.2: Definition of component type A.

depicted in Listing 3.3. Similar to Java, component inheritance is introduced by the keyword

extends followed by the type of the supercomponent. Thus, component Ext extends compo-

nent A. Since the type of A has been imported (l. 1), the unqualified type name can be used in

the extends clause (l. 2).

MA

�

1 import ma.snippets.comp.A;

2 component Ext extends A {

3 }

Listing 3.3: Definition of component type Ext as an extension of component A.

MontiArc supports the definition of configurable component types. Such components define

configuration parameters which represent variables with a certain data type. These parameters

are used within the implementation of a component and values have to be assigned when a con-

figurable component is instantiated. Consequently, parameters allow to adjust the behavior of

a component to the current context (see requirement LRQ1.1.1). Configuration parameters in

MontiArc are similar to a parametrized constructor of an object oriented class. An example for

the definition of configurable components is depicted in Listing 3.4. Component B defines two

configuration parameters p1 and p2 with the data types int and String (l.1). Configuration

parameters are embraced by [and]. These parameters can be used within the architectural con-

figuration of decomposed components and are directly passed to the implementation of atomic

components (see Section 5.5).

MA

�

1 component B[int p1, String p2] {

2 }

Listing 3.4: Definition of configurable component type B.

Generic component type definitions, or short generic components, can be parametrized with

type parameters. These can be used as data types for the ports of a generic component or as type

parameters in subcomponent declarations. This way, the concrete interface of a component can

be adjusted to the current needs when instantiating a generic component as subcomponent (see

requirement LRQ1.1.1). As depicted in Listing 3.5, a notation similar to Java generics is used.

The type parameters K and V are directly attached to the component’s name and are embraced by

< and >. MontiArc also offers the possibility to restrict the upper bound of type parameters using

the keyword extends. If a generic component with restricted type parameters is instantiated,

the assigned types have to meet the defined upper bounds. Thus, it has to implement or be a

subclass of the upper bounds type. Please note, if a generic component is also configurable, the

list of configuration parameters is given after the list of type parameters.

43

3.2. BASIC ARCHITECTURAL MODEL ELEMENTS

MA

�

1 component C<K extends Number, V> {

2 }

Listing 3.5: Definition of generic component type C.

3.2.2 Component Interface

Medvidovic and Tailor define a component interface as a set of interaction points between the

component and its external environment [MT00]. MontiArc component interfaces are defined by

a set of incoming and outgoing ports (see requirement LRQ1.2). Considering requirement LRQ1,

a MontiArc port is defined as an interaction point that asynchronously and unidirectionally sends

(outgoing) or receives (incoming) events respectively data messages of the port’s data type.

The referenced data types of MontiArc ports can be defined using UML/P class diagrams

[Rum11, Chapter 2], [Sch12, Section 3.1] or plain Java classes (see requirement LRQ4.2). Nev-

ertheless, further type definition languages can be added to MontiArc if necessary (see require-

ment LRQ4.1). The needed extension method is described in Chapter 7. Beside the type, a port

can also have a name. Determined by requirement LRQ1.4, naming of a port is optional as long

as its type is solely used for this port in the scope of the component definition. In this case, an

unnamed port is referenced by its unqualified type name (starting with a small letter). MontiArc

does not define its own data type system but reuses the aforementioned existing type systems.

In this way, types, which have already been defined in a class diagram or in the target language,

need not be redefined in a specific type language but can be directly reused.

The interface definition of component A is depicted in Listing 3.6. It starts with the keyword

port (l. 3) followed by a list of incoming and outgoing ports. The first port in l. 4 receives

messages with data type String and has the name string (see above). The second port

named command has the enumeration data type Cmd, which is imported in l. 1 and defined in

the UML/P CD that is depicted in Listing 3.7. Please note that the syntax of UML/P CDs is

MA

�

1 import ma.snippets.signals.Cmd;

2 component A {

3 port

4 in String,

5 in Cmd command,

6 out Integer;

7 }

Listing 3.6: Interface definition of component type A.

CD1 package ma.snippets;

2 classdiagram signals {

3 enum Cmd { PULL, PUSH; }

4 }

Listing 3.7: Definition of data types using an UML/P CD.

44

3.2. BASIC ARCHITECTURAL MODEL ELEMENTS

completely defined in [Sch12, Section 3.1]. The third port named integer has the data type

Integer. It can be used by the component to send Integer messages to its environment.

As already mentioned, generic type parameters can be used as port data types. An example

is given in Listing 3.8. Type parameter K is used as data type from the incoming port msgIn

(l. 3), type parameter V is used as data type from the outgoing port msgOut (l. 4). Please

note that type parameters of generic components and configuration parameters of configurable

components (see Section 3.2.1) are also part of a component’s interface.

MA

�

1 component C<K extends Number, V> {

2 port

3 in K msgIn,

4 out V msgOut;

5 }

Listing 3.8: Interface definition of generic component type C.

3.2.3 Architectural Configuration

Medvidovic and Tailor [MT00] define the configuration of an architecture as a connected graph

of components and connectors that together describe the architectural structure of a system.

Thus, the configuration of a component describes its decomposition into subcomponents, the

connectors between the subcomponents, and the connectors that connect the interface of a com-

ponent with its subcomponents.

Subcomponent Declarations

A MontiArc subcomponent declaration (or subcomponent in short) instantiates a component

implementation and associates a local name. This allows to reuse components in the scope of

another component (see requirement LRQ1.1.1). Similar to ports, naming of subcomponents

is optional if the referenced component type is unique withing the current scope (see require-

ment LRQ1.4). Missing names are then derived from the referenced component type. If the

instantiated component is a generic or configurable component, type parameters or configura-

tion parameters are to be assigned during instantiation (see requirement LRQ1.2).

Listing 3.9 depicts three subcomponent declarations that start with the keyword component.

Subcomponent a instantiates component type A (l. 2). In l. 3, two subcomponents myB1 and

myB2 instantiate the configurable component type B (see Listing 3.4). The value 5 is assigned

to the first parameter (p1) and the String "foo" is assigned to the second parameter (p2).

Subcomponent c (l. 4) instantiates the generic component type C (see Listing 3.8) and assigns

the types Integer and String to the type parameters K and V. In this way, the port msgIn of

subcomponent c has the data type Integer and port msgOut the type String. Please note,

Integer is a valid type for the restricted type parameter K since it is a subtype of Number.

45

3.2. BASIC ARCHITECTURAL MODEL ELEMENTS

MA

�

1 component D {

2 component A;

3 component B(5, "foo") myB1, myB2;

4 component C<Integer, String>;

5 }

Listing 3.9: Subcomponent declarations in MontiArc syntax.

Connectors

Medvidovic and Tailor [MT00] define a connector as an architectural element that is used to

model interactions between components together with rules that govern those interactions. In

MontiArc, a connector models a communication channel that unidirectionally and immediately

transmits data messages from a sender to a receiver without message loss (see requirement

LRQ1.3). Rules that define the valid definition of connectors are given in Section 3.5.2.

Exemplary MontiArc connectors are depicted in Listing 3.10. A connector starts with the

keyword connect and consists of a source and a list of targets. Sources and targets can be

either a port from the current component definition or a port from a subcomponent. For example

the source of the connector in l. 5 is the incoming port sIn (l. 2) and the target is the incoming

port sIn of subcomponent myB1. It is also possible to define a list of targets for a single

connector (l. 7). In this way, messages emitted by the sender are transmitted to all connected

receivers. It is further possible to attach connectors directly to outgoing ports of instantiated

subcomponents (see l. 8). Such a connector is embraced by square brackets and its source

references an outgoing port of the corresponding subcomponent. Thus, the depicted connector

connects port integer of subcomponent myExt with the outgoing port iOut (l. 4).

MA

�

1 port

2 in String sIn,

3 out String sOut,

4 out Integer iOut;

5 connect sIn -> myB1.sIn;

6 connect c.msgOut -> sOut;

7 connect myB1.sOut -> a.string, myExt.string;

8 component Ext myExt [integer -> iOut];

Listing 3.10: Connector definitions from component D in MontiArc syntax.

Inner Component Type Definitions

Inner component type definitions, or short inner components, are defined within an outer com-

ponent. Similar to a local private class in Java, inner components can only be referenced within

the scope of the component definition in which they are defined (see requirement LRQ1.1.4).

In this way, static architectures with singleton-like components can be modeled easily. Inner

components are defined with the same syntax just like regular component definitions. Examples

46

3.3. ADVANCED ARCHITECTURAL MODEL ELEMENTS

for the definition of inner components are depicted in Listing 3.11. Component F contains two

inner component definitions InnerA (ll. 2f) and InnerB (ll. 6f). Both can only be used within

the scope of component F. The former is instantiated as two subcomponents ia1 and ia2 in l.

4. The latter is automatically instantiated as subcomponent ib1 along with the inner component

definition. This is achieved by defining the name of the subcomponent directly after the inner

component’s type name (l. 6). Of course, inner component definitions can themself contain

further inner component definitions.

MA

�

1 component F {

2 component InnerA {

3 }

4 component InnerA ia1, ia2;

5

6 component InnerB ib1 {

7 }

8 }

Listing 3.11: Inner component type definitions in MontiArc syntax.

3.3 Advanced Architectural Model Elements

The language MontiArc is defined as an extension of the ArcD language. It preserves all afore-

mentioned language concepts and adds:

• declaration of the component’s timing,

• implicit model completion for connections (autoconnect),

• implicit subcomponent instantiation of inner component definitions, and

• constraints on the component’s behavior or state.

3.3.1 Component Timing

The timing of components can be defined as part of the component type definition in MontiArc

(see requirement LRQ1.1.3). The available time domains are instant, delayed, untimed,

causalsync, and sync. The definition of these domains is given in Section 4.4 on page

105. If the timing is not explicitly declared within a component type definition, the component

is assumed to have an instant timing . An example for the explicit selection of a time domain

is depicted in Listing 3.12. The keyword timing introduces the time domain selection clause

followed by the name of the selected domain (l. 2). In this way, component J has a causal

synchronous timing.

3.3.2 Autoconnect

MontiArc allows to automatically complete component definitions with connectors according

to some predefined rules (see requirement LRQ1.5). The currently available connector comple-

tion strategies are port and type. Former connects ports with matching name and compatible

47

3.3. ADVANCED ARCHITECTURAL MODEL ELEMENTS

MA

�

1 component J {

2 timing causalsync;

3 }

Listing 3.12: Selection of the causal synchronous time domain for component J.

type. The latter connects ports with matching types. The parameter off disables automatic con-

nection of ports. Component G, which is depicted in Listing 3.13, enabled the type completion

strategy (l. 2). In this way, all shown ports are automatically connected since the data types are

compatible. If the port completion strategy would have been used for the same component,

none of these ports would have been connected since the names do not match.

MA

�

1 component G {

2 autoconnect type;

3 port

4 in String sOuter,

5 out Integer iOuter;

6 component InnerA ia {

7 port

8 in String sInner,

9 out Integer iInner;

10 }

11 }

Listing 3.13: Using the autoconnect statement.

3.3.3 Autoinstantiate

In many cases it is the modelers intention to instantiate an inner component definition directly

as a subcomponent. To automatically instantiate subcomponents together with their definition,

the modeler can enable the autoinstantiate concept on the parent’s component level (see

requirement LRQ1.1.4). If this feature is enabled, all inner component definitions that are neither

generic nor configurable are automatically instantiated as a subcomponent. Please note that this

mechanism only instantiates inner components as subcomponents if the resulting subcomponent

name is not already in use. A warning is raised if inner component definitions cannot be instan-

tiated automatically. This way, it is indicated that the inner component definition is yet not used.

An example for the automatic instantiation of an inner component is depicted in Listing 3.14.

The autoconnect feature is switched on (l. 1) which leads to to an automatic instantiation of

inner component InnerC (ll. 4 – 7) as subcomponent innerC. In this way, the subcomponent

can be immediately used as source of the connector depicted in l. 8.

3.3.4 Constraints

Constraints can be defined for components and written in almost any external constraint lan-

guage. Using MontiCore’s language embedding features [GKR+08], the MontiArc language is

48

3.4. MONTIARC LANGUAGE DEFINITION

MA

�

1 autoinstantiate on;

2 port

3 out String sOuter;

4 component InnerC {

5 port

6 out String sInner;

7 }

8 connect innerC.sInner -> sOuter;

Listing 3.14: Using the autoinstantiate statement.

currently configured to use Java and OCL expressions, which have to evaluate to Boolean ex-

pressions, to define constraints (see requirement LRQ1.6). Exemplary constraints are depicted

in Listing 3.15. A Java constraint has to start with the language identifier java (l. 4). Since

OCL is the default constraint language, the language identifier ocl is optional (l. 8). After

the language identifier, the keyword inv is expected followed by the name of the constraint, a

colon, and the concrete constraint. Java constraints are embraced by curly brackets (ll. 4 – 7),

OCL constraints can be directly integrated (l. 9). All constraint definitions end with a semicolon

(ll. 7, 9). The complete language definition of the used OCL dialect is given in [Rum11, Sch12].

MA

�

1 port

2 in String sIn,

3 out String sOut;

4 java inv numberOfMsgs: {

5 sIn.stream.getUntimedHistory().size() ==

6 sOut.stream.getUntimedHistory().size() - 1;

7 };

8 inv msgValues:

9 sOut == sIn@pre;

Listing 3.15: The definition of Java and OCL constraints.

3.4 MontiArc Language Definition

The ADL MontiArc is developed using the language workbench MontiCore. After an introduc-

tion to the concepts of MontiCore, the involved languages, their hierarchy, and their relations

are described in Section 3.4.2. Finally, a detailed presentation of MontiArc’s defining grammars

is given. Please note that this and the following section are a revised version of the technical

report MontiArc - Architectural Modeling of Interactive Distributed and Cyber-Physical Sys-

tems (AIB-2012-03) [HRR12] that has been authored together with Jan O. Ringert and Bernhard

Rumpe.

49

3.4. MONTIARC LANGUAGE DEFINITION

3.4.1 Foundations: MontiCore 3

MontiArc is developed using the DSL framework MontiCore [GKR+06, GKR+08, KRV08,

Kra10, KRV10] according to the guidelines presented in [KKP+09]. MontiCore aims at support-

ing agile language development of domain specific languages (DSLs) [Cza04] and the according

language processing tools such as generators or analysis workflows.

This brief introduction to MontiCore only contains a small part of the language and tool

features MontiCore offers. Nevertheless, it describes the concepts needed to understand the fol-

lowing sections. A more detailed and complete description of the MontiCore language and base

infrastructure is given in [Kra10], the compositional symbol table concepts are given in [Völ11,

Chapter 7] and [HLMSN+15]. For a detailed description of the code generator framework it is

referred to [Sch12, Section 7.4].

MontiCore takes a grammar artifact as input, the grammar format is based on the Extended

Backus-Naur Form (EBNF) and Antlr [www13a], and generates parser, lexer, and Java classes

to represent the abstract syntax tree (AST) of input models. This way, a grammar defines the

concrete as well as the abstract syntax of a language.

To ease the development process of DSLs and increase its efficiency, MontiCore supports

three different kinds of language reuse [LNPR+13, HLMSN+15]. Language aggregation al-

lows to combine multiple languages into a collection of languages. The contained languages

are allowed to reference model elements defined in any language contained in this collection.

Language inheritance allows to extend an existing language definition. The sub-language inher-

its all productions from the parent-language. This mechanism allows language refinement in an

object oriented manner by overwriting existing language productions or adding new productions

to increase the expressiveness of a language. Language embedding allows embedding of single

productions of a language into another language. This way, e.g., constraint languages like the

OCL/P [Rum11, Chapter 3] can be reused in different contexts.

Beside the language generator, MontiCore serves a base infrastructure to support the uniform

development of language processing tools. This so called DSLTool-Framework, which has been

originally documented in [Kra10, Chapter 9], mainly contains:

• An infrastructure for uniform error handling.

• A generator development infrastructure [Sch12, Section 7.4] based on the Freemarker

template engine [www13b].

• Tools and infrastructure for the development of compositional symbol tables [Völ11,

Chapter 7].

• A context condition infrastructure to unify model checks [Völ11, Chapter 8], [Sch12,

Section 7.3].

• Tools for visitor [GHJV95] and workflow based language and model processing.

• Basic languages for, e.g., literal or type definition [Sch12, Section 3.8].

• Language definitions and tools to reuse and process more powerful languages such as

Java.

To understand the simplified grammars discussed in Section 3.4.3 and Section 3.4.4, some

basic concepts of MontiCore grammars are introduced. These concepts are explained by means

of a simple automaton language which is defined by the grammar depicted in Listing 3.16.

50

3.4. MONTIARC LANGUAGE DEFINITION

MG1 grammar Automaton {

2 interface AutElement;

3

4 Automaton =

5 "automaton" Name "{" (Elements:AutElement)* "}" ;

6

7 State implements AutElement =

8 "state" Name

9 (("<<" Initial:["initial"] ">>") |

10 ("<<" Final:["final"] ">>"))*
11 (("{" (Elements:AutElement)* "}") | ";") ;

12

13 Transition implements AutElement =

14 From:Name "-" Activate:Name ">" To:Name ";" ;

15 }

Listing 3.16: A simplified MontiCore grammar which defines an automaton language (based

on [GKR+06]).

A MontiCore grammar contains a set of productions that consist of a left-hand side (LHS)

which is separated by a = from a right-hand side (RHS). Productions define the nonterminals

of the language. Thus, the automaton language contains three productions which define three

nonterminals Automaton, State, and Transition. For each nonterminal MontiCore de-

rives an AST Java class that represents the nonterminal in the abstract syntax. A special case

is an interface nonterminal that is defined by a production which consists of a LHS only (see

interface AutElement). A LHS of a production defines the name of the nonterminal as its

type. If the LHS of a production implements an interface, the defined nonterminal can be used

in all RHSs that contain the interface nonterminal. Consequently, the nonterminals State and

Transition, whose defining productions implement the aforementioned interface (cf. ll. 7,

13), can be used within the RHSs of the productions that define the nonterminals Automaton

(cf. l. 5) and State (cf. l. 11).

A RHS defines the mapping rule of the nonterminal given by terminals and nonterminals.

Alternatives are separated by a | and optional elements are annotated with a ?. Thus, a state can

have the markers initial or final (see ll. 9f). The Kleene-Star * marks elements to occur

arbitrary often, a + defines that an element has to occur at least once. Consequently, a state can

not be marked at all or it can be marked with both markers.

Terminals respectively keywords of a language are bordered by quotes (e.g., "state" in

l. 8). A keyword is part of the concrete syntax only and is not represented within its AST. If a

keyword should be present in the AST, it has to be additionally bordered by squared brackets.

Then MontiCore derives a Boolean attribute with the name of the keywords in the AST class

that represents the nonterminal. Thus, the markers of a state, i.e. initial and final, are

available in the AST as well (cf. ll. 9f). Please note that variableName:Nonterminal is

an extension to normal grammars, where Nonterminal is the nonterminal (type) and vari-

ableName is the name of the associated variable in the abstract syntax that usually also codes

51

3.4. MONTIARC LANGUAGE DEFINITION

the form of use. Thus, a nonterminal can be used more than once within the RHS of a pro-

duction. To distinguish multiply used nonterminals in the AST, a local variableName has to be

assigned to each occurrence. In the example, it allows to distinguish between the source and

target state of a transition (cf. l. 14).

3.4.2 Language Structure

As explained in the previous section, MontiCore provides several language extension mecha-

nisms. Language inheritance allows to reuse existing grammars as a base of a new language.

The language hierarchy of MontiArc, which uses MontiCore’s inheritance mechanism, is shown

in Figure 3.17.

builds on

builds on

builds on

MontiArc

ArcD

CommonValues

MontiCore CommonsMontiCore CommonsMontiCore Commons

MG

Figure 3.17: MontiCore grammar hierarchy of the MontiArc language.

• MontiCore Commons is a collection of grammars (Literals, Types, and Commons) that

provides common modeling language artifacts such as stereotypes, cardinalities, modi-

fiers, as well as productions that define nonterminals for type references and literals. A

detailed description of the used base languages is given in [Sch12, Section 3.8].

• CommonValues is a grammar that provides productions which define nonterminals for

value assignments. These nonterminals are aggregated under a single nonterminal in-

terface. Reusing this interface allows to use several value kinds at a single position of

a RHS. These kinds are literals (inherited from MontiCore Commons), variables respec-

tively variable names, return values of method calls, constants, enumeration values, arrays,

and simple computations.

• ArchitectureDiagram defines the Architecture Diagram (ArcD) language which

provides the basic architectural elements presented in Section 3.2.

• MontiArc extends ArcD and adds language elements which are tailored to the event-

based simulation of the modeled distributed systems (see Section 3.3).

52

3.4. MONTIARC LANGUAGE DEFINITION

Simplified MontiCore grammars of the ArcD and MontiArc languages are explained in the

following two subsections. Complete grammar definitions are given in the appendix in List-

ing C.1 on page 297 and Listing C.2 on page 302.

3.4.3 Architecture Diagram Grammar Walk-Through

By using MontiCore’s compilation unit concept (see [GKR+06, Section 5.1]), component type

definitions are organized in packages and build the root elements of ArcD models. The pro-

duction that defines nonterminal ArcComponent, which is shown in Listing 3.18, defines the

structure of a component type definition. It can be annotated with a stereotype followed by the

keyword component and a component type name. The qualified type name of a component

definition corresponds to its package appended with its dot-separated name. The optional in-

stanceName can be used to create a subcomponent declaration along with the definition of

an inner component type. For top-level component definitions, the usage of an instance name is

forbidden (cf. context condition B2 in Section 3.5.1). The RHS further contains ArcCompo-

nentHead and ArcComponentBody nonterminals.

MG

�

1 ArcComponent implements ArcElement =

2 Stereotype?

3 "component" Name (instanceName:Name)?

4 ArcComponentHead ArcComponentBody;

Listing 3.18: ArchitectureDiagram.mc: Definition of nonterminal

ArcComponent for component type definitions.

The production that defines nonterminal ArcComponentHead is shown in Listing 3.19. It

provides the optional definition of TypeParameters (cf. l. 2) that are used to define generic

type variables. These variables can serve as port data types in the scope of the component

body. A list of ArcParameters is enclosed by squared brackets (cf. l. 3). These are used

to define configuration parameters with a type and a name which are visible in the scope of the

component definition (cf. ll. 6f). Finally, a component type can extend a supercomponent. For

this, the supercomponent type name is given after the extends keyword (cf. l. 4).

MG

�

1 ArcComponentHead =

2 TypeParameters?

3 ("[" ArcParameter* "]")?

4 ("extends" ReferenceType)?;

5

6 ArcParameter =

7 Type Name;

Listing 3.19: ArchitectureDiagram.mc: Definition of nonterminals

ArcComponentHead and ArcParameter.

Listing 3.20 depicts the production that defines nonterminal ArcComponentBody which

defines the syntax of of a component body. It contains arbitrary many ArcElements that

53

3.4. MONTIARC LANGUAGE DEFINITION

are parenthesized by curly brackets. ArcElement is an interface for productions that define

nonterminals of architectural elements and can occur in a component type definition. Therefore,

the inner structure of a component type is given by a set of ArcElements. As depicted in

Listing 3.18 in line 1, the component nonterminal itself implements this interface. In this way,

inner components can be defined. To extend this language with more elements that can be

part of a component type, new productions that implement this interface can be defined in a

subgrammar. A structured method for language extension is given in Chapter 7.

MG

�

1 ArcComponentBody =

2 "{"

3 ArcElement*
4 "}";

Listing 3.20: ArchitectureDiagram.mc: Definition of nonterminal

ArcComponentBody.

The production for nonterminal ArcInterface, which defines the syntax of a component

interface, is given in Listing 3.21. After an optional stereotype and the keyword port a list of

ports is given. A port (cf. ll. 5 – 8) can have a stereotype. After the port’s direction, in is used

for incoming and out for outgoing ports, the port’s data type and an optional name are given.

MG

�

1 ArcInterface implements ArcElement =

2 Stereotype?

3 "port" (ArcPort)* ";";

4

5 ArcPort =

6 Stereotype?

7 ("in" | "out")

8 Type Name?;

Listing 3.21: ArchitectureDiagram.mc: Definition of nonterminals

ArcInterface and ArcPort.

The internal structure of decomposed components is given by subcomponents. The syntax of

a subcomponent declaration is defined by the production ArcSubComponent that is shown

in Listing 3.22. After an optional stereotype and the keyword component, the type of the

subcomponent is given. This is a reference to another component type definition. An optional list

of arguments is parenthesized by round brackets. These arguments are used to set configuration

parameters of referenced configurable components. It can be any Value as defined in the

CommonValues supergrammar1. Hence, any literals, variable names, constants, enumeration

values, arrays, method calls, or simple computations can be used as a subcomponent argument.

1HTML grammar documentation of the CommonValues DSL can by found at https://sselab.de/lab2/

public/web/MontiCore/grammardoc/common-values/1.9.0/index.html.

54

https://sselab.de/lab2/public/web/MontiCore/grammardoc/common-values/1.9.0/index.html
https://sselab.de/lab2/public/web/MontiCore/grammardoc/common-values/1.9.0/index.html

3.4. MONTIARC LANGUAGE DEFINITION

To create more than one subcomponent declaration or to assign an explicit name, an optional list

of instances is used (cf. l. 6).

MG

�

1 ArcSubComponent implements ArcElement =

2 Stereotype?

3 "component"

4 ReferenceType

5 ("(" arguments:Value* ")")?

6 (ArcSubComponentInstance*)? ";";

Listing 3.22: ArchitectureDiagram.mc: Definition of nonterminal

ArcSubComponent.

The production that defines the nonterminal ArcSubComponentInstance is depicted in

Listing 3.23. It has a name and an optional colon separated list of simple connectors parenthe-

sized by squared brackets. Simple connectors (cf. ll. 4–7) directly connect outgoing ports of the

corresponding subcomponent declaration with one or more target ports. The optional stereotype

is followed by the connectors source and a list of targets.

MG

�

1 ArcSubComponentInstance =

2 Name ("[" ArcSimpleConnector (";" ArcSimpleConnector)* "]")?;

3

4 ArcSimpleConnector =

5 Stereotype?

6 source:QualifiedName "->" targets:QualifiedName

7 ("," targets:QualifiedName)*;

Listing 3.23: ArchitectureDiagram.mc: Definition

of nonterminal ArcSubComponentInstance which allows to explicitly

name subcomponents and optionally associate simple connectors.

The general form to model communication paths is given by connectors. The syntax of non-

terminal ArcConnector is defined by the production given in Listing 3.24. After an optional

stereotype and the keyword connect, the source of the connector is given by a qualified

name. After an arrow -> one or more comma separated targets are given. Source or target

of a connector can be either a port of the current component, a name of a subcomponent decla-

ration, or a port that belongs to a subcomponent declaration. In the last case, the port is qualified

by the name of the subcomponent to which it belongs.

MG

�

1 ArcConnector implements ArcElement=

2 Stereotype?

3 "connect" source:QualifiedName "->"

4 targets:QualifiedName ("," targets:QualifiedName)* ";";

Listing 3.24: ArchitectureDiagram.mc: Definition of nonterminal

ArcConnector.

55

3.4. MONTIARC LANGUAGE DEFINITION

The ArcD language does not provide productions to define behavior of components. There-

fore, an external nonterminal BehaviorEmbedding is included which allows to embed arbi-

trary behavior implementation languages. The production of nonterminal ArcComponentIm-

plementation implements ArcElement as depicted in Listing 3.25 (l. 1). After the key-

word implementation, the language identifier lng defines which concrete language is used

for the following implementation. The implementation is embraced by curly braces. This non-

terminal allows to implement component behavior using, e.g., statecharts (SCs), Java, or any

other action language directly within the component. Details about language embedding are

given in [Kra10, Section 4.2] and [HLMSN+15]. A method to extend the syntax of the ArcD or

MontiArc language is discussed in Section 7.3.

MG

�

1 ArcComponentImplementation implements ArcElement =

2 "implementation" lng:Name "{"

3 BehaviorEmbedding

4 "}";

Listing 3.25: ArchitectureDiagram.mc: External behavior implementation

embedding in ArcD.

3.4.4 MontiArc Grammar Walk-Through

MontiArc extends the ArchitectureDiagram language in two ways. First, to constrain the behav-

ior and the state of a component, MontiArc adds language elements for constraints defined in

OCL/P [Rum11, Chapter 3] or Java. This is shown in Listing 3.26. After the keyword inv the

name of the constraint is given followed by the external nonterminal InvariantContent.

MG

�

1 MontiArcInvariant implements ArcElement =

2 "inv" Name ":" InvariantContent ";";

Listing 3.26: MontiArc.mc: Definition of nonterminal MontiArcInvariant.

Second, it extends the language with configuration elements that have to implement the inter-

face MontiArcConfig. This interface extends interface ArcElement that is inherited from

the ArcD language. This way, a nonterminal that implements interface MontiArcConfig can

be used within the body of a component definition. Further, configuration and regular elements

can be distinguished in the AST.

The autoconnect statement represented by nonterminal MontiArcAutoConnect (cf.

Listing 3.27) controls the autoconnect behavior of the component. The following modes are

available:

• type automatically connects all ports with the same type name,

• port automatically connects all ports with the same port name if the port types are com-

patible, and

• off (default) turns auto connect off.

56

3.5. CONTEXT CONDITIONS

MG

�

1 MontiArcAutoConnect implements MontiArcConfig =

2 "autoconnect" Stereotype?

3 ("type" | "port" | "off") ";";

Listing 3.27: MontiArc.mc: Definition of nonterminal MontiArcAutoConnect.

Auto-instantiation is used to automatically create instances of inner component types if these

are not explicitly declared as subcomponents. Listing 3.28 contains the production defining the

syntax of this feature. After the keyword autoinstantiate and an optional stereotype, the

mode is chosen using on or off, where off is the default case.

MG

�

1 MontiArcAutoInstantiate implements MontiArcConfig =

2 "autoinstantiate" Stereotype?

3 ("on" | "off") ";";

Listing 3.28: MontiArc.mc: Definition of nonterminal MontiArcAutoInstanti-

ate.

The definition of the nonterminal MontiArcTiming, which is used to denote which timing

domain a component belongs to, is shown in Listing 3.29. After the keyword timing and

an optional stereotype, the timing domain of the component can be selected. The available

classifications are described in Section 4.4.

MG

�

1 MontiArcTiming implements MontiArcConfig =

2 "timing" Stereotype?

3 (["instant"] | ["delayed"] | ["untimed"] | ["causalsync"] |

4 ["sync"]) ";";

Listing 3.29: MontiArc.mc: Definition of nonterminal MontiArcTiming.

3.5 Context Conditions

In MontiArc, quite a number of context condition checks are implemented in order to verify

whether a MontiArc model is well-formed. Further, context conditions support the modeler

with feedback about detected problems (see requirement LRQ2.3 and LRQ2.2). These context

conditions are grouped into general-, connections-, referential integrity-, conventions-, and code

generation conditions. The following sections list these conditions and explain them by means

of descriptive examples.

3.5.1 General Conditions

To define a concept for the visibility of identifiers, namespaces are introduced to MontiArc that

define areas in a model in which names are managed together (cf. [Kra10, Völ11]). These

identifiers are names of ports, subcomponent declarations, generic type variables, configuration

57

3.5. CONTEXT CONDITIONS

parameters, and constraint definitions. In MontiArc, it is distinguished between two different

kinds of namespaces. A component namespace contains identifiers that are declared within a

component type definition. Such a namespace is not hierarchical. Hence, identifiers defined in

a top level namespace are not imported into a contained component namespace. In contrast, a

constraint namespace, which is contained in a component namespace, imports all names that

are defined within its parent namespace. A constraint namespace can also contain a hierarchical

namespace structure according to the language that is used to define the constraint.

An example for namespaces, identifiers, and their visibility is given in Figure 3.30. The shown

component type definition FilterDelay contains three namespaces. While identifier defini-

tions are underlined with a solid line, references to these definitions are marked with a dashed

line. The top-level namespace belongs to the component type definition itself. It contains the

identifiers of the configuration parameter fil, the port names inData and delayedAnd-

Filtered, the subcomponent declaration f and del, as well as the constraint isFiltered

that is defined using an OCL/P expression. Please note that using the optional instance name

while defining an inner component type will automatically declare a subcomponent with the used

instance name (cf. Section 3.4.3). Since this subcomponent is declared in the parent component

of the inner component definition, its identifier also belongs to the parents namespace.

The parent namespace FilterDelay contains another component namespace that belongs

to the inner component type definition Delay. All identifiers within this namespace are colored

gray. The port name inData is still unique since identifiers of the parent namespace, that also

contains this name, are not imported.

Namespaces of constraints import identifiers of their parent namespace. On that account the

component FilterDelay[String[] fil] {

port

in String inData,

out String delayedAndFiltered;

component Filter(fil) f;

component Delay del {

port

in String inData,

out String delayedData;

}

connect inData -> del.inData;

connect del.delayedData -> f.toFilter;

connect f.filteredData -> delayedAndFiltered;

ocl inv isFiltered:

forall mOut in delayedAndFiltered:

!(mOut isin fil);

}

Delay
Component
Namespace

FilterDelay
Component
Namespace

isFiltered
Constraint
Namespace

inner
OCL
Name
space

MA

Figure 3.30: Namespaces and identifier declarations in MontiArc with embedded OCL/P con-

straints.

58

3.5. CONTEXT CONDITIONS

port name delayedAndFiltered as well as the parameter name fil can be used inside the

namespace of constraint isFiltered. Since a forall construct opens a new namespace in

the OCL/P language, it also has a hierarchical structure denoted by the inner OCL namespace.

Details about the concrete namespace implementation are given in Section 5.2.3.

B1: All names of model elements within a component namespace have to be

unique.

To clearly identify each model element, all names within a component namespace have to be

unique. This holds for port names, subcomponent declaration names, generic type parameter

names, configuration parameter names, and names of constraints. Listing 3.31 contains two vio-

lations of this condition. First, configuration parameter fil has the same name as one incoming

port (see ll. 1, 3). Second, the subcomponent declaration del and a constraint have the same

name (cf. ll. 8, 13).

MA1 component FilterDelay[String[] fil] {

2 port

3 in char[][] fil, // ’fil’ already declared in l. 1

4 in String inData,

5 out String delayedAndFiltered;

6 component Filter(fil) f;

7

8 component Delay del {

9 port

10 in String inData,

11 out String delayedData;

12 }

13 ocl inv del: // ’del’ already declared in l. 8

14 forall mOut in delayedAndFiltered:

15 !(mOut isin fil);

16 }

Listing 3.31: B1: Violation of context condition B1 by using names more than once in a

namespace.

B2: Top-level component type definitions do not have instance names.

The optional instance name of component type definitions (cf. Section 3.4.3) is used to create

a subcomponent declaration along with the definition of an inner component type. The created

subcomponent then belongs to the parent component type. Root component types do not have

a parent. Therefore, using an instance name for a root component type definition will result

in a not assignable subcomponent. Hence, the usage of instance names for root component

definitions is forbidden.

In Listing 3.32, the component definition ABPSenderComponent has the instance name

mySenderComp which is not allowed. For the inner component definition Sender this con-

cept is used to create a subcomponent named innerSender along with the definition of the

inner component type.

59

3.5. CONTEXT CONDITIONS

MA

�

1 component ABPSenderComponent mySenderComp { // instance

2 component Sender innerSender { // name for

3 } // root def.

4 } // forbidden

Listing 3.32: B2: Instance names of component definitions.

3.5.2 Connections

The context conditions within this group validate whether connections within MontiArc models

are well formed.

CO1: Connectors may not pierce through component interfaces.

Qualified sources and targets of a connector consist of two parts. The first part is a name of a

subcomponent, the second part is a port name. Listing 3.33 contains the definition of component

types A B Filter (cf. ll. 1–11) and Filter (cf. ll. 12–17). The former contains two

subcomponent declarations of the latter.

The connector shown in l. 8 connects port msgIn of A B Filter with port msgs of sub-

component af. Since this port is part of the interface of af’s type, this connector is valid. The

same holds for the second connector in l. 9 which connects the output of bf to the outgoing port

msgOut. The target of the third connector shown in l. 10 is port inData of subcomponent d.

This subcomponent belongs to component type Filter which is instantiated as subcomponent

bf. Since subcomponent declarations are encapsulated and can only be accessed indirectly via

their connected ports, subcomponent d is not visible in the scope of A B Filter and must not

MA

�

1 component A_B_Filter {

2 port

3 in String msgIn,

4 out String msgOut;

5 component Filter(’a’) af;

6 component Filter(’b’) bf;

7

8 connect msgIn -> af.msgs;

9 connect bf.filteredMsgs -> msgOut;

10 connect af.filteredMsgs -> bf.d.inData; // d not visible

11 }

12 component Filter[char f] {

13 port

14 in String msgs,

15 out String filteredMsgs;

16 component Delay(1) d;

17 }

Listing 3.33: CO1: Qualified sources and targets of connectors.

60

3.5. CONTEXT CONDITIONS

be used as a target of a connector.

CO2: A simple connector’s source is an outgoing port of the referenced compo-

nent type and is therefore not qualified.

A source of a simple connector always has to be an outgoing port of the subcomponent’s com-

ponent type. Therefore, a qualification is not needed since the port is implicitly qualified using

the name of the associated subcomponent.

The first simple connector in line 6 of Listing 3.34 connects outgoing port filteredMsgs

of subcomponent afwith the incoming port msgs of subcomponent bf and is valid. The source

of the second connector in l. 8 contains the subcomponent’s name bf as an additional qualifier

and is therefore invalid. Please note that the contained subcomponents instantiate component

type Filter which is defined in Listing 3.33.

MA

�

1 component A_B_Filter {

2 port

3 in String msgIn,

4 out String msgOut;

5 component Filter(’a’) af

6 [filteredMsgs -> bf.msgs];

7 component Filter(’b’) bf

8 [bf.filteredMsgs -> bf.msgs]; // source is qualified

9 }

Listing 3.34: CO2: Correct and invalid sources of simple connectors.

CO3: Unqualified sources or targets in connectors either refer to a port or a

subcomponent in the same namespace .

If sources or targets of a connector are unqualified, then they must refer to a port or a subcom-

ponent name declared in the scope of the current component type definition. If a name of a

subcomponent is used, all yet unconnected ports of the subcomponent with a compatible type

are connected.

For example the first connector given in Listing 3.35 in l. 8 automatically resolves incoming

port msgs of subcomponent af as the target of the connector since its type fits to the type of

the connector’s source. The second connector given in l. 9 connects all compatible outgoing

ports of subcomponent af with all compatible incoming ports of subcomponent bf. The third

connector is invalid since its target cf is neither the name of a port nor a subcomponent. Instead,

cf corresponds to a configuration parameter. Finally, the fourth connector in l. 11 connects one

compatible outgoing port of subcomponent bf with the outgoing port msgOut. This, however,

is only possible if a unique compatible port can be resolved. If more than one compatible port is

found, no connections are created and a warning is emitted.

61

3.5. CONTEXT CONDITIONS

MA1 component A_B_Filter[int cf] {

2 port

3 in String msgIn,

4 out String msgOut;

5 component Filter(’a’) af;

6 component Filter(’b’) bf;

7

8 connect msgIn -> af;

9 connect af -> bf;

10 connect af -> cf; // cf is neither a port nor a subcomponent!

11 connect bf -> msgOut;

12 }

Listing 3.35: CO3: Using unqualified sources and targets in connectors.

3.5.3 Referential Integrity

Context conditions within this group validate the integrity of references within a MontiArc

model. This is especially needed since the MontiArc AST only contains the name of referenced

elements and does not contain a link to the corresponding referenced AST object.

R1: Each outgoing port of a component type definition is used at most once as

target of a connector.

In MontiArc, the sender of a message or signal is always unique for the receiver (see requirement

LRQ1.3). Hence, every receiving port only receives signals from a unique sender, while a sender

can transmit its data to more than one receiver. Therefore, outgoing ports of a component type

definition are used at most once as a target of a connector.

In Listing 3.36, the component type definition A B Filter violates this condition. The

outgoing port msgOut is used as a target of the simple connector given in l. 7 and also as a

target of the connector given in l. 11. A unique sender cannot be identified since the sender

MA1 component A_B_Filter {

2 port

3 in String msgIn,

4 out String msgOut;

5

6 component Filter(’a’) af

7 [filteredMsgs -> msgOut]; // ambiguous sender

8 component Filter(’b’) bf;

9

10 connect msgIn -> af.msgs, bf.msgs;

11 connect bf.filteredMsgs -> msgOut; // ambiguous sender

12 }

Listing 3.36: R1: Ambiguous senders of connectors that have the same port as target.

62

3.5. CONTEXT CONDITIONS

could be the outgoing port of subcomponent af or the outgoing port of subcomponent bf. In

contrast, a sender of a connector can transmit its messages to more than one receivers. Hence,

the connector given in l. 10 is valid.

R2: Each incoming port of a subcomponent is used at most once as target of a

connector.

As already discussed in the previous context condition, the sender of a message is always unique

for a receiver. Incoming ports of subcomponents can be used as receivers in a connector and must

therefore be used at most once as a receiver in the context of a component type definition. In

Listing 3.37 this context condition is violated by the connectors given in ll. 9–10. The incoming

port msgs of subcomponent af is used twice as a target.

MA1 component A_B_Filter {

2 port

3 in String msgIn,

4 out String msgOut;

5

6 component Filter(’a’) af;

7 component Filter(’b’) bf;

8

9 connect msgIn -> bf.msgs, af.msgs; // ambiguous sender

10 connect bf.filteredMsgs -> af.msgs; // ambiguous sender

11 connect af.filteredMsgs -> msgOut;

12 }

Listing 3.37: R2: Ambiguous senders of connectors that have the same port of a

subcomponent as target.

R3: Full qualified subcomponent types exist in the named package.

If a qualified component type is used as the type of a subcomponent, the component type defini-

tion has to exist in the denoted package. For example, the subcomponent declaration shown in

Listing 3.38 uses the qualified type ma.msg.Filter (cf. l. 2). Hence, a component definition

Filter has to exist in package ma.msg.

MA

�

1 component A_B_Filter {

2 component ma.msg.Filter(’a’) af;

3 }

Listing 3.38: R3: Using qualified subcomponent types.

63

3.5. CONTEXT CONDITIONS

R4: Unqualified subcomponent types either exist in the current package or are

imported using an import statement.

If an unqualified component type is used as the type of a subcomponent, it must either exist

in the current package or it must be imported using an import statement. Subcomponent af

given in Listing 3.39 uses the unqualified type Filter which is imported in l. 2. The type of

subcomponent cdf (l. 6) is unqualified and not imported. Therefore a component type definition

C D Filter has to exist in the current package ma given in l. 1.

MA

�

1 package ma;

2 import ma.msg.Filter;

3

4 component A_B_Filter {

5 component Filter(’a’) af;

6 component C_D_Filter cdf;

7 }

Listing 3.39: R4: Using unqualified but imported subcomponent types.

R5: The first part of a qualified connector’s source respectively target must cor-

respond to a subcomponent declared in the current component definition.

If a source or target of a connector is qualified, the qualifier must be the name of a subcomponent

that is declared in the namespace of the current component definition. In Listing 3.40, the target

of the first connector (l. 7) is qualified with af. Since a subcomponent af is declared in l. 5,

the qualifier is valid. In contrast, the source of the second connector (l. 8) is qualified with bf.

Since a subcomponent with that name does not exist, this connector is invalid.

MA1 component A_B_Filter {

2 port

3 in String msgIn,

4 out String msgOut;

5 component Filter(’a’) af;

6

7 connect msgIn -> af.msgs;

8 connect bf.filteredMsgs -> msgOut; // subcomponent bf

9 } // does not exist

Listing 3.40: R5: Subcomponents in qualified connector parts.

R6: The second part of a qualified connector’s source respectively target must

correspond to a port name of the referenced subcomponent determined by the

first part.

The second part of a qualified source or target of a connector is a port name. A port with that

name must exist in the component type of the subcomponent that is given by the qualifier. In

64

3.5. CONTEXT CONDITIONS

Listing 3.41, the target of the first connector given in l. 10 is port toDelay of subcomponent

del. As shown in l. 7, the component type of this subcomponent contains this port. Hence,

the first connector is valid. The source of the second connector (l. 11) is port delayed of

subcomponent del. Since this port does not exist in component type Delay (cf. ll. 5–9), this

connector is invalid.

MA1 component FilterDelay {

2 port

3 in String inputData,

4 out String delayed;

5 component Delay del {

6 port

7 in String toDelay,

8 out String delayedData;

9 }

10 connect inputData -> del.toDelay;

11 connect del.delayed -> delayed; // out port delayed does not

12 } // exist in type Delay

Listing 3.41: R6: Ports in qualified connector parts.

R7: The source port of a simple connector must exist in the subcomponents

type.

In simple connectors, the source directly references an outgoing port of the type of the corre-

sponding subcomponent. This port has to exist. In Listing 3.42, the source of the first simple

connector in l. 11 exists and the connector is therefore valid. Since the component type Delay

does not have an outgoing port delayed (cf. ll. 5–9), the second simple connector given in

l. 12 is invalid.

MA1 component FilterDelay {

2 port

3 out String delayed1,

4 out String delayed2;

5 component Delay {

6 port

7 in String toDelay,

8 out String delayedData;

9 }

10 component Delay

11 d1 [delayedData -> delayed1],

12 d2 [delayed -> delayed2]; // out port delayed does not

13 } // exist in type Delay

Listing 3.42: R7: Sources of simple connectors.

65

3.5. CONTEXT CONDITIONS

R8: The target port in a connection has to be compatible to the source port, i.e.,

the type of the target port is identical or a supertype of the source port type.

To assure type correct communication, source and target ports of connectors have to be compat-

ible. A receiver can be connected to a sender if both have the same type or the receiver type is a

supertype of the source type. Listing 3.43 contains some examples for connectors with different

source and target types. The first connector in l. 9 is obviously valid since source and target type

are the same. The second connector in l. 10 connects a source port with type Integer and

a target port with type Object. Since Object is a supertype of Integer, this connection

is valid. The third connector (l. 11) connects Object with String. Because String is a

subtype of Object and not a supertype, it is invalid. The fourth connector in l. 12 is valid again

because Object is a supertype of String.

MA1 component MyComp {

2 port

3 in Integer myInt,

4 out Object myObj;

5 component Buffer<Integer> bInt;

6 component Buffer<Object> bObj;

7 component Buffer<String> bStr;

8

9 connect myInt -> bInt.input;

10 connect bInt.buffered -> bObj.input;

11 connect bObj.buffered -> bStr.input; // incompatible

12 connect bStr.buffered -> myObj; // types Object and

13 } // String

14 component Buffer<T> {

15 port

16 in T input,

17 out T buffered;

18 }

Listing 3.43: R8: Type compatible connectors.

R9: If a generic component type is instantiated as a subcomponent, all generic

parameters have to be assigned.

A generic component is a component which defines generic type parameters in its head (see

Section 3.2.1). If such a component type is used as a subcomponent type, a data type has

to be assigned to each of these generic type parameters. Listing 3.44 contains the definition

of the generic component type Buffer in ll. 1–5 which has two generic type parameters K

and V. In the component type definition MyComp in ll. 6–9, two subcomponents are declared

which have the aforementioned type. The first subcomponent declaration (l. 7.) assigns a data

type to each type parameter and is valid. The incoming port input of b1 has now the type

Integer, the outgoing port has the type String. The second subcomponent declaration b2

66

3.5. CONTEXT CONDITIONS

in l. 8 only assigns one type parameter. Since the Buffer component type claims two generic

type parameters, the subcomponent declaration is invalid.

MA

�

1 component Buffer<K, V> {

2 port

3 in K input,

4 out V buffered;

5 }

6 component MyComp {

7 component Buffer<Integer, String> b1;

8 component Buffer<Integer> b2; // type parameter V

9 } // not assigned

Listing 3.44: R9: Using generic component types as subcomponent types.

R10: If a configurable component is instantiated as a subcomponent, all config-

uration parameters have to be assigned.

A configurable component defines configuration parameters in its head (see Section 3.2.1). If

such a component type is used as a subcomponent type, a value has to be assigned to each con-

figuration parameter. In Listing 3.45 the configurable component type LossyDelay defined in

ll. 1–5 is used as type of subcomponent ld1 in l. 7. In the subcomponent declaration, a value

is assigned to both configuration parameters. Therefore, the subcomponent declaration is valid.

The second subcomponent declaration in l. 8 only assigns one value. Since two values are ex-

pected, the declaration is invalid. Beside the amount of configuration parameters, the assigned

values have to be type compatible with its matching configuration parameter.

MA

�

1 component LossyDelay<T>[int delay, int lossrate] {

2 port

3 in T msgIn,

4 out T delayed;

5 }

6 component MyComp {

7 component LossyDelay<String>(1, 5) ld1;

8 component LossyDelay<String>(1) ld2; // missing parameter

9 } // lossrate

Listing 3.45: R10: Using configurable component types as subcomponent types.

R11: Inheritance cycles of component types are forbidden.

Listing 3.46 shows an example for an inheritance cycle. The component type ABPReceiver

extends the CommonReceiver component type (ll. 1f) which is a subtype of the ABPRe-

ceiver component (ll. 4f). Such a system cannot be instantiated. Consequently, inheritance

cycles are forbidden.

67

3.5. CONTEXT CONDITIONS

MA

�

1 component ABPReceiver<T>

2 extends CommonReceiver<T> { // inheritance cycle

3 }

4 component CommonReceiver<T>

5 extends ABPReceiver<T> { // inheritance cycle

6 }

Listing 3.46: R11: An inheritance cycle of components ABPReceiver and

CommonReceiver.

R12: An inner component type definition must not extend the component type

in which it is defined.

A structural extension cycle is given if an inner component type definition extends the compo-

nent type of its surrounding parent component. Since the inner component will import itself

in a structural extension cycle, it cannot be instantiated. Therefore, it is forbidden for inner

component type definitions to extend its parent component. This context condition is violated in

Listing 3.47. The inner component type Inner extends its surrounding component type Outer

(l. 2).

MA

�

1 component Outer {

2 component Inner extends Outer { // structural

3 } // inheritance cycle

4 }

Listing 3.47: R12: Structural extension cycle.

R13: Subcomponent reference cycles are forbidden.

A reference cycle is given if two component types declare each other as subcomponets. Since

instantiation of such a system will result in an endless instantiation process, these cycles are

forbidden. An example of a reference cycle is depicted in Listing 3.48. Component type A

contains a subcomponent declaration of type B (cf. l. 2). The component type B contains itself a

subcomponent of type A (cf. l. 5). If component type A is instantiated, an instance of component

type B is created, that will itself create another instance of A and so forth.

MA1 component A {

2 component B myB; // reference cycle

3 }

4 component B {

5 component A myA; // reference cycle

6 }

Listing 3.48: R13: Subcomponent reference cycle.

68

3.5. CONTEXT CONDITIONS

R14: Components that inherit from a parametrized component provide configu-

ration parameters with the same types, but are allowed to provide more parame-

ters.

A component definition that inherits from a configurable component definition has to define at

least the same amount of configuration parameters like the supercomponent does. In addition,

the types of the configuration parameters from the inheriting component have to match the types

of the configuration parameters from the supercomponent. However, the names of the parame-

ters are allowed to differ.

Listing 3.49 demonstrates this using the example of the configurable component type A which

is inherited by several other component types. Component B (l. 3) does not define any config-

uration parameters and is, therefore, invalid. C (l. 5) defines a parameter with type int named

a. The parameter types from C and A match, the parameter names, however, do not matter. In

contrast to this, component D (l. 7) defines a parameter with type String named x. Here, the

names match, but the types do not match. Hence, component C is defined correctly but compo-

nent D is not defined correctly. Since it is allowed to define additional parameters on top of the

parameters imposed by the supercomponent, component E (l. 9) is defined correctly. However,

parameters must only be added to the end of the parameter list and parameter positions cannot

be switched. This restriction is needed because parameters are automatically matched to the

parameters of the supercomponent in the order of their occurrence. For that reason, component

definition F (l. 11) is invalid because parameter x with type String is added to the head of the

parameter list and is therefore matched with parameter x from component A. This is not allowed

since both types are not compatible.

MA

�

1 component A[int x] {...}

2

3 component B extends A {...} // B has to define an int parameter,

4 // too

5 component C[int a] extends A {...} // int parameter defined.

6

7 component D[String x] extends A {...} // invalid parameter type.

8

9 component E[int a, String x] extends A {...}// additional

10 // parameters allowed.

11 component F[String x, int a] extends A {...} // Parameter order

12 // injured.

Listing 3.49: R14: Inheritance of component parameters.

R15: Components that inherit from a generic component have to assign con-

crete type arguments to all generic type parameters.

A component definition that inherits from a generic component has to assign type arguments to

all generic type parameters of the supercomponent. If the type parameters of the supercompo-

nent are restricted with an upper bound, the used type has to be compatible with the restricted

69

3.5. CONTEXT CONDITIONS

type parameter.

Listing 3.50 demonstrates this using the example of generic component type A which defines

the generic type parameters K and V (l. 1). V’s upper bound is set to Number. Hence, the

type Number or any subtype can be assigned to generic parameter V. Component A is inherited

by several other component types. Component B (l. 3) simply assigns concrete types to the

generic type parameters. Since Integer is a subtype of Number, component B is defined

correctly. Generic component C (l. 5) assigns its own type parameters to the type parameters

of its supercomponent. Since C’s type parameters are restricted the same way, this component

definition is valid, too. Also partial forwarding of type parameters is possible. Component

D assigns its own type parameter K to the first type parameter of its supercomponent (l. 7).

Additionally Integer is assigned to A’s second type parameter V. Component E (l. 10) does not

assign any type parameter to its supercomponent. Thus, component E is not defined correctly.

Since all type parameters have to be assigned to a generic supercomponent, component F (l. 13)

is also not valid. It only assigns a single type parameter to its supercomponent. As stated above,

assigned types have to be compatible to restricted generic type parameters of a supercomponent.

For this reason, component G (l. 15) is also defective because its type parameter Y, which is

assigned to type parameter V of component A, is not compatible to the upper bound Number.

MA

�

1 component A<K, V extends Number> {...}

2 // Concrete types assigned.

3 component B extends A<String, Integer> {...}

4 // Forward type parameters.

5 component C<K, V extends Number> extends A<K, V> {...}

6 // Partially forward type parameters

7 component D<K> extends A<K, Integer> {...}

8 // Type parameters ’K, V extends Number’

9 // of the extended super component have to be set.

10 component E extends A {...}

11 // All type parameters ’K, V extends Number’ of the

12 // extended super component have to be set.

13 component F<T> extends A<T> {...}

14 // Y is not compatible with the upper bound of V (Number).

15 component G<X, Y> extends A<X, Y> {...}

Listing 3.50: R15: Inheritance of generic type parameters.

3.5.4 Conventions

Context conditions within this group define modeling conventions for MontiArc. Coding con-

ventions for general purpose languages (GPLs) are commonly used and offer the advantage of

a uniform code representation. Since familiar code representations are much easier to interpret,

code sharing and distributed work is simplified. This advantage also holds for textual modeling

languages. Injuring the given conventions usually results in a warning.

70

3.5. CONTEXT CONDITIONS

CV1: Instance names start with a lower-case letter.

Names in the scope of component definitions should start with a lower case letter. This con-

text condition affects names of ports, subcomponent declarations, configuration parameters, and

constraints. Therefore, all names contained in the component definition depicted in Listing 3.51

obey this rule. Violating this context condition will result in a warning.

MA

�

1 component Inverter<T> [Number delta] {

2 port

3 in Integer input,

4 out Integer inverted;

5 component Filter(delta) myFilter;

6

7 java inv isInverted: {

8 }

9 }

Listing 3.51: CV1 and CV2: Naming Conventions of MontiArc.

CV2: Types start with an upper-case letter.

Component types and generic type parameters should start with an upper case letter. Hence, the

component name Inverter, which is also depicted in Listing 3.51, as well as the used generic

type parameter T are well formed. Violating this context condition will result in a warning.

CV3: Duplicated imports should be avoided.

Defining identical imports more than once will result in a warning.

CV4: Unused direct imports should be avoided.

The definition of imports which are not used within the model violates this convention and

results in a warning.

CV5: In decomposed components, all ports should be used in at least one con-

nector.

If incoming or outgoing ports of a decomposed component type are not used in at least one

connector, a warning is produced to inform the modeler that parts of the components interface

are unconnected. In Listing 3.52 the ports msgIn and msgOut are both used and connected to

subcomponents (cf. ll. 8f). In contrast, port foo is not connected and a warning is raised (l. 4).

Please note that unconnected incoming ports and unconnected outgoing ports of subcom-

ponents may result in a memory leak in the simulation. Since received or sent messages are

buffered but never processed, the port buffer continuously grows. Hence, the modeler should

connect these unused ports with a Terminator subcomponent which is available in the Mon-

tiArc model library (see Section 6.8.2). Alternatively, ports with restricted buffers can be used.

A detailed description of the simulation and scheduling process is given in Chapter 4.

71

3.5. CONTEXT CONDITIONS

MA1 component A_Filter {

2 port

3 in String msgIn,

4 in String foo, // unused port

5 out String msgOut;

6 component Filter(’a’) af;

7

8 connect msgIn -> af.msgs;

9 connect af.filteredMsgs -> msgOut;

10 }

Listing 3.52: CV5: Using all ports.

CV6: All ports of subcomponents should be used in at least one connector.

If ports of subcomponents are unconnected, this can result in an unexpected behavior. Hence,

the modeler is informed with a warning if subcomponents in a decomposed component type

definition have unconnected ports. All ports of subcomponent af in Listing 3.53 are connected

by the connectors given in ll. 8f. Since no ports of subcomponent bf are connected, a warning

is raised.

MA1 component A_Filter {

2 port

3 in String msgIn,

4 out String msgOut;

5 component Filter(’a’) af;

6 component Filter(’b’) bf; // unconnected ports msgs and

7 // filteredMsgs

8 connect msgIn -> af.msgs;

9 connect af.filteredMsgs -> msgOut;

10 }

Listing 3.53: CV6: Using all ports of subcomponents.

CV7: Avoid using implicit and explicit names for elements with the same type.

Implicit names for ports and subcomponents are derived from their unique type (see requirement

LRQ1.4). A unique name is still given if an implicit name is used for an element of a certain

type and further elements of the same type are explicitly named. To avoid confusion, implicit

and explicit names for elements of a certain type should not be mixed. A warning is raised if

both, implicit and explicit names, are used.

This is demonstrated in Listing 3.54. The port type String is used for three ports msgIn,

msgOut, and string (ll. 3–5). Since the last port has no explicit name, a warning is raised.

This convention is also injured by component type Filter which is used for subcomponent

af (l. 7) and the implicitly named subcomponent filter (l. 8). Again, a warning is raised.

72

3.5. CONTEXT CONDITIONS

MA1 component A_Filter {

2 port

3 in String msgIn,

4 out String msgOut,

5 out String; // Implicit naming should be used

6 // for unique port types only.

7 component Filter(’a’) af;

8 component Filter(’b’); // Implicit naming should be used

9 // for unique subcomponent types only.

10 connect msgIn -> af.msgs, filter.msgs;

11 connect af.filteredMsgs -> msgOut;

12 connect filter.filteredMsgs -> string;

13 }

Listing 3.54: CV7: Using implicit and explicit names for elements with the same type.

3.5.5 Code Generation

Context conditions within this category validate certain properties of a model to ensure that the

generated code can be executed within a MontiArc simulation.

CG1: Communication cycles without delay should be avoided.

Communication cycles are created if a subcomponent of a decomposed component directly or

indirectly communicates with itself. Due to the used simulation time paradigm taken from FO-

CUS and the realized scheduling, ticks are used to synchronize timing at incoming ports of a

component (see scheduling of ticks in Section 4.3.2 on page 100). A tick is a special event used

to model the borders of time intervals within a stream. If all incoming ports of a component

received a tick, the component will emit a tick on all outgoing ports. This leads to the Brock-

Ackerman anomaly [BA81]. In MontiArc this anomaly is present if a subcomponent, which

directly or indirectly communicates with itself, waits for ticks on incoming ports, that it has to

emit itself. This, however, will result in a simulation deadlock. Such a simulation deadlock

can be broken if a delay is introduced into a communication cycle at initialization time of the

simulation.

A delay is produced by explicit delay components (see Section 6.8.2) or components that

belong to the delayed or causal synchronous time domain (cf. Section 4.4). Such components

initially emit at least one tick on their outgoing ports. In this way, they have a simulated delay

and can provide initial ticks on incoming ports of a communication cycle. This context condition

analyses decomposed components and finds communication cycles. This is done by step-wise

creating a directed graph of connected non-delaying subcomponents which is analysed for cy-

cles.

An instance of a communication cycle is given in Figure 3.55. The decomposed component

ContAdder contains a subcomponent named adder whose output emitted by port c is trans-

mitted to subcomponent initZero. The latter is connected to the incoming port b of the

adder subcomponent. If at least one component InitZero or Adder belongs to the delayed

73

3.6. AADL COMPATIBILITY

or causal synchronous timing domain, this cycle does not cause a simulation deadlock. Else a

warning is raised. Please note that only a warning and not an error is raised because the resulting

deadlock only affects the MontiArc simulation and not the system under development (SUD).

Furthermore, this deadlock analysis is only performed on MontiArc models and not on the im-

plementation. If delayed or causal synchronous components in a feedback cycle are not labeled

correctly, the detected cycle will not result in a simulation deadlock, too.

ContAdder

i o
Adder

a

b

c

InitZero io

int int

int

MA

Figure 3.55: CG1: Communication cycle between subcomponents.

3.6 AADL Compatibility

An industrial survey discussed in [MLM+13], based on interviews of 48 practitioners from 40

different IT companies, revealed that the most commonly used ADLs are the Unified Model-

ing Language (UML), the AADL, and ArchiMate. The UML contains several diagrams that in

combination are suitable to define architectures. Component diagrams, composite structure dia-

grams, as well as deployment diagrams are provided. Nevertheless, the UML with its graphical

notation is very heavyweight and the concrete semantics of the named diagram kinds is tool re-

spectively user dependent (see, e.g., [OL06]). Thus, additional interpretations are developed and

implemented in tools which are not always consistent with the intentions of the original UML

diagrams. ArchiMate [LAPJ10] aims at modeling enterprise system architectures and thus does

not really match the attended architectural style. Consequently, it has been decided to ensure

compatibility to AADL models (see requirement LRQ1.8).

The main properties of AADL [FGH06, FG12, SAE12] have already been introduced in Sec-

tion 2.3.1. It is mostly used to model static architectures of embedded systems, but also provides

a restricted form of dynamics with the definition of modes. In the following, MontiArc’s mod-

eling elements presented in Section 3.2 are mapped to equivalent AADL modeling elements.

Please note, an excerpt of the meta-model which defines the AADL language and a complete

listings with the used AADL examples are given in Appendix D.

3.6.1 AADL Components

AADL components are types which are defined in a package and belong to a certain category.

In contrast to MontiArc, where a single reusable component is defined in a compilation unit,

the AADL compilation unit is given by a package which contains multiple component defini-

tions. Nevertheless, it is also possible to define multiple inner components within a MontiArc

74

3.6. AADL COMPATIBILITY

component. But, in contrast to AADL packages where each contained component can be in-

stantiated as a subcomponent, inner MontiArc components can only be used within the scope

of the surrounding component type. Thus, they can be used to divide the implementation of

a reusable component type into distinct inner components which are encapsulated and hidden

from the environment.

AADL software component categories comprise threads, thread groups, processes, data, as

well as subprograms of the modeled system. Execution platform respectively hardware compo-

nents represent processors, memory, devices, or data buses. A composite component represents

a system and its decomposition. Generic or abstract components are not yet assigned to a cate-

gory. Thus, AADL diagrams include both, the software and hardware architecture. The mapping

from the former to the latter is defined by hierarchical containment. Since MontiArc focuses

on logical architectures only, an atomic MontiArc component can represent both: a software or

hardware component. Hence, it corresponds to an abstract AADL component and a decomposed

MontiArc component conforms to an AADL system component.

The AADL language distinguishes between a component type and a component implementa-

tion. The former contains features that describe the externally visible interface which comprises

ports, visible attributes, and properties. Further, a component type can extend another compo-

nent type and it can contain prototypes that are used to parametrize interfaces. Flows define

input-output port dependencies of a type and modes describe different operation modes. Com-

ponent implementations have to implement a component type and inherit its features. Addition-

ally, an implementation can extend another component implementation to inherit and refine its

internal structure. Implementations can contain subcomponents, connections, subprogram calls,

modes and transitions between modes, flow implementations, which describe data flow across a

sequence of subcomponents, and further not externally visible properties.

On the one hand, the distinction between type and implementation definition has the benefit

that different implementations of the same interface can be created and exchanged (polymor-

phism). On the other hand, complex AADL implementations are harder to understand since

their port interface is not included in the implementation definition but elements of the interface,

e.g., ports, have to be referenced. Since all component implementations have to be kept in a

consistent state when a component type is changed, the evolution of these separated artifacts is

complicated. If a strict approach of defining a separate interface for each component type is to

be used, atomic MontiArc components can be used to emulate component interfaces. Thus, both

forms of representation can be mapped into each other, but MontiArc provides more comfort

and compacter design.

AADL1 abstract A

2 -- ...

3 end A;

4 abstract implementation A.AImpl

5 -- ...

6 end A.AImpl;

Listing 3.56: AADL specification of component type A and its implementation AImpl.

75

3.6. AADL COMPATIBILITY

Listing 3.56 depicts the specification of component type A (ll. 1 – 3) and its component

implementation AImpl (ll. 4 – 6) which correspond to the atomic MontiArc component de-

picted in Listing 3.2. Component type specifications start with the category of the component

(abstract) followed by the type name. Component implementations repeat the category and

reference the implemented type after the keyword implementation. The implementation

name is appended to the implemented type separated with a dot. Thus, component implementa-

tion A.AImpl implements component type A and is named AImpl.

AADL supports component type and implementation inheritance. Basically, if one type or im-

plementation extends another type or implementation, all model elements are inherited and can

be refined. The specification of AADL component type Ext and its implementation ExtImpl

given in Listing 3.57 correspond to the MontiArc component Ext depicted in Listing 3.3. The

listing demonstrates how to use inheritance in AADL. The component type (ll. 1f) extends an-

other component type which has to belong to the same category (abstract). The component

implementation can also extend another component implementation which implements the same

component type or a subtype. Consequently, the type hierarchy of component implementations

has to be aligned with the type hierarchy of the implemented component types.

AADL1 abstract Ext extends A

2 end Ext;

3 abstract implementation Ext.ExtImpl extends A.AImpl

4 end Ext.ExtImpl;

Listing 3.57: AADL specification of component type Ext and its implementation

ExtImpl as an extension of component type A and implementation AImpl.

AADL does not directly support the definition of configurable components with configuration

parameters. But these can be either emulated using properties defined in a global property

set or with data ports which model shared data. Since the values of data ports may vary at

runtime, properties are more suitable to model the values of configuration parameters which

are assigned at instantiation time once. The Listings 3.58 and 3.59 exemplary depict how to

emulate configuration parameters in AADL. The property set definition given in the former

listing defines the configuration parameters p1 and p2 for component type B which is defined

in package Snippets (ll. 4f). Optionally, default values can be assigned to these parameters

in the definition of the component type (Listing 3.59, ll. 3f). Along with the defined property

set, this component type is an equivalent to the MontiArc component given in Listing 3.4.

Since AADL 2.0, the language provides prototypes that can be used to define generic compo-

nent types or generic component implementations. MontiArc’s type parameters can be directly

translated to AADL prototypes with the category data. AADL component specification C,

which is an equivalent to the MontiArc component given in Listing 3.5, demonstrates the use of

data prototypes to define the generic type parameters K and V. (Listing 3.60).

76

3.6. AADL COMPATIBILITY

AADL1 property set Snippets_cfg is

2 with Snippets;

3

4 p1: aadlinteger applies to (Snippets::B);

5 p2: aadlstring applies to (Snippets::B);

6

7 end Snippets_cfg;

Listing 3.58: AADL property set which defines the configuration parameters of a

configurable component.

AADL1 abstract B

2 properties

3 Snippets_cfg::p1=>1;

4 Snippets_cfg::p2=>"bar";

5 end B;

Listing 3.59: Default values of configuration parameters in AADL.

AADL1 abstract C

2 prototypes

3 K: data;

4 V: data Base_Types::Natural;

5 end C;

Listing 3.60: Defining type parameters with AADL data prototypes.

3.6.2 AADL Interfaces

AADL provides several interface model elements called features. These can be used within

AADL component types (see above) and are listed in the following. Feature groups allow to

define reusable composites of features. Data, event data, and event ports are used to model

unqueued, queued, and asynchronous event communication. Additionally, required or provided

access to data, buses, or subprograms can be part of a component type. Finally, parameters can

be defined, that are, e.g., forwarded to subprograms. MontiArc ports correspond to AADL event

data ports which are restricted to a single direction (in or out). Listing 3.61 depicts the interface

definition of component A that is equivalent to the MontiArc component given in Listing 3.6.

The feature list is introduced by the keyword features, followed by a list of incoming and

outgoing event data ports. A port definition starts with the port name, followed by the direction

(in or out), its kind (event data port), and its data type (String, Cmd, Integer).

AADL provides its own type system which can be used to define port data types. Osate2

offers a set of predefined data components, such as String or Integer, that are defined in

the package Base Types. If these types are referenced, e.g., in a port definition, they have to

be qualified with the package name (see Listing 3.61, ll. 3, 5). To convert a MontiArc component

to AADL, the used types have to be transformed to data components that define structured data

77

3.6. AADL COMPATIBILITY

AADL1 abstract A

2 features

3 string: in event data port Base_Types::String;

4 command: in event data port Cmd;

5 integer: out event data port Base_Types::Integer;

6 end A;

Listing 3.61: AADL interface definition of component type A.

in a composite way. The data component Cmd, which defines the data type of port command,

is depicted in Listing 3.62. The allowed values of the enumeration are defined using properties

from the Data Model package. The type corresponds to the enumeration defined in the UML/P

CD given in Listing 3.7.

AADL1 data Cmd

2 properties

3 Data_Model::Data_Representation => Enum;

4 Data_Model::Enumerators=>("PULL", "PUSH");

5 Data_Model::Representation => ("0", "1");

6 end Cmd;

Listing 3.62: An enumerated data component that defines data type Cmd.

Interfaces of generic components can use the defined data prototypes as port data types. The

features of generic component type C (see Listing 3.60) are depicted in Listing 3.63. The port

msgIn has prototype V as data type, prototype K is used for port msgOut.

AADL1 features

2 msgIn: in event data port V;

3 msgOut: out event data port K;

Listing 3.63: Using prototypes as port data types in AADL.

3.6.3 AADL Architectural Configuration

The architectural configuration of an AADL component is given by a component implementa-

tion which contains subcomponents and connections. A component implementation can further

contain annexes, modes, and flow implementations. The semantic of a MontiArc component

instance directly corresponds to the semantic of an AADL component instance. Therefore, a

component instance represents the instantiation of a component type definition and the follow-

ing recursive instantiation of contained subcomponents. In AADL, a subcomponent instantiates

a component implementation and associates a local name. MontiArc subcomponents directly

correspond to AADL subcomponents regarding the constraint, that the AADL component cate-

gory of the subcomponent is restricted to abstract or system.

Beside port connections, AADL provides component access connections, e.g., to model shared

data, subprogram calls to control the sequence of called subprograms, and parameter connec-

78

3.6. AADL COMPATIBILITY

tions, e.g., to provide the return value of a subprogram call via an outgoing port. Since shared

memory is forbidden in MontiArc (see requirement LRQ1.1.5) and subprogram calls are not

available, similar connectors are not included in the MontiArc language. AADL provides several

connector kinds with distinct communication rules. The transmission kind of port connections

is determined by the connected port kinds (delayed, queueing, allowed amount of senders and

receivers). Since MontiArc only provides a single port kind, MontiArc connectors correspond

to AADL port connections with immediate and queued transmission which connect one sender

with an arbitrary amount of receivers (see requirement LRQ1.3).

An AADL example that demonstrates how to instantiate components as subcomponents and

how to create connections is given in Listing 3.64. The listing depicts an equivalent AADL ver-

sion of the MontiArc component that is shown in Listing 3.9 and 3.10. The subcomponents

clause contains the subcomponents which are instantiated by the system implementation DImpl

(ll. 9 – 21). Subcomponent a is declared in l. 10. A subcomponent declaration starts with the

name (a), followed by the category (abstract), and the instantiated component implemen-

tation A.AImpl. The configuration values of configurable components are set within curly

brackets (ll. 13 – 16). Thus, a 5 is assigned to parameter p1 and the String "foo" is assigned

to parameter p2 of subcomponent myB1. The previously defined default configuration values

(see Listing 3.59) are overridden when concrete values are assigned to a configurable subcompo-

nent. A generic subcomponent is instantiated in ll. 18 – 21. Concrete data components (String

and Integer) are assigned to the type parameters K and V within round brackets. Thus, port

msgIn has the data type Integer and port msgOut the data type String (see Listing 3.63).

The ports that are declared in the component type (ll. 1 – 6) are connected to the ports of

the subcomponents in the connections clause (ll. 23 – 28). An AADL connection always

has a name (cona, conb, etc.) followed by the connection kind (port). A single source is

connected with a single target. For example, connector cona (cf. l. 24) connects the port sIn,

which is defined in the component type (l. 3), with port sIn of subcomponent myB1.

In contrast to MontiArc, AADL does not directly support the definition of inner components.

However, this concept can be partially emulated by encapsulating the defining component to-

gether with the inner component alone into a package and restrict the visibility of the inner

component implementation to private. Since AADL is not able to reference private types within

the public section of the package, the type of the inner component still has to be public. An

example for this method is depicted in Listing 3.65. It emulates the definition of the inner Mon-

tiArc component InnerA which is given in Listing 3.11. AADL packages are divided into a

public and a private section. The latter contains the implementation of the abstract component

type InnerA.InnerAImpl (ll. 13 – 14). The former defines a system component type F (ll.

2f), the component type of the inner component InnerA (ll. 4f), and the implementation of the

system component F.FImpl (ll. 7 – 10). The system implementation instantiates the private

component type InnerA as a subcomponent innerA (l. 9). In this way, the inner component

implementaton InnerA.InnerAImpl cannot be used outside the current package. However,

it cannot be used in the private section of the depicted package as well.

79

3.6. AADL COMPATIBILITY

AADL1 system D

2 features

3 sIn: in event data port Base_Types::String;

4 sOut: out event data port Base_Types::String;

5 iOut: out event data port Base_Types::Integer;

6 end D;

7

8 system implementation D.DImpl

9 subcomponents

10 a: abstract A.AImpl;

11 myExt: abstract Ext.ExtImpl;

12

13 myB1: abstract B.BImpl {

14 Snippets_cfg::p1=>5;

15 Snippets_cfg::p2=>"foo";

16 };

17

18 c: abstract C.CImpl (

19 K => data Base_Types::String,

20 V => data Base_Types::Integer

21);

22

23 connections

24 cona: port sIn -> myB1.sIn;

25 conb: port c.msgOut -> sOut;

26 conc: port myB1.sOut -> a.string;

27 cond: port myB1.sOut -> myExt.string;

28 cone: port myExt.integer -> iOut;

29 end D.DImpl;

Listing 3.64: Subcomponents and connections in AADL.

3.6.4 Further AADL Modeling Elements

As already mentioned, AADL is a rich language which further provides modeling elements that

are not or not directly supported by MontiArc. These are briefly introduced in the following.

Annexes serve as extensions of the AADL language to integrate languages designed for a

special purpose. For instance, the Behavior Annex [SAE11] adds abstract state machines into

component implementations which can be used to directly implement the behavior of compo-

nents. Language elements provided by an AADL annex can be integrated into the MontiArc

language with a language extension (see Chapter 7). Therefore, MontiArc provides an exten-

sion point that allows to directly embed behavior implementations as architectural elements

into components (see requirement LRQ3.2). This extension point is not used by MontiArc

itself, but existing extensions like AJava [HRR10] (see Section 9.2) or MontiArcAutomaton

[RRW13b, RRW13a, RRW13c] (see Section 9.3) implement this extension point by adding Java

respectively I/Oω automata [Rum96] into MontiArc components.

AADL modes are given by mode automata that are triggered by events, e.g., received mes-

80

3.6. AADL COMPATIBILITY

AADL1 public

2 system F

3 end F;

4 abstract InnerA

5 end InnerA;

6

7 system implementation F.FImpl

8 subcomponents

9 innerA: abstract InnerA;

10 end F.FImpl;

11

12 private

13 abstract implementation InnerA.InnerAImpl

14 end InnerA.InnerAImpl;

Listing 3.65: Emulating inner component definitions in AADL.

sages. A mode automata defines different states of a component. By mapping component el-

ements to certain states, the configuration and behavior of a component can be switched by

changing its state. Mode dynamics can be simulated in MontiArc by using delta modeling tech-

niques [CHS10, HRRS11, HKR+11] at runtime or dedicated components that control the data

flow and redirect it to subsystems that represent a certain state.

Flows and Flow implementations are used to define the information flow of messages through

a component as well as the relation of input and output features. These information are, for

example, used to calculate the execution time of a component. Flows can be simulated in Mon-

tiArc by annotating elements with stereotypes that document the relation between different ports

and subcomponents.

3.6.5 Summary

An overview of the comparison of the basic modeling elements of MontiArc and AADL is

given in Table 3.66. Further, Table 3.67 compares advanced language concepts of MontiArc and

AADL.

Language Concept MontiArc AADL

Compilation unit Component definition Package with component

types and implementations

Component categories None (logical components) Software, execution platform,

composite, and generic/ab-

stract components

Atomic component Component definition w/o

subcomponents

Software, execution platform,

and abstract component type

and implementation

Table 3.66 continued on next page

81

3.6. AADL COMPATIBILITY

Language Concept MontiArc AADL

Decomposed component Component definition with

subcomponents

Composite component type

and implementation

Inheritance Component definition Component type & Compo-

nent implementation

Configurable components Configuration parameters Emulated: property set &

properties

Generic components Type parameters Data prototypes

Component interface Component definition with

ports

Component type with fea-

tures

Interaction points Unidirectional data event

ports

Features are: feature groups,

uni- or bidirectional data,

event, and data event ports;

required/provided access to

data, bus, or subprograms;

parameters passed to subpro-

gram calls

Data types External: CD and Java Internal: data component

types and implementations

Architectural configuration Decomposed component def-

inition with subcomponents

and connectors

Composite component imple-

mentation with subcompo-

nents, immediate or delayed

connections, and advanced

modeling elements (see Ta-

ble 3.67)

Atomic subcomponent Subcomponent Software, execution platform,

or abstract subcomponent

Decomposed subcomponent Subcomponent System subcomponent

Channel Undelayed connector Uni/bidirectional, (un-

)delayed port connection,

data access connections, pa-

rameter passing, subprogram

calls

Local component definition Inner component definition Partially emulated: private

package

Table 3.66: Overview of basic language concepts and their representation in MontiArc and

AADL.

82

3.6. AADL COMPATIBILITY

Language Concept MontiArc AADL

Component timing X –

Autoconnect X –

Autoinstantiate X –

Constraints OCL & Java Constraint Annex [HG13]

Grouping of elements – feature & property groups

Message flows Emulated: Stereotypes Flows & flow implementa-

tions

Modes Emulated: ∆-MontiArc or

mode-switch component &

subcomponent for each mode

modes & mode automata

Properties Emulated: Stereotypes Predefined and user-defined

properties

Extension points Embedding for behavior im-

plementation and constraints,

language inheritance for ar-

bitrary extensions, extension

method

Annex mechanism

Table 3.67: Overview of advanced language concepts and their availability in MontiArc and

AADL.

83

84

Chapter 4

Simulating MontiArc Models

In Chapter 3, MontiArc, a simple and compact architecture description language (ADL), which

is intended as a front end for agile architectural prototyping is presented. To execute and vali-

date developed MontiArc components, a timed simulation of MontiArc models is helpful. This

chapter presents the developed MontiArc simulation which has the following core features:

• Asynchronous, event-based communication between components of an interactive system

is simulated using FOCUS [BDD+93, BS01] timed streams.

• Timed behavior of components can be simulated. The simulation time is completely in-

dependent from the real-time of the simulator. Thus, simulations can be executed much

faster than real-time.

• Different component timing domains can be combined with each other.

• The simulation is deterministic to allow for deterministic component black-box and white-

box tests. For this purpose, non-deterministic component implementations can be replaced

with mock components.

• The simulation can be flexibly extended or adjusted by, e.g., using a custom scheduler or

custom ports.

• Since the simulation is developed in Java, it can be executed on every platform with an

available Java Virtual Machine (JVM).

Please note that no visualisation of the simulated communication is provided. The simula-

tion is rather executed without user interaction to continuously and automatically test MontiArc

components.

The chapter is organized as follows. After introducing the FOCUS foundations, the structure

of the simulation runtime environment (RTE) is stepwise derived from the intended runtime

structure in Section 4.2. The simulation scheduler is presented in detail by discussing all relevant

scheduling scenarios in Section 4.3. Component behavior classes are defined in Section 4.4.

These allow to realize and combine MontiArc components with distinct timed behavior. As

claimed by requirement SRQ10, further optimizations of the presented scheduler strategy are

discussed in Section 4.5. Finally, technical design decisions made during the development of

the presented MontiArc simulation are concluded in Section 4.6.

4.1 Foundations for the Simulator

In practice, there exist various paradigms to model software architectures. Regarding these

paradigms, that also describe how components communicate, interact, and behave, different ap-

85

4.1. FOUNDATIONS FOR THE SIMULATOR

proaches are suitable to simulate a system architecture. According to ter Beek et. al [tBFGM08],

systems are most often described either state-based or event-based.

In the state-based paradigm, systems are described using states and transitions between states.

Components are modeled using state machines like UML statecharts (SCs) [OMG11b] that

mostly communicate via shared variables, as for example in [CCO+05]. According to Hoare

[Hoa85], this leads to unwanted interferences and non-deterministic behavior. These problems

can be solved by a controlled access to these shared variables, but this results in overhead and

leads to deadlocks if a component does not release a used variable.

Event-based systems are characterized using events and actions. In FOCUS [BS01], compo-

nent behavior is described using input-output patterns or recursive stream-processing functions

which define reactions to specific input events. Also state-based behavior definitions are in-

cluded in FOCUS. In contrast to the state-based paradigm, state is encapsulated in components

[Rum96]. Event-based communication is characterized by asynchronous message passing be-

tween components.

Fraikin et al. [FFL05] compare these two paradigms on the example of the formal method B

[Abr96] (state-based) and EB3 [FSD03] (event-based), which are both used to model informa-

tion systems. The result of this comparison is, that the event-based method is more related to

the abstract user-scenario than the state-based method. And, in contrast, state-based models are

more similar to the resulting program implementation. Also specifications of order constraints,

such as assertions over the order of events, are more complex and harder to understand in a

state-based paradigm.

Summing up, the event-based paradigm is suited to model and simulate a distributed interac-

tive system in which components usually do not share state and communicate asynchronously

using messages. Since architectural descriptions abstract from the concrete implementation,

state-based approaches are less adequate to model such systems. Consequently, the event-based

paradigm has been selected.

Thus, the architecture simulation, which is presented in this thesis, is based on the event-based

paradigm taken from the FOCUS framework [BDD+93, BS01] for the development and mod-

eling of distributed interactive systems. FOCUS provides mathematical foundations to model

timed communication and the behavior of components based on a higher-order two-valued logic.

In the following, the relevant concepts of FOCUS taken from [BDD+93, BS01] are presented

and summed-up. If needed, the notation suggested in [RR11] has been used for formalization.

Communication

A central concept of FOCUS are Streams, a finite or possibly infinite sequence of elements that

belong to a certain domain M . According to Ringert and Rumpe [RR11], this domain can be an

abstraction of:

• event signals like bus messages,

• continuous values like sensor values or discrete event signals,

• simple messages for method invocations or signaling, or

• complex data structures that are passed between software services.

86

4.1. FOUNDATIONS FOR THE SIMULATOR

The notation of a stream is M∗ for a finite and M∞ for an infinite sequence of messages.

Mω = M∗ ∪M∞ denotes finite and infinite streams. A sequence of actions is named trace. In

accordance to Hoare [Hoa85], a trace describes the behavior of a process in the finite sequence

of symbols. These symbols represent events which either stimulate the process or are raised by

the process itself at a certain point in time. Traces are used to model the behavior of a complete

(closed) system.

A stream of messages describes the communication history between components over a di-

rected channel. A directed channel unidirectionally transmits messages between an outgoing

and an incoming port. Transmission over a channel is instantaneous, which means that it does

not consume time. This property is based on the assumption that message processing is slow,

while message transmission is fast. Further, a channel is reliable and order preserving. This

means that no messages are lost and messages do not pass each other during the transmission.

If transmission properties, such as message loss or rearrangement, are needed, they have to be

explicitly modeled.

Components of a system are connected to information-flow architectures via incoming and

outgoing channels. A channel can transmit messages of a certain type solely. If two components

are attended to interact with each other, they have to be connected using at least two contrary di-

rected channels that build a feedback cycle. Regarding these properties, channels are well suited

to represent MontiArc connectors in a simulation (cf. Section 3.4). The FOCUS framework

offers different kinds of streams that are described in the following. In the following, a stream

of messages is called stream while a stream of actions is called trace.

[RR11] distinguishes event streams (respectively untimed streams) and timed event streams

(timed streams). An event stream is an ordered sequence of messages which are transmitted over

a directed channel. All messages within a stream are elements of the stream’s domain. Hence,

they have a compatible data type. A timed event stream Mω = (M ∪ {√})ω additionally

contains special events, so called ticks (
√

/∈ M), which model the processing of time. Please

note that an infinite observation of a channel is a timed stream with infinitely many ticks: ∀s ∈
Mω : #ts = ∞. Nevertheless, since the executed simulations are finite, the contained streams

are finite, too.

Ticks divide a timed stream into time intervals, where a time interval contains a finite amount

of messages. All time intervals are logically equidistant. Within a time interval, the order of the

contained messages is given but not the exact timing. For example, a system can be modeled

which is capable to transmit a message each millisecond and the duration of one hour is chosen

for a time interval. If such an interval contains three messages, they can be mapped to a certain

hour, but these messages may be transmitted within the very first three milliseconds of this hour,

the very last, or they may be equally distributed. However, the information about the order of

these messages is given. Please note that due to this property, no assumptions about the order of

messages transmitted in the same time interval over different channels can be made. This way

FOCUS offers a discrete description of time within the time intervals of a timed stream. Since

all time intervals logically represent the same fix period, time is continuously described as well.

This time model is similar to the superdense time presented in [Pto14, Section 1.7].

Timed event streams can always be transformed into an untimed event stream by simply

removing all ticks. However, an automatic transformation from untimed to timed streams is

87

4.1. FOUNDATIONS FOR THE SIMULATOR

Let s, s′ ∈ Mω, ts ∈ Mω, n ∈ N∞, a ∈ M,A ∈ (M → B):

Notation Signature Description

ft(s) Mω → M first: get first element of s

s.n N×Mω → M nth: get nth element of s

rt(s) Mω → Mω rest: get stream without first element

a : s M ×Mω → Mω append: appends a to the head of s

ŝs′ Mω ×Mω → Mω concat: concatenation of stream s and s′

s ⊑ s′ Mω ×Mω → B prefix: checks, if s is prefix of s′

s|n N∞ ×Mω → Mω take: get prefix of s

#s Mω → N∞ length: get the length of stream s

Ass (M → B)×Mω → Mω filter: filters away all elements for which the predi-

cate function (M → B) not holds

#tts Mω → N∞ time: number of time events (
√

s) in ts

ts.tn N×Mω → M∗ tnth: get nth time interval of ts

ts ↓n N∞ ×Mω → Mω ttake: get first n time intervals of ts

⋄ts Mω → Mω abstraction: abstracts timed event stream ts to an

event stream.

Table 4.1: FOCUS operators for untimed and timed streams based on [RR11].

only possible under certain condition since infinitely many timed representations of an untimed

stream exist. One possible, but very specific timed interpretation of an untimed stream is given

by time-synchronous streams which contain exactly one event for every point of time [RR11].

Thus, a time-synchronous stream is a timed stream, where exactly each second message event

is a
√

. Mathematically, a time-synchronous stream is a function N → M that maps the time

interval index of a message to the message itself. A similar time-synchronous stream notation

uses a pseudo message ⊥ to model that no data has been transmitted within a time interval. Since

every element in a stream denotes a new time interval, explicit modeling of ticks can be omitted.

This stream kind extends the function of timed streams to N → M⊥. If the logical duration in

the example above is reduced from one hour to the transmission frequency of the system (a mil-

lisecond), then the system can transmit one message each time interval at max. This way, each

message can be mapped to an exact discrete time interval and the communication is modeled

time-synchronously.

If timed and untimed streams are compared, they syntactically differ because the former con-

tain ticks. If a
√

is interpreted as a regular message, all operations which are suitable for untimed

streams can be also applied to timed streams. The fundamental difference between a
√

and a

message is the semantic interpretation in the underlying model. A
√

in a stream represents the

incrementation of a global clock [GGR06]. A message in a stream represents the transmission of

this message over the corresponding directed channel. Thus, explicit time events in a simulator

are the basis to decouple simulation and simulator time. Available stream operations are, e.g.,

88

4.2. RUNTIME ENVIRONMENT

defined in [BS01, RR11]. In Table 4.1, an excerpt is listed. The second part of the table contains

special operations that are only available for timed streams Mω. These operators allow stream

manipulations and give information about existing streams.

4.2 Runtime Environment

MontiArc provides its own runtime environment (RTE) written in Java that realizes the commu-

nication foundations of FOCUS. It contains predefined Java interfaces and classes to develop

components, their ports, and connections. Beside these infrastructural elements, the RTE also

contains standard schedulers which handle message passing and the simulation of time. Classes

generated by MontiArc are based on these RTE classes and interfaces. To provide a better un-

derstanding of the RTE, it is first explained how MontiArc components should be represented at

runtime of a simulation. Then suitable classes of the RTE are derived.

4.2.1 Intended Object Structure @Runtime

The concrete representation of MontiArc components, ports, and subcomponents in the RTE and

a running simulation is depicted in Table 4.2.

Element Realization in Java

Component definition Generated Java class that implements the RTE compo-

nent interface

Port implementation RTE class with generic message types

Stream implementation RTE class with generic message types

Scheduler implementation RTE class

Subcomponent or simulated system Object of the generated Java class

Port Object of the RTE port implementation

Table 4.2: Representation of MontiArc elements in the simulation.

It can be seen that the simulated system, subcomponents of this system, and ports are rep-

resented by objects during the simulation. The relations between these objects is explained by

means of a concrete example given in Figure 4.3. It depicts an excerpt of component LightC-

trl, which has already been presented in Section 3.1. The excerpt contains two subcomponents

DoorEval and Arbiter and three different connector kinds. The first one (dashed line) con-

nects an incoming port of a decomposed component with the incoming port of a subcomponent,

the second one (gray) connects an outgoing port of a subcomponent with an incoming port of

another subcomponent, and the third one (black) connects the outgoing port of a subcomponent

with the outgoing port of the shown decomposed component. In the following, this diagram is

stepwise instantiated as simulation objects in a straight forward way. Finally, the resulting object

structure is optimized according to requirement SRQ10.

89

4.2. RUNTIME ENVIRONMENT

LightCtrl

OnOffRequest

Arbiter

DoorEval

OnOffCmd
cmd

DoorStatus

MA

Figure 4.3: Excerpt of component LightCtrl.

Object Instantiation of a Simulation

Step 1: Components are instantiated from top to bottom. This means that system components

are instantiated first, then their subcomponents, and then the subcomponents of these

subcomponents and so forth. An example is depicted in Figure 4.4. As indicated by the

arrow on the right-hand side, first a LightCtrl object is created, then an instance of

each subcomponent’s type is created and linked to the LightCtrl object.

:LightCtrl

:DoorEval :Arbiter

�Step 1:
instantiate
components
from top to
bottom

RT-OD

Figure 4.4: Instantiation of components as simulation objects. Step 1: instantiate components

from top to bottom.

Step 2: Instantiate ports of atomic components. Hence, incoming and outgoing ports are created

and linked to its corresponding component instance. Please note that the elements of the

following runtime object diagrams (ODs), which represent the above mentioned con-

nector kinds, have the same graphical style like the corresponding connection (cf. Fig-

ure 4.5).

Step 3: For each decomposed component from bottom to top:

Step 3.1: Create and link forwarding ports. This way port doorStatus is created in

Figure 4.6. Please note that a forwarding port simply forwards received mes-

sages to the connected incoming ports of subcomponents.

Step 3.2: Create connections by linking ports. In Figure 4.7, the incoming forwarding

port doorStatus, which belongs to component LightCtrl, is connected

with the incoming port doorStatus of subcomponent DoorEval. The out-

going port of DoorEval is connected with the incoming port of subcompo-

nent Arbiter. The connector, which connects Arbiter’s port onOffCmd

90

4.2. RUNTIME ENVIRONMENT

:LightCtrl

:DoorEval :Arbiter

Step 2:
instantiate
ports of atomic
components

:InPort :InPort

doorStatus
onOffRequest

:OutPort :OutPort

onOffRequest

�
RT-OD

onOffCmd

Figure 4.5: Instantiation of components as simulation objects. Step 2: instantiate ports of atomic

components.

:LightCtrl

:DoorEval :Arbiter

:InPort :InPort

doorStatus
onOffRequest

:OutPort

onOffRequest

:ForwardPort

doorStatus

Step 3.1:
instantiate
forwarding ports

�
RT-OD

onOffCmd

:OutPort

Figure 4.6: Instantiation of components as simulation objects. Step 3.1: instantiate forwarding

ports.

with the outgoing port cmd of component LightCtrl, is created by sharing

Arbiter’s OutPort instance.

Regarding the FOCUS property that every incoming port is only connected to a single unique

sender, two optimizations can be derived:

1. Explicit outgoing port objects are obsolete since connected incoming port objects can be

shared with the sender.

2. Forwarding incoming ports of decomposed subcomponents are only needed if two or more

receiving incoming ports are connected.

Figure 4.8 depicts the final optimized object structure for the above described example. It can

be seen that the incoming port of subcomponent DoorEval is also used as incoming port

doorStatus of the LightCtrl component. Subcomponent DoorEval uses incoming port

91

4.2. RUNTIME ENVIRONMENT

:LightCtrl

:DoorEval :Arbiter

:InPort :InPort

doorStatus
onOffRequest

:OutPort

onOffRequest

:ForwardPort

doorStatus

Step 3.2: create

connections

receiver

/cmd

receiver

"
RT-OD

onOffCmd

:OutPort

Figure 4.7: Instantiation of components as simulation objects. Step 3.2: create connections.

onOffRequest, which belongs to subcomponent Arbiter, as its outgoing port. The object

that holds the link to Arbiter’s port onOffCmd respectively LightCtrl’s port cmd is not

depicted in the figure. It is set from the outside when component LightCtrl is instantiated

in another component in step 3.2. It is not created during the instantiation of the LightCtrl

object.

:LightCtrl

:DoorEval :Arbiter

:Port :Port

doorStatus onOffRequest

/onOffRequest

/doorStatus

/cmd

�
RT-OD

onOffCmd

:Port

Figure 4.8: Instantiation of components as simulation objects. Optimized object structure.

Regarding these optimizations, the steps that are performed to instantiate components have to

be slightly adjusted:

Step 1: Instantiate and link components from top to bottom (unchanged).

Step 2: Instantiate incoming ports of atomic components.

Step 3: For each decomposed component from bottom to top:

Step 3.1: Create forwarding ports for each incoming port with more than one receiver.

Step 3.2: Create connections. Therefore, share incoming ports of a receiver as outgoing

ports of the connected sender and link forwarding ports to their connected

incoming ports.

92

4.2. RUNTIME ENVIRONMENT

4.2.2 Simulation Runtime Environment

Based on this optimized object structure, the Java class and interface structure of the RTE is

derived. Each MontiArc component definition is represented by an individual Java class that

defines the port interface and decomposition of the component. During simulations, it is present

as an object which holds the links to port objects that represent the component interface. Links

to component objects represent the decomposition of the component. The former are instances

of generic runtime classes while the latter are instances of component classes that represent its

subcomponents’ types. Message flows are simulated in the FOCUS framework. A stream of

messages, transmitted over a directed channel which connects incoming and outgoing ports, is

suitable to simulate message flows this way. Since such a stream has to transmit both, ticks

as well as data messages, a generic message container is needed that is able to represent both.

Beside default scheduling strategies and port implementations (see requirement SRQ9.1), it is

possible to use customized port and scheduler implementations in the simulation (see require-

ment SRQ9.2).

These properties are reflected by the MontiArc RTE. Figure 4.9 depicts the most basic and

simplified structure of the RTE. A component only interacts with its environment via its ports.

Hence, a component has a set of outgoing ports which are used to emit messages to its envi-

ronment. Further, a component receives messages via its incoming ports. It is also depicted

that ports are directly connected to their receivers. This is in accordance with the FOCUS prop-

erty, that a sender can transmit data to a set of receivers. A component can be decomposed to

subcomponents. This is reflected by the subcomponents aggregation which allows hierar-

chical component decomposition.

incoming

«interface»

IPort
«interface»

IComponent
*outgoing

*
*

subcomponents receiver

1..*

�

RTE-CD

Figure 4.9: Components and Ports in MontiArc’s RTE.

Figure 4.10 shows a more concrete MontiArc RTE. Please note that all associations given in

Figure 4.9 are also part of the refined RTE diagram but are not repeated. The extended RTE

adds user (top) and simulator (bottom) parts. The former are used by a component developer or

a simulation user to implement the behavior of atomic components (see Section 5.5) or to set up

a simulation. The latter ones encapsulate simulation specific methods. These are automatically

used by the scheduler or the generated component code to schedule messages and simulate time.

They are not intended to be used directly by component developers or simulation users. This

separation is indicated by a dashed line.

The user relevant parts of the RTE are:

• Interface IComponent: represents a component for the component developer or user. It

provides a method to set it up.

• Interface IOutPort: used by a component developer to emit messages using its send

method.

93

4.2. RUNTIME ENVIRONMENT

�

«interface»

ISimComponent

handleMessage(port, message)

handleTick()

«interface»

IOutPort

send(message)

«interface»

IComponent

setup(scheduler, errorHandler)

«interface»

IInPort

accept(message)

User RTE

«interface»

IScheduler

registerPort(inPort, msg)

setupPort(inPort)

AComponent

name

errorHandler

«interface»

IInSimPort
«interface»

IOutSimPort
«interface»

IForwardPort

«interface»

IPort

Port

receiver

1..*

receiver

2..*

1 *

**

1 1

Simulator RTE

setup(com, sch)

RTE-CD

Figure 4.10: MontiArc’s RTE. The User RTE parts are used when setting up a simulation or

atomic components are implemented. Parts of the Simulator RTE are used by the

scheduler and the generated simulation code (see Section 5.4).

• Interface IInPort: a component user can trigger a component with messages using the

accept method of its incoming ports.

The RTE parts used by the Simulator extend the aforementioned parts. They are listed in the

following:

• Interface ISimComponent encapsulates messages called by the simulation scheduler

to trigger component activity. The method handleMessage(port, message) is

called to process the given data message on port port. The method handleTick() is

called, when a component has to a) increase its internal clock and b) emit a
√

on each

outgoing port.

• Abstract class AComponent serves as a superclass for generated component classes and

contains fields to store the component name and an error handler. The latter can be used

in atomic component implementations to, e.g., log misbehavior of components.

• Interface IOutSimPort provides methods to add or get receivers and to set or access its

associated component.

• Interface IInSimPort provides method setup(com, sch) to set up an incoming

port with the containing component and the corresponding scheduler. This setup method

is automatically invoked by the containing component during its own setup. Further

scheduling-specific methods to check or influence the state of a port are provided but

omitted in the Figure (put to sleep, wake up, and connection state. See Section 4.3).

94

4.2. RUNTIME ENVIRONMENT

• Interface IScheduler provides a method to set up a concrete scheduler (setup-

Port(...)) as well as a method to trigger scheduling of a certain given port and mes-

sage (registerPort(inPort, msg)). Since the integration of user-defined sched-

ulers is required (cf. requirement SRQ9.2), the properties of a simulation scheduler are

defined by an interface and not by a concrete class. The concrete default scheduling of the

MontiArc simulation is discussed in Section 4.3.

• Interface IPort extends IOutSimPort and IInSimPort and does not add new meth-

ods. This unified port interface is needed since connected components share their ports.

In this way, the outgoing port object of a sending component can also be used as the

incoming port object of the connected receiving component (cf. requirement SRQ10).

• Interface IForwardPort acts as an incoming port for decomposed components and is

forwarding messages to the connected incoming ports of the corresponding subcompo-

nents.

• Class Port is the default port implementation used in the simulation. Port objects are

instantiated for incoming ports of atomic components. Since the port object of the con-

nected incoming port is used as outgoing port, dedicated objects for outgoing port are not

created. For that reason, the port class has to implement the incoming and the outgoing

port interface. If more than one incoming port is connected to an outgoing port, the first

connected incoming port object is used as outgoing port. Further incoming ports are then

added to the receiver association.

In MontiArc, it is possible to simulate instant, delaying, synchronous, causal synchronous,

and untimed components in parallel (see requirements LRQ1.1.3 and SRQ4). Therefore, the RTE

has to distinguish between timed and untimed components. This is needed to prevent untimed

components from gaining information about time events. In Figure 4.11 the RTE is extended

with Java interfaces and classes which encapsulate methods and attributes of timed components.

�

«interface»

ISimComponent

handleMessage(port, message)

handleTick()

«interface»

IComponent

setup(scheduler, errorHandler)

ATimedComponent

final getLocalTime()

final incLocalTime()

timeStep()

AComponent

name

errorHandler

«interface»

ITimedComponent

getLocalTime()

Time-aware RTE

RTE-CD

User RTE

Simulator RTE

Figure 4.11: Components and Timing in MontiArcs RTE.

95

4.3. SCHEDULING

These are in the following:

• Java interface ITimedComponent provides a method to access the current time of a

component.

• Abstract class ATimedComponent provides implementations to get and increment the

local component time. It also provides the abstract method timeStep() which is to

be implemented by all timed components. It is called by a timed component itself at the

end of the generated handleTick() method if the component does not extend another

component (see Section 5.4.2). In the case of inheritance, the handleTick() method

also calls the same method implemented in the superclass. This way,
√

messages are also

emitted on the ports defined by the supercomponent.

4.3 Scheduling

To simulate logical distributed and concurrent components in a single thread, an explicit schedul-

ing is needed. The scheduler is responsible for message processing and the simulation of time.

Basically, the scheduler decides which component is next to execute and synchronizes incoming

data and ticks received on the incoming ports of components to a simulated timed input trace.

This trace is propagated to the scheduled components which internally creates timing specific

events. These events are processed by the corresponding component implementations. Time

domain specific event propagation is discussed in Section 4.4. This section presents, how a

scheduler is set up for scheduling and how the default scheduler simulates FOCUS channels

with
√

and data messages (cf. requirement SRQ9.1).

It is possible to use an individual scheduler for each component (cf. requirement SRQ9.3).

Therefore the used schedulers have to be properly set up for the components they should sched-

ule. Since scheduling is incoming port driven, a scheduler has to know the components and the

corresponding incoming ports it has to schedule (see Figure 4.10). The structure of the default

scheduler is depicted in Figure 4.12. It contains the map comp2Ports that maps all incoming

ports to the containing component. The map comp2tickfree contains a set of tickfree ports

for each scheduled component.

Definition 4.1 Tickfree port. Each simulation port at each time has a possibly empty list of

incoming events including ticks. This list is used to buffer events which cannot be scheduled

immediately. A port is tickfree if its buffer is empty or the first buffered element is a data message.

Definition 4.2 Blocked port. A simulation port is blocked if the first element in its buffer is a
√

.

Since the scheduler processes ticks on all incoming ports of a component simultaneously,

ports are blocked when other ports of the same component have not received a
√

yet. If a port

is blocked and an event is received, the event is buffered.

Both maps depicted in Figure 4.12 are filled by the method setupPort(...) which is

called by the scheduled components during the setup of atomic components (cf. Section 5.4.2).

Because scheduling depends on the interaction between scheduler and ports, a concrete sched-

uler is always associated with an IPortFactory which produces ports that harmonize with

96

4.3. SCHEDULING

«interface»

IPortFactory

createInPort()

createForwardPort()

1

DefaultSimScheduler

Map<ISimComponent, List<IInSimPort>> comp2Ports

Map<ISimComponent, Set<IInSimPort>> comp2tickfree

processData(ISimComponent, IInSimPort, Message)

processTick(ISimComponent, IInSimPort)

«interface»

IScheduler

boolean registerPort(inPort, msg)

setupPort(inPort)

RTE-CD

Figure 4.12: Default Simulation Scheduler.

the strategy of the scheduler. The factory is used by the scheduled components during the com-

ponent setup phase.

During a simulation run, an incoming port that receives a message or tick via its accept

method, immediately registers itself at its corresponding scheduler using its registerPort

method if the port is not already scheduled. This can happen if a port is part of a feedback cycle.

The boolean result of the registerPort method flags whether the given message has been

processed immediately or has to be buffered by the port. The following subsections discuss

the default scheduling strategy realized by class DefaultSimScheduler regarding different

scenarios. According to Rumpe [Rum11, Chapter 6], the hexagons used inside the following

sequence diagrams contain OCL constraints which are valid below their occurrence. Further,

... indicates that additional, not modeled communication with other object is possible. A

c© tags objects that do not interact with other (not shown) objects after the first and before the

last modeled interaction.

The object diagram depicted in Figure 4.13 shows the objects and relations used in the follow-

ing sequence diagrams. Component c has two incoming ports p1 and p2 that are scheduled by

s:DefaultSimScheduler

p1:Port

inSchedule = false

c:Component

RT-OD

p2:Port

inSchedule = false

Figure 4.13: Scheduled component c and the state of it’s ports.

97

4.3. SCHEDULING

scheduler s. Please note that calling the method handleMessage of a component propagates

the passed data message to the current time interval of the component’s input trace. Further, the

method handleTick finalizes the current time interval of the input trace and causes the com-

ponent to emit ticks on its outgoing port. There are three main scenarios which are discussed in

the following subsections. First, a port that accepts a data message is not involved in an active

scheduling process (short: the port is not in a schedule; cf. Section 4.3.1). Second, a port which

accepts a
√

message is not in a schedule (cf. Section 4.3.2). And third, a port that accepts either

a data message or a
√

is already in a schedule (cf. Section 4.3.3).

4.3.1 Scheduling of Data Messages

Regarding scheduling of data messages, two sub scenarios are possible. The port, on which the

message is accepted, is either tickfree or blocked by a
√

. Both scenarios are discussed in the

following.

Tickfree

Scheduling of data messages on tickfree ports is straightforward as depicted in Figure 4.14. It is

performed in the following steps that are illustrated by the sequence diagram:

1. The port (p1) accepts a data message (m) and checks whether it is currently involved in a

scheduling process (p1.inSchedule).

2. Since it is not involved (p1.inSchedule == false), it registers itself by its sched-

uler using the register method and marks itself as being in a schedule.

accept(m)

return

p1:InPort s:DefaultSimScheduler

!(p1.inSchedule)

!m.isTick()

register(p1,m)

p1.inSchedule processData(p1,m)

return true

!(p1.inSchedule)

c:Component ...

handleMessage(p1,m)

return
"

tickfree.contains(p1)

SD

Figure 4.14: Scheduling data messages on a tickfree port.

98

4.3. SCHEDULING

3. If the registered message is a data message (!m.isTick()), the scheduler forwards the

call to its processData method.

4. It is checked whether the current port is tickfree (tickfree.contains(p1), where

tickfree = comp2tickfree.get(c)).

5. Since the current port is tickfree, the accepted message is immediately processed by the

port’s component. Therefore it is passed to the component via the handleMessage

method.

6. The component then processes the message that usually will result in the emission of

messages through its outgoing ports. These messages trigger further scheduling activity

which is omitted in the Figure (...).

7. When the control flow returns to the scheduler, it returns a true to the calling port p1 to

signal that the registered message has been processed. The port now marks itself as not

being in a schedule.

Blocked

Scheduling of data messages on a blocked port is depicted in Figure 4.15. Basically, since the

port is blocked, the registered message is not processed and has to be buffered by the port for

later processing. This is performed in the following steps:

1. The port (p1) accepts a data message (m) and checks whether it is currently involved in a

scheduling process (p1.inSchedule).

2. Since it is not involved (p1.inSchedule == false), it registers itself by its sched-

uler using the register method and marks itself as being in a schedule.

3. If the registered message is a data message (!m.isTick()) the scheduler forwards the

call to its processData method.

4. It is checked whether the current port is tickfree (tickfree.contains(p1), where

p1:InPort © s:DefaultSimScheduler ©

!(p1.inSchedule)
!m.isTick()

register(p1,m)

p1.inSchedule
processData(p1,m)

!(tickfree.contains(p1))

return false

!(p1.inSchedule)

buffer(m)

accept(m)

return

SD

Figure 4.15: Scheduling data messages on a blocked port.

99

4.3. SCHEDULING

tickfree = comp2tickfree.get(c)).

5. Since the current port is not tickfree, the accepted message is not processed yet. The

scheduler returns a false to the calling port p1 to signal, that the registered message has

not been processed yet.

6. The port buffers the message for later processing (buffer(m)) and marks itself as not

being in a schedule.

4.3.2 Scheduling of Ticks

When a
√

message is to be scheduled, three sub scenarios are possible. First, the current and

some other ports of the component are tickfree (any tick). Second, the current port is tickfree but

the other ports of the component are not (final tick). Third, the current port is blocked but some

other ports of the component are tickfree. The last sub scenario is equivalent to the scenario

described in Section 4.3.3 and is discussed there. The first two sub scenarios are discussed in

the following.

Any Tick

Scheduling of
√

messages on a tickfree port of a component, which has other tickfree ports,

is depicted in Figure 4.16. Basically, the current tickfree port is removed from the tickfree set

stored in the scheduler. Because the set is not empty after removal, the component has not

received a
√

on any of its ports. This is performed in the following steps:

1. The port (p1) accepts a
√

(t) and checks whether it is currently involved in a scheduling

process (!(p1.inSchedule)) or whether it is already blocked by a tick (!(p1.has-

p1:InPort s:DefaultSimScheduler

accept(t)

!(p1.inSchedule) &&

!(p1.hasTickReceived())

t.isTick()

register(p1,t)

p1.inSchedule
processTick(p1)

tickfree.remove(p1)

tickfree.size > 0
return false

p1.hasTickReceived()

&& !(p1.inSchedule)

buffer(t)

return

SD

Figure 4.16: Scheduling of any
√

messages.

100

4.3. SCHEDULING

TickReceived())).

2. Since it is not in a schedule or blocked, it registers itself by its scheduler using the reg-

ister method and marks itself as being in a schedule.

3. Since the registered message is a tick (t.isTick()), the scheduler forwards the call to

its processTick() method.

4. The port is then removed from the tickfree set. Since it is not empty afterwards (tick-

free.size > 0), the scheduler returns false to the calling port.

5. The tick is then buffered. This causes the port’s method hasTickReceived() to return

true afterwards.

Final Tick of a Time Interval

If the currently scheduled port is the last port contained in the tickfree set, its component is

allowed to consume a tick on all incoming and emit a tick on all outgoing ports. The scheduling

of this process is depicted in Figure 4.17. It is performed in the flowing steps:

1. The port (p2) accepts a
√

(t) and checks whether it is currently involved in a scheduling

process (!(p2.inSchedule)) or whether it is already blocked by a tick (!(p2.has-

TickReceived())).

2. Since it is not in a schedule or blocked, it registers itself by its scheduler using the reg-

ister method and marks itself as being in a schedule.

3. Since the registered message is a tick (t.isTick()), the scheduler forwards the call to

its processTick() method.

4. If the port is the last element in the tickfree set (tickfree.contains(p2) &&

p2:InPort s:DefaultSimScheduler ...

accept(t)

!(p2.inSchedule) &&

!(p2.hasTickReceived())

t.isTick()

register(p2,t)

p2.inSchedule
processTick(p2)

return true

!(p2.inSchedule)

return

c:Component ...

handleTick()

return

reorganizeTickfree()

%

- wake up all InPorts of c

- add ports to tickfree

- process buffered

messages of ports

tickfree.contains(p2) && tickfree.size == 1

...

SD

Figure 4.17: Scheduling the final
√

message.

101

4.3. SCHEDULING

tickfree.size == 1), the component c has received a tick on each incoming port.

The handleTick() method is called which emits a tick on each outgoing port and in-

creases the internal clock. Please note that this leads to further message scheduling. The

corresponding process is represented by one of the discussed scenarios and is omitted

here.

5. When the control flow returns, the tickfree set of c has to be reorganized. This is per-

formed in three steps:

a) Wake up all incoming ports of c. This will cause the ports to drop their buffered
√

from the head of their buffers.

b) Add all incoming ports p of c back to the associated tickfree set if they have not

received a further tick.

c) Induce all ports in tickfree to process further buffered messages. Please note that

this also leads to further message scheduling. This process is also omitted here but

exemplary shown in Section 4.3.4.

6. After this reorganization, the scheduler notifies the port that scheduling has been success-

ful by returning the value true.

7. The port marks itself as not being scheduled.

4.3.3 Scheduling already Scheduled or Blocked Ports

Scheduling of ports which are blocked by a
√

or that are already in a schedule is straightforward.

The performed steps are depicted in Figure 4.18. They are:

1. The port accepts a
√

or data message via its accept method.

2. If the port is in an active schedule, immediate message processing is not feasible to avoid

recursive endless cycles.

3. If the port is blocked by a tick, it contains a tick at the head position of its buffer. Thus,

the message is in the future from the component’s point of view. Consequently, it must

not be delivered now.

4. In both cases the message is buffered for later processing using method buffer.

p2:InPort

accept(m)

p2.inSchedule ||

p2.hasTickReceived()

buffer(m)
return

SD

Figure 4.18: Scheduling of data or
√

messages on a port which is already involved in a schedul-

ing process.

102

4.3. SCHEDULING

4.3.4 Waking up Ports

This scenario illustrates the steps that are performed during the scheduler reorganization. This

step is needed to reactivate respectively wake up ports which are blocked by a tick (c. f. Sec-

tion 4.3.3), after all incoming ports of a component have received a tick. The object diagram in

Figure 4.19 depicts the initial object structure. Port p2 has initially registered at the scheduler

with a final tick. It now is inSchedule and its message buffer is empty. Port p1 is currently

not in a schedule, is blocked by a
√

, and contains further messages {x,
√

, z} in its buffer. Please

note that the simulator also allows individual components to be in different time intervals. This

is especially helpful when delay should be modeled.

p1:Port

inSchedule = false

buffer = {√, x, √, z}

c:Component

s:DefaultSimScheduler

comp2tickfree = [c = {p1}]

RT-OD

p2:Port

inSchedule = true

buffer = {}

Figure 4.19: Object diagram which depicts the initial situation of the ’waking up ports’ scenario.

The sequence of this scenario is given in Figure 4.20. It starts with the call of the reor-

ganize Tickfree() method by the scheduler s on itself. The following three steps are

performed:

1. All ports of the component which belongs to the currently scheduled port (p2) wake up.

For this purpose, the wakeUp() method is called on all incoming ports.

• Since p1 has received a tick, it will drop this tick from its buffer.

• Waking up p2 does not change its object state since the tick, that it has received, is

currently in schedule and therefore not buffered.

2. Then, all ports which have not received a further tick (!hasTickReceived()) are

added to the components tickfree set.

3. Finally, further buffered messages of all tickfree ports are processed by calling their pro-

cessBufferedMsgs() method.

• This call induces p1 to register its buffered message x. The following message

scheduling is performed as described in Section 4.3.1.

• Since scheduling of x has been successful (return true), x is dropped from the

buffer by calling buffer.poll().

• p1 then registers the next buffered message. Scheduling of this tick is performed as

described in Section 4.3.2. As a result, p1 has been removed from the tickfree set of

component c again.

103

4.3. SCHEDULING

s:DefaultSimScheduler ... p1:InPort ...

reorganize

Tickfree()

wakeUp()

buffer.poll()

tickfree={p1,p2}

p2:InPort ...

wakeUp()

return

return

tickfree.add(p1)

!p1.hasTickReceived() && !p2.hasTickReceived() && p1.buffer={x,√,z}

p1.hasTickReceived()

processBufferedMsgs()

registerPort(p1,x)

... return true

registerPort(p1, √)

... return false

return

processBufferedMsgs()

return

return

buffer.poll()

see 4.4.1

see 4.4.2

p1.buffer={√,z} && p1.hasTickReceived() && tickfree={p2}

SD

Figure 4.20: Reorganization and waking up of ports.

• Since scheduling of this buffered tick has not been successful (return false),

p1 stops to process buffered ticks and the control flow returns to scheduler s.

• s then tells p2 to process its buffered messages. Since the buffer of p2 is empty, the

control flow immediately returns to s and reorganization is finished.

Waking up ports and processing of buffered messages is performed in a fix order which is

determined by the default simulation scheduler. During reorganization, the scheduler iterates

ports in the order in which they are added to the scheduler by calling its setupPort method.

This order corresponds to the order in which the ports are defined in the component model.

Hence, the wakeUp method is always called on port p1 before it is called on p2. This leads to

a deterministic execution of the simulation but also to a preference of ports which are defined

first in the model. If this is not adequate for a certain scenario, a custom scheduler can be used.

104

4.4. TIMING CLASSIFICATION

4.4 Timing Classification

MontiArc and its simulation framework support the simulation of different timing domains that

affect the timed behavior of a component (see requirement SRQ4). As already mentioned in the

Sections 3.3.1 and 3.4.4, components belong to a certain time domain that determines whether

or not the component is aware of time and how events are propagated to components. For

convenience, a component is qualified with the corresponding time domain in the following. For

example, a delayed component belongs to the delayed time domain. If no domain is mentioned,

an instant component is assumed. A component can select one of the five predefined timing

domains:

• Instant components are time-aware and processes port-specific data events. Their results

are emitted without delay.

• Delayed components are time-aware and process port-specific data events with processing

time (delay ≥ 1
√

). This means that the resulting output is emitted in one or more time

intervals later than the input has arrived.

• Untimed components are not aware of time and only process port-specific data events.

• Synchronous (sync) components are time-aware and synchronously process tuples of data

events without delay and without explicit processing of time.

• Causal synchronous (causalsync) components are like synchronous components, but have

delayed output.

Timed streams are used as the foundation of the MontiArc simulation. Thus, all channels

that connect outgoing with incoming ports transmit timed streams. The timing domain of a

component determines, how ticks and messages, which are transmitted within these streams, are

transformed to events, which are propagated to the component implementation. If a decomposed

component combines subcomponents with different timings, the distinct behavior regarding time

is automatically unified to the underlying timed stream paradigm. For example, time events are

not forwarded to untimed components and only a single message per time interval is forwarded

to synchronous components. If a special translation between different timings of subcomponents

is required, the model has to be adapted to achieve a smooth interaction. Introducing up- and

downscaling subcomponents which translate between different timings in terms of a behavior

refinement (see [BS01, Chapter 15]) will then serve as adapters between subcomponents with

different timings.

Figure 4.21 outlines the default time-unification process. As discussed in Section 4.3, the

Scheduler synchronizes the input streams of a component to a timed input trace. For each

completed time interval in all input streams, a time event is present in the produced input trace

denoted by a
√

. All processable data events are also immediately propagated to the component’s

input trace in order of their occurrence. The scheduler uses the produced timed input trace to trig-

ger the scheduled component. Time events are raised at the component using its handleTick

method, data events are raised using its handleMessage method. The depicted Specific

Event Creation part of a component then creates timing domain specific events which are

passed to the concrete implementation of a component. The predefined timing domains, the cor-

responding component behavior, and event propagation from timed streams to components are

explained in the following.

105

4.4. TIMING CLASSIFICATION

Component

Scheduler
Specific
Event

Creation

input streams
timed input

trace

〈 a, √, b, √, d, √, e 〉

〈 √, √ 〉

〈 √, c, √ 〉

〈 a, √, c, b, √, d 〉

Instant Comp.
Implementation

Sync &
Causalsync
Component

Implementation

Untimed Comp.
Implementation

〈 a, √, c, b, √, d 〉

〈 a, c, b, d 〉

〈 〉

a

⊥

⊥

b

⊥

c

instant event
trace

synchronous
event trace

untimed event trace

Figure 4.21: Creation of timing domain specific event traces from timed input streams.

4.4.1 Instant Timing

The instant timing domain is used as the default timing domain of MontiArc. Hence, if no

explicit timing domain is given within a component definition, it is assumed to belong to the

instant timing domain. Instant components react to both: the progress of time and separated

data messages on each incoming port. As a result of their computation, an instant component

can produce arbitrary many output messages during a single time interval on its outgoing ports.

The output is produced in the same time interval in which the triggering input occurred. Thus,

the behavior of an instant component is weakly causal. According to Broy and Stølen [BS01],

an input/output behavior is weakly causal if every produced output at each point in time is a

result of the so far received input. This way, every output is not affected by future events that

have not occurred yet.

The specific event creation of instant components simply forwards the received timed input

trace from the scheduler to the component implementation. Thus, the timing domain specific

event trace directly corresponds to the timed input trace. Two different kinds of events are

processed by an instant component: port-specific data events and time events.

Definition 4.3 Data event. A data event is associated with the received payload of a data mes-

sage and is raised at the incoming port which accepts the data message.

Definition 4.4 Time event. A time event denotes the start of a new time interval of a component.

It is raised after the internal clock of a component has been increased and the outgoing ports

have emitted a
√

.

Data events are immediately forwarded to the implementation of an instant component. In

this way, all data messages within the timed input trace are processed one after another by

an instant component. Each raised data event can trigger an instant reaction of the component

implementation within the same time interval. If a combination of data events is needed to trigger

a specific behavior, the needed event synchronization has to be provided by the component

implementation itself.

106

4.4. TIMING CLASSIFICATION

Input Streams Instant Event Trace

s0 = <
√
,

√
,

√
, ...

t = <
√
,

√
>s1 = <

√
,

√
,

√
>

s2 = <
√
,

√
>

s0 = <
√
, a, b,

√
,

√
>

t = <
√
, a, c, b,

√
, e, d,

√
>s1 = <

√
, c,

√
, d,

√
>

s2 = <
√
,

√
, e,

√
>

s0 = <
√
, a,

√
, b,

√
, c >

t = <
√
, a,

√
, b >s1 = <

√
,

√
>

s2 = <
√
,

√
>

Table 4.22: Exemplary event propagation from timed streams to instant event traces.

Time events denote the start of a new time interval. Thus, they can be used to realize time-

based component behavior. Instant components immediately react to triggered time events.

Hence, produced output messages are directly emitted in the new time interval.

Some examples for event propagation from timed input streams to an instant component are

given in Table 4.22. In the left column, the input streams s0 – s2 are depicted which are received

on the three input ports of the instant component. The right column contains the resulting event

traces which are propagated to the implementation of the instant component.

In the first row, propagation of time events is demonstrated. Stream s0 contains at least three

ticks, s1 contains exactly three ticks, and s2 contains exactly two ticks. Hence, the minimum of

completed time intervals is two. This way, two time events are propagated to the component.

The second row demonstrates how data events are propagated to an instant component. Two

complete time intervals are depicted. In the first time interval, s0 contains the data messages a

and b, s1 contains the message c, and s2 is empty. Both streams s1 and s2 contain a single mes-

sage in the second time interval. While solely observing the FOCUS streams of the input ports,

no predicates over the order of messages from different streams within the same time interval

can be made [BS01]. Thus, the shown event trace is an exemplary valid trace produced from

the shown input streams. Nevertheless, the event trace, which is produced by the deterministic

default scheduler, preserves the given event order. It contains the corresponding data events a,

c, b in the first time interval. This implies, that c has been received after a and before b. Also

message e has been transmitted in stream s2 before message d on stream s1.

In the third row, it is demonstrated, that only completed time intervals are propagated as time

events to the event trace. Stream s0 contains three completed time intervals, but s1 and s2 only

contain two completed time interval. Thus, only two time events are propagated to the event

trace. Since message b is located in the time interval, which started after the last time event, it

is also immediately propagated to the input event trace. Message c is not propagated since the

previous time interval is not closed in s1 and s2.

107

4.4. TIMING CLASSIFICATION

4.4.2 Delayed Timing

The event propagation of delayed components is the same as for instant components. As well

as instant components, they can react to time and data events. In contrast, delayed components

are strongly causal. According to Broy and Stølen [BS01] this especially means, that produced

output of a strongly causal component only depends on input received in past time intervals. For

example, an output produced in time interval t only depends on input received until time interval

t − 1. Since this restriction only affects the output behavior of a component, event propagation

from input streams to the component event trace follows the same rules that are described in the

previous section. Delayed components are suitable to model processing time of a component and

to avoid the Brock-Ackerman anomaly [BA81] in feedback cycles (see Section 3.5.5). In Mon-

tiArc, delayed components can be easily constructed by combining an instant component with

predefined Delay components from the MontiArc library (see Section 6.8.2) in a decomposed

component.

4.4.3 Untimed

Untimed components are not aware of timing events but can react to data events. The implemen-

tations of these components are still weakly causal since they cannot produce output based on

future input. Data events are propagated to untimed components just like to instant or delayed

components. In contrast to the latter, time events are not propagated to untimed components.

Consequently, they cannot react to the progress of time. This means, that the ticks within the

timed input event trace, which is produced by the scheduler, are filtered out to produce an un-

timed event trace.

Exemplary event propagation from timed input streams to untimed components is demon-

strated in Table 4.23. In row one it can be seen, that no time events at all are propagated to an

untimed component. Please note, an untimed component still synchronously consumes ticks and

emits ticks on its outgoing ports (see Section 4.3.2). However, the component implementation is

Input Streams Untimed Event Trace

s0 = <
√
,

√
,

√
, ...

t = < >s1 = <
√
,

√
,

√
>

s2 = <
√
,

√
>

s0 = <
√
, a, b,

√
,

√
>

t = < a, c, b, e, d >s1 = <
√
, c,

√
, d,

√
>

s2 = <
√
,

√
, e,

√
>

s0 = <
√
, a,

√
, b,

√
, c >

t = < a, b >s1 = <
√
,

√
>

s2 = <
√
,

√
>

Table 4.23: Event propagation from timed streams to untimed event traces.

108

4.4. TIMING CLASSIFICATION

not aware of this procedure and cannot react to time events. In this way, the untimed component

in our example will emit two ticks on its outgoing ports for the given input streams in row one.

Row two demonstrates that data events are propagated in order of their arrival and according to

the containing time intervals. The last row of the table demonstrates that only data events from

completed or started time intervals are propagated to an untimed event trace. Basically, untimed

event traces correspond to instant or delayed event traces with filtered out ticks.

4.4.4 Synchronous Timing

Synchronous components are timed components which synchronously process data events with

a weakly causal implementation. Synchronous components are inspired by time-synchronous

FOCUS streams and therefore are able to process at max one input event at each time inter-

val. Further, synchronous components only sent at max one message per outgoing port as a

reaction to the received input event. The propagation of messages from timed input streams to

synchronous event traces defines the semantics of synchronous components which operate on

timed streams.

Definition 4.5 Data event tuples. A data event tuple (DET) is an ordered n-tuple of data events

which is propagated from input streams to synchronous event traces at the end of each time

interval. The tuple is constructed by taking a single data message from the current time interval

of each input stream. If a stream contains multiple messages within the current time interval, the

last message is used to construct the tuple. ⊥ denotes, that no message is transmitted within the

corresponding time interval. A DET further denotes the end of a time interval and thus is also

interpreted as a time event.

To simplify the implementation of synchronous components, messages of all input streams

are condensed to a single data event tuple for every time interval. In this way, synchronous

implementations do not have to synchronize incoming messages themself.

In Table 4.24 some examples for event propagation from timed input streams to synchronous

event traces are given. In the first row, propagation of time events is demonstrated. The minimum

of time intervals in the input streams is two. Hence, two time events are propagated to the

component. In contrast to instant or delayed components, no explicit time events are propagated

to a synchronous event stream. Rather, a DET is constructed which also denotes the end of a

time interval. Since no messages are contained in the input streams, the constructed DETs do

not contain messages, which is denoted by a ⊥. Please note, the first depicted DET corresponds

to the end of the zeroth time interval.

The second row demonstrates regular DET construction. Time interval one of input stream

s0 contains message a, stream s1 contains a b. The corresponding DET contains message a, b,

and ⊥ since stream s2 does not contain a message in this time interval.

The third row demonstrates another difference between data events and DETs. In the previous

examples (see Table 4.22 and 4.23), the data event, which represents message b from the second

time interval of stream s0, is immediately propagated to the respective event trace. In contrast,

DETs are created when a time interval is completed on all input streams. Thus, a DET, which

contains message b, is not (yet) created in the synchronous event stream.

109

4.5. OPTIMIZATION AND RUNTIME MEASUREMENT

Input Streams Synchronous Event Trace

s0 = <
√
,

√
,

√
, ...

t = <

⊥
⊥
⊥

,

⊥
⊥
⊥

 >s1 = <

√
,

√
,

√
>

s2 = <
√
,

√
>

s0 = <
√
, a,

√
,

√
>

t = <

⊥
⊥
⊥

,

a

b

⊥

,

⊥
c

d

 >s1 = <

√
, b,

√
, c,

√
>

s2 = <
√
,

√
, d,

√
>

s0 = <
√
, a,

√
, b,

√
, c >

t = <

⊥
⊥
⊥

,

a

⊥
⊥

 >s1 = <

√
,

√
>

s2 = <
√
,

√
>

Table 4.24: Exemplary event propagation from timed streams to synchronous event traces.

Please note that the MontiArc simulation uses timed streams. Thus, it is possible that a port

of a time-synchronous component can be stimulated with more than a single data message in a

time interval. Since this is actually illegal in the time-synchronous FOCUS domain, a warning is

emitted by the simulator and the last message of the time interval is used to construct the DET.

The last message is used because it is the most recent message which has been produced by the

potentially faster environment of the synchronous component. If for example s0 in the second

row contains the messages a and z in the first time interval, z is used for DET construction.

4.4.5 Causal Synchronous Timing

Causal synchronous components are synchronous components with a strongly causal implemen-

tation. They also react to DETs which uniformly model the progress of time and acceptance of

data. Just like delayed components (see Section 4.4.2), their produced output solely depends

on input received in past time intervals. Again, this restriction only affects the output behavior

of a causal synchronous component. Thus, event propagation from input streams to the causal

synchronous event trace is equivalent to the propagation presented in the previous section. Just

like delayed components, causal synchronous components are suitable to model processing time

of a component and to avoid the Brock-Ackerman anomaly [BA81] in feedback cycles (see

Section 3.5.5).

4.4.6 Timing Domain Overview

Table 4.25 summarizes the presented timing domains and grants an overview of their properties.

4.5 Optimization and Runtime Measurement

Motivated by requirement SRQ10, the scheduling strategy presented in Section 4.3 is compared

with a simple round robin scheduler (RRS) regarding the simulation runtime. Since the Mon-

110

4.5. OPTIMIZATION AND RUNTIME MEASUREMENT

Timing Domain Time Aware Event Processing Causality

Instant × data events weak

Delayed × data events strong

Untimed data events weak

Synchronous × data event tuple weak

Causal synchronous × data event tuple strong

Table 4.25: Properties of MontiArc’s timing domains.

tiArc scheduler approves to be substantially faster, further optimization potential is identified

and scheduler variants are derived. These variants are then compared regarding their runtime

performance in an identical scheduling scenario.

4.5.1 Simple Round Robin Scheduling

A simple round robin scheduler (RRS) schedules the simulation according to the following steps.

If a message is to be sent, the transmitting port registers itself at the scheduler and the control

flow returns to the sending component. The RRS is periodically triggered by a simulator that

causes the RRS to process the next registered port. In this way, the scheduler iterates over

all registered incoming ports and triggers the corresponding component to handle data or time

processing depending on the current message. The component then has to decide itself, whether

it is able to propagate the current event to its behavior implementation. For that purpose, the

buffers of the incoming ports have to be checked for blocking ticks. If the component produces

further events while processing a message, the corresponding receiving ports are registered at

the scheduler. Since the receiving component is not activated by the scheduler, these events are

not processed although the receiver might be able to.

This solution has several drawbacks that measurably slow down the simulation:

1. Synchronization of ticks is handled by the component itself by simply checking on ev-

ery received
√

whether all other ports have received a
√

, too. This leads to repeated

useless calls of the component with expensive iterations over all incoming ports and the

corresponding buffer.

2. The scheduler chooses the next port to process in a round robin way by simply selecting

the next port of all registered ports. Even if this port is been blocked by a
√

, the scheduler

passes it to the component that itself has to decide whether the message on this port can

be processed or not.

3. Separation of scheduler and simulator leads to further overhead needed to recognize,

whether the current simulation is finished.

These drawbacks are avoided by the MontiArc scheduler presented in Section 4.3 with the

following optimizations:

1. Synchronization is performed by the scheduler and not the component. By remembering

which ports are blocked and which are tickfree, useless calls of the component are avoided.

111

4.5. OPTIMIZATION AND RUNTIME MEASUREMENT

Also separated methods for
√

and data handling in the component are introduced, so the

scheduler can directly call the appropriate method for the currently scheduled message.

2. Components are solely triggered with tickfree ports which are ready to process a messages

(see Definition 4.1). Hence, useless component calls are avoided.

3. Time handling of components is solely triggered by the scheduler if all corresponding

incoming ports have received a tick. Thus, useless component calls are avoided.

4. By greedily scheduling newly registered ports, if possible immediately, an extra simulator

is not needed. Blocked ports, which cannot be scheduled now, are reactivated after pro-

cessing the blocking tick. This way, the control flow overhead of the simulator is omitted.

The RRS and the MontiArc scheduler are compared using the components depicted in Fig-

ure 4.26. The Inner components replicate each received message on port inputX X times

and emit the replicas on port outputX. This way, a data message received on port input2 is

emitted twice on port output2. Thus, an asynchronous workload of messages which are to be

scheduled is created on the incoming ports of the subcomponents.

OuterComponent<T>

input2

Inner<T>

ic1
Inner<T>

ic2

input1 output1 output1

input1 input2 output2 output2

input3 output3 output3

input4 output4 output4

input5

output1

output2

output3

output4

output5

input1

input2

input3

input4

input5 output5 output5

MA

T

T

T

T

T

T

T

T

T

T

T

T

Figure 4.26: Component setup used to compare the RRS and the presented MontiArc scheduler.

The shown setup is executed 50 times with three different setups while recording the execution

time. Afterwards the average execution time of all 50 runs is compared. The measurements are

executed on an Intel R© Core
TM

2 Duo CPU T9800 @ 2,93 GHz, 64 Bit. The setups are:

1. Only Ticks: Scheduling of up to 144.000 ticks as input on both incoming ports of the

OuterComponent.

2. Sync: Alternate scheduling of 97.900 ticks and the same amount of data messages, where

each data and
√

message has been send simultaneously on port input1 and input2 of

the OuterComponent.

3. Async: Asynchronous sending of ticks with up to 109.224 messages. On port input1,

each 4th message is a
√

. On port input2, each 9th message is a tick. Since the RRS

only stops the simulation, if all messages are processed, an even amount of ticks has to

be send on both incoming port. Thus, the setup stops to send ticks on port input1 after

12.136 ticks (109.224/9) and only sends ticks on port input2.

The results of this comparison are depicted in the diagram in Figure 4.27. The horizontal

axis is labeled with the total number of scheduled data and tick messages (Number of Mes-

112

4.5. OPTIMIZATION AND RUNTIME MEASUREMENT

Number of

Messages

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Only Ticks Sync Async

Performance

Increase

Factor

Scenarios:

Figure 4.27: Comparison results: Round robin vs. MontiArc scheduler. The Performance

Increase Factor is the quotient of the average execution time of the RRS and

the average execution time of the MontiArc scheduler. Number of Messages

= Number of ticks + Number of data messages.

sages) that are send to the OuterComponent’s incoming ports. The vertical axis is labeled

with the Performance Increase Factor which is the quotient of the average execution

time of the RRS and the average execution time of the MontiArc scheduler. It denotes how much

faster the latter is in comparison to the RRS.

The Only Ticks scenario, with a maximal amount of 144.000 ticks, is finished by the RRS

in an average time of 77.790 ms. The MontiArc scheduler only needs 123 ms and thus is about

634 times faster. The Async scenario with 109.224 messages is executed in an average time of

72.279 ms by the RRS and 118 ms by the MontiArc scheduler. Thus, the latter is about 613 times

faster. The most noticeable difference is measured in the Sync scenario with a total amount of

195.800 messages. This scenario is scheduled in an average time of 316.258 ms by the RRS, the

MontiArc scheduler only needs about 34 ms. Thus the latter is up to 9.329 times faster.

This massive speed up, especially of the last scenario, is explained by having a detailed look

at the setup. The RRS only processes a single port once and then processes the next registered

port in his round robin schedule. The used components lead to an asynchronous workload be-

tween ports input1 to input5 of the inner components. If one data message is send via port

input1 and input2 of the outer component, a single message is emitted on its outgoing port

output1 but 25 messages on port output5. Thus, the RRS has to iterate up to 25 times

through its round robin schedule to process all messages on this port. This renders the scheduler

to be very inefficient and slow.

Since all ports in this scenario are never blocked by a tick, data messages are immediately

processed by the MontiArc scheduler and greedily scheduled as far as possible. Thus, data

messages are immediately pushed through the complete path from the OuterComponent’s

113

4.5. OPTIMIZATION AND RUNTIME MEASUREMENT

incoming to its outgoing ports. Additionally no synchronization overhead for
√

messages is

rendered since ticks are always sent synchronously to both input ports.

4.5.2 Further Optimization potential

Even though the MontiArc scheduler is substantially faster than the round robin scheduler

(RRS), there is still some potential for further optimizations. While sticking to the described

scheduling strategy (see Section 4.3), further optimizations are identified by analyzing the in-

ternal data structures within the implementation of the scheduler. The resulting nine scheduler

variants are listed and explained in Section 4.5.3. As depicted in Figure 4.12 on page 97, the

scheduler uses two maps (HashMap) to map a list (LinkedList) of incoming ports and the

set (HashSet) of tickfree ports to the corresponding component. The following operations, the

names are printed in bold font for later referencing, access these data structures:

• Data messages scheduling (method processData()):

– resolveTickfree: Set of tickfree ports is resolved from the second map using its

get(IComponent) method. This method then computes the hash value of the

passed component to identify the related value. The rest of the get method execution

can be neglected (O(1)).

– isPortTickfree: The resolved set of tickfree ports is accessed by using its con-

tains(IPort) method. Since a HashSet is used that internally stores its values

in a HashMap, it also calculates the hash values of the passed ports. The rest of the

contains method execution can be neglected (O(1)).

• √
message scheduling (method processTick()):

– resolveTickfree (see above).

– markPortBlocked: The tickfree set is accessed once with its remove(IPort)

method (hash value calculation + O(1)).

– areAllPortsBlocked: The tickfree set is further accessed once with its isEmpty()

method (O(1)) to check, whether all ports of the component received a
√

yet.

– reorganize: Afterwards, the list of all ports is iterated to reorganize the tickfree data

structure of the scheduler (see Section 4.3.4). LinkedList iteration is performed

in O(n) and thus depends on the amount of scheduled ports. The tickfree data struc-

ture has to be adjusted for each port in this iteration. E.g., ports that have not received

a further tick are added to the tickfree HashSet again.

Summing up, using these HashMap based data structures, that actually have a constant com-

plexity of O(1) for their get, contains, and remove methods, additionally produce some overhead

for hash value calculation that can be reduced. Nevertheless, the isEmpty() method, that is

used to check whether all ports of a component already received a tick, is realized very perfor-

mant.

4.5.3 Scheduler Variants

In the following, several variants of the presented scheduler are discussed that replace the men-

tioned HashMap respectively HashSet based data structures with alternative data structures to

114

4.5. OPTIMIZATION AND RUNTIME MEASUREMENT

avoid the drawback of hash value calculation. To distinguish the presented MontiArc scheduler

from the newly introduced variants, it is named HashSet scheduler in the following.

BoolArray

The HashSet used to store tickfree ports is replaced with a Boolean array that flags for each

scheduled port whether it is tickfree. Therefore, the scheduler has to assign a component wide

unique number to the ports during the component setup. This way, it later is able to identify

the related position in the Boolean array. Thus, operation markPortBlocked is performed in a

single operation by switching the position in the array from true to false.

BitSet

The HashSet is replaced with a BitSet that also uses the port id (see above) to identify

whether a port is tickfree. The BitSet implementation provided by Java realizes a vector of

bits. Each bit can be examined, set, or cleared individually.

PortMap

The HashSet is replaced with a PortMap, a custom data structure which combines a Boolean

array with a counter that monitors the amount of tickfree ports.

Replace HashMaps

The HashMaps used to, e.g., map a component to its tickfree ports, are replaced with Ar-

rayLists. Thus, similar to ports, the scheduler assigns a unique identifier (non negative inte-

ger) to each scheduled component during the setup. The data structure to handle tickfree ports of

a component and the list of all component’s ports are then stored at the position in the ArrayList

that corresponds to the id of the component. This way, hash value calculation is omitted. Several

subvariants of this variant exist that also use the previously described optimization alternatives.

Namely these are:

• HashSetNoMaps,

• BoolArrayNoMaps,

• BitSetNoMaps, and

• PortMapNoMaps.

Generated Component Tailored Scheduler

A specialized scheduler generated for a component type. Each instance of a component type uses

its own scheduler instance. This way, a mapping from component instance to the corresponding

tickfree ports is totally omitted. The ports of the component respectively links to the ports are

directly stored within the scheduler to avoid further general data structures. The information,

whether a port is tickfree, is stored within a Boolean array. The scheduler generator has to

associate each port with a fix position in this array.

115

4.5. OPTIMIZATION AND RUNTIME MEASUREMENT

Two variants of this scheduler are compared. One, that is directly generated into the compo-

nent implementation (Internal), and an external one, that is created and passed to the component

by the corresponding component factory (External). Please note, these schedulers are handwrit-

ten to demonstrate the capabilities of generated schedulers. Actually, a scheduler generator has

not been realized in this thesis.

4.5.4 Comparison Setup

The discussed scheduler variants are compared by scheduling two different component setups

with various scheduling scenarios. Please note that this comparison uses more complex and thus

more computation intensive scenarios and setups than the comparison described in Section 4.5.1.

The change of the setup is motivated by the fact that the compared schedulers are much faster

than the RRS. This way, more significant differences between the distinct schedulers are to be

expected.

The first component setup is given by component LoadTest 2 50 which is depicted in

Figure 4.28. It contains a linearly connected chain of 50 LoadTestInner2 subcomponents.

Each LoadTestInner2 component simply forwards a message accepted on an incoming port

to an outgoing port. This way, the functionality of the component only needs minimal compu-

tation time. Thus, a message sent to port sIn1 of component LoadTest 2 50 is emitted on

port sOut1 after being passed through all subcomponents. This component setup focuses on a

higher amount of subcomponents with a lower amount of ports (100 in sum).

String

LoadTest_2_50

LoadTest

Inner2

lti0

sIn0

sIn1

sOut0

sOut1

sIn0

sIn1
String

String

String

LoadTest

Inner2

lti49

sIn0

sIn1

sOut0

sOut1
�

String

String
sOut0

sOut1

String

String

MA

Figure 4.28: Component LoadTest 2 50 used to compare the discussed scheduler variants in

a setup with many subcomponents with few ports.

The second setup is given by component LoadTest 100 8which is depicted in Figure 4.29.

It contains a linearly connected chain of eight LoadTestInner100 subcomponents. Again,

this component type simply forwards messages received on port sInX to port sOutX (X ∈
{0 . . . 99}) to minimize needed computation time within the components. This setup focuses on

a higher amount of ports (800 in sum) with a lower amount of subcomponents. Since this setup

is more complex than the first one, it is only executed for a selected set of scheduler candidates

from the first executed setup.

The distinct scheduler scenarios used to compare the scheduler variants differ in the fre-

quency of sent ticks (Tick Frequency, TF)). Starting with a frequency of 64, every 64th mes-

sage is a tick, the TF is halved until only ticks are sent. In sum, 100.000 messages (data or

tick) are sent on every incoming port which results in 10.000.000 scheduling requests in the

first and 80.000.000 scheduling requests in the second setup. Each scenario is repeated 100

times while measuring the CPU time that is needed to schedule a complete scenario in mil-

liseconds using method ThreadMXBean.getCurrentThreadCpuTime(). Afterwards,

116

4.5. OPTIMIZATION AND RUNTIME MEASUREMENT

String

LoadTest_100_8

LoadTest

Inner100

lti0

sIn0

sIn1

sOut0

sOut1

sIn0

sIn1
String

String

String LoadTest

Inner100

lti7

sIn0

sIn1

sOut0

sOut1�

String

String
sOut0

sOut1

String

String

sIn99 sOut99sIn99
String String

sIn99 sOut99
String

sOut99
String

� ���

MA

Figure 4.29: Component LoadTest 100 8 used to compare the discussed scheduler variants

in a setup with few subcomponents that have many ports.

the average execution time of all 100 executions is stored. The measurements are again exe-

cuted on an Intel R© Core
TM

2 Duo CPU T9800 @ 2,93 GHz, 64 Bit. Please note that method

getCurrentThreadCpuTime() has a measured accuracy of about 15.6 milliseconds on

the mentioned system. Nevertheless, using this method is more accurate than using a wall clock

(Systen.currentTimeMillis()) which is also influenced by other processes running on

the system. However, the measured values can vary 15.6 milliseconds in the one or the other

direction. This effect is counteracted by the repeated execution of each setup. Please also note

that assertion checks have been disabled to avoid additional overhead in BitSet based schedulers.

4.5.5 Results

The measured results of the first setup are depicted in Figure 4.30. The contained tables group

schedulers in blocks which contain a) schedulers that use HashMaps to map components to their

tickfree ports (HashSet, BoolArray, BitSet, and PortMap), b) schedulers that use ArrayLists to

map components to their tickfree ports (HashSetNoMaps, BoolArrayNoMaps, BitSetNoMaps,

and PortMapNoMaps), and c) generated schedulers (Internal and External). In each block the

best values are highlighted in light gray, the worst are highlighted in dark gray. The upper table

contains the average execution times for the different tick frequencies, the lower table contains

the ratio between the best scheduler in the current category and the current scheduler in percent.

For example scheduler HashSet is 29,95 % worse than scheduler PortMap for a tick frequency

of 64. The average execution time of the fastest and slowest schedulers of each group is also

depicted in the diagram on the right side of the figure.

It can be seen that for almost all tick frequencies the PortMap scheduler is the best in its

category. Only for a TF of one, which means only ticks are processed, it is minimal worse (37

ms; 3,97 %) than the BoolArray scheduler. As expected, the HashSet scheduler is indeed the

slowest for almost every TF. Only for a TF of 64, the BitSet scheduler is slightly slower (3 ms).

This, however, lies below the accuracy of the performed measurement and thus can be neglected.

The PortMapNoMap scheduler is constantly the fastest in its category, while the HashSet-

NoMaps is the worst. It is between 29,90 % and 62,34 % slower than the PortMapNoMap

scheduler. Nevertheless, every scheduler that uses an ArrayList to map components to their

tickfree ports (group b) is faster than the related scheduler that uses a HashMap for this purpose

(group a).

Both generated schedulers are faster than the generic ones from group a) and b), while the

117

4.5. OPTIMIZATION AND RUNTIME MEASUREMENT

t [ms]

✁

�

✂

✆

✄

✞

☎

✄

✝

✟

✠

✡

✌

☛

☛

☞
✍

✎

✎

☎

✏

✌

✑
✡

✟

✠

✡

✔

☛

✎

✡

✒

☎

✓

✞

☎

✄

✝

✟

✠

✡

✕

☛

✒

☎

✓

✄

✌

☛

☛

☞
✍

✎

✎

☎

✏

✕

☛

✒

☎

✓

✄

✌

✑
✡

✟

✠

✡

✕

☛

✒

☎

✓

✄

✔

☛

✎

✡

✒

☎

✓

✕

☛

✒

☎

✓

✄

✘

✖

✡

✠

✎

✖

☎

☞

✚

✗

✡

✠

✎

✖

☎

☞

64 684 629 687 479 571 561 400 400 304 275

32 703 629 691 486 590 564 420 403 309 280

16 746 640 703 504 632 571 459 415 321 291

8 831 658 722 537 716 585 540 435 341 318

4 998 699 757 602 885 612 700 477 385 367

2 1340 773 834 728 1223 662 1013 559 473 461

1 2008 906 969 943 1887 739 1608 711 610 646

✁

�

✂

✙

☎

✡

✑
☛

✞

☎

✄

✝

✟

✠

✡

✌

☛

☛

☞
✍

✎

✎

☎

✏

✌

✑
✡

✟

✠

✡

✔

☛

✎

✡

✒

☎

✓

✞

☎

✄

✝

✟

✠

✡

✕

☛

✒

☎

✓

✄

✌

☛

☛

☞
✍

✎

✎

☎

✏

✕

☛

✒

☎

✓

✄

✌

✑
✡

✟

✠

✡

✕

☛

✒

☎

✓

✄

✔

☛

✎

✡

✒

☎

✓

✕

☛

✒

☎

✓

✄

✘

✖

✡

✠

✎

✖

☎

☞

✚

✗

✡

✠

✎

✖

☎

☞

64 -29,95 -23,86 -30,23 0,00 -29,90 -28,72 -0,01 0,00 -9,79 0,00

32 -30,90 -22,73 -29,66 0,00 -31,62 -28,45 -4,03 0,00 -9,43 0,00

16 -32,50 -21,25 -28,34 0,00 -34,41 -27,40 -9,72 0,00 -9,40 0,00

8 -35,37 -18,39 -25,63 0,00 -39,15 -25,56 -19,29 0,00 -6,57 0,00

4 -39,70 -13,98 -20,52 0,00 -46,07 -21,93 -31,75 0,00 -4,54 0,00

2 -45,67 -5,87 -12,66 0,00 -54,25 -15,45 -44,74 0,00 -2,49 0,00

1 -54,90 0,00 -6,54 -3,97 -62,34 -3,89 -55,82 0,00 0,00 -5,63

0

500

1000

1500

2000

64 32 16 8 4 2 1

HashSet PortMap

HashSetNoMaps PortMapNoMaps

Internal External

a) b) c)

a) b) c)

Schedulers:

TF

(Tick Frequency)

Figure 4.30: Scheduler comparison results of the average execution time in milliseconds for

component LoadTest 2 50. The tick frequency of the distinct scenarios is rang-

ing from 64 to one.

external scheduler is slightly faster for tick frequencies from 64 to 2 (between 9,79 % and 2,49

%) and slightly slower for a TF of 1 (5,63 %).

For the second setup, the following schedulers are selected. All schedulers from group b)

except the worst one (HashSetNoMaps), which has been even slower than the best scheduler

from group a). As a representative of group a) the BoolArray scheduler is used with the fastest

results for a TF of 1. Generated schedulers are not selected since they have already proven to be

substantially faster than generic schedulers.

The results of the second setup that evaluates the schedulers BoolArray, BoolArrayNoMaps,

BitSetNoMaps, and PortMapNoMaps are depicted in Figure 4.31. Again, the table in the top-left

depicts the average execution times in milliseconds, the bottom-left corner contains a table with

the calculated ratio between the current and the best scheduler, and the diagram on the right-hand

side visualizes the average execution times of the evaluated schedulers.

It can be seen that the BoolArray scheduler is the slowest for all TFs, its ArrayLists based

variant BoolArrayNoMaps can be regarded as the second slowest scheduler in this setup. For

TFs of 64, 32, and 16 the BitSetNoMaps scheduler is the fastest. Nevertheless, for these TFs,

all ArrayList based scheduler are pretty close together since the difference in execution time is

below 2 percent. For the TFs of 8, 4, 2, and 1, the PortMapNoMaps scheduler is the fastest

one which stands out from the other schedulers. For the most tick-intensive scenario it has an

improvement rate ranging from 15,89 % to up to 39,15 %.

118

4.5. OPTIMIZATION AND RUNTIME MEASUREMENT

t [ms]

✁

�

✂

✆

✄

✞

☎

☎

✝
✟

✠

✠

✡

☛

✞

☎

☎

✝
✟

✠

✠

✡

☛

☞

☎

✌

✡

✍

✄

✞

✎
✏

✑

✒

✏

☞

☎

✌

✡

✍

✄

✕

☎

✠

✏

✌

✡

✍

☞

☎

✌

✡

✍

✄

64 5977 5857 5855 5931

32 6057 5921 5879 5960

16 6248 6041 5973 5994

8 6623 6270 6148 6082

4 7344 6742 6475 6239

2 8744 7671 7127 6540

1 11323 9231 8192 6890

✁

�

✂

✖

✡

✏

✎
☎

✞

☎

☎

✝
✟

✠

✠

✡

☛

✞

☎

☎

✝
✟

✠

✠

✡

☛

☞

☎

✌

✡

✍

✄

✞

✎
✏

✑

✒

✏

☞

☎

✌

✡

✍

✄

✕

☎

✠

✏

✌

✡

✍

☞

☎

✌

✡

✍

✄

64 -2,03 -0,03 0,00 -1,27

32 -2,93 -0,70 0,00 -1,36

16 -4,40 -1,12 0,00 -0,35

8 -8,16 -2,99 -1,06 0,00

4 -15,04 -7,45 -3,65 0,00

2 -25,21 -14,74 -8,24 0,00

1 -39,15 -25,37 -15,89 0,00

5000

6000

7000

8000

9000

10000

11000

12000

64 32 16 8 4 2 1

BoolArray BoolArrayNoMaps

BitSetNoMaps PortMapNoMaps

Schedulers:

TF

(Tick Frequency)

Figure 4.31: Scheduler comparison results of the average execution time in milliseconds for

component LoadTest 100 8. The tick frequency of the distinct scenarios is ranging

from 64 to one.

4.5.6 Discussion of the Results

Summing up, the following results are observed:

1. Generic schedulers that use a HashMap to map component instances to their tickfree ports

are slower than their related scheduler variant that uses an ArrayList for this purpose.

2. PortMap based schedulers are the fastest in both scheduling scenarios for tick frequen-

cies below 16 and are only slightly slower in the second setup for higher TFs than the

BitSet based scheduler.

3. Generated schedulers that only manage a single component instance are faster than generic

schedulers that have to manage multiple component instances.

As expected, result 1 is explained by the overhead needed to compute hash values for the

components to identify the related tickfree data structure in the HashMap. Thus, the operation

resolveTickfree (cf. Section 4.5.2) can be performed faster by using an ArrayList instead of

a HashMap and address components with an unique index.

Result 2 is explained with a detailed look at the implementation of the scheduler and how

the particular tickfree data structures need to be processed. In the first setup, BoolArray based

schedulers have not been substantially slower than schedulers based on a PortMap. This is

caused by the implementation of the operation isPortTickfree which simply checks the posi-

tion determined by the port in the array. The operation markPortBlocked is implemented by

simply switching the array position, again determined by the port, to false. Both of these array

119

4.5. OPTIMIZATION AND RUNTIME MEASUREMENT

operations are pretty fast. Nevertheless, in the second scenario, BoolArray based schedulers

decrease in performance compared to PortMap based schedulers. This is explained by analyzing

the corresponding implementations of operation areAllPortsBlocked. For a Boolean array it

has to be checked whether all positions in the array contain the value false. This operation has

a complexity of O(n), where n is the amount of scheduled ports. In contrast, a PortMap uses a

Boolean array for the first two operations, but implements this operation by managing an integer

variable that counts the amount of false values in the array. This way, the implementation of

the last operation simply checks if this variable has the value zero, which results in a complexity

of O(1). Thus, this measurable difference of 25,37 % between these two schedulers for TF 1

(only ticks) is explainable by the fact that in the second scenario 50 times more ports per com-

ponent instance are involved than in the first scenario. Thus, operation areAllPortsBlocked is

executed more often.

In both scenarios, BitSet based schedulers are slightly faster or slightly slower than PortMap

based schedulers for tick frequencies of 64, 32, 16, and 8. With increased
√

frequency, the

performance decreases compared to PortMap schedulers. This effect indicates, that the operation

Is port tickfree is realized similar performant, but the operations performed while scheduling

ticks, markPortBlocked, areAllPortsBlocked, and reorganize, are realized less performant.

Since all needed methods in the BitSet as well as the PortMap data structure have a constant

complexity, these methods have to be analysed in detail.

Table 4.32 depicts how scheduling operations are realized with the respective data structure

and how many atomic Java operations (e.g., comparison, array access, bit shift, assignments) are

involved. For example operation markPortBlocked is realized with a BitSet by first checking

whether the port is tickfree (get(ID)) and then marking it as blocked clear(ID), which

results in 24 Java operations. In the bottom row the operations needed to schedule the end of

a time interval on n ports are summed up. Therefore, n ports have to be marked as blocked (n

* M), n times it is checked, whether all ports are blocked (n * A), and finally the tickfree data

structure needs to be reorganized (R). However, operation A is negligible, since it has the same

complexity in both realizations. Thus, in total 40 atomic Java operations are executed for each

port if a BitSet is used to manage tickfree ports. 10 atomic operations are executed if a PortMap

is used. However, the PortMap scheduler is not four times faster than the BitMap scheduler since

different Java operations have different execution time. Nevertheless, this comparison explains

the measured performance advantage of PortMap based schedulers.

Finally, result 3 is explained by the advantage of directly integrating the tickfree data structure

into the scheduler. Thus, it is immediately available and must not be resolved. The effect, that the

internal scheduler is slightly slower than the external one is explained by a) that there are more

method calls between port and its scheduler than between component and its scheduler and b) the

external scheduler is a flat class without inheritance hierarchy. In contrast, the internal scheduler,

which is integrated into the abstract implementation of the component, has a more complex

inheritance hierarchy. Therefore, Java has to dynamically look up the location of the scheduler

implementation within this hierarchy which renders the internal scheduler to be slightly slower.

Summing up, the PortMapNoMaps scheduler performs as the fastest generic scheduler variant

in the described test setup. Therefore, it is selected as the default scheduler produced by the

SchedulerFactory.

120

4.6. TECHNICAL DESIGN DECISIONS

Operation BitSet PortMap

(I) isPortTickfree get(ID) = 8 isTickfree(ID) = 1

(A) areAllPortsBlocked isEmpty() = 1 allPortsBlocked() = 1

(M) markPortBlocked get(ID) + clear(ID) = setPortBlocked() = 5

8 + 16 = 24

(R) reorganize n * set(ID) = n * setPortTickfree(ID) =

n * 16 n * 5
√

scheduling on n ports:
n * 24 + n * 16 = 40 * n n * 5 + n * 5 = 10 * n

n * M + R

Table 4.32: Amount of Java operations needed to realize scheduling operations with a BitSet and

a PortMap based scheduler.

It is possible to slightly improve the scheduling performance by using generated schedulers.

Internal generated schedulers, however, have the drawback of their hard-wired integration into

the component implementation. Thus, they cannot be replaced with other scheduler instances,

e.g., for testing. On the other hand, a small memory overhead is produced by external gener-

ated schedulers since each scheduler is instantiated as a dedicated object. To avoid hard-wired

direct integration by the generator, further handwritten component factory code is needed which

assigns a scheduler instance to every instantiated component.

4.6 Technical Design Decisions

Several design decisions lead to the current design and implementation of the MontiArc simula-

tion RTE and its corresponding scheduling. These are discussed in the following.

Separation of Timing and Simulation Properties into Different RTE Inter-
faces

In the MontiArc RTE, timing properties of components are encapsulated in the Java interface

ITimedComponent and simulation specific information are encapsulated in the Java inter-

faces ISimComponent, IOutSimPort, and IInSimPort (see Figure 4.10, 4.11).

The idea behind this separation interfaces is first to encapsulate simulation specific methods

away from the end user. If, e.g., the behavior of an atomic component is to be implemented,

only user specific methods of ports (send(), accept()) are visible to the end user. Second,

simulation components that represent untimed components do not implement the Java interface

ITimedComponent (see Section 5.4.1). In this way, time related methods (timeStep()

and getLocalTime()) are not available in untimed component implementations. Thus, the

user, who implements the behavior of an untimed atomic component, is not able to directly

acquire information about the simulated time.

121

4.6. TECHNICAL DESIGN DECISIONS

Shared Port Objects

In the simulation, no distinct objects are created for outgoing ports and connectors. Connections

are implicitly drawn by reusing the connected incoming port object as outgoing port. This

is inspired by the FOCUS communication property of instantaneous transmission [BS01] and

by requirement SRQ10, since additionally two simulation objects per connection are saved. If

a special communication property like delay or message loss is to be simulated, this can be

achieved by, e.g., using convenient library components that emulate the desired communication

property (see Section 6.8 on page 217).

Shared Message Objects

MontiArc ports can have complex data types. Conceptually, if a component sends a complex

object to a distributed receiver, it is first serialized and then deserialized. Thus, a new object

is created at the receiver and neither the sender nor the receiver have the possibility to modify

the message object of the other communication partner. To avoid the expensive serialization

process in the simulation, only the pointer to the message object is transmitted to the receiver.

Admittedly, if both components store these objects, they are able to manipulate the state space of

the other component. This can be avoided by serializing the transmitted object or by creating a

deep clone. However, the resulting overhead would slow down the simulation which contradicts

with requirement SRQ10. Further, if only immutable objects are transmitted, the discussed

problem does not occur either.

Incoming Port Driven Scheduling

Scheduling can be either incoming or outgoing port driven. Either incoming ports notify the

scheduler that they received a message or tick and the scheduler controls the propagation to the

component. Or outgoing ports, which want to transmit a message, registers at the scheduler,

that then controls the message transmission to the connected incoming ports. The decision to

schedule events on incoming ports is based on the following reasons:

a) All incoming ports of a component are needed to synchronize time intervals. If the scheduler

would schedule outgoing ports, time interval synchronisation and the decision, whether a

message can be delivered to the component of an incoming port, have to be handled by the

component itself. As discussed in Section 4.5.1, this leads to additional overhead that slows

down the simulation.

b) A message received on an incoming port corresponds to an event which is rendered for and

delivered to the corresponding component of the port. This way, event target (component)

and event trigger (port) belong to each other. If sending of messages on outgoing ports would

have been triggered by the scheduler, event and event target belong to different components.

Thus, scheduling incoming ports is most intuitive for FOCUS based simulations.

c) Scheduling incoming ports fits well to the “fire-and-forget” semantics of asynchronous com-

munication. Here, senders simply emit messages and continue with own computations. The

receiver has to buffer received messages until it is ready to process them.

122

4.6. TECHNICAL DESIGN DECISIONS

d) More than one receiver can be connected to an outgoing port. Scheduling such an outgoing

port would lead to the simultaneous creation of events on distinct connected components.

But according to a), the scheduler is not directly able to decide whether these events can

be delivered to the connected components. In the current implementation, messages that

are sent from an outgoing port to multiple incoming ports are immediately transmitted to all

connected incoming ports. The concrete events are then created individually by the scheduler

when each connected port is scheduled.

123

124

Chapter 5

Technical Realization of MontiArc

The MontiArc language presented in Chapter 3 is realized using the MontiCore language work-

bench. Several transformations, analyses, and generation steps are needed to generate MontiArc

simulation components (see Chapter 4). The language processing activities and corresponding

implementations are presented in this chapter. They are designed to implement modular lan-

guage processing tools which can be reused in extensions of MontiArc (see RQ2).

At first, MontiArc’s main tooling is presented and an overview of the model processing steps

is given. Section 5.2 documents MontiArc’s symbol table, an important tool for an extend-

able language [Völ11], which is used for model analyses. The model transformations, that are

discussed in Section 5.3, are a preparatory task for context condition checks as well as code

generation. The latter is presented in Section 5.4. The mechanisms to implement the behavior

of atomic components are presented in Section 5.5. Optimizations of the generator as well as

MontiArc’s runtime environment (RTE) are outlined in Section 5.6. The chapter ends with a

presentation of the available MontiArc end user tools Section 5.7.

5.1 Model Processing

The MontiArc language and its corresponding tools are developed using MontiCore [GKR+08,

Kra10]. Hence, the developed tools are based on MontiCore’s DSLTool-Framework [Kra10,

Chapter 9]. The most important classes are depicted in an abstracted class diagram given in

Figure 5.1. A DSLTool is a tool that is able to process models of a certain LanguageFam-

ily. Several ExecutionUnits are registered in a language family and can be accessed via

a unique name. The most important ExecutionUnit is a DSLWorkflow which encapsu-

lates an algorithm to process a model. Concrete algorithms are implemented as subclasses of

DSLWorkflow. Hence, the following phases of model processing are realized as workflows.

An ExecutionUnit always operates on an instance of a DSLRoot that represents a concrete

model at tool runtime. Beside other information about the current model, e.g., its file name, the

DSLRoot stores the abstract syntax tree (AST) of the model. A concrete DSLRoot subclass is

generated by MontiCore for each language.

Workflows are executed in two different model processing phases. Workflows registered for

the synthesis phase are executed by a DSLTool exclusively for all models that have been di-

rectly passed to the tool. If a workflow is registered for the analysis phase, it is additionally

executed on models that are referenced by a processed model. This way, the execution of work-

flows can be controlled more fine grained.

125

5.1. MODEL PROCESSING

DSLRoot
works on

ExecutionUnit

concrete algorithms in
subclasses

AST-representation
of an input file (model);
each language handled

by one subclass

DSLTool
DSLWorkflow

«hook»

run(DSLRoot)

Language

Family
name

Tool-CD

Figure 5.1: Important classes of the MontiCore DSLTool-Framework according to [Kra10].

MontiCore supports several language reuse mechanisms to integrate independently developed

languages (cf. Section 3.4.1 on page 50). Regarding model processing, these mechanisms can be

reduced to two cases that allow a seamless integration within a concrete language like MontiArc.

According to Schindler [Sch12, Section 7.1], this integration is performed on two layers that

arise from the structure and composition of the used grammars.

1. Composition by language embedding: Languages or parts of a language can be reused

within another language. This allows to embed Java or OCL/P [Rum11, Chapter 3] as a

constraint definition language into MontiArc.

2. Composition by reference: Models reference other models of the same or another lan-

guage. The referenced model is not directly contained in the AST of a language but is

stored as a reference (e.g., a qualified name). MontiArc uses composition by reference to

reference data types of ports defined in Java or in class diagrams (CDs).

The most important classes of the MontiCore framework that technically support these two

kinds of integration are depicted in Figure 5.2. Composition by reference is realized by a Lan-

guageFamily which contains a set of ModelingLanguages. According to the technical

configuration of the language family (see Section 5.2), the contained languages are allowed to

reference each other. A modeling language contains MontiCore-specific information like the file

extension of the processable models or available workflows. A ModelingLanguage has an

ILanguage that represents the concrete used language. According to the realized composite

pattern [GHJV95], it can be either a LanguageComponent that represents a single language

(or a part of a language) or a CompositeLanguage. The latter realizes composition by lan-

guage embedding and contains all composed ILanguages and the configuration to technically

integrate the composed languages (see Section 5.2).

Figure 5.3 shows the concrete object graph that is instantiated by the MontiArc DSLTool.

The instantiated language family contains an instance of JavaLanguage, CDLanguage, and

MontiArcLanguage. This way a MontiArc tool can process Java classes, CDs, and Mon-

tiArc models that contain references to types defined in Java or a CD (composition by refer-

ence). The linked instance of CompositeMontiArcOCLAndJavaLanguage (this class

126

5.1. MODEL PROCESSING

AbstractLanguage

«interface»

ILanguage

LanguageComponent CompositeLanguage

*

components
ModelingLanguage

LanguageFamilyaggregation of
different kind
of languages
(e.g., MontiArc
using Java or
CD types)

MontiCore-specific info
(e.g., file extension,
framework configuration,
available workflows)

single language
or language fragment
(e.g., MontiArc
without embeddings)

complete language
(with embedded
parts: MontiArc with
embedded OCL &
Java)

DSLTool

*

Tool-CD

Figure 5.2: Technical realization of MontiCore’s language composition mechanisms according

to [Völ11, Sch12].

:MontiArcTool:LanguageFamily

:JavaLanguage :CDLanguage

:MontiArcLanguage
:CompositeMontiArc

OCLAndJavaLanguage

:JavaLanguage

Component

:OCLLanguage

Component

:MontiArcLanguage

Component

MontiArc that uses
Java and CD types

MontiArc DSLTool

MontiArc with
embedded Java and
OCL constraints

instance of
CompositeLanguage

instances of
LanguageComponent

Tool-OD

Figure 5.3: Object graph of the MontiArc DSLTool with the technical languages it uses.

extends CompositeLanguage) allows to process MontiArc models with embedded Java or

OCL constraints. Hence, it links an instance of the language components for Java, MontiArc,

and OCL (composition by language embedding).

An overview of the workflows used to process MontiArc models is given in the activity di-

127

5.1. MODEL PROCESSING

agram (AD) depicted in Figure 5.4. The workflows that are executed in the analysis phase are

located in the top right part of the figure, the synthesis workflows are located right beyond the

dashed line. Activities and artifacts located at the left belong to the tool environment, elements

at the right are performed within the MontiArc DSLTool.

The analyse workflows are executed on files which are directly passed to the tool. If no

exported symbol table of the referenced model exists yet, these workflows are also executed on

referenced models. The analysis workflows are:

1. Parsing: The parsing workflow takes a MontiArc component file as input and creates

a corresponding AST. It is instantiated using the AST classes which are generated by

MontiCore. If parsing fails due to an invalid syntax, the MontiArc tool stops with an

error. This workflow is registered with id parse.

2. Create Symbol Table: This workflow traverses the AST using a visitor [GHJV95] and

creates a parallel data structure called symbol table. The structure of MontiArc’s symbol

table and the workflow to create it is presented in detail in Section 5.2. This workflow is

registered with id init.

Modeling
«artifact»

Component

«workflow»
Parsing

[failure]

«workflow»
Create

Symbol Table

«workflow»
Export

Symbol Table

«artifact»

Serialized

Symbol Table

of Component

«workflow»
Prepare Check

[success]

analysis phase

synthesis phase

tool environment

«workflow»
CoCo Check

[failure]

[success]

«workflow»
Pre Codegen

Transformations

«artifact»

GPL Code

«workflow»
Pre CoCo Check
Transformations

«workflow»
Code Generation

no failure allowed

beyond this point

ADtool

Figure 5.4: Overview of MontiArc workflows and produced artifacts.

128

5.2. SYMBOL TABLE

3. Export Symbol Table: This workflow serializes the symbol table to files. If a referenced

model has to be loaded, e.g., to check its port types, its serialized symbol table is loaded

instead of its original model file (see Section 5.2). This workflow is registered with id

createExported.

After the analysis phase has finished successfully, the workflows of the synthesis phase are

executed on models that are directly passed to the MontiArc tool. The synthesis workflows are:

1. Prepare Check: Further steps needed to prepare the symbol table. This workflow is

registered with id prepareCheck.

2. Pre CoCo Check Transformations: A set of model transformations that expand comfort

functions such as autoconnect (see Section 3.3) into regular models. They mostly pre-

pare the AST to simplify and unify context condition checks. The used transformations

are described in detail in Section 5.3.1. This workflow is registered with id preCheck-

Transformation.

3. CoCo Check: This workflow checks the context conditions discussed in Section 3.5. The

framework used to implement and check the realized conditions is explained in [Sch12,

Section 7.3]. If checking of context conditions fails, the whole process is aborted and the

following steps are omitted. This workflow is registered with id check.

4. Pre Codegen Transformations: A set of transformations executed before the code gen-

eration starts. Mainly unqualified data types are replaced by their qualified version in the

AST. These transformations are described in Section 5.3.2. This workflow is registered

with id preCodegenTransformation.

5. Code Generation: A workflow that uses Freemarker [www13b] templates to transform

the AST of a component into general purpose language (GPL) code. The used code gen-

eration framework is explained in [Sch12, Section 7.4]. The performed model-to-code

transformations are explained in detail for all model elements in Section 5.4.

Please note that these workflows represent the default model processing as performed by the

MontiArc Maven Plugin (cf. Section 5.7.2). It is always possible to omit certain workflows, e.g.,

to solely validate the processed models and skip code generation, or to register other workflows.

How to use the MontiArc Tool is described in Section 5.7.1. A method for the extension of the

MontiArc tooling is presented in Section 7.1.

5.2 Symbol Table

A symbol table is an important data structure that enables compositional development of lan-

guages [Völ11, HLMSN+15]. Consequently, it is an essential infrastructure for an extendable

modeling language such as MontiArc. Beside the infrastructural support for language composi-

tion, the MontiArc symbol table further allows an efficient implementation of MontiArc context

conditions (see Section 3.5) and additionally supports the implementation of transformations

(see Section 5.3) as well as code generation for MontiArc simulations (see Section 5.4).

After summing up the foundations and the construction process of the symbol table in the

following two subsections, the namespace hierarchy (Section 5.2.3), the class structure (Sec-

tion 5.2.4), and the interface of a MontiArc model (Section 5.2.5) are explained.

129

5.2. SYMBOL TABLE

5.2.1 Foundations

According to Völkel [Völ11], a symbol table is a data structure to store and to resolve identifiers

within a language. Its core task is to resolve names to gather further associated information

such as data types or signatures. The MontiArc symbol table uses the symbol table framework

presented in [Völ11, Chapter 7] that supports compositional development of languages. Hence,

in the following it is adhered to the definition of the terms given in [Völ11].

A fundamental concept of a symbol table are entries. An entry has a specific entry kind that

reflects the model element kind (e.g., a class or a method) it represents. Entries have a resolvable

name and further associated kind-specific information. An entry can be in one of three possible

states: unqualified, qualified, or full. An unqualified entry is in its initial state and only the

unqualified name of the represented element is known. In the qualified state, the full qualified

name of the represented element is known. This especially occurs, if the represented element is

not defined in the current model. If an entry is in the full state, it additionally contains all kind-

specific information about the represented model element. Entries are automatically transferred

from the unqualified state to the qualified state during the entry qualification phase (see above).

The transition between the qualified and the full state has to be triggered manually, when detailed

information about the represented model element of an entry is needed. Please note that these

information can contain further entries in a qualified state.

An entry is visible within a certain scope. A scope is a part of a model, in which the model

element that is represented by the entry can be referenced by its name. [Völ11] implements the

scope concept with hierarchical namespaces that manage the entries of a symbol table and allow

hiding of names (e.g., a local variable name in a Java method can hide a global field name within

the same class). A namespace represents a segment of a model and is able to import entries from

another namespace (e.g., from a hierarchical parent namespace). These imported entries may be

hidden by local entries with the same name. As depicted in Figure 5.5, a namespace has four

different kinds of symbol tables that influence this import mechanism.

1. The encapsulated symbol table contains elements that are solely visible within the

namespace.

2. The exported symbol tables contain elements that are propagated to the environment

of a model.

3. The imported symbol tables contain elements defined within another namespace (e.g.,

SymbolTable

NameSpace

STEntry

parent

children

*

encapsulated

0,1
imported

* exported*

forwarded

*

1

name

0,1
CD

Figure 5.5: Relation of namespaces, symbol tables, and entries (according to [Völ11]).

130

5.2. SYMBOL TABLE

elements of the exported symbol table of the parent namespace) that are imported into the

current namespace.

4. The forwarded symbol tables contain elements imported from another namespace and

exported to the environment of a model.

The entries within a SymbolTable always have a unique name.

5.2.2 Symbol Table Construction

The MontiCore DSLTool-Framework already provides components needed to construct a sym-

bol table based on the method presented in [Völ11]. These components are registered at an

ILanguage and handle the symbol table of either a concrete language component or a com-

posite language (see Figure 5.2). The most important symbol table components are depicted in

Figure 5.6. These are:

1. ILanguage: All technical components of a symbol table are registered at an ILan-

guage. As previously discussed in Section 5.1, concrete ILanguages have to be de-

veloped for a modeling language. Depending on the used composition mechanism, this

can be either a language component or a composite language. Beside the aggregation of

technical symbol table components, an ILanguage provides the information which AST

nodes of a modeling language create a new namespace.

2. ConcreteASTAndNameSpaceVisitor: A special visitor (see [GHJV95]) used to

create the symbol table for a model. A concrete subclass has to be hand-written for a

concrete language that has to visit all relevant AST nodes and has to create symbol table

entries for the visited nodes. The class ConcreteASTAndNameSpaceVisitor ad-

ditionally provides some helper methods to, e.g., get the namespace of current AST nodes

and thus the suitable symbol tables in which the created entries should be added.

3. IQualifierClient: Qualifier clients are responsible for automatically transfering

entries of a certain kind from their initial unqualified state into a qualified state. Concrete

qualifier clients have to be created for custom entries that can be referenced in a model.

For example, data type entries are most often referenced by other models.

4. STEntryDeserializer: Entry deserializers are responsible for loading serialized en-

try interfaces of referenced models. They are automatically called if an entry should be

transfered from a qualified to a full state. The deserializer then loads the serialized inter-

face and extracts the contained information into an entry object. An STEntryDeseri-

alizer has to be registered for every used entry kind.

5. IInheritedEntriesCalculatorClient: Inherited entry calculators compute if

an entry is hidden by another entry. This allows to shadow names of outer namespaces

with names of inner namespaces. One concrete inherited entry calculator has to be devel-

oped for each language that supports this hiding mechanism.

6. IResolverClient: Resolver clients are responsible for resolving entries by their

name in the created namespace hierarchy. A concrete resolver client has to be written

for every entry of a modeling language.

7. AContextCondition: Registered context conditions that are executed for specific

model elements of the language.

131

5.2. SYMBOL TABLE

«interface»

ILanguage

«interface»

IQualifierClient

ConcreteASTAnd

NameSpaceVisitor

«abstract»

STEntryDeserializer

«interface»

IResolverClient

«interface»

IInheritedEntries

CalculatorClient

entryCreators *

* *

* * deserializersqualifiers

resolversinheritedEntryCalculators contextconditions

«abstract»

AContextCondition

*

CD

Figure 5.6: Most important technical symbol table components (according to [Völ11]).

Please note that the MontiCore DSLTool-Framework already offers some default implementa-

tions for these components that, e.g., provide default qualification or resolving mechanisms.

Hence, not all symbol table components for a modeling language have to be developed from

scratch.

The symbol table of a model is constructed in nine phases. These phases are either bound to

different workflows of a tool execution or have to be executed explicitly (see Figure 5.4). These

phases automatically use the registered symbol table components to compute and serialize the

symbol table of a model.

Steps performed in the Create Symbol Table workflow in the analysis phase of a tool execu-

tion are:

1. Namespace setup: Creates a namespace object for the AST nodes denoted by the ILan-

guage. The created namespace objects have a hierarchical structure that corresponds to

the hierarchy of the AST. The relation between the MontiArc AST and namespaces in the

MontiArc symbol table is explained in Section 5.2.3. Additionally the relation between

AST nodes and namespaces is stored.

2. Creating and registering entries: Entries are instantiated and linked by a concrete Con-

creteASTAndNameSpaceVisitor. Furthermore, the created entries are stored in

the symbol tables of the corresponding namespaces. The created structure of the Mon-

tiArc symbol table is described in Section 5.2.4.

3. Connecting the namespaces (optional): The different aforementioned symbol tables of the

already hierarchical connected namespaces are organized in this step (imported, exported,

encapsulated, and forwarded). Furthermore, hidden entries are marked.

4. Entry qualification: Unqualified entries of the processed models are qualified using the

registered qualifier clients.

The following step is executed in the Export Symbol Table workflow:

5. Serialize model interfaces: Since all entries of a model are (at least) in a qualified state,

the interface of the model can now be exported. A model interface serves as an interface

between different models. It contains the entries which are exported from a model and

can be imported into the namespace of another model. The various model interfaces of

132

5.2. SYMBOL TABLE

the MontiArc symbol table are described in Section 5.2.5. Please note that in contrast to

the grammar based serialization proposed in [Völ11], MontiArc uses an annotation based

generic approach provided by the MontiCore DSLTool-Framework. Annotated fields of

an entry class are automatically serialized.

The following steps are executed in the Prepare Check workflow during the synthesis phase

of a tool execution:

6. Import symbol tables: In this phase, entries from other referenced models are imported

into the namespaces of the current model. This way, e.g., entries from a superclass are

visible in a subclass. Please note that the imported entries are taken from the serialized

model interface of the referenced model (see step 5).

7. Connecting the namespaces (optional): The different symbol tables have to be reorga-

nized due to the import of further symbol tables (step 6). Again, it has to be checked

whether newly imported entries are hidden by already existing entries. After this step the

symbol table construction is finished.

8. Set resolver clients: The registered resolver clients of the current language setup are

registered at a central Resolver component.

The last step is triggered manually by calling the loadFullVersion method of an entry:

9. Load qualified entries: In this phase, entries are transfered from their qualified state into

a full state on demand. The framework loads the model interface of the qualified entry,

extracts all contained information into a full entry, and replaces the qualified entry with

the full entry. Please note that the registered entry deserializers are used to create entries

from a model interface.

5.2.3 MontiArc Symbol Table: Namespace Hierarchy

Four different MontiArc AST node types open a new namespace in the namespace hierarchy.

With the exception of the first node, namespaces are opened and closed by curly brackets in the

concrete syntax of a MontiArc model. The corresponding AST nodes are:

1. CompilationUnit: The MontiArc compilation unit opens a new namespace. It is

inserted into the package namespace that is automatically created by MontiCore’s symbol

table framework.

2. ArcComponent: Each component definition opens a new namespace. The namespace

of the top level component is a direct child of the compilation unit namespace. Names-

paces of inner component definitions are directly added as child to the namespace of the

component definition in which the inner component is defined.

3. MontiArcInvariant: A constraint definition opens a new namespace. These names-

paces are a child of a parent component namespace. Please note that, depending on the

concretely used constraint description language, this namespace can have further child

namespaces which are created by the symbol table of the embedded language.

4. ArcComponentImplementation: A component implementation opens a new names-

pace. These namespaces are directly added to the namespace of the parent component.

Please note, the depth of the namespace hierarchy of MontiArc models is unrestricted since com-

ponent definitions can recursively contain further inner component definitions. This recursive

133

5.2. SYMBOL TABLE

containment relation is directly reflected by the corresponding namespaces.

The corresponding namespace hierarchy of a MontiArc model is exemplary depicted in Fig-

ure 5.7. On the left-hand side, component definition LightCtrl is depicted. The right-hand

side shows an object diagram (OD) of the resulting namespaces. The compilation unit (the com-

plete MontiArc model file) corresponds to the namespace compilationUnit. Namespace

lightCtrlComponent is its direct child that itself corresponds to the component definition

within the compilation unit. It has two child namespaces: fooConstraint and arbiter-

Component. The former corresponds to the constraint definition foo that is contained in

component LightCtrl, while the latter corresponds to the inner component definition Ar-

biter. The contained implementation corresponds to namespace implementation which

is a child of namespace arbiterComponent.

1 component LightCtrl {

2 port in SwitchStatus;

3

4 component Arbiter a {

5 port in SwitchStatus;

6 implementation java {

7 public void acceptSwitchStatus(

8 SwitchStatus msg) {…}

9 }

10 }

11 ocl inv foo:

12 forall sws in switchStatus:

13 sws isin a.switchStatus;

14 connect switchStatus -> a.switchStatus;

15 }

compilationUnit

:NameSpace

lightCtrlComponent:

NameSpace

arbiterComponent

:NameSpace

fooConstraint:

NameSpace

implementation

:NameSpace

forall

:NameSpace

Nsp.-ODMA

Figure 5.7: Namespace hierarchy of component LightCtrl.

No further namespaces are created for the other depicted MontiArc elements such as ports

or connectors. The entries, that represent these elements, are contained in the corresponding

namespace, while entries of elements that open a new namespace are contained in the parent

namespace. This is demonstrated in the following:

• Namespace compilationUnit contains the component entry LightCtrl.

• Namespace lightCtrlComponent (ll. 1 – 15) contains:

1. port entry switchStatus (l. 2),

2. component entry Arbiter (ll. 4 – 10),

3. subcomponent entry a (l. 4),

4. constraint entry foo (l. 11), and

5. connector entry a.switchStatus (l. 14).

• Namespace fooConstraint (ll. 11 – 13) does not contain entries since the OCL sym-

bol table does not create entries for forall statements. Therefore, it only holds its child

forall namespace.

• Namespace forall (ll. 12f) contains an entry for OCL variable sws (l. 12) which is

used as a loop variable in the forall statement.

• Namespace implementation (ll. 6 – 9) contains an entry for method acceptSwitch-

134

5.2. SYMBOL TABLE

Status (l. 7) provided by the Java symbol table. Please note, this method also opens a

new namespace in the Java symbol table.

5.2.4 MontiArc Symbol Table: Structure

The entry classes of the MontiArc symbol table and their relations are depicted in Figure 5.8.

Please note that all realized entry classes of the symbol table have an additional name attribute

that is omitted in the following. A detailed description of the existing entry kinds is given in

Table 5.9.

ComponentEntry

Optional<PortEntry> getIncomingPort(String)

�

PortEntry ComponentReferenceEntry

innerComponents *

* *

super-

component 0,1

ArcdTypeEntry

typeReference

typeParameters

1

*

ArcdFieldEntry

*

configParameters

ArcdTypeReferenceEntry

typeReference

1

ConnectorEntry

AComponentIm-

plementationEntry

*

int arrayDimension

*assigned-

TypeParameters
type

boolean incoming

*

1 type

assigned-

Type-

Parameters *

�

typeParameters *

/src

/trgt

CDType2Arcd

TypeAdapter

CDTypeEntry

adaptee

Symtab-CD

subcomponents

Figure 5.8: Entry classes of the MontiArc symbol table and their relations.

Entry Kind Description

ComponentEntry A ComponentEntry is created for each MontiArc component

definition. A component entry consists of further entries that de-

scribe the component’s interface and decomposition. The interface

is given by a set of associated port entries. Optionally, a component

entry has a superComponent. Configurable components further

have configuration parameters (configParameters).

Table 5.9 continued on next page

135

5.2. SYMBOL TABLE

Entry Kind Description

ComponentEntry
(continued)

Entries of generic components have type parameters (typePa-

rameters) that represent the local definition of generic types

within the component. The internal structure of a component

is represented by inner component definitions (innerCompo-

nents) that are component entries, too. The internal decomposi-

tion of a component is represented by subcomponents, connec-

tor entries, and component implementations (AComponentIm-

plementationEntry).

PortEntry Port entries are either incoming or outgoing, stated by the value of

the Boolean attribute incoming. A port also has a type that is

stored using an ArcdTypeReferenceEntry.

ConnectorEntry Connector entries represent connectors in the model which connect

a source port (src) with a target port (trgt). Actually, connectors

are not a candidate for an entry since a connector does not have a

name. Nonetheless, connectors are implemented as entries because

the underlying symbol table framework presented in [Völ11] real-

izes inheritance based on entries. Hence, connectors are inherited

from a supercomponent. Additionally, this way connectors can be

automatically resolved in the symbol table using the name of their

target.

Component-

ReferenceEntry

A component reference entry represents a reference to a compo-

nent type. It is used to represent subcomponents as well as the

reference to the type of a supercomponent (see above). The refer-

enced component type is represented by the association type. If

a generic component is referenced, assigned type parameters (see

below) contain the concretely assigned type parameters. If a config-

urable component is referenced, the concrete arguments (config

Arguments) are represented by a ValueEntry.

ArcdFieldEntry Field entries represent parameters of configurable components (as-

sociation configParameters). Field entries reference a data

type that is given by association typeReference.

ArcdType-

ReferenceEntry

The MontiArc symbol table distinguishes between type definitions

and a reference to a type definition. Data type definitions are repre-

sented via entry class ArcdTypeEntry, a reference to a data type

is given by class ArcdTypeReferenceEntry. This is espe-

cially needed to support generic type parametrization. A data type

definition can have type parameters (typeParameters) to store

generic type definitions that are visible within the defined type.

Table 5.9 continued on next page

136

5.2. SYMBOL TABLE

Entry Kind Description

ArcdType-
ReferenceEntry
(continued)

If a generic type definition is referenced in another context, the

generic type has to be assigned. This assignment is represented

via the association assignedTypeParameters.

ArcdTypeEntry Represents the definition of a data type. Generic data types have

associated type parameters. Since MontiArc does not provide an

own data type definition language, it adapts UML/P CDs and Java

for this purpose. Therefore, the symbol table contains an adapter

for each used type language which translates entries of the type

language to ArcdTypeEntrys. This is exemplary depicted for

CD types.

CDType2Arcd-

TypeAdapter

Realizes the desired language aggregation of MontiArc and CDs.

The adapter translates the associated adaptee CDTypeEntry to

an ArcdTypeEntry. More details about this method are given in

Section 7.3.2 and [Völ11, Section 6.3].

Table 5.9: Entry kinds of the MontiArc symbol table.

To ease finding elements within the symbol table, entry classes offer several helper methods

which allow to search for specific elements by their name. This is indicated by the method get-

IncomingPort(...) that takes a name as argument and returns the corresponding port entry

encapsulated within an Optional1 if a port with the given name exists. If an incoming port

with the given name does not exist, the caller is notified with the returned Optional.absent.

In the following the distinction between type and type reference is demonstrated by means of

an example. Figure 5.10 depicts the simplified definition of Java type Set with its generic type

parameter T in the top-left corner. In the MontiArc symbol table, these type definitions are rep-

resented by instances of ArcdTypeEntry. The object representing the local type definition of

type parameter T is linked to the Set type definition using the typeParameters association

(see Figure 5.8). A component definition Foo is depicted in the bottom-left corner. Its port s

has the type Set parametrized with String. In the symbol table (right part of the Figure),

this is realized with object Set which is an instance of ArcdTypeReferenceEntry. It is

linked to the port object using the typeReference association. Generic parametrization of

Set with type String is reflected by the assignedTypeParameters link to the object

String that is also an instance of ArcdTypeReferenceEntry. Both type reference ob-

jects have a link to the objects that represent their referenced type definition (java.util.Set

and java.lang.String). If the port object in the symbol table had been directly linked to

the type definition, the information about the concrete generic parametrization would not have

been available in the symbol table. For this reason, the MontiArc symbol table distinguishes

between type definitions and a reference to a type definition.

1Optional is a class of the Guava library that is used for safely handling possibly not existing return values. See

http://code.google.com/p/guava-libraries/ for more information about Guava. Since Java 1.8,

a similar Optional implementation is also part of package java.util.

137

http://code.google.com/p/guava-libraries/

5.2. SYMBOL TABLE

package java.util;

public interface Set<T> {

…

boolean add(T t);

}

component Foo {

port

in Set<String> s;

}

local type
definition ‘T’

assigned type
parameter ‘String’

java.util.Set:

ArcdTypeEntry
T:ArcdTypeEntry

type-

Parameters

s:PortEntry

Set:ArcdType

ReferenceEntry

String:ArcdType

ReferenceEntry

java.lang.String:

ArcdTypeEntry

type

type-

Reference

assigned-

Type-

Parameters

type

type definition ‘Set’

reference to
type ‘Set’

Java

MA

Symtab-OD

Figure 5.10: Relation between type definition and type reference manifested in the MontiArc

symbol table.

5.2.5 MontiArc Symbol Table: Model Interfaces

The symbol table framework presented in [Völ11] supports the definition of different model

interface kinds. This way, fine-grained visibility concepts like in Java can be realized. For every

model interface kind, a dedicated interface with kind-specific model information is exported.

MontiArc defines two different model interface kinds: public and protected. The former

only contains information about the component interfaces. It offers all information needed to

instantiate a component definition using a subcomponent declaration and connect its ports with

other subcomponents. The latter additionally contains information about the internal structure

of a component and is used to realize component inheritance. Table 5.11 depicts which model

elements are part of the public and protected model interface of the MontiArc symbol table.

Figure 5.12 demonstrates the difference between the public and the protected model interface

of the MontiArc symbol table with an example. The top of the figure contains an excerpt of

the component definition LightCtrl. It contains a port named sStat (l. 2) and the inner

component definition Arbiter which is immediately instantiated to subcomponent a (ll. 4–6).

The inner component definition has a port named sStatInner. The connector connects the

depicted ports (l. 7).

The bottom-left part of the Figure depicts an OD that contains the objects of the public model

interface. It can be seen that the public interface only contains the entry for the component

definition LightCtrl and its incoming port sStat. The incoming port is linked with its type

reference that itself is linked with its type definition (see above, omitted for reasons of space).

The bottom-right part of the Figure depicts the objects of the protected model interface of the

same component. The gray objects and links are also part of the public model interface and are

described above. Additionally, the component entry contains and entry for the inner component

definition Arbiter, a subcomponent entry awhich instantiates the inner component definition,

and an entry for its incoming port sStatInner. The protected symbol table also contains a

connector entry that connects the shown ports.

138

5.2. SYMBOL TABLE

Language Element
Model Interface

Public Protected

Top level component definitions × ×
Ports of top level component × ×
Configuration parameters of top level component × ×
Generic type parameters of top level component × ×
Subcomponents ×
Connectors ×
Inner component definitions ×
Ports of inner component definition ×
Configuration parameters of inner component definition ×
Generic type parameters of inner component definition ×

Table 5.11: Elements of the public and protected model interfaces.

1 component LightCtrl {

2 port in SwitchStatus sStat;

3

4 component Arbiter a {

5 port in SwitchStatus sStatInner;

6 }

7 connect sStat -> a.sStatInner;

8 }

LightCtrl:

ComponentEntry

LightCtrl:

ComponentEntry

sStat:

PortEntry

sStat:

PortEntry

a:Component

ReferenceEntry

Arbiter:

ComponentEntry

innerComponents

type/src

/trgt

� �

SwitchStatus:ArcdType

ReferenceEntry

sStatInner:

PortEntry
:ConnectorEntry

Sw.St.

:Type.Ref.

MA

Symtab-OD
«public»

Symtab-OD
«protected»

subomponents

Figure 5.12: Difference between the public and the protected model interface.

Summing up, the gray objects and links shown in Figure 5.12 are publicly visible if component

LightCtrl is instantiated as a subcomponent. The other objects and links are only visible if a

component definition extends component LightCtrl.

139

5.3. TRANSFORMATIONS

5.3 Transformations

MontiArc provides two workflows for model transformations. As depicted in Figure 5.4, the

first workflow Pre CoCo Check Transformations is executed before context condi-

tions are checked, the second workflow Pre Codegen Transformations is executed

between context condition checks and simulation code generation. In both workflows, trans-

formations are registered which transform the AST and symbol table to ease further processing

of the model. An overview of the realized transformations and the corresponding workflows

is given in Table 5.13. The concrete transformations are discussed in Section 5.3.1 and Sec-

tion 5.3.2. Section 5.3.3 explains how transformations are implemented in MontiArc. Please

note that MontiArc’s concrete syntax is used to depict the effect of the transformations, even

though the discussed transformations only affect the model’s AST and symbol table. Following

the notation of [Rum12], the top part of the examples depicts the initial situation, the part below

the horizontal line depicts the result of the transformation.

Transformation Workflow

Instantiation of Named Inner Component Definitions Pre CoCo Check Transformations

Qualify Subcomponent Connectors Pre CoCo Check Transformations

Expand Autoconnect Pre CoCo Check Transformations

Expand Autoinstantiate Pre CoCo Check Transformations

Name Implicitly Named Subcomponents Pre Codegen Transformations

Name Implicitly Named Ports Pre Codegen Transformations

Expand Simple Connectors Pre Codegen Transformations

Qualify all Types Pre Codegen Transformations

Unconnected Incoming Ports of Subcomponents Pre Codegen Transformations

Unconnected Outgoing Ports of Decomposed

Components

Pre Codegen Transformations

Table 5.13: Overview of MontiArc transformations executed in the associated workflow.

5.3.1 Pre Context-Condition Transformations

The transformations described in this subsection are executed after the symbol table has been

created and before context conditions are checked. Since the MontiArc language contains sev-

eral shortcuts to ease textual modeling, e.g., auto connection of compatible ports, these trans-

formations mostly map shortcuts to an equivalent form. This allows an unified checking of

context conditions on an expanded model without repetitive resolving of implicit connections.

The following transformations are executed before context conditions are checked.

140

5.3. TRANSFORMATIONS

Instantiation of Named Inner Component Definitions

MontiArc allows to define inner components similar to private inner classes in Java. To use

an inner component in the context of a component, a subcomponent instance has to be created

(see Section 3.4.3). If the optional instanceName is used for an inner component definition,

this transformation automatically creates a subcomponent that instantiates the inner component

definition.

This is demonstrated in Figure 5.14. The upper part of the figure depicts that component

LightCtrl contains an inner component definition AlarmCheck which has the instance

name ac. The lower part of the figure shows the result of the transformation. The instance

name has been removed and a subcomponent declaration named ac has been created which

instantiates the inner component definition.

component LightCtrl {

// …

component AlarmCheck ac {

// …

}

}

component LightCtrl {

// …

component AlarmCheck {

// …

}

component AlarmCheck ac;

}

MA

Figure 5.14: Pre CoCo Trafo: Instantiation of Named Inner Component Definitions.

Qualify Subcomponent Connectors

MontiArc supports the direct connection of subcomponents without specifying which concrete

ports of the subcomponents have to be connected. If this short form is used, all type-compatible

ports of the referenced subcomponents are connected.

Figure 5.15 demonstrates this with the aid of an example. Component LightCtrl con-

tains an implicitly named subcomponent arbiter and a subcomponent ac. Both are directly

connected with a connector. The top-right of the figure depicts the corresponding types of

the subcomponents. Component AlarmCheck contains outgoing ports with type BlinkRe-

quest and String, component Arbiter contains compatible incoming ports. The result

of the transformation is depicted in the lower part of the figure. The two concrete connectors

ac.blink -> arbiter.br and ac.string -> arbiter.s replace the underspec-

ified connector ac -> arbiter. Please note that this transformation only connects ports

which are type compatible and unique. If two or more ports from a receiver have a type that is

compatible with the type of a sending port, these ports are not connected.

141

5.3. TRANSFORMATIONS

component LightCtrl {

component Arbiter;

component AlarmCheck ac;

connect ac -> arbiter;

}

component LightCtrl {

component Arbiter;

component AlarmCheck ac;

connect ac.blink -> arbiter.br;

connect ac.string -> arbiter.s;

}

component Arbiter {

port in BlinkRequest br;

port in String s;

}

component AlarmCheck {

port out BlinkRequest blink;

port out String;

}

MA

Figure 5.15: Pre CoCo Trafo: Qualify Subcomponent Connectors.

Expand Autoconnect

MontiArc provides two autoconnect strategies (see Section 3.3). The port connectors comple-

tion strategy creates connections for ports with the same unique name and compatible types that

are not explicitly connected. The type connectors completion strategy connects unambigu-

ous unconnected ports with compatible types disregarding port names. Both strategies create

concrete connectors for yet unconnected ports that obey their matching criteria.

The steps to find matching port pairs are pretty similar. At first, yet unused sending and

receiving ports from the current component and its subcomponents are collected. Then, it is

iterated over both sets and the matching criteria is checked pairwise. If two ports fulfill the

criteria, a connector candidate is created. If exactly one candidate is found for a receiver, the

candidate is added to the AST and the symbol table. If more or none candidate is found, a

warning is emitted.

Both strategies and their different behavior are demonstrated in Figure 5.16. In component

LightCtrl, an Arbiter and an AlarmCheck subcomponent are declared. The definitions

of the corresponding component types are given in in the top part of the figure. On the left side

(a), the autoconnect port strategy is used. on the right side (b), the autoconnect type strategy

is used. Type compatible ports of component AlarmCheck and Arbiter are ports br and

blink (BlinkRequest), s respectively string (both of type String), i1, and i2 (In-

teger). Strategy port connects the ports of both subcomponents that have the same name

and compatible types. This way, the ports i1, and i2 are connected. The type strategy creates

connector ac.string -> arbiter.s but does not create connections for ports i1 and i2

since both source and target ports have the same type.

Expand Autoinstantiate

Inner component definitions of a component have to be declared as a subcomponent manually.

The autoinstantiate command switches on the automatic instantiation of inner compo-

nents. This transformation creates a subcomponent with the type of the inner component for

142

5.3. TRANSFORMATIONS

component LightCtrl {

autoconnect port;

component Arbiter;

component AlarmCheck ac;

}

component LightCtrl {

component Arbiter;

component AlarmCheck ac;

connect ac.i1 -> arbiter.i1;

connect ac.i2 -> arbiter.i2;

}

MA

component AlarmCheck {

port out BlinkRequest blink;

port out String;

port in Integer i1;

port in Integer i2;

}

component Arbiter {

port in BlinkRequest br;

port in String s;

port in Integer i1;

port in Integer i2;

}

MA

component LightCtrl {

autoconnect type;

component Arbiter;

component AlarmCheck ac;

}

component LightCtrl {

component Arbiter;

component AlarmCheck ac;

connect ac.blink -> arbiter.br;

connect ac.string -> arbiter.s;

// Since their type is not unique,

// i1 and i2 are not connected

}(a) (b)

Figure 5.16: Pre CoCo Trafo: Expand autoconnect port (a) and type (b).

each inner component which is neither generic nor configurable and not manually declared as

a subcomponent. Therefore, the transformation collects all used component types from all sub-

components of the current component and it collects all inner component definitions. Then, it

iterates over all inner component definitions and checks whether the aforementioned precondi-

tion for automatic instantiation holds. If it holds, a new subcomponent is created and added to

the component’s AST and symbol table.

The transformation and its effect is demonstrated in Figure 5.17. Component LightCtrl

contains an inner component definition AlarmCheck. Since autoinstantiate is switched

on, this transformation creates a subcomponent alarmCheck with the type of the inner com-

ponent definition. The inner component definitions Delay and Buffer are not instantiated

since the former is generic and the latter configurable.

component LightCtrl {

autoinstantiate on;

component AlarmCheck {…}

component Delay<T> {…}

component Buffer[int size] {…}

}

component LightCtrl {

component AlarmCheck {…}

component Delay<T> {…}

component Buffer[int size] {…}

component AlarmCheck;

}

MA
�

Figure 5.17: Pre CoCo Trafo: Expand Autoinstantiate.

143

5.3. TRANSFORMATIONS

5.3.2 Pre Code Generation Transformations

The following transformations prepare the AST for the code generation workflow. They mostly

map extended concepts to basic concepts to ease code generation. In this way, the generator

is simplified since it only has to handle basic concepts while ignoring extended concepts. The

following transformations are executed before code generation.

Name Implicitly Named Subcomponents

This transformation transforms implicitly named subcomponents (cf. Section 3.4.3 on page

53) into explicitly named subcomponents by setting the explicit name with the derived implicit

name (which is the type name starting with a small letter). This allows the code generator to only

handle named subcomponents. This transformation is executed in the transformation workflow

after context condition checks. Thus, inner component definitions have already been automati-

cally instantiated by transformation Expand autoinstantiate (see Figure 5.17). Consequently,

this transformation also transforms the subcomponents created by Expand autoinstantiate by

assigning an explicit name to them.

The effect of this transformation is demonstrated in Figure 5.18. Component LightCtrl

contains an implicitly named subcomponent alarmCheck. As a result of the transformation,

the explicit name of this subcomponent is set to alarmCheck.

component LightCtrl {

component AlarmCheck;

}

component LightCtrl {

component AlarmCheck alarmCheck;

}

MA

Figure 5.18: Pre Codegeneration Trafo: Name Implicitly Named Subcomponents.

Name Implicitly Named Ports

In MontiArc, implicit naming is also available for ports (cf. Section 3.4.3 on page 53). An

implicitly named port is referenced by using the unqualified type name starting with a small

letter. This transformation sets the explicit names of implicitly named ports.

An example for the effect of the transformation is given in Figure 5.19. Component LightC-

trl contains an implicitly named port alarmStatus whose explicit name is set to alarm-

Status by the transformation.

Expand Simple Connectors

Beside normal connectors, MontiArc also offers simple connectors which can be directly at-

tached to a named subcomponent (cf. Section 3.4.3). Sources of a simple connector are ports

from the corresponding subcomponent. To ease code generation, this transformation converts

144

5.3. TRANSFORMATIONS

component LightCtrl {

port

in AlarmStatus;

}

component LightCtrl {

port

in AlarmStatus alarmStatus;

}

MA

Figure 5.19: Pre Codegeneration Trafo: Name Implicitly Named Ports.

simple connectors to semantically identical normal connectors. Therefore, the simple connector

is replaced with a regular connector and the source of the connector is qualified with the sub-

component’s name. This way, only normal connectors have to be handled in the code generation

step afterwards.

This is demonstrated in Figure 5.20. In the top part of the figure, a simple connector is attached

to subcomponent ae that connects its outgoing port blinkRequest with the blinkRe-

quest port of subcomponent interiorLightEval. The result of the transformation is

depicted in the bottom part of the figure. The simple connector has been replaced with a normal

connector which has the same source (port blinkRequest of subcomponent ae) and target.

component LightCtrl {

component AlarmEval(5) ae

[blinkRequest -> interiorLightEval.blinkRequest];

}

component LightCtrl {

component AlarmEval(5) ae;

connect ae.blinkRequest -> interiorLightEval.blinkRequest;

}

MA

Figure 5.20: Pre Codegeneration Trafo: Expand Simple Connectors.

Qualify all Types

To avoid repeated qualification of types during code generation, all used types are qualified by

this transformation directly in the AST. The following types are replaced with their qualified

version:

1. configuration parameter types,

2. configuration value types (e.g., used constructors or enum values),

3. generic type arguments,

4. upper bounds of generic types,

5. port types,

6. subcomponent types, and

7. supercomponent types.

145

5.3. TRANSFORMATIONS

An example demonstrating an excerpt of these qualifications is given in Figure 5.21. The top

part of the figure contains the definition of component AlarmEval which uses certain type

references. It can be seen that the type of the configuration parameter interval is replaced

with its qualified version, the type of the supercomponent Eval and the port types are qualified,

too. The type of subcomponent fd, its generic type argument BlinkRequest, and the type

of the used configuration value are qualified as well.

import ila.comp.Eval;

import ila.signals.*;

import ila.helper.SimConstants;

import ma.sim.FixDelay;

component AlarmEval[Integer interval] extends Eval {

port

in AlarmStatus,

out BlinkRequest;

component FixDelay<BlinkRequest>(SimConstants.DELAY) fd;

}

component AlarmEval[java.lang.Integer interval] extends ila.comp.Eval {

port

in ila.signals.AlarmStatus,

out ila.signals.BlinkRequest;

component ma.sim.FixDelay<ila.signals.BlinkRequest>

(ila.helper.SimConstants.DELAY) fd;

}

MA

Figure 5.21: Pre Codegeneration Trafo: Qualify all Types.

Unconnected Incoming Ports of Subcomponents

Missing connections to incoming ports of subcomponents will result in a warning during context

condition checks (see Section 3.5.2). However, it is not forbidden to leave ports of subcompo-

nents unconnected. In this case, the subcomponent only provides a subset of its functionality.

If all incoming signals are needed to operate properly, even no functionality is provided at all.

Nevertheless, the simulation of time should still be possible. As explained in Section 4.3 on

page 96, the simulation scheduler expects a
√

on each incoming port of a component to emit

a
√

on all outgoing ports. If one incoming port of a component is not connected, it will never

receive a tick which leads to a simulation deadlock.

To avoid this problem, this transformation connects unconnected ports of subcomponents

with a connector that solely transmits ticks. Therefore, the decomposed component is comple-

mented with a TickSource subcomponent which is triggered by the scheduler to emit ticks.

Its outgoing port is connected to all unconnected ports of all subcomponents. This way, these

unconnected ports are provided with ticks to avoid the aforementioned simulation deadlock.

An example for this transformation is given in Figure 5.22. The top part of the figure depicts

an excerpt of component LightCtrl which contains subcomponent DoorEval that has an

unconnected port. The bottom of the figure depicts the result of this transformation. It can be

146

5.3. TRANSFORMATIONS

seen that subcomponent TickSource has been inserted and connected to the unconnected port

of subcomponent DoorEval.

LightCtrl

Arbiter
SwitchStatus OnOffCmd

DoorEval

cmd

LightCtrl

Arbiter
SwitchStatus OnOffCmd

DoorEval

cmd

TickSource

MA

Figure 5.22: Pre Codegeneration Trafo: Connecting Unconnected Incoming Ports of Subcom-

ponents.

Unconnected Outgoing Ports of Decomposed Components

This transformation is motivated by the same reasons like the previously described transforma-

tion. If a decomposed component has an outgoing port which is not connected to an outgoing

port of a contained subcomponent, this port will never emit a message or a
√

. If such a compo-

nent is reused as a subcomponent in the context of another decomposed component definition,

it will most likely cause a simulation deadlock due to missing ticks that are not emitted by this

“dead” port. To avoid this problem, this transformation will connect a TickSource subcom-

ponent, which is inserted into the decomposed component, with all unconnected outgoing ports.

This transformation is exemplary demonstrated in Figure 5.23. The top part of the figure

depicts component LightCtrl with two unconnected outgoing ports. The bottom part shows

LightCtrl

Arbiter
SwitchStatus OnOffCmd

cmd

LightCtrl

Arbiter
SwitchStatus OnOffCmd

cmd

TickSource

MA

Figure 5.23: Pre Codegeneration Trafo: Connecting Unconnected Ports of Subcomponents.

147

5.3. TRANSFORMATIONS

the result of this transformation. It can be seen that subcomponent TickSource has been

inserted and its outgoing port is connected to both “dead” ports. This way, these ports emit ticks

provided by the TickSource subcomponent which is controlled by the scheduler.

Please note that only a single TickSource subcomponent is used to handle all unconnected

outgoing ports. Since this transformation is independent from the previous transformation, the

latter also introduces another single TickSource which handles all unconnected incoming

ports of subcomponents. It would also be possible to use a dedicated TickSource for each

unconnected port. Though, this would result in an increased scheduler effort which contradicts

to requirement SRQ10.

5.3.3 Implementation

MontiArc provides an expandable transformation infrastructure in which further transformations

can be added easily. The realized transformation framework is designed similar to the context

condition check infrastructure which is presented in [Sch12, Section 7.3]. An excerpt of the

structure of the transformation framework is depicted in Figure 5.24. Both previously discussed

transformation phases are realized by ConcreteTransformationWorkflows which are

responsible for executing a TransformationVisitor or an instance of a subclass. Using

its configure(ITrafoConfiguration) method, the associated transformations of the

given configuration are registered. For all MontiArc AST nodes, the framework contains a trans-

formation interface and the TransformationVisitor contains a visit(...) method

that visits the corresponding node. This visit method then resolves the corresponding sym-

�

«interface»

IComponentTransformation

transformAtStart(ASTArcComponent, ComponentEntry)

transformAtEnd(ASTArcComponent, ComponentEntry)

«interface»

ITransformation

«interface»

ISubComponentTransformation

transform(ASTArcSubComponent, SubComponentEntry, ComponentEntry)

TransformationVisitor

configure(ITrafoConfiguration)

visit(ASTArcComponent)

visit(ASTArcSubComponent)

visit(ASTArcPort)

«interface»

IPortTransformation

transform(ASTArcPort, PortEntry, ComponentEntry)

NameImplicityNamed

PortsTransformation

ConcreteTransformation

Workflow

NameImplicityNamed

SubComponents

Transformation

*

*

*

executes

Tool-CD«interface»

ITrafoConfiguration *
«uses»

Figure 5.24: Important classes of MontiArc’s transformation framework.

148

5.4. GENERATION OF SIMULATION CODE

bol that represents this node and delegates both, node and symbol, to all registered responsible

transformations. For example the visit(ASTArcPort) method first resolves the symbol

(PortEntry) of the current ASTArcPort node and then calls the transform method of

all registered IPortTransformations (e.g., NameImplicitlyNamedPortsTrans-

formation). A complete list of transformation interfaces is given in Table F.4 on page 341.

All previously described transformations are realized by a corresponding concrete transforma-

tion that implements the needed transformation interfaces. An example how these transforma-

tions are realized is given in Listing 5.25 which contains the implementation of transformation

“Name Implicitly Named Ports”. It implements the interface IPortTransformation since

it transforms ports. At first, it is checked whether the current node is implicitly named (l. 6). If

this holds, the name of the node is set to the name of the corresponding port entry (ll. 7f). This

is possible since the entries contained in the symbol already have the implicit name.

Java1 public class NameImplicitlyNamedPortsTransformation

2 implements IPortTransformation {

3 @Override

4 public void transform(ASTArcPort node, PortEntry entry,

5 ComponentEntry currentComp) {

6 if (node.getName() == null) {

7 String name = entry.getName();

8 node.setName(name);

9 }

10 }

11 }

Listing 5.25: Exemplary implementation of a MontiArc transformation.

5.4 Generation of Simulation Code

Several artifacts, which are based on the runtime environment (RTE) described in Section 4.2,

are generated for each MontiArc component. By using these artifacts, the component model can

be simulated. These are:

• Component interfaces: A Java interface which represents the port interface of the com-

ponent. It handles how a component can be accessed by its environment.

• Component factories: A Java class responsible for creating instances of a component.

• Component classes: A Java class which represents the component definition in the sim-

ulation. Classes of atomic components hold port objects, classes of decomposed compo-

nents hold objects of their subcomponents.

In the following, the generation of these artifacts is explained and depicted using the notation of

a transformation which translates a component into Java code.

149

5.4. GENERATION OF SIMULATION CODE

5.4.1 Component Interfaces

For each component model, a Java interface is generated that represents the port interface of

the component. It contains methods to access the component’s incoming and outgoing ports.

Depending on the component’s timing (cf. Section 4.4), a suitable super-interface is chosen.

An example for the generation of an interface of a component with instant timing is given

in Figure 5.26. The component LightCtrl has an incoming port switchStatus with

type SwitchStatus and an outgoing port cmd with type OnOffCmd. The bottom part of

the figure contains the generated interface for this component, the name is prefixed with an I.

The incoming port is compiled into a getter method which returns an IInPort typed with the

port type SwitchStatus. The name of the getter method corresponds to the port’s name.

The outgoing port cmd is compiled into the getter getCmd() that returns a suitably typed

IOutPort and a setter setCmd(...) that allows to set the component’s outgoing port cmd.

Please note that instant is the default timing domain of MontiArc components. Hence, the

generated interface extends ITimedComponent (cf. Figure 4.11 on page 95). This interface

is also implemented by synchronous, causal synchronous, and delayed components.

component LightCtrl {

port

in SwitchStatus,

out OnOffCmd cmd; //…

}

public interface ILightCtrl extends ITimedComponent {

public IOutPort<OnOffCmd> getCmd();

public void setCmd(IPort<OnOffCmd> cmd);

public IInPort<SwitchStatus> getSwitchStatus();

}

MA

Java

«gen»

Figure 5.26: Generated interface for a timed component.

The generation of an interface of an untimed component is given in Figure 5.27. Component

LightCtrl uses timing domain untimed. Hence, the generated interface extends interface

IComponent instead of ITimedComponent. This way, no timing information are available

for the component and its environment.

component LightCtrl {

timing untimed;

port

in SwitchStatus,

out OnOffCmd cmd; //…

}

public interface ILightCtrl extends IComponent {

public IOutPort<OnOffCmd> getCmd();

public void setCmd(IPort<OnOffCmd> cmd);

public IInPort<SwitchStatus> getSwitchStatus();

}

MA

Java

«gen»

Figure 5.27: Generated interface for an untimed component.

150

5.4. GENERATION OF SIMULATION CODE

Generic type parameters of generic components are directly mapped to Java generics. An ex-

ample is given in Figure 5.28. The generic type T of component Buffer is directly represented

by the generic type T in the Java interface. Hence, this type is also used to parametrize the getter

and setter methods of the corresponding ports.

component Buffer<T> {

port

in T buffer,

out T bufferedOut; //…

}

public interface IBuffer<T> extends ITimedComponent {

public IOutPort<T> getBufferedOut();

public void setBufferedOut(IPort<T> bufferedOut);

public IInPort<T> getBuffer();

}

MA

Java

«gen»

Figure 5.28: Generated interface for a generic component.

5.4.2 Atomic Components

Atomic components in MontiArc produce behavior as a reaction to events. Since the default

MontiArc language does not support behavior definitions within components, behavior of atomic

components has to be implemented by hand. An abstract class is generated for each atomic

component which can be used as a superclass for component implementations. This class is

responsible for the setup. Instances of this class hold objects of the corresponding ports. The

concrete behavior has to be implemented in a subclass. The abstract class then delegates received

messages and events to the concrete handwritten implementation (see Section 5.5).

Header

The header of the abstract generated class is influenced by the timing domain of the compo-

nent. This is depicted in Figure 5.29. For each atomic component, an abstract class with the

component’s name prefixed with an A is generated. Therefore, for component DoorEval an

abstract class ADoorEval is generated which implements the generated component interface

IDoorEval (see Section 5.4.1). For timed components, the superclass ATimedComponent

is used (as depicted on the left). Untimed components use the superclass AComponent.

Interface Implementation and Ports

The methods given in the generated component interface are already implemented in the gen-

erated abstract component class. For each incoming port, a private field with the type IIn-

SimPort, for each outgoing port, a field with the type IOutSimPort is generated. Both are

parametrized with the port’s type and have the name of the corresponding port. This is demon-

strated in Figure 5.30. For the incoming port doorStatus, a field and a getter method are

generated. For the outgoing port onOffRequest, a field, a getter, and a setter method are

151

5.4. GENERATION OF SIMULATION CODE

component DoorEval {

// instant, delayed, sync

timing causalsync;

}

public abstract class ADoorEval

extends ATimedComponent

implements IDoorEval {

// …

}

component DoorEval {

timing untimed;

// …

}

public abstract class ADoorEval

extends AComponent

implements IDoorEval {

// …

}

MA

Java

«gen»

Figure 5.29: Generated abstract class for an atomic component.

generated. Since the outgoing port of a component can be connected to more than one receiver,

the set method first has to check whether the outgoing port already has been set with a port

object (this.onOffRequest == null). If it not has been set, the passed object is used

as outgoing port. Else, the passed object is added to the receivers of the existing outgoing port.

Please note that within a component a port is handled as a simulation port. In contrast, the getter

methods return a regular incoming or outgoing port. This way, send and accept method func-

tionality is available from outside the component. The setup and scheduling functions are only

visible within the component.

component DoorEval {

port

in DoorStatus,

out OnOffRequest; //…

}

public abstract class ADoorEval … {

private IInSimPort<DoorStatus> doorStatus;

private IOutSimPort<OnOffRequest> onOffRequest;

public IInPort<DoorStatus> getDoorStatus()

{ return this.doorStatus; }

public IOutPort<OnOffRequest> getOnOffRequest()

{ return this.onOffRequest; }

public void setOnOffRequest(IPort<OnOffRequest> onOffRequest) {

if (this.onOffRequest == null) {this.onOffRequest = onOffRequest;}

else {this.onOffRequest.addReceiver(OffRequest)}

}

}

MA

Java

«gen»

Figure 5.30: Implementation of the component interface for an atomic component.

Configurable Components

Configurable MontiArc components are parametrized (cf. Section 3.2) to realize adjustable be-

havior depending on the passed parameters during component instantiation. This also has to be

reflected in the generated code. Each defined component parameter results in a private attribute

152

5.4. GENERATION OF SIMULATION CODE

to store this parameter, a getter method to access its value, and a parameter in the generated con-

structor. An example is given in Figure 5.31 that depicts configurable component AlarmCheck

which has the configuration parameter blinkIntervall with type int. It can be seen that a

private field with the same type and name has been generated, a protected getter method which

returns the field. The constructor is extended with an additional parameter blinkIntervall.

Please note, the same parts are generated for configurable decomposed components. Generated

component factories of configurable components also have the component’s parameters as pa-

rameters of its create method.

component AlarmCheck[int blinkIntervall] { // …

}

public abstract class AAlarmCheck … {

private int blinkIntervall;

protected int getBlinkIntervall()

{ return this.blinkIntervall; }

public AAlarmCheck(int blinkIntervall) {

super();

this.blinkIntervall = blinkIntervall;

}

}

MA

Java

«gen»

Figure 5.31: Generated code for a configurable atomic component.

Atomic Components Setup

During the setup of an atomic component, incoming port objects are instantiated and links to the

scheduler and error handler are stored. This is demonstrated in Figure 5.32 for atomic compo-

nent DoorEval. After the links to scheduler and error handler have been set, port doorSta-

tus is instantiated using the factory method of the scheduler (s.createInPort). Finally,

component DoorEval {

port

in DoorStatus,

out OnOffRequest; //…

}

public abstract class ADoorEval … {

@Override

public void setup(IScheduler s, ISimulationErrorHandler eh) {

setScheduler(s);

setErrorHandler(eh);

this.doorStatus = s.createInPort();

this.doorStatus.setup(this, s);

}

MA

Java

«gen»

Figure 5.32: Setting up atomic components.

153

5.4. GENERATION OF SIMULATION CODE

the setup() method of the port is called to initialize its relation to the component and the

scheduler.

Please note, the scheduler and ports closely interact with each other. Therefore, the scheduler

is responsible for port creation. If a new scheduler strategy is realized, it also has to deliver the

corresponding port implementation.

Message Propagation

Section 4.4 defines the support of different timing domains with a mapping from timed streams

to timing-specific component traces. This mapping is realized by the generated component

code which handles the propagation of scheduled messages to the component implementation.

Regarding message propagation, untimed, instant, and delayed components are handled the same

way, while synchronous and causal synchronous components follow their own realization.

As explained in Section 4.3, the simulation scheduler calls the handleMessage method to

deliver a message to a component. Message propagation to the component implementation is

handled there. Hence, the aforementioned mapping is realized in this method. Figure 5.33 com-

pares the generated code for an instant version (on the left) and a causal synchronous version of

component DoorEval (on the right). The former checks which port accepted the current mes-

sage (p == doorStatus) and delegates the contained data to the abstract treatDoorSta-

tus(...) method which handles data events on this port. This method has to be realized in

public abstract class ADoorEval {

private DoorStatus

doorStatusBuffer;

public void handleMessage(IInPort p,

Message m) {

if (p == doorStatus) {

if (doorStatusBuffer != null) {…}

doorStatusBuffer = message.getData();

} //…

}

protected abstract void treat(

DoorStatus doorStatusBuffer, …);

public void handleTick() {

treat(doorStatusBuffer, …);

doorStatusBuffer = null;

// …

}

}

component DoorEval {

// or untimed, delayed

timing instant;

port in DoorStatus;

}

public abstract class ADoorEval {

public void handleMessage(IInPort p,

Message m) {

if (p == doorStatus) {

treatDoorStatus(m.getData());

} //…

}

protected abstract void

treatDoorStatus(DoorStatus msg);

}

component DoorEval {

// or sync

timing causalsync;

port in DoorStatus;

}

MA

Java

«gen»

raise warning if buffer
is already in use

Figure 5.33: Message propagation of atomic components.

154

5.4. GENERATION OF SIMULATION CODE

an handwritten subclass.

In contrast, synchronous components exclusively handle data event tuples. These events com-

pose a single data object for each port to an event tuple. If more than one message is accepted

on a single port, the last message is used for this composition (cf. Section 4.4.4) and a warning

is raised. Hence, a message buffer is generated for each incoming port (e.g., doorStatus-

Buffer) which is used to store messages passed by the scheduler to the handleMessage

method. If the corresponding buffer is already in use, a warning is raised. The data event tuple

is created by delegating the content of all incoming port buffers to the abstract treat(...)

method that has a parameter for each incoming port. This method is to be implemented manually

in a subclass and is automatically called within the handleTick() method which synchro-

nizes the event creation. Afterwards, all buffers are erased for the next time interval by assigning

a null value. Thus, ⊥ events in time-synchronous streams, which are used to model that no

message is transmitted within a time interval, are represented by null values of erased buffers.

Message Sending

Again, sending of messages as a reaction to incoming data and time events is uniformly imple-

mented for untimed, instant, and delayed components. The sending of messages of synchronous

and causal synchronous components is realized slightly different. Figure 5.34 compares both to

each other. For the former, a send method is generated for each outgoing port of the compo-

nent. It encapsulates the message which is to be sent into a Message object using the Mes-

sage.of() method. The encapsulated message is then delegated to the send() method of

public abstract class ADoorEval {

private OnOffRequest

onOffRequestBuffer;

protected void sendOnOffRequest(

OnOffRequest message) {

if (onOffRequestBuffer != null) {

getErrorHandler().addReport(…);

}

else {

onOffRequestBuffer = message;

getOnOffRequest().send(

Message.of(message));

}

}

}

component DoorEval {

// or untimed, delayed

timing instant;

port out OnOffRequest;

}

public abstract class ADoorEval {

protected void sendOnOffRequest(

OnOffRequest message) {

getOnOffRequest().send(

Message.of(message));

}

}

component DoorEval {

// or sync

timing causalsync;

port out OnOffRequest;

}

MA

Java

«gen»

Figure 5.34: Message sending of atomic components.

155

5.4. GENERATION OF SIMULATION CODE

the corresponding port. This is depicted on the left side of the figure. For port onOffRequest

a method sendOnOffRequest() is generated which takes an OnOffRequest object as

parameter. If this method is called by the handwritten behavior implementation, the passed ob-

ject is encapsulated into a Message object. The message is delegated to the send() method

of port onOffRequest which is accessed by the corresponding get method.

Synchronous components are allowed to emit at max one message on each outgoing port in

each time interval. To prevent handwritten implementations to send more than one message, sent

messages are buffered in a single message buffer. Such a buffer is generated for all outgoing ports

of a synchronous component. The buffer of a port is filled in the generated send() method of

the port before the message is emitted. If the buffer is already filled, and thus a message has

already been emitted on the same port, a warning is raised. At the end of a time interval this

buffer is erased.

Tick Handling

If a component consumes a tick on all incoming ports, it has to emit a tick on all outgoing ports

(cf. Section 4.4). As discussed in Section 4.3.2, emitting ticks is triggered by the simulation

scheduler by calling the handleTick() method of a component. An example of such a

generated method is depicted in Figure 5.35. The method obtains a tick by calling the static

method Tick.get() and sends it via the corresponding outgoing port. Afterwards, the local

clock is incremented (incLocalTime()) and a time event is propagated to the component

by calling the timeStep() method that implies the start of a new time interval. Please note,

Tick.get() always returns the same centrally managed tick object (see Section 5.6.3).

component DoorEval {

port

out OnOffRequest; //…

}

public abstract class ADoorEval … {

@Override

public void handleTick() {

this.getOnOffRequest().send(Tick.<OnOffRequest> get());

incLocalTime();

timeIncreased();

}

}

MA

Java

«gen»

Figure 5.35: Generated method handleTick() that emits ticks at the end of a time interval.

5.4.3 Decomposed Components

Decomposed MontiArc components do not produce behavior themselves. The behavior which

is observed on their interfaces is a result of the composed behavior of the contained subcompo-

nents. Therefore, MontiArc generates a concrete Java class for each decomposed component that

156

5.4. GENERATION OF SIMULATION CODE

is responsible for the instantiation and setup of the contained subcomponents and the creation of

connections between the subcomponents and the outer ports.

Ports

Decomposed components actually do not need own port objects. They simply reuse the ports

of inner subcomponents for their own interface. This, however, is only possible for outgoing

ports that are connected to an unambiguous outgoing port of a subcomponent (see Section 3.5).

Incoming ports of a decomposed component can be connected to more than one receiver. For

this reason, an own forwarding port object as an instance of IForwardPort is created for

each incoming port of a decomposed component (see Section 4.2.2).

An example that demonstrates which code parts are generated for incoming ports of decom-

posed components is given in Figure 5.36. It can be seen that no code is generated for the

components outgoing port cmd. For the incoming port switchStatus, a private forward-

ing port field is generated which is returned in the corresponding port getter method. During

the setup of the component, this field is instantiated with a port object that is created by the

scheduler. Afterwards, the port is set up.

component LightCtrl {

port

in SwitchStatus,

out OnOffCmd cmd; //…

}

public class LightCtrl extends ATimedComponent

implements ILightCtrl {

private IForwardPort<SwitchStatus> switchStatus;

public IInPort<SwitchStatus> getSwitchStatus() {return switchStatus;}

public void setup(Ischeduler s, ISimulationErrorHandler eh) {

this.switchStatus = s.createForwardPort();

this.switchStatus.setup(this, s);

// …

}

}

MA

Java

«gen»

Figure 5.36: Incoming ports of decomposed components.

Subcomponents

A decomposed component holds a private field for each contained subcomponent. These fields

have the interface as type that has been generated for the corresponding subcomponents compo-

nent type (see Section 5.4.1). The field that represents a subcomponent is instantiated using the

corresponding generated factory (see Section 5.5.2) and set up during the setup of the decom-

posed component. If the subcomponent is parametrized with configuration parameters, these

parameters are also passed to the component factory during instantiation. Consequently, com-

ponent instances are created from top to bottom of the component hierarchy as described in

157

5.4. GENERATION OF SIMULATION CODE

Section 4.2.1.

This is demonstrated with the aid of a simple example given in Figure 5.37. It is depicted that

a private field and a protected getter method is generated for both subcomponents arbiter

and ac. In the excerpt of the setup method, it is shown how instances are created using the

corresponding component type factories. The configuration parameter 5, which is used for sub-

component ac, is passed to the AlarmCheckFacotry to configure the produced instance.

After a subcomponent instance has been created, its setup method is called to set up the sub-

component with the used scheduler s and error handler eh.

component LightCtrl {

component Arbiter;

component AlarmCheck(5) ac;

}

public class LightCtrl extends ATimedComponent

implements ILightCtrl {

private IArbiter arbiter;

private IAlarmCheck ac;

protected IAlarmCheck getAc() { return this.ac; }

protected IArbiter getArbiter() { return this.arbiter; }

public void setup(Ischeduler s, ISimulationErrorHandler eh) {

// … port setup

this.arbiter = ArbiterFactory.create();

this.arbiter.setup(s, eh);

this.ac = AlarmCheckFactory.create(5);

this.ac.setup(s, eh);

}

}

field

create

set up

pass configuration
parameters

MA

Java

«gen»

Figure 5.37: Code generation for subcomponents.

Connectors

Three different kinds of connectors exist in MontiArc. The first kind connects an incoming port

of a decomposed component with an incoming port of a contained subcomponent. The second

kind connects two subcomponents of a decomposed component. And the third kind connects

an outgoing port of a subcomponent with an outgoing port of a decomposed component. An

example for all three connection kinds is depicted in Figure 4.3 on page 90.

As explained in Section 5.4.3, incoming ports of decomposed components are represented

by ForwardPorts in the generated code. The first kind of connectors is realized by adding

the incoming port of the subcomponent to the receivers of the forwarding port of the decom-

posed component. This is demonstrated in Figure 5.38. The shown connector connects port

switchStatus with port switchStatus of subcomponent arbiter. Therefore, in the

setup method generated for component LightCtrl, arbiter’s port switchStatus is added

to the receivers of the forward port switchStatus using its add(...) method. This is

done after the ports of the current component and all subcomponents are set up as described in

the previous sections.

158

5.4. GENERATION OF SIMULATION CODE

component LightCtrl {

port in SwitchStatus;

component Arbiter;

connect switchStatus -> arbiter.switchStatus;

}

public class LightCtrl … {

private IForwardPort<SwitchStatus> switchStatus;

public void setup(Ischeduler s, ISimulationErrorHandler e) {

// … port & subcomponent setup

this.switchStatus.add(arbiter.getSwitchStatus());

}

}

MA

Java

«gen»

Figure 5.38: Generated code for connectors from incoming ports of decomposed components to

incoming ports of subcomponents.

The second kind of connections is realized by using the incoming port of the receiver as out-

going port of the sending subcomponent. This is possible since ports respectively port objects

always serve as incoming and outgoing ports by implementing both corresponding interfaces

IOutPort and IInPort (see Figure 4.10 on page 94). Hence, the same port object is shared

between both subcomponents used as an outgoing port by the sender and as an incoming port

by the receiver. If more than one port is connected with the same outgoing port, additional

incoming ports are registered as further receivers in the receivers set of the outgoing port

(see Figure 5.30). An example for the generated code for this connector kind is given in Fig-

ure 5.39. In the setup method of component LightCtrl, the port onOffRequest, which

belongs to the sending subcomponent doorEval, is set to the incoming port onOffRequest

of subcomponent arbiter using its setOnOffRequest(...) method. Please note that

the casting of the incoming port to IPort is needed since set methods, generated for outgo-

ing ports, expect an IPort argument, but get methods, generated for incoming ports, return an

IInPort object (see Section 5.4.1). This cast is typesafe since all port objects in the simulation

are an instance of IPort (see Figure 4.10).

component LightCtrl {

component DoorEval;

component Arbiter;

connect doorEval.onOffRequest -> arbiter.onOffRequest;

}

public class LightCtrl … {

public void setup(Ischeduler s, ISimulationErrorHandler e) {

// … port & subcomponent setup

doorEval.setOnOffRequest((IPort) arbiter.getOnOffRequest());

}

}

MA

Java

«gen»

Figure 5.39: Generated code for connectors which connect two subcomponents.

The third connector kind, which connects outgoing ports of subcomponents with outgoing

159

5.5. ATOMIC COMPONENT BEHAVIOR IMPLEMENTATION

ports of decomposed components, is realized the following way. As well as atomic components,

decomposed components do not have own port objects for outgoing ports. Therefore, the gen-

erated getter and setter methods for outgoing ports of decomposed components simply delegate

to the connected port of the corresponding subcomponent. An example is given in Figure 5.40.

The methods getCmd() and setCmd(...), generated for the outgoing port cmd, delegate

to the get (getOnOffCmd()) respectively set (setOnOffCmd()) method of the sending port

which belongs to subcomponent arbiter.

component LightCtrl {

port out OnOffCmd cmd;

component Arbiter;

connect arbiter.onOffCmd -> cmd;

}

public class LightCtrl … {

public IOutPort<OnOffCmd> getCmd() {

return arbiter.getOnOffCmd();

}

public void setCmd(IOutPort<OnOffCmd> cmd) {

arbiter.setOnOffCmd(cmd);

}

}

MA

Java

«gen»

Figure 5.40: Generated code for connectors which connect outgoing ports of subcomponents

with outgoing ports of decomposed components.

5.5 Atomic Component Behavior Implementation

Decomposed MontiArc components do not implement behavior themselves. Their shown in-

terface behavior is the result of the composition of the behavior generated by the contained

subcomponents. Atomic components, that are not decomposed anymore, have to implement be-

havior themself. Since MontiArc does not include a language that allows the implementation of

behavior within components, the behavior has to be implemented externally in Java, the target

language of the MontiArc simulation.

5.5.1 Implementation

To ease the implementation of atomic component behavior, MontiArc generates abstract super-

classes which already handle message transmission and event forwarding from the simulation

scheduler (see Section 4.3). This way, the component developer does not have to care about

message transmission, he only has to handle events and data messages. Depending on the com-

ponent’s timing domain, the abstract generated superclass provides event methods which have

to be implemented in the concrete behavior implementation. It is distinguished between instant,

delayed, and untimed timing implementations on the one hand and (causal) synchronous timing

implementations on the other hand. The former handle data events. Time events are additionally

160

5.5. ATOMIC COMPONENT BEHAVIOR IMPLEMENTATION

handled by instant and delayed components while being ignored by untimed components (see

Section 4.4). Synchronous components handle data event tuples.

Data Event Implementation

Data events are data messages which are received on a single incoming port of a component (see

Definition 4.3 on page 106). They are processed by instant, delayed, and untimed components.

The abstract generated superclass for these timing domains contains an abstract treatPortName

method for each incoming port of the component. These methods, that handle data events raised

at the corresponding port, have to be implemented in a concrete behavior implementation. To

emit messages, a sendPortName method is provided that immediately sends the given message

via the corresponding port.

Figure 5.41 depicts the relevant artifacts needed to implement the behavior of the untimed

component DoorEvalUntimed. This component evaluates the state of the doors if the switch

status is DOOR DEPENDENT. It can be seen that the generated superclass contains the abstract

method treatDoorStatus for the incoming port doorStatus and a corresponding ab-

stract treat method for port switchStatus. To send messages via the outgoing port on-

OffRequest, the concrete method sendOnOffRequest() is provided.

treatDoorStatus(DoorStatus)

treatSwitchStatus(SwitchStatus)

sendOnOffRequest(OnOffRequest)

ADoorEvalUntimed

component DoorEvalUntimed {

timing untimed;

port

in DoorStatus,

in SwitchStatus,

out OnOffRequest;

}

abstract treat
methods

DoorEvalUntimedImpl

handcoded behavior
implementation

generated abstract
superclass

MA Product-CD
«gen»

Product-CD
«handcoded»

Figure 5.41: Atomic component DoorEvalUntimed, the corresponding generated superclass,

and the implementation.

One possible behavior implementation of component DoorEvalUntimed is depicted in

Listing 5.42. The shown class contains two private fields currentSwitchState and pro-

cessedDoorState (ll. 2f) that represent the state of the component. The former is used to

store the current state of the switch in method treatSwitchStatus (ll. 22-25). The latter

is used to store the last processed door state to react to door state changes exclusively (ll. 6f). In

case the switch is set to DOOR DEPENDENT (l. 8), it reacts to the current change by sending an

OFF request if the door is closed (ll. 10f). It further sends an ON request if the door is opened

(ll. 13f). In any other case the component simply does nothing.

161

5.5. ATOMIC COMPONENT BEHAVIOR IMPLEMENTATION

Java

«handcoded»

1 public class DoorEvalUntimedImpl extends ADoorEvalUntimed {

2 private SwitchStatus currentSwitchState;

3 private DoorStatus processedDoorState;

4 @Override

5 protected void treatDoorStatus(DoorStatus message) {

6 if (message != processedDoorState) {

7 processedDoorState = message;

8 if (currentSwitchState == DOOR_DEPENDENT) {

9 switch (message) {

10 case CLOSED:

11 sendOnOffRequest(OFF);

12 break;

13 case OPENED:

14 sendOnOffRequest(ON);

15 break;

16 default:

17 break;

18 }

19 }

20 }

21 }

22 @Override

23 protected void treatSwitchStatus(SwitchStatus message) {

24 currentSwitchState = message;

25 }

26 }

Listing 5.42: Implementation of atomic component DoorEvalUntimed which handles

single data events.

Data Event Tuple Implementation

Data events tuples are created by aggregating messages from all incoming ports of a component

(see Definition 4.5 on page 109). Such events are restricted to contain at max one message for

each incoming port of the event processing component. If no message has been received on

a port, a null value represents the absence of a message. Data event tuples are processed by

synchronous and causal synchronous components. The abstract generated superclass for these

timing domains contains an abstract timeStep method which has a data parameter for each

incoming port of such a component. This method is automatically called by the scheduler with

the received data messages. If no message has been transmitted on a certain port, null is passed

as the corresponding argument. To emit messages, a sendPortName method is provided for each

outgoing port which sends the given message via the corresponding port. If this method is called

multiple times during a time interval, only the message from the first call will be transmitted and

a warning is raised.

Figure 5.43 depicts the relevant artifacts needed to implement the behavior of the synchronous

component Adder. It synchronously processes integer values received on its incoming ports

162

5.5. ATOMIC COMPONENT BEHAVIOR IMPLEMENTATION

addend1 and addend2, computes the sum, and emits it via port sum. The abstract method

treat has a parameter for each incoming port and handles the data event tuples. It has to be

implemented in the handwritten subclass. The method sendSum is used to emit messages via

port sum.

treat(int, int)

sendSum(int)

AAdder

�

component Adder {

timing sync;

port

in int addend1,

in int addend2,

out int sum;

}

abstract method
that treats combined
data events

AdderImpl

handcoded behavior
implementation

generated abstract
superclass

�

MA Product-CD
«gen»

Product-CD
«handcoded»

Figure 5.43: Synchronous atomic component Adder, the corresponding generated superclass,

and the handwritten implementation.

An exemplary implementation of the causal synchronous Adder component is given in List-

ing 5.44. If a certain port has not received a value in the current time interval, the missing

value (null) is mapped to zero (ll. 5f). Then, the sum is emitted via port sum using method

sendSum.

Java

«handcoded»

1 public class AdderImpl extends AAdder {

2 @Override

3 protected void timeStep(Integer add1, Integer add2) {

4 // map missing values to zero

5 int a1 = (add1 != null ? add1 : 0);

6 int a2 = (add2 != null ? add2 : 0);

7 sendSum(a1 + a2);

8 }

9 }

Listing 5.44: Implementation of synchronous atomic component Adder.

Time Event Implementation

Explicit time events (see Definition 4.4 on page 106) are processed by instant or delayed com-

ponents and are propagated to the component if it has received a
√

on each incoming port. As

depicted in Figure 5.45, such components have to implement the abstract method timeStep

which is located at the RTE superclass ATimedComponent. This method is automatically

called at the start of a new time interval.

The figure also depicts the instant component Timer which can be used as a timed trigger.

The timer is set via the port setTimer, counts down the set amount of time intervals, and emits

163

5.5. ATOMIC COMPONENT BEHAVIOR IMPLEMENTATION

treatSetTimer(Integer)

sendTrigger(Boolean)

ATimer

component Timer {

timing instant;

port

in Integer setTimer,

out Boolean trigger;

}

TimerImpl

ATimedComponent

timeStep() �
MA

Product-CD
«gen»

Product-CD
«handcoded»

RTE-CD

Figure 5.45: Timed component Timer, the corresponding generated superclass, and the hand-

written implementation.

a trigger signal via its outgoing port trigger. Since it is an instant component, the handwritten

behavior implementation has to implement the method treatSetTimer, to handle single data

events, and the method timeStep, to handle time events.

An exemplary behavior implementation is depicted in Listing 5.46. A private field count-

Down represents the state of the component (l. 2). It is initialized with -1 to start the component

in an inactive state. If a setTimer event is received, the timer is set to the newly received value

Java

«handcoded»

1 public class TimerImpl extends ma.util.gen.ATimer {

2 private int countDown = -1;

3 @Override

4 protected void treatSetTimer(Integer message) {

5 countDown = message;

6 if (countDown < 0) {

7 // Send timer deactivated.

8 sendTrigger(false);

9 }

10 }

11 @Override

12 protected void timeStep() {

13 if (countDown > -1) {

14 countDown--;

15 }

16 if (countDown == 0) {

17 sendTrigger(true);

18 }

19 }

20 }

Listing 5.46: Implementation of atomic timed component Timer which handles single data

and time events.

164

5.5. ATOMIC COMPONENT BEHAVIOR IMPLEMENTATION

(ll. 4f). If the received message is negative, a false is emitted to confirm the deactivation of

the timer (ll. 6-9). If a time event occurs and the value of the timer is greater than -1 (ll. 12-15),

the timer is decremented. If the state variable is equal to zero after the decrement, the timer

emits a true via its port trigger to indicate that the configured time has passed (ll. 16-18).

5.5.2 Integration of Handwritten Code

The handwritten implementations of atomic components have to be used in the simulation to pro-

duce the desired component behavior. However, the MontiArc code generator and the generated

simulation classes do not know in which classes these behavior implementations are located.

One possible solution is to prescribe the name of the implementation. This way, the implemen-

tation name can be uniquely derived from the qualified component name and the corresponding

constructor can be directly called within the generated decomposed components. This solution

is convenient because the simulation user does not have to configure the simulation in any way.

But if, e.g., for testing or stubbing, more than one implementation shall exist for a single com-

ponent, this solution is not feasible. Especially due to the hard coupling caused by the direct

constructor calls, the component implementation can not be exchanged. A valuable solution has

to realize low coupling between generated component classes and handcoded implementations.

Further, it has to be convenient by minimizing needed configuration. The realized generation

gap (see [GHK+15]) enables low coupling between the generated component interface and the

handwritten implementation. Since instantiation of component objects is performed by dedi-

cated factories, the needed configuration effort is minimized.

Component Factories

To decouple decomposed components from the implementation of their contained subcompo-

nents, the abstract factory pattern combined with a singleton is suitable [GHJV95]. Beside the

interface, a factory is generated for each component which is responsible for creating instances

of the simulation component. This factory is generated for atomic as well as decomposed com-

ponents. In a decomposed component, exclusively the generated interfaces and factories of the

contained subcomponents are known and used. This way a decomposed component is decoupled

from the implementations of the subcomponents.

The structure of the generated factory for component DoorEval is depicted in Figure 5.47.

The factory contains a private static singleton field theInstance, which is by default ini-

tialized with an instance of the generated factory. The static create method, that is later on

used in decomposed components to create its subcomponent instances, delegates all calls to the

protected dynamic factory method doCreate of the object theInstance. This dynamic

method is responsible for the concrete object creation. The static register method can be used

to register handwritten factories which subtype the generated factory. It sets theInstance to

the passed factory object. This way, calls of the static create method are then delegated to

the doCreate method of the registered factory and not to the generated default factory. The

reset method resets the singleton instance to the default factory. This way, the default factory

can be used again after another factory has been registered.

165

5.5. ATOMIC COMPONENT BEHAVIOR IMPLEMENTATION

DoorEvalFactory

- DoorEvalFactory theInstance

+ IDoorEval create()

+ register(DoorEvalFactory)

+ reset()

IDoorEval doCreate()

Product-CD
«gen»

Figure 5.47: Generated factory for component DoorEval.

Naming Conventions

To ease the usage of the generated simulation code and to not force the user to implement a

handwritten factory for each atomic component, the generated default factory is already capa-

ble to produce component objects with its doCreate method. Following the common de-

sign paradigm “convention over configuration”, which is used by frameworks, such as Ruby on

Rails[www14q] or Maven[www14k], to minimize configuration overhead, a naming convention

is introduced which derives a default behavior implementation name from a component name.

This default name corresponds to the qualified component name with the postfix Impl. Following

this naming convention, the default behavior implementation name for component DoorEval

is DoorEvalImpl.

Sinve the generated code of a factory shall be compilable in any case and reflections should

be avoided for object creation, the code generator has to handle the following three situations

while generating the doCreate method of the default factory:

1. The current component is decomposed.

2. The current component is atomic and the default implementation exists.

3. The current component is atomic and the default implementation does not exist.

The first case is simply handled by generating a constructor call to the generated concrete imple-

mentation of the decomposed component. The second case is handled similar, but a constructor

call to the default implementation is generated. The last case is handled by generating a throw

of a runtime exception which informs the user to either create a default implementation or to

register a handwritten factory. This way, the generated code is compilable in any case with the

drawback that factories have to be regenerated, after a new behavior implementation has been

added to the project.

Custom Implementation Names

To inject an implementation into the simulation which does not obey to the naming conventions,

a handwritten factory which instantiates such an implementation has to be realized. This factory

has to be a subclass of the default factory and has to be registered at the default factory using its

register method.

Figure 5.48 exemplary depicts how to inject implementations with custom names. The hand-

written class CustomDoorEvalFactory extends the generated default factory DoorEval-

Factory. It provides a static init method and overwrites the dynamic doCreate method.

166

5.5. ATOMIC COMPONENT BEHAVIOR IMPLEMENTATION

DoorEvalFactory

- DoorEvalFactory theInstance

+ IDoorEval create()

+ register(DoorEvalFactory)

+ reset()

IDoorEval doCreate()

CustomDoorEvalFactory

+ init()

IDoorEval doCreate()

public static void init() {

DoorEvalFactory.register(

new CustomDoorEvalFactory());

}

protected IDoorEval doCreate() {

return new DoorEvalStub();

}

Product-CD
«gen»

Product-CD
«handcoded»

Figure 5.48: Custom factory to inject behavior implementations with custom names.

The implementation of these methods is depicted in the dashed box on the left side. The

init method registers a new instance of the custom factory at the default generated factory

and the doCreate method returns a new instance of the DoorEval behavior implementa-

tion DoorEvalStub. This way, the default generated factory DoorEvalFactory, which is

used by all decomposed components that contain a subcomponent with type DoorEval, will

produce DoorEvalStub instances instead of DoorEvalImpl instances.

5.5.3 Components with Side-Effects

As generally stated by requirement LRQ1.1.5, components encapsulate their state and solely

communicate via their defined interface. However, the implementation of atomic component

behavior in Java offers many possibilities to externalize the state of a component and to bypass

the event-based communication paradigm.

Definition 5.1 Dirty component. A dirty component has an implementation with side effects. It

propagates the state of the component to its environment without using the component interface

or accesses state from other components or the underlying operating system. This comprises the

following techniques:

• Read/Write access to non-final static variables.

• Sharing stateful objects.

• Manipulation of the file system.

• Read/Write access to external services.

• Interaction with the operating system.

All these techniques have in common, that they can be misused to directly communicate be-

tween component instances without using ports. While a controlled use of dirty implementations

can be useful for architectural programing, careless use of these concepts has serious impact on

the components and the FOCUS simulation. Consider the example given in Figure 5.49. Com-

ponent A has two subcomponents that instantiate the instant component types B and C. The

167

5.5. ATOMIC COMPONENT BEHAVIOR IMPLEMENTATION

A

add

MA

String
B Buffer(2) C fileboolean boolean

String
String

String
txt

Figure 5.49: Exemplary dirty components.

Time Interval Value add Content

Foo.txt

Value txt Value file

0 a a

1 b ab

2 c abc a abc

3 d abcd ab abcd

Table 5.50: Impact of dirty implementations on the simulation time.

subcomponents are interconnected with a Buffer of size two. It buffers messages until the

buffer size is reached, then it emits messages in a FiFo manner. B accepts a String, appends it to

file Foo.txt, and sends a trigger to denote that the file has been updated (boolean). Further,

the content of the file at the current time interval is emitted (String). After passing the buffer,

this content is emitted via port txt of component A. When C is triggered, it reads the content

of Foo.txt and emits the content of the file. Thus, the content of the file and the trigger, both

emitted by B, arrive at the same time interval.

While this example is obviously constructed, it demonstrates the problem of side effects

within MontiArc simulations. Table 5.50 depicts the values received at port add, the content

of file Foo.txt, as well as the emitted values of the ports txt and file in the course of

simulation time. It can be seen that the emitted values of the ports txt and file differ. While

the former considers the modeled processing delay and emits the expected values, the latter by-

passes the simulation time and thus ignores the modeled delay. Similar effects can be achieved

with the other techniques listed above.

Beside the impact on the simulation time, another negative effect can be observed. C depends

on the existence of file Foo.txt. Thus, a hardwired coupling between C, which consumes the

file, and B, which produces the file, is introduced. Consequently, a C instance is only functional

together with an instance of B, which contradicts to requirements LRQ1.2 and LRQ1.3 since C’s

component interface does not reflect this dependency. If multiple instances of B and C are active

within a single system, unforeseen and non-replicable effects can occur.

Nonetheless, dirty components still have their use in architectural programming. For example,

generated reports can be sent via an e-mail message, websites or the file system can be observed

to trigger a process, or a data base can be accessed. The following advice shall be considered

when developing dirty components:

1. At first, answer the question, whether the introduced side effect is absolutely necessary. If

168

5.6. REDUCTION OF REDUNDANT OBJECTS

the same function can be realized without side effects, choose the implementation without

side effects.

2. Use inner component definitions to encapsulate dependable components, e.g., B and C,

into the same containing component. In this way, dependable components are always

instantiated together with the containing component.

3. Always consider that a dirty component can be instantiated multiple times. Do multiple

instances influence each other with their side effects?

4. To avoid conflicts between multiple instances of dirty components, introduce configura-

tion parameters which allow to configure the shared resource. For example, a configura-

tion parameter File resource can be added to the components A, B, and C. A then

forwards this parameter to the instances of the subcomponents. Consequently, for each

instance of A, a distinct shared resource can be assigned.

5. To support the reuse of a dirty component, precisely document the side effects. For this

purpose, MontiArc’s documentation generator provides the tag @sideEffects. Further

information about component documentation are given in Section 6.7.2.

To not accidentally introduce side effects, the following advice shall be generally considered

for component implementations:

1. Do not read from and do not write to static non-final fields.

2. The state of a component, and thus the reaction to incoming data events, shall only depend

on primitive fields, private unshared objects, or immutable shared objects. Please note,

components can technically share objects by sending them via a connector to another

component since only the pointer to the object is transmitted (see Section 4.6). Thus, if

the state of a component is influenced by an object, it shall not be transmitted to another

component or it shall be immutable.

3. Do not communicate over the file system.

4. Be careful with object instances which are created by factories or are injected. Depending

on the corresponding factory implementation or the context, these objects can be single-

tons [GHJV95] which are shared among all component instances of a system.

5.6 Reduction of Redundant Objects

As claimed by requirement SRQ10, memory inefficiencies are to be avoided. Thus, optimiza-

tions are introduced for certain component patterns and scenarios to reduce the amount of in-

stantiated simulation objects. The realized optimizations, which are performed by the code

generator, are discussed in the following.

5.6.1 Atomic Components with a Single Incoming Port

The target of this optimization is to reduce the amount of needed port objects in atomic compo-

nents. Since the incoming port object from a connected component is used as outgoing port, no

dedicated objects for outgoing ports are needed. Thus, only the amount of incoming port objects

can be reduced. This is realized by using specialized components provided by the RTE which

169

5.6. REDUCTION OF REDUNDANT OBJECTS

also serve as incoming ports. This is possible if an atomic component has only one incoming

port. In the following these components are called single-in components.

The extensions of the RTE to provide specialized superclasses for single-in components are

depicted in Figure 5.51. The abstract class ASingleIn combines the properties of a port by

extending class Port and the properties of a component by implementing interface ISimCom-

ponent (a description of these RTE elements is given in Section 4.2.2). This abstract class

is used as superclass for the generated component class instead of the abstract class ACom-

ponent if the code generator detects an untimed single-in component. For timed single-in

components, the RTE provides superclass ATimedSingleIn. It extends class ASingleIn

and additionally implements interface ISimTimedComponent to inherit the properties of a

timed component. This way, the generated component classes for single-in components can act

as both, incoming port and component.

Port

«abstract»

ASingleIn

Tin

«interface»

ISimComponent

Tin

«abstract»

ATimedSingleIn

Tin

«interface»

ISimTimedComponent

RTE-CD

Figure 5.51: Extension of the RTE to support single-in components.

Figure 5.52 compares the generated code of a regular atomic component with the optimized

code of a single-in atomic component. In the upper left corner, atomic component DoorEval

is shown which has two incoming ports doorStatus and switchStatus. An excerpt of

the generated class ADoorEval is shown in the top right corner. It extends the RTE class

ATimedComponent since the default behavior class is timed (cf. Section 4.4). It has a private

field for each incoming port and the corresponding getters return these fields.

The lower left corner of Figure 5.52 depicts single-in component AlarmCheck which has

only one incoming port named alarmStatus. An excerpt of the resulting component class

AAlarmCheck is given in the lower right corner. The used superclass is ATimedSingleIn

parametrized to the port type AlarmStatus. In case of a single-in component, no field is

generated for the incoming port alarmStatus and the corresponding getter returns the com-

ponent itself (this).

Please note that this optimization only effects the generated code. Neither a component mod-

eler who reuses a single-in component in a decomposed component type, nor the implementer

of the component behavior of a single-in component has to deal with this optimizations. Since

the concrete port class is determined by the inheritance hierarchy, this optimization heavily in-

fluences the testability of single-in components. For example, it is not possible to instrument a

170

5.6. REDUCTION OF REDUNDANT OBJECTS

public abstract class ADoorEval

extends ATimedComponent … {

private IInSimPort<DoorStatus> doorStatus;

private IInSimPort<SwitchStatus> switchStatus;

public ISimPort<DoorStatus> getDoorStatus() {

return this.doorStatus;

}

public ISimPort<SwitchStatus> getSwitchStatus() {…}

}

component DoorEval {

port

in DoorStatus,

in SwitchStatus,

out OnOffRequest;

}

component AlarmCheck {

port

in AlarmStatus,

out BlinkRequest;

}

�

public abstract class AAlarmCheck

extends ATimedSingleIn<AlarmStatus> … {

public ISimPort<AlarmStatus> getAlarmStatus() {

return this;

}

}

MA Java

«gen»

Figure 5.52: Optimization: Difference between the generated code for single-in and regular

atomic components.

single-in component with test ports since component and port implementation are unified. The

experience has shown that the resulting little reduction of allocated memory does not justify

the absence of testability. Consequently, this optimization is disabled by default and has to be

explicitly switched on. It can be useful if a simulation shall be executed in a very constrained en-

vironment. Otherwise, it is highly recommended to keep this optimization disabled. Especially,

if a component library is to be developed.

5.6.2 Reduction of ForwardPorts in Decomposed Components

Actually, decomposed components do not produce behavior themselves and generated Java com-

ponents do not need to instantiate dedicated port objects. If asked for an outgoing or incoming

port (via a getter), they simply can return the outgoing or incoming port of the connected sub-

component. As explained in Section 5.4.3, this is only possible for outgoing ports since they

can be connected to a single outgoing port of a subcomponent. Since incoming ports can be

connected to more than one receiver, this optimization cannot be applied straight forward for

incoming ports. For this reason, ForwardPorts are introduced which are instantiated for in-

coming ports of decomposed components. All incoming ports of the connected subcomponents

are registered at these forwarding ports during the component setup. The accept method of

these ports simply delegates the given message to the accept method of the connected ports.

The aim of this optimization is to reduce the amount of ForwardPorts. If only one target

is connected to an incoming port, the same mechanism can be applied for incoming ports of a

decomposed component, too. In this case, the corresponding getter for the incoming port simply

returns the incoming port of the connected subcomponent. Hence, no ForwardPort object

has to be created and the delegation step from forwarding to connected ports is omitted.

Figure 5.53 illustrates this optimization by comparing the previous with the optimized object

171

5.6. REDUCTION OF REDUNDANT OBJECTS

�:LightCtrl

:DoorEval

:Port

doorStatus
component

receiver
doorStatus

:ForwardPort

:LightCtrl

:DoorEval

:Port

/doorStatus
component

doorStatus

LightCtrl

DoorEval
DoorStatus

�

doorEval

doorEval

MA RT-OD

�
RT-OD

Figure 5.53: Optimization: Avoiding not needed ForwardPorts in decomposed components.

graph of component LighCtrl. On the left-hand side, an excerpt of the component definition

is given. It can be seen that the incoming port doorStatus is exclusively connected to an

incoming port of subcomponent doorEval. The object diagram in the top right corner depicts

the unoptimized object graph which represents the marked connector and ports of the compo-

nent. The LighCtrl object has a link doorStatus to a ForwardPort which is connected

to the port object that itself is linked to the object that represents subcomponent doorEval.

Since only a single receiver is registered at the ForwardPort, it can be omitted.

The bottom right corner contains the optimized object graph. It is shown that the LightCtrl

object does not have a linked ForwardPort anymore. It is replaced by a derived link which

directly points to the connected port object that belongs to subcomponent doorEval. On the

level of the generated code the derived link is realized by the port getter. In the optimized version

it returns the incoming port of its subcomponent instead of the private ForwardPort field.

5.6.3 Reuse of Tick Objects

As explained in Section 4.3.2, a component emits a tick on each outgoing port when it has re-

ceived a tick on each incoming port. Beside their semantics, tick objects do not contain any

further information or payload. Consequently, tick objects are reused in the simulation to avoid

the overhead of tick object creation and ease tick comparison. Since ports in a MontiArc simu-

lation are strictly typed using generics, ticks, just like messages, have to be typed to the type of

the port which emits the tick. Thus, three solutions for the typesafe reuse of ticks are feasible:

1. A central rawtype tick object is stored in a constant which is used by all outgoing ports to

emit ticks. Since the tick implementation is final and does not contain any generic payload,

using a rawtype tick is safe at simulation runtime. Nevertheless, this solution generates

compiler warnings since the rawtype tick needs unchecked conversation to conform to the

172

5.7. MONTIARC TOOLS

required type of the send method’s argument. These warnings can be either ignored or

suppressed each time the central tick is used. Both options are not recommended since

either potentially upcoming new warnings are hidden by the high amount of ignored warn-

ings, or the client code is cluttered with annotations that suppress the warnings.

2. To overcome the drawbacks of the first solution, a typed tick object for each used message

type can be managed by a central tick factory. The ticks are stored in a map which maps

each type name to the corresponding tick object. Components initially register a tick for

each outgoing port at the factory. If a tick is needed, it can be obtained by passing the type

name to a generic get method. While solving the type safety problem, some additional

overhead is generated by the get() method of the internally used map which is expected

to be executed in constant-time.

3. The implemented solution combines both, type safety without warnings in the client code

while avoiding additional overhead. Therefore, the central rawtype tick object is stored

in a private constant in class Tick. Further, a static generic method <T> Tick<T>

get() is provided for the clients which returns the rawtype tick. Due to the generic type

parameters of the method, the returned tick seem to be correctly typed for the client and

the client code can be compiled without warnings.

By reusing a central tick object to represent the time flow on all channels in a simulation, the

overall amount of simulation objects is extremely reduced.

5.7 MontiArc Tools

MontiArc provides several tools which can be used to develop MontiArc components. A basic

command line interface (CLI) tool is presented in Section 5.7.1. It is internally used by the

MontiArc Maven plugin which is described in Section 5.7.2. Finally, Section 5.7.3 presents the

MontiArc integrated development environment (IDE) which integrates both other tools. In this

way the functionality increases and becomes more powerful from tool to tool, while the concrete

usage of the basic CLI tool becomes more transparent for the end user.

5.7.1 Command Line Interface

MontiArc’s main Java class MontiArcGeneratorTool is controlled and configured using

parameters which are passed to its constructor. It provides a static main method which can be

used directly from a command line. The accepted parameters are depicted and explained in

Table 5.54. Since MontiArc provides a default configuration, several parameters are optional.

Thus, it is possible to use the aforementioned tool by passing the path to the models that are to

be processed as a single parameter.

173

5.7. MONTIARC TOOLS

Parameter Description

($directory | $file) Input $directory or input $file. If a directory is used, all con-

tained model files are processed. Alternatively, a model file

may be directly passed to the tool. It is possible to pass multi-

ple directories and/or model files to the tool.

-mp ($directory | $jarFile) Adds the given $directory or $jarFile to the modelpath of the

tool. The modelpath is used to load referenced models, model

elements, or further exported symbol table entries. This pa-

rameter can be used multiple times. The default modelpath

contains the directory src/main/models.

-symtabdir $directory Output directory for exported symbol table en-

tries. If this parameter is omitted, the default

symbol table directory target/generated-

sources/montiarc/symboltable is used.

-out $directory Output directory for generated files or further artifacts cre-

ated during the tool execution. If this parameter is omit-

ted, the default output directory target/generated-

sources/montiarc/sourcecode is used.

-analysis $modelKind

$workflow

Executes the workflow registered with id $workflow during the

analysis phase of the tool execution. This workflow is executed

on models with kind $modelKind. For example, -analysis

arc parse will execute the parsing workflow on all pro-

cessed MontiArc models. Model kind ALL can be used to

execute the workflow for all processable model kinds. Mul-

tiple analysis workflows can be registered which are executed

in the given order. If no analysis and synthesis (see below)

workflows are explicitly given, the following default analysis

workflows are registered: parse for all model kinds, set-

name and addImports for Java models, init and cre-

ateExported for all model kinds. Please note that in this

case, the default synthesis workflows are registered, too. A de-

scription of the mentioned workflows is given in Section 5.1.

-synthesis $modelKind

$workflow

Executes the workflow registered with id $workflow during the

synthesis phase of the tool execution. This workflow is ex-

ecuted on models with kind $modelKind. Multiple synthesis

workflows can be registered which are executed in the given

order. If no analysis (see above) and synthesis workflows are

given, the following default synthesis workflows are registered

together with the default analysis workflows:

Table 5.54 continued on next page

174

5.7. MONTIARC TOOLS

Parameter Description

-synthesis
(continued)

prepareCheck for all model kinds, preCheckTrans-

formation, check, and preCodegenTransforma-

tion for MontiArc models. A description of these workflows

is given in Section 5.1.

-genlog This optional parameter enables logging within the genera-

tion process. Two kinds of artifacts are created. First, a tex-

tual protocol for each processed model and registered genera-

tor. It protocols which templates are called and which internal

variables are set within the generation process. Second, for

each processed model a GraphML (Graph Markup Language)

[BEH+02] file is generated which can be visualized with, e.g.,

yEd2. The graph contains the source model, the called tem-

plates, and the produced artifacts. Please note, the layout of

the contained graph has to be adjusted manually. Alternatively,

yEd can automatically layout the graph (Tools → Fit Node to

Label. . . , Layout → Hierarchical. . .).

-generator $name

$nodeClass

Executes a generator workflow. If it discovers an AST node

of class $nodeClass, it passes this node to generator $name.

Node class and generator name have to be fully qualified.

Nevertheless, montiarccomponent serves as an abbrevi-

ation for the AST node of the MontiArc compilation unit. The

generator and its templates have to be available in the Java

class path. A list of MontiArc generators located in package

mc.umlp.arc is given in Table 5.55.

Table 5.54: Parameters of the MontiArcGeneratorTool.

Generator Description

ComponentInterfaceMain Generates Java interfaces for each component definition.

ComponentFactoryMain Generates a Java factory for each component definition.

ComponentMain Generates abstract superclasses for atomic components

and implementations for decomposed components.

ComponentSetupMain Generates a setup class for each component to simplify

asynchronous usage of MontiArc components in Java

classes. Such a setup offers methods to pass messages to

the incoming ports of a component. The outgoing ports

of the component trigger observers as a call-back which

have to be registered for each outgoing port.

Table 5.55 continued on next page

2yEd website http://www.yworks.com/en/products_yed_about.html.

175

http://www.yworks.com/en/products_yed_about.html

5.7. MONTIARC TOOLS

Generator Description

ComponentStubMain Generates a stub implementation for each decomposed

component. Stubs can be used in white-box tests to re-

place the concrete implementation of decomposed com-

ponents with stub implementations.

SimMain Generates an interactive simulation for each processed

component. Please note that this generator has been de-

veloped in a lab course and does not support all MontiArc

features (e.g., generic components are not supported).

Table 5.55: Provided MontiArc generators in package mc.umlp.arc.

The list of available generators is given in Table 5.55. The default configuration of the

MontiArcGeneratorTool contains the three generators ComponentInterfaceMain,

ComponentFactoryMain and ComponentMain. Thus, if no concrete generators are reg-

istered using the -generator parameter (cf. Table 5.54), these three generators are executed

for all processed MontiArc models.

5.7.2 MontiArc Maven Plugin

The MontiArc Maven Plugin provides means to use MontiArc within Maven builds. It uses

the previously described command line tool (cf. Section 5.7.1) and provides all needed depen-

dencies. This way, the user only has to adjust the configuration if the default configuration is

not sufficient. The plugin provides four different goals which are bound to different phases of

a Maven build. For an introduction to the Maven build lifecycle and its phases please refer to

[www14j]. A description of all goals and their associated phases is given in Table 5.56. Avail-

able MontiArc specific configuration parameters are described in Table 5.57. Please note that

the MontiArc Maven Plugin inherits further MontiCore specific configuration parameters from

its base tooling. Please refer to [www12] for a documentation of these parameters.

Goal Phase Description

clean clean This goal deletes all files generated by previous

plugin executions. Namely the generator out-

put directory, the symbol table directory, and the

modelpath configuration file (ma.cfg).

configure initialize Configures the current Maven project for the

execution of MontiArc. In particular, the mo-

delpath configuration file (ma.cfg) is gener-

ated by adding references to the artifacts which

correspond to the project dependencies with

classifiers models, symbols, sources, and

bootstrap.

Table 5.56 continued on next page

176

5.7. MONTIARC TOOLS

Goal Phase Description

generate generate-sources Invokes the configured MontiArc generators.

By default, interfaces, factories, and component

classes are generated for each MontiArc compo-

nent located in the models directory.

doc prepare-package Generates a HTML documentation similar to

Java Doc for all components located in the mod-

els directory. By default, the documentation is

generated to directory target/madoc.

Table 5.56: Goals of the MontiArc Maven Plugin and their target phases.

Parameter Default Value Description

buildIncrementally true Determines whether MontiArc should generate

incrementally. If set to true, only models that

have been changed since the last generation pro-

cess are passed to the MontiArc tool.

checkCoCos true Determines whether MontiArc should check

context conditions (see Section 3.5) for pro-

cessed models. If these checks fail, code gen-

eration is skipped for the affected model.

countMetric false Determines whether MontiArc should execute

a metric which counts elements of processed

models. The results are exported to file Com-

ponentStatistics.txt in the configured

output directory.

generateCDTypes true Determines whether MontiArc should generate

Java types from processed UML/P CDs which

are used for port data type definitions. If CD

types are used within a component, this param-

eter should not be switched to false. If so, the

generated component classes cannot be com-

piled since referenced data types are missing.

generateComponent-

Setup

false Determines whether MontiArc should gener-

ate setup classes using generator Component-

SetupMain (cf. Table 5.55).

generateStubs false Determines whether MontiArc should gener-

ate stub superclasses using generator Compo-

nentStubMain (cf. Table 5.55).

Table 5.57 continued on next page

177

5.7. MONTIARC TOOLS

Parameter Default Value Description

generateInteractive-

Simulation

false Determines whether MontiArc should generate

a simple interactive component simulation using

generator SimMain (cf. Table 5.55).

modelDirectory src/main

/models

Sets the model input directory.

docOutputDirectory target/madoc Sets the target directory for generated compo-

nent documentation.

generateProtocol false Determines whether log files have to be gener-

ated (see Table 5.54, -genlog).

optimizeSingleIn false Determines if components with a single incom-

ing port should be optimized by merging the

port and the component into a single object.

optimizeSingleIn
(continued)

false Please be aware that this heavily influences

testability of affected components since ports

cannot be replaced by test ports anymore (see

Section 5.6.1).

docVersion ${project.version} Version number respectively text which is used

for @version tags (cf. Section 6.7.2) in the

generated documentation.

javaDocUrls Java 7 API doc A list of URLs that are used to resolve Java API

documentations of types which are referenced

with @link tags (cf. Section 6.7.2).

isPublic true Configures goal doc to generate a documenta-

tion of model elements with public visibility.

If set to false, protected elements, e.g., compo-

nents and connectors, are also considered for the

generated documentation.

Table 5.57: Configuration parameters of the MontiArc Maven Plugin.

5.7.3 Eclipse IDE

The MontiArc Eclipse IDE provides an editor and further functionality to create, modify, and

test MontiArc components. Additionally, it integrates the previously described MontiArc Maven

Plugin into Eclipse. To ease modeling with MontiArc, the MontiArc IDE offers the following

functionalities:

• New project wizard for MontiArc projects. Based on a given name it creates an Eclipse

project which already contains the default folder structure and a default Maven config-

uration. Projects created with this wizard are configured to reuse the default MontiArc

libraries (cf. Section 6.8.2) and to process I/O-Test-models (see Section 6.4) within man-

ually triggered Maven builds.

178

5.7. MONTIARC TOOLS

• New model wizard for MontiArc and I/O-Test models. Creates empty components or test

models.

• Text editors for MontiArc and I/O-Test models.

• Syntax highlighting of language keywords to ease textual modeling.

• Outline that displays the structure of the currently opened model to gain an overview in

large models.

• Problem reports that display failed context condition checks. Associates markers point

to the model element that injured the context condition. In this way, defective models are

easier to repair.

• Supports active specification by context sensitive autocompletion to prevent creating de-

fective models:

– Offers available component or data types to easily reference library components as

subcomponents.

– Helps to correctly connect ports. Only valid targets, which are compatible with the

current connector source, are offered.

– Offers suitable model elements and keywords depending on the current model state.

– Helps to implement I/O-Test models by creating suitable test templates for the cur-

rent component under test.

• Integrated documentation of referenced models available via autocompletion or mouse

hover. The documented functionality of referenced models can be used without having

access to the model’s sources.

• Integration of the MontiArc Maven Plugin into Eclipse builds. If automatic builds are

activated, the IDE automatically keeps generated artifacts of changed MontiArc models

up to date. Changes are directly reflected in the generated code.

A screenshot of the MontiArc IDE that demonstrates some of these features is given in Fig-

ure 5.58. It can be seen that the currently opened component model ABP produces two warnings.

The affected model elements are marked with a warning symbol and a corresponding problem

report is shown in the Problems view. The active autocompletion offers two distinct com-

ponent types for the already typed prefix “Los”. Further, it provides documentation of the

currently selected type LossyDelayedChannel. On the right-hand side, the outline gives

an overview of the component’s structure.

179

5.7. MONTIARC TOOLS

Problem reports
with markers

Autocompletion with
integrated

documentation

Model outline

Text editor with
syntax

highlighting

Figure 5.58: MontiArc Eclipse IDE.

180

Chapter 6

Tutorial: Development and Simulation of

MontiArc Components

The MontiArc architecture description language (ADL) presented in Chapter 3 is used to model

distributed, interactive systems. Using the corresponding FOCUS simulation, one is able to

rapidly prototype, test, and explore the modeled system. MontiArc comes with an integrated

development environment (IDE) (see Section 5.7) that supports the modeler with integrated

context condition checks and active specification to simplify modeling. The contained build

tools support continuous and distributed component development. This tutorial presents how

to use the tools to model and implement MontiArc components. A basic knowledge about

MontiArc and Java is required. The following aspects of MontiArc development are covered

and demonstrated:

• Setup: How to get started and set up the MontiArc IDE is presented in Section 6.1.

• Modeling: Modeling of atomic and decomposed MontiArc components is demonstrated

using the running example of the alternating bit protocol in Section 6.2.

• Behavior implementation: The implementation of atomic component behavior is pre-

sented in Section 6.3.

• Testing: How to write and execute black- and white-box tests for MontiArc components

is shown in Section 6.4.

• Generalization: Means of the MontiArc language that increase reusability of components

are demonstrated in Section 6.5.

• Optimization Tests: Techniques to test and compare different system configurations are

described in Section 6.6.

• Documentation: How to document MontiArc components to simplify and support their

reuse is shown in Section 6.7.

Beside this main path of the tutorial, which follows the consistent development of MontiArc

components, this chapter contains additional background information for the interested reader

or advanced MontiArc modeler. To visually separate corresponding sections from the main path

of the tutorial, a ∗ is appended to the section names. These sections can be skipped if simply

following the story of the tutorial. This mainly affects:

• Section 6.8 that depicts the structure of MontiArc libraries and describes how to use and

create them, and

• Section 6.9 that explains how to physically distribute a MontiArc simulation on distinct

nodes.

181

6.1. GETTING STARTED

6.1 Getting Started

This tutorial is based on the MontiArc Eclipse IDE which is presented in Section 5.7.3. It

is recommended to download a fresh Eclipse that already contains a Maven integration (m2e)

from http://www.eclipse.org/downloads/1 and extract it to a desired directory. If

an existing Eclipse is to be used, please make sure that m2e is installed in a version >= 1.4.0.

Figure 6.1: Install MontiArc in Eclipse using the MontiArc update site.

The MontiArc Eclipse tooling may be installed either via update site or manually. The in-

stallation using the update site is recommended since updates of the MontiArc tooling can be

automatically acquired. Thus, we perform the following steps to install MontiArc using the

update site:

1. Start Eclipse.

2. Open the help menu and press “Install New Software. . . ”. The resulting dialogue is shown

in Figure 6.1.

3. Insert the URL of the update site2 into the “Work with” field. Select the MontiArc

Eclipse Plugin and the MontiArc m2e Extension in version 2.5.0 as well as the DSLTool

m2e Extension as depicted in Figure 6.1. The MontiArc plugin provides the MontiArc

IDE presented in Section 5.7.3, the m2e extensions handle the integration of the monti-

arc-maven-plugin (see Section 5.7.2) respectively the dsltool-maven-plugin into Eclipse

builds. Please note that this tutorial is tested with MontiArc 2.5.0. Thus, it is recom-

mended to install this version. If a newer version is displayed in the installation dialogue,

1This tutorial is tested with Eclipse IDE for Java Developers Version: Kepler Service Release 1 and Eclipse Stan-

dard/SDK Version: Luna Service Release 1 (4.4.1).
2A reference to the update site and the standalone installation can be found here: http://www.monticore.

de/languages/montiarc/download/.

182

http://www.eclipse.org/downloads/
http://www.monticore.de/languages/montiarc/download/
http://www.monticore.de/languages/montiarc/download/

6.2. ILLUSTRATIVE EXAMPLE - ALTERNATING BIT PROTOCOL

the checkbox “Show only the latest versions of available software” has to be unchecked.

4. Press “Next” twice, accept the licence agreement, press finish and restart Eclipse.

To manually install MontiArc, download the MontiArc archive from the website2 and ex-

tract it into the plugins or dropins sub-directory of your Eclipse installation. Then restart

Eclipse with argument -clean to refresh its plugin registry.

To check whether MontiArc is installed and Eclipse is set up correctly, create a new MontiArc

Project. For this, select the “File” menu, select “New” and “Other”. Then select “MontiArc-

Project” in the wizard and press “Next” to insert a project name, e.g., “HelloMontiArc”, and

press “Finish”. The project structure of the created project is depicted on the left side of Fig-

ure 6.2 and is based on common Maven conventions. Further information about the project

structure is given in the contained readme.txt file. Component models should be created

in directory “src/main/models”. Create a new package, e.g., “ma.hello” in this folder, then

right-click the package, select “New”, “Other” and “MontiArc-Component”. After entering a

component name, e.g., “HelloMontiArc”, select “Finish”. The created component should be

opened in the MontiArc editor afterwards.

Figure 6.2: A MontiArc Eclipse project.

To test the Maven setup, right-click on the project, select “Run As” and “Maven install”.

During the initial execution, Maven automatically downloads MontiArc, its dependencies, and

needed Maven plugins to store them in the local Maven repository. Update the project by right-

clicking it, select “Maven” and “Update Project”, then press “OK”. If the build does not succeed

or the project is still marked with errors after an update, please check the MontiArc FAQ3.

6.2 Illustrative Example - Alternating Bit Protocol

We continue by creating an architectural models using MontiArc. For this purpose we initially

introduce the Alternating Bit Protocol (ABP) as a running example which is used within this

chapter. After discussing its requirements, we explain how to set up the example and how to

model the contained protocol components with the MontiArc IDE.

3MontiArc FAQ, http://www.monticore.de/languages/montiarc/faq/

183

http://www.monticore.de/languages/montiarc/faq/

6.2. ILLUSTRATIVE EXAMPLE - ALTERNATING BIT PROTOCOL

The ABP is a very simple data link layer protocol which ensures lossless transmission of

messages over an unreliable medium [www14d]. It mainly consists of a sender and a receiver

component that are connected as depicted in Figure 6.3. The sender combines a received

message with an acknowledgement bit to an ABPMessage which is transmitted via the lossy

channel med1 to the receiver. The receiver then forwards the contained message to port

transmittedMsg and sends the contained bit back to the sender via lossy channel med2. If

this bit is equivalent to the last sent bit, the sender will continue transmitting the next message

with an inverted bit. If the sender does not receive an acknowledgement bit within a defined

time span or the received bit differs from the last sent bit, the message has been lost. Thus, the

sender transmits the last message again.

ABP

msg
transmitted

Msg

ABPSender

sender

ABPReceiver

receiver

LossyDelayed

Channel med1

String

LossyDelayed

Channel med2

String

ABPMessage ABPMessage

booleanboolean

MA

Figure 6.3: Alternating Bit Protocol component model.

6.2.1 Requirements

The behavior of the ABP is specified by the following requirements. It is distinguished between

sender and receiver requirements that either specify the behavior of the sender part or the receiver

part of the ABP.

ABPSender Requirements

ABP S1 The sender has to store the newest transmission flag. It is alternated for each message

that has to be transmitted. The initial transmission flag is true.
ABP S2 A sender has a message buffer realized as a FIFO queue.
ABP S3 The sender has two states:

ABP S3.1 RDY: Sender is ready to transmit data. The message buffer is empty in this state.
ABP S3.2 W8ING: Sender is waiting for an acknowledgment of transmitted data. The mes-

sage buffer contains one or more messages in this state.
ABP S4 The initial state of the sender is RDY.
ABP S5 If the sender is in state RDY:

ABP S5.1 . . . and it receives a message, the content of the message is encapsulated into an

ABPMessage object together with the current transmission flag. This object is

then emitted and a timeout is started that lasts three time intervals. The message

184

6.2. ILLUSTRATIVE EXAMPLE - ALTERNATING BIT PROTOCOL

is preventively stored in the buffer in case it needs to be resend. Then, the sender

switches to state W8ING.

ABP S5.2 . . . and it receives an acknowledgment it is ignored.

ABP S6 If the sender is in state W8ING:

ABP S6.1 . . . and receives a message, the message is buffered.

ABP S6.2 . . . and receives an acknowledgment that matches the current transmission flag,

the transmission flag is inverted and the transmitted message is removed from

the buffer. If existing, the next buffered message is transmitted (see ABP S5.1)

and the timeout timer is set to three time intervals. If the buffer does not contain

any further elements, the sender switches to state RDY and the timeout timer has

to be deactivated.

ABP S6.3 . . . and receives an acknowledgment that does not match the current transmission

flag, the sender has to resent the last message that is stored in the buffer (see

ABP S5.1).

ABP S6.4 . . . and does not receive an acknowledgment for a period of three time intervals,

the sender has to resent the last message that is stored in the buffer (see ABP -

S5.1).

ABPReceiver Requirements

ABP R1 The receiver has to store the transmission flag of the latest transmitted ABPMessage.

ABP R2 This locally stored flag is initialized with false. Thus, the receiver initially expects

a transmission flag with the value true.

ABP R3 If an ABPMessage with an “ack” value (the value of the alternating bit) that differs

from the locally stored transmission flag is received, the last transmission has been

successful. Thus, the received flag has to be stored and sent back to the sender.

Additionally, the payload of the ABPMessage is emitted.

ABP R4 If an ABPMessage with an “ack” value equal to the stored transmission flag is re-

ceived, the last transmission has not been successful. Thus, to signal the sender that

the last transmission failed, the stored flag is to be resent.

6.2.2 Example Setup

The following steps help to set up a common base for the ABP example:

1. Download example “Tutorial: Alternating Bit Protocol” from the examples section4 in

version 2.5.0 from the MontiArc website.

2. Import the example into the Eclipse workspace by selecting “File” and “Import”.

3. Select “General” and “Existing Projects into Workspace” and press “Next” .

4. Perform the following steps in the import wizard that are also depicted in Figure 6.4:

a) Toggle “Select archive file”,

b) press “Browse” and then open the downloaded zip archive in the file browser. The

project that is to be imported should be selected automatically.

4MontiArc examples, http://www.monticore.de/languages/montiarc/examples/.

185

http://www.monticore.de/languages/montiarc/examples/

6.2. ILLUSTRATIVE EXAMPLE - ALTERNATING BIT PROTOCOL

4. a)
4. b)

4. c)

Figure 6.4: Import the initial example project.

c) Then press “Finish”.

5. Update the created project as depicted in Figure 6.5 by right-clicking the project, selecting

“Maven” and “Update Project. . . ”.

6. Finally perform a Maven install by right-clicking the project and selecting “Run as” and

“Maven install”.

1. right-click

2.

3.

Figure 6.5: Updating a Maven project.

6.2.3 Modeling

If the imported project does not contain any errors and the executed Maven build executes suc-

cessfully, you can start detailing the contained component models. As depicted in Figure 6.3,

the component ABP (located in package abp within the directory src/main/models) needs

186

6.2. ILLUSTRATIVE EXAMPLE - ALTERNATING BIT PROTOCOL

a port to accept and a port to deliver transmitted messages. Thus, we add the ports msg and

transmittedMsg to component ABP (see Listing 6.6).

MA

�

1 port

2 in String msg,

3 out String transmittedMsg;

Listing 6.6: The port interface of component ABP.

Then, we model the interface of component ABPSender that is located in the same package.

It needs a port to accept String data messages (message), a port to accept an acknowledgment

bit coded as a Boolean value from the receiver (ack), and a port to transmit alternating bit

messages abpMessage. Please note that the example project already contains a data type

definition ABPMessage which is used as data type for the latter port. It is located in package

abp in the Java source folder and envelops a data message together with an acknowledgment

bit. The resulting interface of component ABPSender is depicted in Listing 6.7.

MA

�

1 port

2 in String message,

3 in Boolean ack,

4 out ABPMessage abpMessage;

Listing 6.7: ABPSender component port interface.

Afterwards, we define the interface of component ABPReceiver. It has to accept alternating

bit messages (abpMessage) and transmit the contained data via port message. It also has to

send back the acknowledgment bit to the sender (ack). Since the component does not need any

time information, we select the untimed timing domain. The expected component interface is

depicted in Listing 6.8.

MA

�

1 timing untimed;

2 port

3 in ABPMessage abpMessage,

4 out Boolean ack,

5 out String message;

Listing 6.8: ABPReceiver component port interface and timing domain.

Now, we are ready to implement the internal structure of component ABP by decomposing it.

For this, we declare some subcomponents and add connectors which connect the interfaces of

the subcomponents. Subcomponents start with the keyword component followed by the in-

stantiated component type and an optional name. As depicted in Figure 6.9, the autocompletion

(activated by pressing Ctrl + space) helps by offering available component types. Utilizing this

feature, we add the following subcomponents to component ABP:

• A subcomponent sender with type ABPSender (its interface has been defined above).

187

6.2. ILLUSTRATIVE EXAMPLE - ALTERNATING BIT PROTOCOL

• Another lossy delayed channel (component type LossyDelayedChannel) named

med2. As suggested by the autocompletion, this component type is generic and pa-

rameterizable. Similar to med1, we parametrize med2 by assigning Boolean to type

parameter T. We further configure the component with a loss rate of 50 percent and a

delay of one time interval. The loss rate is deterministically determined by the passed

ControlledRandom object which is configured with the String "1010". It is inter-

preted modulo wise to determine whether a received message is to be lost. A 1 means that

the message is transmitted, a 0 means that the message is lost. In this way, the 1st, 3rd,

5th, . . . messages are transmitted and the 2nd, 4th, 6th, . . . messages are lost.

• A subcomponent named receiver with type ABPReceiver.

Figure 6.9: Editor autocompletion to add subcomponents.

The editor will now display some warnings about unused ports of component ABP and its sub-

components. To fix these issues, we connect the contained subcomponents with each other and

the outer interface of the component. You may either uses simple connectors (see Section 3.4.3)

which are directly attached to the name of a subcomponent or regular connectors. The following

ports have to be connected:

• Port msg with port message from subcomponent sender,

• port abpMessage from subcomponent sender with port portIn from subcomponent

med1,

• port portOut from subcomponent med1 with port abpMessage from subcomponent

receiver,

• port ack from subcomponent receiver with port portIn from subcomponent med2,

• port portOut from subcomponent med2 with port ack from subcomponent sender,

• port message from subcomponent receiver with port transmittedMsg.

The resulting decomposition, which uses a mixture of simple (cf. ll. 2, 6, 9f and 14) and

188

6.2. ILLUSTRATIVE EXAMPLE - ALTERNATING BIT PROTOCOL

regular connectors (cf. l. 16), is depicted in Listing 6.10.

MA

�

1 component ABPSender

2 sender [abpMessage -> med1.portIn];

3

4 component LossyDelayedChannel<ABPMessage>

5 (new ControlledRandom("1010"), 1) // lose every 2nd message

6 med1 [portOut -> receiver.abpMessage];

7

8 component ABPReceiver

9 receiver [ack -> med2.portIn;

10 message -> transmittedMsg];

11

12 component LossyDelayedChannel<Boolean>

13 (new ControlledRandom("1010"), 1)

14 med2 [portOut -> sender.ack];

15

16 connect msg -> sender.message;

Listing 6.10: Subcomponents and connectors of the ABP component.

According to requirement ABP S5.1, the sender has to resent messages after a timeout of three

time intervals. Consequently, we decompose component ABPSender the following way:

1. We add an inner component definition ABPInnerSender instantiated as subcomponent

sender. This component implements the behavior of the ABP sender. Thus, on the one

hand it handles all accepted messages from its surrounding component ABPSender. So

it has to provide the same ports messsage, ack, and abpMessage with the same data

types and directions. And, on the other hand, it controls the timer and reacts to timer

events. Thus, we add an outgoing port setTimer to set the timer with an Integer

value and an incoming port timerEvent with data type Boolean to get notified with

timeouts. The resulting inner component definition is depicted in Listing 6.11. The inter-

face has been split into two port groups to emphasize the relation of the grouped ports.

2. Add a subcomponent with library type Timer which realizes timeouts.

3. By adding an autoconnect port statement to component ABPSender, we automa-

tically connect most of the ports.

4. The warning markers inform us, that the ports trigger from subcomponent timer and

timerEvent from subcomponent sender are not connected yet. So we additionally

connect these ports by creating a corresponding connector.

5. Now, another warning marker informs about a feedback cycle between subcomponents

sender and timer. To break this cycle, we add a subcomponent which instantiates the

library type FixDelay. Then, we change the target from the above created connector to

the incoming port of the delay subcomponent and let the delay subcomponent sent to the

previous target sender.timerEvent. An excerpt which depicts these connections is

given in Listing 6.12.

To ease the following behavior implementation, we now generate Java components by running

189

6.2. ILLUSTRATIVE EXAMPLE - ALTERNATING BIT PROTOCOL

MA

�

1 component ABPInnerSender sender {

2 port

3 in String message,

4 in Boolean ack,

5 out ABPMessage abpMessage;

6

7 port

8 out Integer setTimer,

9 in Boolean timerEvent;

10 }

Listing 6.11: The interface of ABPSender’s inner component ABPInnerSender.

MA

�

1 component FixDelay<Boolean>(1) delay;

2 component Timer;

3

4 connect timer.trigger -> delay.portIn;

5 connect delay.portOut -> sender.timerEvent;

Listing 6.12: Further subcomponents of component ABPSender and their connections.

Maven install and update the Maven project as depicted in Figure 6.5. A screenshot of a

running MontiArc Maven plugin is depicted in Figure 6.13.

Figure 6.13: A running MontiArc Maven plugin.

190

6.3. BEHAVIOR IMPLEMENTATION

6.3 Behavior Implementation

The behavior of MontiArc components is either generated by the composition of interacting

subcomponents or by the implementation of atomic components. Since the basic MontiArc

language does not provide means to directly realize the behavior within an atomic component,

it has to be implemented externally. The default implementation language is Java. Nevertheless,

it is also possible to create implementations in native languages such as C.

6.3.1 Behavior Implementation in Java

We continue by implementing the behavior of the atomic (inner) component definitions ABPIn-

nerSender and ABPReceiver. For this, we create the package abp in the Java source di-

rectory src/main/java (see Figure 6.2) and create the Java class ABPInnerSenderImpl

in this package. We use the generated class AABPSender ABPInnerSender as superclass

and add all unimplemented methods as depicted in Figure 6.14. Subsequently, we implement

the sender requirements described in Section 6.2.1. The method treatMessage has to handle

incoming messages, the method treatAck handles incoming acknowledgements. The sender

states RDY and W8ING given in the requirements can be implicitly implemented by analyzing

the state of the required message buffer. Please also consider the documentation of component

type Timer. It is displayed when hovering with the mouse over the component type. Alterna-

tively, the library documentation can be viewed online on the MontiArc website 5. Additionally,

consider the delay of one time interval which has been introduced by adding a FixDelay com-

ponent into the feedback cycle. An exemplary implementation of the sender is given in the

appendix in Listing E.1 on page 317. The contained sourcecode comments document how the

given requirements are realized in the implementation.

left-click

Figure 6.14: Quick fix to add missing event methods.

Now, create an additional Java class ABPReceiverImpl to implement the behavior of

atomic component ABPReceiver. Use superclass AABPReceiver and add the unimple-

mented method as explained above. Again, we implement the class straight forward considering

the receiver requirements described in Section 6.2.1. An exemplary implementation, which also

documents how these requirements are realized, is given in Listing E.2 on page 319.

Finally, we regenerate the complete project with Maven clean install. This is needed

since the factory-generator scans the project for existing behavior implementations which do

5MontiArc Component Library Documentation, http://www.monticore.de/languages/montiarc/

lib/.

191

http://www.monticore.de/languages/montiarc/lib/
http://www.monticore.de/languages/montiarc/lib/

6.3. BEHAVIOR IMPLEMENTATION

match the naming conventions (see Section 5.5.2 on page 165). Thus, the component factories

have to be regenerated.

The generated system can now be interactively explored by starting the generated class ABP-

RunSimulation6. The generated simulator is depicted in Figure 6.15. It can be seen, that

the ABP component receives three messages First, Second, and Third in time interval

43. The message First is emitted by output port transmittedMsg in time interval 58.

This generated simulation can be used to interactively explore the interface behavior of the

modeled components. Please note that the printed time stamps denote the current time of the

simulated component and not the current time of a certain port. Because component ABP is

a decomposed component, its current time is calculated by taking the minimum time of its

contained subcomponents.

create messages
on port msg

create a tick on
port msg

input history
output history

auto-tick

on

off

Figure 6.15: Interactive ABP simulation.

6.3.2 Native Behavior Implementation∗

Sometimes, the behavior implementation of an atomic component already exists as a native C

or C++ implementation, parts of the behavior need access to functionality provided by a native

library, or the target implementation is to be realized in C anyway. Nevertheless, the simulation

of such native atomic components and their interaction with their environment is desirable.

This subsection demonstrates how to integrate native code written in C into an atomic Mon-

tiArc component based on the simple example project “Simulation of Native C Components”

which can be downloaded from the MontiArc website7. It can be imported into Eclipse as de-

scribed in Section 6.2.2. Please consider the contained readme.txt file which documents

6Class ABPRunSimulation is located in directory target/generated-sources/montiarc/source-

code in package abp.gen.
7MontiArc Examples, http://www.monticore.de/languages/montiarc/examples/.

192

http://www.monticore.de/languages/montiarc/examples/

6.3. BEHAVIOR IMPLEMENTATION

how to setup the C compiler needed to compile the contained C sources.

The example project contains an atomic component NativeAdder which is depicted in

Listing 6.16. This stateless synchronous component should compute the sum of the values re-

ceived on both input ports and emit it via port sum. The concrete computation is realized in C

as given in Listing 6.17.

MA1 component NativeAdder {

2 timing sync;

3 port

4 in Integer addend1,

5 in Integer addend2,

6 out Integer sum;

7 }

Listing 6.16: Atomic component NativeAdder that is implemented in native C.

C

«handcoded»

1 #include <stdio.h>

2 #include "NativeImpl.h"

3

4 int add(int addend1, int addend2) {

5 return (addend1 + addend2);

6 }

Listing 6.17: Native implementation of add functionality.

Integrating C Code

Figure 6.18 depicts the used pattern which allows to integrate the given C implementation into

the atomic component using the Java Native Interface (JNI). The regular Java behavior imple-

mentation is located in class NativeAdderImpl which has the generated superclass ANa-

tiveAdder. For this purpose it has to implement the method timeStep. Due to the used

behavior class synchronous (see Section 4.4.4), missing values of the data event tuple are rep-

resented as null. Since null references cannot be easily handled by native implementations

and int parameters are expected, missing values have to be mapped to a natural number, e.g.,

zero. An exemplary implementation of this mapping is depicted in Listing 6.19.

The lifted values are then passed as arguments to the static native method nativeAdd lo-

cated in class NativeWrapper. This method is static to emphasize the static property of the

linked native C implementation. This class is additionally responsible for loading the dynamic

library nativeImpl-x86 64.dll which contains the C implementation to use. Encapsu-

lating native methods within a distinct Java class that does not have a superclass eases JNI

header generation using javah. In this case, javah does not have to consider dependencies

and methods defined in the superclass. For that reason, the native method is declared in class

NativeWrapper and not in the Java behavior implementation NativeAdderImpl.

193

6.3. BEHAVIOR IMPLEMENTATION

«lib» nativeImpl-x86_64.dll

«gen»

ANativeAdder

«handcoded»

NativeAdderImpl

�

«handcoded»

NativeWrapper

«handcoded»

NativeImplWrapper.c

«handcoded, library»

NativeImpl.c/.h

wraps java
native methods,
loads dynamic

libraries
wraps JNI

specific C parts

concrete native
behavior

implementation

«calls»

«JNI call»

native int nativeAdd(int,

int)

«gen»

NativeImplWrapper.h

«includes»

timeStep(Integer, Integer)

delegates
«loads»

CD
«Java»

Artifacts
«C»

Figure 6.18: Pattern to integrate existing C code into atomic MontiArc components.

Java

«handcoded»

1 @Override

2 protected void timeStep(Integer add1, Integer add2) {

3 // map missing values to zero

4 int a1 = (add1 != null ? add1 : 0);

5 int a2 = (add2 != null ? add2 : 0);

6 // call the native implementation

7 int sum = NativeWrapper.nativeAdd(a1, a2);

8 sendSum(sum);

9 }

Listing 6.19: Mapping from null to zero and computation delegation to the native method in

class NativeAdderImpl.

To separate JNI specific parts from plain C code, a similar pattern is followed on the C side of

the behavior implementation. The header file for the given NativeImplWrapper is gener-

ated by javah which uses Java class NativeWrapper as source. The concrete implementa-

tion is depicted in Listing 6.20. It is recommended to wrap JNI specific elements into dedicated

wrappers for the following reasons. First, existing C libraries that should be used to realize com-

ponent behavior are not linked against the needed JNI libraries (jni.h, l. 5) and their APIs have

to be wrapped anyway. Second, newly created C code which realizes component behavior should

not include the needed JNI libraries since these may not be available on the target platform. For

this reason, all JNI specific C parts are encapsulated in the artifact NativeImplWrapper.c

which delegates to the concrete behavior implementation given in artifact NativeImpl.c.

Adjusting the Project Build

To seamlessly integrate C code with the described pattern into the MontiArc build (see Sec-

tion 5.7.2), the following two build steps have to be added:

1. Header file generation: The header files for the native implementation wrapper have

to be generated using javah. This has to be done after MontiArc source code genera-

194

6.3. BEHAVIOR IMPLEMENTATION

C

«handcoded»

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "../../../target/NativeImplWrapper.h"

4 #include "NativeImpl.h"

5 #include <jni.h>

6

7 JNIEXPORT jint JNICALL

8 Java_de_montiarc_examples_natives_NativeWrapper_nativeAdd

9 (JNIEnv *env, jclass clazz, jint a1, jint a2) {

10 // delegates to the native implementation given in NativeImpl.c

11 return add(a1, a2);

12 }

Listing 6.20: Wrap JNI specific elements within a dedicated wrapper.

tion and after Java source code compilation. The needed functionality is provided by the

jni-headers-maven-pluginwhich is configured to be executed in the process-

classes build phase.

2. Compiling C code: The contained C code has to be compiled. This has to be performed

after the first step because the generated header files are included in the handwritten C

artifacts and have to be compiled, too. Since the produced dynamic library is loaded at

simulation runtime, the C code has to be compiled before tests are executed. In the given

example project, C code is compiled using the exec-maven-plugin which calls gcc8

with the needed arguments. The plugin is configured to be executed in the process-

classes build phase after the jni-headers-maven-plugin.

Discussion

Using native implementations written in C or C++ to realize the behavior of atomic components

introduces some restrictions which influence portability between distinct platforms on which

the simulation is to be executed. Since native code, in contrast to Java, has to be compiled for

a specific target platform, the binary code cannot be executed on an arbitrary platform. For

example, it has to be explicitly compiled for Windows or Linux and it has to be targeted to 32 or

64 bit architectures. This may be handled by an advanced build process which contains a cross-

compiler that creates a compiled binary for each targeted platform. Additionally, a mechanism

that chooses and loads the native binary, which is suitable for the current system architecture,

has to be added to the implementation. This is achieved by adjusting the native wrapper class

(cf. Figure 6.18). Nevertheless, if a new platform is to be supported, the build process as well as

the native wrapper class have to be adjusted.

Another issue affects the state of natively implemented components. Atomic MontiArc com-

ponents can be instantiated multiple times as subcomponents. Each instantiated subcomponent

is represented by a distinct object in the simulation. According to Chapter 3, MontiArc compo-

nents encapsulate their internal realization and do not share their state. If synchronisation of the

8The GNU Compiler Collection, http://gcc.gnu.org/.

195

http://gcc.gnu.org/

6.4. VALIDATION OF MONTIARC MODELS

state of distinct components is needed, e.g., to implement protocol components, this has to be

realized by explicitly exchanging messages. Therefore, component state has to be implemented

by using non-static internal fields since static variables have the same value for all instances of

a class.

This has to be considered for native implementations, too. It especially restricts the usage of

imperative non-object-oriented languages such as C to implement component behaviour because

stateful methods in such languages are realized using global variables. Java JNI statically loads

a native implementation once. Thus, the values of global variables are shared between all Java

objects which access such a stateful native implementation. In this way, all instances of an

atomic component with a C implementation implicitly share their state over the native layer.

For this reason, native components should be either stateless or should be explicitly marked

to have side-effects. Such components with side-effects should have singleton character and,

thus, be only instantiated once as subcomponent. However, components implemented in an

object-oriented native language like C++ are not influenced by this problem. Here, an individual

pointer to a dedicated native object can be stored on the Java side for each component instance.

The pointer can then be used to access the methods of the corresponding native object.

6.4 Validation of MontiArc Models

Testing is essential to ensure that developed components act as expected. In this section we

distinguish and describe two different test methods. First, techniques for model-based black-box

testing are described. Black-box tests are derived from the specification and the requirements

of a component to validate its interface behavior. They can be used to define unit tests for

atomic components as well as integration tests for decomposed components. Second, suitable

techniques for white-box testing are presented. White-box tests are derived from the internal

composition of a component to validate the expected flow of messages within a decomposed

system. They are most suitable to test scenarios of interacting subcomponents. Consequently,

they are used to complement black-box integration tests and to define system tests especially for

closed systems that cannot be tested with black-box tests.

6.4.1 Model-Based Black-box Tests

A black-box or behavioral test is a test method which checks the functionality of a system with-

out knowledge about the concrete implementation. Black-box tests are derived from an external

view of the system under test, e.g., system requirements (see [Bin00]). This way, the external

observable behavior is tested and not the internal structure of a system. Since MontiArc com-

ponents interact via their external interface defined by ports, this test method is most suitable

to validate component behavior. A black-box component test then has to compare the produced

output of a component, which has been stimulated with a certain input sequence, with the ex-

pected output. This input-output relation has to be derived from the components requirements

and should be intuitively describable in a test case.

196

6.4. VALIDATION OF MONTIARC MODELS

Test Language Concepts∗

MontiArc’s communication semantics is based on streams which allow to describe an event

based, timed communication. For this reason, it is most intuitive to define the aforementioned

input sequences and the expected output in a notation similar to streams. The MontiArc frame-

work provides a test DSL called I/O-Test Language that is inspired by test frameworks like JUnit

[www13c]. The MontiCore grammar, that defines the language, is given in Listing C.3 on page

305. The concepts of the language are described in the following.

The metamodel of the I/O-Test language, which is depicted in Figure 6.21, gives an overview

over the structure of the test language and corresponds to its abstract syntax. An ArcTest-

Suite contains tests for a testee given by the ComponentUnderTest. The testee corre-

sponds to a component instance. Hence, configuration parameters and generic type parame-

ters of components have to be set. In addition, a test suite contains elements of type Test-

SuiteElement. It is extended by interface FieldDeclaration which is implemented

by concrete classes that realize field variable declarations, stream field declarations, and stream

matcher declarations (not shown in the figure). Field variables can be used as values in an input

or expected stream. Stream fields declare a complete stream definition and assign it to a variable

which can be used as test input. In contrast, stream matchers declare (optionally underspecified)

streams which can be used as expected streams only. Declared fields and matchers are visible

within the scope of the complete test suite.

ArcTestSuite
Component

UnderTest

1

«interface»

TestSuiteElement

*

«interface»

FieldDeclaration
TestSetup

«enum»

TestOption

«external»

SetupEmbeddment

Test

0, 1

0, 1

setup

teardown

StreamAssignment

* *input expected

Assertion

«external»

AssertEmbeddment

0, 1

@BeforeSuite

@Before

@After

@AfterSuite

String name

int repetitions

�

111

elements

CD

Figure 6.21: Metamodell with the most important elements of the I/O-Test Language.

A TestSetup is used to define additional setup or tear down operations. It has a TestOp-

197

6.4. VALIDATION OF MONTIARC MODELS

tion that determines when the TestSetup has to be executed. Similar to JUnit, Test-

Setups marked with @BeforeSuite will be executed before the complete suite is started.

Setups annotated with @Before respectively @After are executed before respectively after

each test. @AfterSuite setups are executed after the complete suite has finished. The test

language for MontiArc embeds Java statements to implement TestSetups.

A Test always has a name and can be repeated for a certain amount of times (repeti-

tions). It optionally has a local setup or tear down which is executed for this test only. It

can have an Assertion block which is used to define further assertions. Again, the test lan-

guage for MontiArc embeds Java statements for this purpose. The input sequences of a test are

given by input StreamAssignments. These are uniquely identified by their name which

has to correspond to an incoming port of the testee. Expected results are given by expected

StreamAssignments for each outgoing port of the testee. Consequently, the name of an

expected stream assignment has to match the name of the corresponding outgoing port.

Creating Tests

The default configuration of MontiArc projects processes test models located in directory

src/test/models. Further, test models are organized in packages. By convention, a test

model should be located in the package that corresponds to the package of the component under

test. To create a new test model, right-click the package in which the test should be created and

select “New” and “Other . . . ”. In the appearing wizard select “MontiArc-IO-Test” and press

“Next”. Enter the file name ABPSenderTest and select the testee component ABPSender

after pressing the “Define component under test” button. Finally, press “Finish” to create an

empty testsuite model for the testee.

To create a concrete test press Ctrl + Space and select “Test - Insert a new test case” from

the autocompletion proposals. The editor will then insert a test template with an input and

expect block which already contain StreamAssignments for each incoming respectively

outgoing port of the testee. Since we do have to handle and check some non-primitive messages

that are emitted by port abpMessage, we first setup some variables which are later used for

this purpose (see Listing 6.22). Variables msg1 and msg2 are declared and values are assigned

in ll. 1f. Variables abpMsg1 and abpMsg2 are declared in ll. 3f. A value is assigned to them in

the @Before block (cf. ll. 6-9) which is executed before each test case of the testsuite. In this

way, an ABPMessage with the payload msg1 and the acknowledgement flag true is assigned

to variable abpMsg1. Variable abpMsg2 holds an ABPMessage with msg2 as its payload

and an opposing acknowledgement flag.

Using these variables, we now test requirement ABP S5.1. It claims that accepted data mes-

sages are encapsulated into ABPMessages and emitted via port abpMessage. A suitable test

case is depicted in Listing 6.23. Message msg is accepted by port message (cf. l. 3), no input

is defined for port ack (cf. l.4). In the same time interval, we expect message abpMsg1 via

port abpMessage as the computation result (cf. l.7).

As claimed by requirement ABP S6.4, messages have to be resent after a timeout of three

time intervals. In FOCUS, progress of time is modeled using the notation of a tick (
√

, see

Section 4.1). In the test language, a
√

is represented by the value Tk. To ease modeling,

values and value groups can be repeated in a stream. We utilize this by defining a test for

198

6.4. VALIDATION OF MONTIARC MODELS

I/O-Test

�

1 String msg1 = "Hello";

2 String msg2 = "MontiArc";

3 ABPMessage abpMsg1;

4 ABPMessage abpMsg2;

5

6 @Before {

7 abpMsg1 = new ABPMessage(true, msg1);

8 abpMsg2 = new ABPMessage(false, msg2);

9 }

Listing 6.22: Setup ABPMessage message objects to be used in the ABPSender test.

I/O-Test

�

1 test encapsulateMsg {

2 input {

3 message : <msg1>;

4 ack : <>;

5 }

6 expect {

7 abpMessage : <abpMsg1>;

8 }

9 }

Listing 6.23: Test proper message encapsulation of component ABPSender.

the aforementioned requirement. The test input is given by message msg1 on port message

followed by 15 empty time intervals (15 * Tk) and 15 empty time intervals on port ack. The

expected result for port abpMessage corresponds to 15/3 = 5 times message abpMsg1 each

followed by three empty time intervals. Since the sender emits buffered messages at the start of

a time interval, we additionally expect another abpMsg1 at the end of the result stream. The

resulting test case is depicted in Listing 6.24. More tests are depicted in Section E.2 on page

320. A description of further test concepts like optional messages, negated messages, or ranges

can be found on the MontiArc website9.

I/O-Test

�

1 test repeatMessage {

2 input {

3 message : <msg1, 15 * Tk>;

4 ack : <15 * Tk>;

5 }

6 expect {

7 abpMessage : <5 * (abpMsg1, 3 * Tk), abpMsg1>;

8 }

9 }

Listing 6.24: Timeout test for the ABPSender.

9How-To: Testing MontiArc Components, http://www.monticore.de/languages/montiarc/

howtotest/.

199

http://www.monticore.de/languages/montiarc/howtotest/
http://www.monticore.de/languages/montiarc/howtotest/

6.4. VALIDATION OF MONTIARC MODELS

The execution of I/O-Test models is directly integrated into the Maven build of a MontiArc

project. Therefore, running Maven install on the project will automatically generate unit

tests from the defined test models and executes them afterwards. If all tests succeed, the build

will execute successfully. If tests fail, the build will fail as well and unexpected messages as

well as current output traces are logged and printed to the console (see Figure 6.25).

Figure 6.25: Screenshot of executed I/O-Tests with the failing test bufferMessages2.

6.4.2 White-box Testing of Decomposed Models

To test expected message flows in a decomposed system, the aforementioned black-box tests

are not suitable since they test interface behavior of components only. Therefore, white-box or

implementation-based test techniques are needed that are described in the following. They rely

on an analysis of the internal structure respectively decomposition of the component under test

(see [Bin00]). To validate message flows in a deterministic way, three different white-box test

techniques, that consecutively build upon each other, are presented in the following.

• Message flows can be already validated by a minimal-invasive port instrumentation.

• Parameter manipulations are used to influence subcomponent instantiation and parametriza-

tion.

• Finally, complete subcomponents of the component under test can be replaced with mocks

that mimic their behavior in a controlled way.

All three test techniques are realized using the JUnit [www13c] framework and are consequently

implemented as JUnit test classes. In contrast to black-box tests, white-box tests are not defined

using a dedicated modeling language. Since these tests require the flexible combination of test

and setup techniques that also have to be part of a test model, a generative approach for white-

200

6.4. VALIDATION OF MONTIARC MODELS

box tests is not worthwhile.

Testing Message Flows

To validate the flows between the subcomponents of our ABPSender component, we now

create a white-box test. In this tutorial, we want to test that the transmission timer correctly

notifies the inner sender after it has been activated by the latter. Therefore, we want to observe

the highlighted connectors depicted in Figure 6.26.

ABPSender

msg
abp

Message

String ABPMessage

MA

ack
ABPInnerSender

sender

FixDelay

delay
Timer

boolean int

int

boolean instrumented
port

Figure 6.26: Instrumented ports of ABPSender’s subcomponents in a white-box test.

At first, we create a test class in package abp.gen in the designated Java test class directory

src/test/java. In this class, the testee of decomposed component ABPSender has to be

setup correctly. Therefore, we create a field testee with the generated component class as

its type. Please note, for black-box tests the generated component interface is sufficient as type

since only access to ports is needed. A white-box test additionally needs access to the contained

subcomponents. To get access to these subcomponents via the protected corresponding getters,

the white-box test class and the generated component class have to to be in the same package.

A suitable test setup for a white-box test, which is able to test message flows, is depicted in

Listing 6.27. First, we create an ABPSender instance with which we initialize the testee field

(cf. l. 7). Then, we have to setup the testee with a scheduler that uses a TestPortFactory to

produce ports and an error handler (cf. ll. 8-10). A TestPort is a special port implementation

that stores messages which are transmitted over this port in a timed stream. The stored messages

can be later on analysed in a test case. To observe the highlighted connectors in the figure, we

simply cast the sending ports to ITestPort and acquire the streams which are transmitted

over these ports (cf. ll. 12-15). For example, we get subcomponent sender from the testee

(testee.getSender), get its outgoing port setTimer by calling getSetTimer(), cast

it to ITestPort and then get the reference to the transmitted stream (getStream()). Please

note that casting these ports to a test port is possible since we configured the scheduler to use a

test port factory for port creation (cf. l. 9).

Subsequently, we are able to create concrete tests with our instrumented testee. Listing 6.28

contains a suitable test method which validates the aforementioned described message flow. The

201

6.4. VALIDATION OF MONTIARC MODELS

JUnit1 private ABPSender testee;

2 private IStream<Integer> setTimerStream;

3 private IStream<Boolean> timerEventStream;

4

5 @Before

6 public void setUp() {

7 testee = new ABPSender();

8 IScheduler s = SchedulerFactory.createDefaultScheduler();

9 s.setPortFactory(new TestPortFactory());

10 testee.setup(s, new SimpleErrorHandler());

11

12 setTimerStream = ((ITestPort<Integer>)

13 testee.getSender().getSetTimer()).getStream();

14 timerEventStream = ((ITestPort<Boolean>)

15 testee.getTimer().getTrigger()).getStream();

16 }

Listing 6.27: Setup method of a white-box test for component ABPSender.

concrete test can be divided into the following steps:

1. Sending a message and ticks using the testee. For this, we get port message from the

testee and call its accept method with the message to transmit (cf. l. 8). Please note

that method tick sends a
√

to both incoming ports of the testee.

2. The produced streams of the instrumented ports are analyzed in a for-loop (cf. ll. 15 –

35).

3. First, we check that the timer is activated by the sender in the time intervals 1, 4, and 7

(cf. ll. 17 – 23).

4. Second, the expected reaction of the timer is checked in time intervals 3, 6, and 9 (cf. ll.

25 – 29).

5. Finally, it is validated that no other messages are transmitted in the other time intervals

(cf. ll. 31 – 34).

This test setup allows to test message flows within decomposed, deterministic components

since the input messages needed to generate the expected message flows can be determined

before the test is executed. This is not possible with non-deterministic components which, e.g.,

contain lossy channels with random messages loss. In this case, it is not possible to determine the

exactly needed number of input messages. For this reason, it is more suitable to instrument the

testee in a way that allows us to avoid non-determinism. If the random behavior of a component

is controlled by component parameters, we are able to disable non-determinism using a simple

parameter manipulation.

Parameter Manipulation

Parameter manipulation allows to manipulate values assigned to component parameters during

the instantiation of a parameterizable component without manipulating the implementation of

the component. It is a suitable method to exchange the configured IRandomFunction of the

202

6.4. VALIDATION OF MONTIARC MODELS

JUnit1 @Test

2 public void testTimeOutTrigger() {

3 String msg = "Hello MontiArc";

4 int expectedTimeOut = 3;

5

6 // initial tick and message

7 tick();

8 testee.getMessage().accept(msg);

9

10 // send more ticks

11 for (int i = 0; i < 3 * expectedTimeOut; i++) {

12 tick();

13 }

14 // analyze the resulting streams

15 for (int i = 0; i < 3 * expectedTimeOut; i++) {

16 // check messages of port setTimer

17 if (i % expectedTimeOut == 1) {

18 assertFalse(setTimerStream.getTimeInterval(i).isEmpty());

19 assertEquals(Integer.valueOf(expectedTimeOut - 1),

20 setTimerStream.getTimeInterval(i).get(0));

21

22 assertTrue(timerEventStream.getTimeInterval(i).isEmpty());

23 }

24 // check expected timeout

25 else if (i % expectedTimeOut == 0 && i > 0) {

26 assertTrue(setTimerStream.getTimeInterval(i).isEmpty());

27 assertFalse(timerEventStream.getTimeInterval(i).isEmpty());

28 assertTrue(timerEventStream.getTimeInterval(i).get(0));

29 }

30 // no messages in other time intervals

31 else {

32 assertTrue(setTimerStream.getTimeInterval(i).isEmpty());

33 assertTrue(timerEventStream.getTimeInterval(i).isEmpty());

34 }

35 }

36 }

Listing 6.28: Implementation of a white-box test for component ABPSender.

library component LossyDelayedChannel to adjust message loss for a specific test case.

Subcomponent objects in the MontiArc simulation are created by factories which offer a

method to register concrete factories to be used for object creation (see Section 5.5.2). Utilizing

this, we now create a local test factory as an inner class of our test class which extends the fac-

tory for component LossyDelayedChannel. As depicted in Listing 6.29, it overwrites the

dynamic object creating method doCreate from the superclass. The overwriting method sim-

ply delegates to the overwritten method but replaces the given IRandomFunction f with a

ControllerRandom which always returns true (cf. l. 7). In this way, the test factory solely

203

6.4. VALIDATION OF MONTIARC MODELS

produces delayed channels which do not loose messages.

JUnit1 class LossyDelayedChannelTestFactory extends

2 LossyDelayedChannelFactory {

3 @Override

4 protected <T> ILossyDelayedChannel<T> doCreate(

5 IRandomFunction f, int delay) {

6 // always set loss rate to zero

7 return super.doCreate(new ControlledRandom("1"), delay);

8 }

9 }

Listing 6.29: A local test factory to manipulate parameter values of

LossyDelayedChannel subcomponents.

We continue to adjust the test setup by registering a new instance of the test factory at the

LossyDelayedChannelFactory as shown in Listing 6.30. After the test is executed, we

reset the behavior of the default factory by calling its reset() method (cf. ll. 6-8). The

complete white-box test for component ABP which uses parameter manipulation is depicted in

Listing E.7 on page 324.

JUnit1 private void setUpFactory() {

2 // register test factory

3 LossyDelayedChannelFactory.register(

4 new LossyDelayedChannelTestFactory());

5 }

6

7 @After

8 public void tearDown() {

9 LossyDelayedChannelFactory.reset();

10 }

Listing 6.30: Register the parameter manipulating local factory and clean up after test

execution.

Mocking Components

In object oriented programs, a mock object is an object which mimics the behavior of another

object in a controlled way. According to Freeman and Pryce [FP09], it corresponds to a sub-

stitute implementation which is used to test how an object interacts with related objects. If the

behavior of a more complex decomposed MontiArc model is to be tested, not all subcompo-

nents are of interest. If we, for example, only want to examine the interaction between sender

and receiver in the ABP component, we simply can mock the lossy delayed channels. Since we

are able to completely exchange the implementation of subcomponents of the testee, mocking is

more powerful than parameter manipulation.

204

6.5. GENERALIZE COMPONENTS

To create a mock for the subcomponents of type LossyDelayedChannel, we create a

local class which implements the mock’s behavior. If an atomic component is to be mocked,

we can simply choose the generated abstract class as superclass. If we want to mock a decom-

posed component, we can use a stub class as superclass which can be also generated by Mon-

tiArc10. For decomposed component type LossyDelayedChannel we use class ALossy-

DelayedChannelStub as depicted in Listing 6.31. We then can implement the behavior of

the mock as explained in Section 6.3. The given example simply forwards messages received

on port portIn to port portOut. Additionally, the component counts how many messages

have been transmitted and stores the last transmitted message. To replace the default generated

implementation of component LossyDelayedChannel with the mock implementation, we

have to create and register a dedicated mock factory as described in the previous section. The

complete test class is depicted in Listing E.8 on page 326.

JUnit1 class LDCMock<T> extends ALossyDelayedChannelStub<T> {

2 public int called = 0;

3 public T lastMessage;

4

5 public LDCMock(IRandomFunction f, int delay) {

6 super(f, delay);

7 }

8

9 @Override

10 protected void treatPortIn(T message) {

11 sendPortOut(message);

12 called++;

13 lastMessage = message;

14 }

15 }

Listing 6.31: Mock implementation of decomposed component

LossyDelayedChannel.

How to access and use the mocked subcomponents is depicted in Listing 6.32. At first, both

subcomponents are acquired from the testee (cf. ll. 2f). Please note that these need to be casted

to the concrete mock class LDCMock since the return type of the testee’s methods getMed1()

and getMed2() is ILossyDelayedChannel. Then 1000 messages are transmitted in a

for-loop and for each message it is checked, whether the expected message (cf. l. 10) and the

alternating acknowledgement (cf. ll. 12f, 16f) are transmitted.

6.5 Generalize Components

MontiArc provides generic component types which allow to define generic type parameters that

can be used as port and configuration parameter data types within the component type defini-

tion. These generic types have to be assigned when instantiating a generic component type as

10Configure the MontiArc Maven Plugin with parameter generateStubs; cf. Section 5.7.2 on page 176.

205

6.5. GENERALIZE COMPONENTS

JUnit1 public void testAlternatingBit() {

2 LDCMock<ABPMessage> m1 = (LDCMock<ABPMessage>)

3 testee.getMed1();

4 LDCMock<Boolean> m2 = (LDCMock<Boolean>) testee.getMed2();

5 int amount = 1000;

6 for (int i = 0; i < amount; i++) {

7 String msg = "Msg " + i;

8 testee.getMsg().accept(msg);

9 assertEquals(i + 1, m1.called);

10 assertEquals(i + 1, m2.called);

11 assertEquals(msg, m1.lastMessage.getContent());

12 if (i % 2 == 0) {

13 assertTrue(m1.lastMessage.isAck());

14 assertTrue(m2.lastMessage);

15 }

16 else {

17 assertFalse(m1.lastMessage.isAck());

18 assertFalse(m2.lastMessage);

19 }

20 }

21 assertEquals(amount, receiverOut.getStream().size());

22 }

Listing 6.32: Using mocked subcomponents in a test case.

subcomponent. This concept is useful for components with a behavior that does not depend on

specific data of an accepted message but only on the event of receiving data.

The ABP component and its subcomponents developed in this tutorial do not depend on the

actually transmitted payload but react to the event of a message which is to be transmitted.

Therefore, it is well suited to be realized as a generic component. Additionally, several param-

eters that influence the behavior of the protocol are hard coded in the model or the behavior

implementation of atomic components. These are the transmission delay, the function that con-

trols the message loss of the lossy delayed channels, and the retransmission timeout. These

parameters are parameterizable as well if component parameters are added to the component

type definitions. In the following steps the ABP is generalized by applying these techniques.

Adjust container data type: First, we adjust the ABPMessage container data type which

is used to encapsulate data messages together with acknowledgment flags. Thus, we add a

generic type parameter T to the class definition and replace the former type String of the field

content with T.

Adjust component sender: The modifications of the ABPSender component are contained

in Listing 6.33 and stepwise listed in the following:

1. We adjust the ABPSender model by adding a generic type T to the component definition

as well as a parameter timeout with type int (cf. l. 5).

2. We change the type of port message to T and the type of port abpMessage to ABPMes-

sage<T> (cf. ll. 9, 11).

206

6.5. GENERALIZE COMPONENTS

3. We repeat these modifications for the inner component definition ABPInnerSender

(cf. ll. 13, 15, 17).

4. Automatic instantiation of inner components cannot be applied to generic and/or parame-

terizable components. Thus, an ABPInnerSender subcomponent is added (cf. l. 22).

MA1 package abp;

2 import ma.sim.FixDelay;

3 import ma.util.Timer;

4

5 component ABPSender<T>[int timeout] {

6 autoconnect port;

7

8 port

9 in T message,

10 in Boolean ack,

11 out ABPMessage<T> abpMessage;

12

13 component ABPInnerSender<T>[int t] {

14 port

15 in T message,

16 in Boolean ack,

17 out ABPMessage<T> abpMessage;

18 port

19 out Integer setTimer,

20 in Boolean timerEvent;

21 }

22 component ABPInnerSender<T>(timeout) sender;

23 component FixDelay<Boolean>(1) delay;

24 component Timer;

25

26 connect timer.trigger -> delay.portIn;

27 connect delay.portOut -> sender.timerEvent;

28 }

Listing 6.33: Generalized component ABPSender.

Adjust component receiver: The component definition ABPReceiver is adjusted in a

similar way by adding a generic type parameter T. We then use T as port type for outgoing port

message and use it to parametrize type ABPMessage from port abpMessage. The resulting

component model is depicted in Listing E.9 on page 328.

Adjust component ABP: The ABP component is generalized with the following steps:

1. Add generic type parameter T to component ABP.

2. Add configuration parameters:

a) IRandomFunction rand to control message loss of the lossy delayed channels,

b) int delay to configure the delay of the contained lossy delayed channels, and

c) int timeout to configure the message resent timeout of the contained sender.

207

6.5. GENERALIZE COMPONENTS

3. Replace the port data types String with T.

4. Parametrize the contained subcomponents to fix the errors which report an invalid amount

of type parameters. For this purpose:

a) add parameter T to the type ABPSender and ABPReceiver of subcomponents

sender and receiver and

b) adjust the type parameters of subcomponent med1 to use ABPMessage<T>.

5. Replace the hard coded new ControlledRandom(...) value object which has been

used for med1 and med2 with the parameter rand.

6. Replace the hard coded delay of these subcomponents with parameter delay as well.

7. Configure subcomponent sender with parameter timeout to fix the remaining error

that reports an invalid amount of configuration parameters.

The resulting component model is depicted in Listing E.10 on page 328.

Adjust build configuration: Open the build configuration (pom.xml) and navigate to the

configuration of the montiarc-maven-plugin. Switch parameter generateInterac-

tiveSimulation to false and save. Then execute Maven clean install. Since the

implementation of the atomic components is not adjusted yet, the build will fail. However,

the resulting compiler errors give good hints, which manually implemented classes need to be

adjusted in the following steps.

Adjust behavior implementations: Implementations are adjusted with the following steps:

1. Add generic type <T> to the behavior implementations ABPInnerSenderImpl and

ABPReceiverImpl created in Section 6.3 and pass this type to the extended superclass.

2. Method treatAbpMessage of class ABPReceiverImpl has to handle parameters

with type ABPMessage<T> now.

3. Adjust class ABPInnerSenderImpl:

a) The buffer now has to handle messages of type T instead of String.

b) Methods treatMessage and sendMessage have to handle messages with type

T instead of String.

c) Thus, the latter method has to create and emit messages with type ABPMessage<T>.

d) Since component ABPInnerSender is parameterizable with a timeout parameter

now, the constructor of the corresponding behavior implementation requires this pa-

rameter, too. Therefore, add parameter int timeout to the constructor and pass it

to the constructor of the superclass.

Adjust test implementations: Finally, we have to adjust the test models created in Sec-

tion 6.4. The test models are changed by parameterizing the testee with the previously used

message type String and the random function new ControlledRandom("1010"), 1

(one-way delay) and 3 (timeout). Of course the types of defined fields have to be changed from

ABPMessage to ABPMessage<String> as well. This is demonstrated by means of the test

ABPSenderTest which is depicted in Listing 6.34.

Finally, the handwritten tests have to be adjusted. Therefore, every instantiated component

class has to be parametrized correctly with <String> and the aforementioned parameter set

is to be used in constructor and factory calls. Every unparametrized type ABPMessage has

to be replaced with a parametrized version ABPMessage<String>. Rebuild the project by

208

6.6. OPTIMIZATION TESTING

executing Maven clean install. If everything has been adjusted correctly, the project

builds successfully.

I/O-Test1 testsuite ABPSenderTest for ABPSender<String>(3) {

2 String msg = "Hallo";

3 String msg2 = "MontiArc";

4 ABPMessage<String> abpMsg1;

5 ABPMessage<String> abpMsg2;

6 @Before {

7 abpMsg1 = new ABPMessage<String>(true, msg);

8 abpMsg2 = new ABPMessage<String>(false, msg2);

9 }

Listing 6.34: Adjusted ABPSender I/O-Test.

6.6 Optimization Testing

Parameterizable components can be easily statistically analysed by iterative experiments with

distinct parameter configurations. Known parameters are fixed and parameters that shall be op-

timized are varied in iterative tests with identical input messages. The produced results are stored

and compared regarding the property that is to be optimized, e.g., passed total simulation time

or average transmission time. In contrast to regular component validation tests (see Section 6.4),

a strict deterministic behavior of all involved components is not mandatory.

How to set up an optimization test for the ABP is depicted in Listing 6.35. Please note that

the complete implementation is given in Listing E.11 on page 329. It simulates 5000 single

message transmissions with various combinations of loss rates between 10 and 80 percent and

delays between 1 and 10 time intervals. It measures the complete round-trip time needed to

deliver and acknowledge the message. Therefore, the testee is set up similar to a white-box

test (cf. ll. 12 – 18), a single message is sent (cf. l. 21), and Ticks are sent until message

transmission is acknowledged (cf. ll. 22 – 25). The passed simulation time is stored in a

DescriptiveStatistics object (cf. ll. 26 – 28) to collect statistical information. Finally,

the results are stored and organized in a spread sheet for further analyses (cf. ll. 33 – 35). Please

note that this example uses the Apache Commons Math library 11 for statistical calculations and

the Apache POI library12 to export the spread sheet.

In total, this optimization test setup iteratively executes 400.000 simulations. Since these

simulations are independent and do not influence each other, they are well suited to be executed

in parallel. The complete implementation of a parallelized version is given in Listing E.12

on page 332. The involved classes are depicted in Figure 6.36. The SimulationTask is

a Runnable which implements the execution of a single simulation. It is initialized with a

CountDownLatch and a SimResult. The former is shared among all SimulationTasks

and is notified when a simulation is finished by calling its countDown method. It is used to

synchronize the main execution thread with the parallel simulation threads (see [Blo08, Item

11Commons Math: The Apache Commons Mathematics Library, https://commons.apache.org/proper/

commons-math/.
12Apache POI - the Java API for Microsoft Documents, https://poi.apache.org/.

209

https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/
https://poi.apache.org/

6.6. OPTIMIZATION TESTING

69]). The simulation results are submitted to the SimResult using its addResult method.

In this way, the result is added to the associated DescriptiveStatistics.

A suitable way to execute SimulationTasks in parallel is depicted in Listing 6.37. The

ExecutorService provides a thread pool which is restricted to the amount of available pro-

cessors respectively cores (cf. ll. 1f). The used CountDownLatch is initialized to the total

number of simulations, i.e., eight different loss rates combined with 10 different delays and each

combination is repeated 5000 (EXPERIMENT AMOUNT) times, which results in 400.000 simu-

Java1 final int experimentAmount = 5000;

2 final Tick<String> tick = Tick.<String> get();

3 final String transmittedMsg = "Hello MontiArc";

4

5 for (int lossrate = 10; lossrate <= 80; lossrate += 10) {

6 for (int delay = 1; delay <= 10; delay++) {

7 int timeout = 2 * delay + 1;

8 // from apache commons math

9 final DescriptiveStatistics ds = new DescriptiveStatistics();

10 for (int i = 0; i < experimentAmount; i++) {

11 // setup ABP

12 ABP<String> abp = new ABP<String>(new JavaRandom(lossrate),

13 delay, timeout);

14 IScheduler s = SchedulerFactory.createDefaultScheduler();

15 s.setPortFactory(new TestPortFactory());

16 abp.setup(s, new SimpleErrorHandler());

17 TestPort<Boolean> ack = (TestPort<Boolean>)

18 abp.getSender().getAck();

19

20 // sent message

21 abp.getMsg().accept(transmittedMsg);

22 // sent ticks until msg is acknowledged

23 while (ack.getStream().getUntimedHistory().isEmpty()) {

24 abp.getMsg().accept(tick);

25 }

26 // passed simulation time

27 int time = ack.getStream().getCurrentTime();

28 ds.addValue(time);

29 }

30 System.out.println("Computed statistics for ABP(" + lossrate +

31 ", " + delay + ", " + timeout + ")");

32 rownum++;

33 addToTable(sh, rownum, lossrate, delay, timeout, ds.getMin(),

34 ds.getMax(), ds.getMean(), ds.getStandardDeviation(),

35 ds.getPercentile(50));

36 }

37 }

Listing 6.35: Setup of an optimization test for component ABP.

210

6.6. OPTIMIZATION TESTING

CD
«Java»

SimResult

addResult(time)

int lossrate, delay, timeout

DescriptiveStatistics
«interface»

Runnable

* * 11 SimulationTask

run()

«singleton»

CountDownLatch

countDown()

await()

1

Figure 6.36: Involved classes of a parallelized optimization test.

lations. In the nested for-loops, a SimResult is created for each parameter configuration (cf.

l. 13). It is passed with the latch to a SimulationTask in another nested for-loop (cf. ll.

15 – 17). The task is then submitted to the executor service. Finally, latch.await() (cf. l.

20) pauses the current thread to wait until all submitted tasks have finished. This is the case if

the countDown method of the latch has been called 400.000 times. Afterwards, the results are

exported to a spread sheet. On an Intel R© Core
TM

i7 CPU Q 740 @ 1.73GHz, 64 Bit with 4 cores

and 8 threads, the execution time is reduced from about 27 minutes to less than 6 minutes with

the parallelized simulation. Thus, it is is about 4.5 times faster than the linear version.

Java1 int cores = Runtime.getRuntime().availableProcessors();

2 ExecutorService exec = Executors.newFixedThreadPool(cores);

3 final int lossRateMax = 80;

4 final int delayMax = 10;

5 // used to monitor the amount of finished simulations

6 final CountDownLatch latch = new CountDownLatch(

7 (lossRateMax / 10) * delayMax * EXPERIMENT_AMOUNT);

8

9 List<SimResult> results = Lists.newLinkedList();

10 for (int lossr = 10; lossr <= lossRateMax; lossr += 10) {

11 for (int delay = 1; delay <= delayMax; delay++) {

12 int timeout = 2 * delay + 1;

13 SimResult r = new SimResult(lossr, delay, timeout);

14 results.add(r); // store result object

15 for (int exp = 0; exp < EXPERIMENT_AMOUNT; exp++) {

16 exec.submit(new SimulationTask(latch, r));

17 }

18 }

19 }

20 latch.await(); // wait until all tasks have finished

Listing 6.37: Executing a parallel optimization test.

211

6.7. DOCUMENTATION OF MONTIARC MODELS

6.7 Documentation of MontiArc Models

Documentation is important to support reuse of artifacts which encapsulate their internal realiza-

tion. MontiArc components hide their internal implementation and provide their functionality

via a defined public interface. In this way, decomposed and atomic components can be used the

same way. The interface of a MontiArc component is defined by a set of incoming and outgoing

ports which can receive or emit messages of a certain type. However, the concrete relation be-

tween incoming and outgoing messages is not given in the interface. Hence, which reaction is

produced by a component for a certain stimulus is hidden in its internal realization. Thus, further

documentation is needed to enable reuse of MontiArc components without detailed knowledge

of their implementation respectively composition.

The MontiArc language contains comments which annotate components or elements of the

component. These comments can be used to document the interface of a component as well as

the resulting behavior for received input events. The MontiArc framework provides a documen-

tation generator which has initially been developed in the bachelor theses [Hom12]. Based on

the MontiArc component itself and the contained comments, it produces HTML documentation

artifacts. Similar to Javadoc13, a tool for generating application programming interface (API)

documentations for Java classes, it has the advantage to keep the documentation next to the

documented artifact. For example, if a type parameter is added to a component, only the com-

ment above the component definition needs to be adjusted. In this way, outdated parts of the

documentation can be identified more easily and no external documents need to be adjusted.

6.7.1 Enabling the Documentation Generator

To enable the documentation generator, execute the goal doc of the MontiArc Maven plugin.

For this purpose, the pom.xml has to be adjusted by adding the goal to the list of goals to be

executed as depicted in Listing 6.38 line 14.

This setup is already sufficient to generate documentation for components into directory tar-

get/madoc. Nevertheless, the default configuration can be adjusted using the following pa-

rameters:

• javaDocUrls: Adds further URLs to JavaDoc documentations. These URLs are used

to resolve links to the documentation of data types annotated with an @link tag (see

Table 6.40). Resolved links are automatically included into the MontiArc documentation.

Defaults to http://docs.oracle.com/javase/7/docs/api/.

• isPublic: Generate documentation of publicly visible component parts (interface, con-

figuration, and type parameters). If set to false, documentation for, e.g., subcomponents

is included. A complete list of public and protected model elements is given in Table 5.11

on page 139. Defaults to true and consequently generates documentation for public

model elements.

• modelDirectory: The MontiArc model directory. Defaults to src/main/models.

13Javadoc Tool, http://www.oracle.com/technetwork/java/javase/documentation/

javadoc-137458.html.

212

http://docs.oracle.com/javase/7/docs/api/
http://www.oracle.com/technetwork/java/javase/documentation/javadoc-137458.html
http://www.oracle.com/technetwork/java/javase/documentation/javadoc-137458.html

6.7. DOCUMENTATION OF MONTIARC MODELS

pom.xml1 <build>

2 <!-- ... -->

3 <plugins>

4 <!-- ... -->

5 <plugin>

6 <groupId>de.monticore.lang.montiarc</groupId>

7 <artifactId>montiarc-maven-plugin</artifactId>

8 <executions>

9 <execution>

10 <goals>

11 <goal>clean</goal>

12 <goal>configure</goal>

13 <goal>generate</goal>

14 <goal>doc</goal>

15 </goals>

16 </execution>

17 </executions>

18 </plugin>

19 </plugins>

20 </build>

Listing 6.38: MontiArc Maven plugin configuration to generate documentation.

• docOutputDirectory: The output directory for the generated documentation. De-

faults to target/madoc.

6.7.2 Document Components

MontiArc’s syntax supports comments in Java style. Thus, single-line comments start with ’//’

and multi-line comments start with ’/*’ and end with ’*/’. Comments that should be included

in the documentation are multi-line comments that start with ’/**’ and end with ’*/’. These

comments are always assigned to the next model element. Similar to Java, special documentation

elements are controlled with tags. It is distinguished between single-line and multi-line tags. The

former are enclosed by curly brackets and allow multi-line comments to be bound to one tag.

The latter have to be used at the beginning of a comment line and are restricted to a single line.

Additionally, multi-line tags can be used anywhere within a comment and thus do not have to be

located at the beginning of a line. Single-line tags interpreted by the MontiArc documentation

generator are listed and explained in Table 6.39, available multi-line tags are given in Table 6.40.

Tag Description

@author[s] $name

(’,’ $name)*

Adds an authors segment to the documentation which contains the

given author or the list of given authors.

Table 6.39 continued on next page

213

6.7. DOCUMENTATION OF MONTIARC MODELS

Tag Description

@brief $text Creates an introductory text for the model element which is printed

into overview lists. For example, the text defined in a component’s

brief tag is printed in the package view of the documentation.

@date $date? Adds a date segment to the documentation. If $date is missing, the

current date (generation time) is used. If $date is given, it has to be

given in format DD.MM.YYYY or YYYY-MM-DD.

@hint $text Adds a hint segment to the documentation which contains the given

$text. Hints can be used to reference the reader to further related

components or information.

@param $par $text Adds the given $text as documentation of configuration parameter

$par. This tag is used to describe the effect of the corresponding

parameter. If the configuration parameter does not exist, an error is

thrown. This tag can also be used as a multi-line tag.

@rev $text Adds the given $text to the revision segment of the documentation.

The printed revision number can be useful to reconstruct changes

of a component within a revision control system (RCS).

@sideEffects $text Adds a side effects warning box to the top of the documentation

which contains the given $text. Use this tag to document side ef-

fects of dirty component, e.g., read or write access to files (see Sec-

tion 5.5.3). The documentation of side effects is important since

components with side effects can act unpredictable within a Mon-

tiArc simulation. Consequently, the user of such component has to

be informed about the impact of a side effect. For longer descrip-

tions, this tag can also be used as a multi-line tag.

@since $text Adds a since segment to the documentation which contains the

given $text. Use this tag to document since when a component

is available, e.g., in a library. It can be also used to annotate ports

which have been added to an already existing component. Usu-

ally, the given $text references the version number of the MontiArc

project.

@state $text Adds the given documentation as description of the state-space of

a component. Use this tag to document different reaction on the

same input event in the different states of a component. For longer

descriptions, this tag can also be used as a multi-line tag.

@stateless Marks a component as stateless and adds this information to the

state segment of the documentation. Use this tag to indicate that a

component always produces the same output for the same input.

Table 6.39 continued on next page

214

6.7. DOCUMENTATION OF MONTIARC MODELS

Tag Description

@type $par $text The given $text is used as documentation for generic type param-

eter $par. Use this tag to describe which model elements use this

parameter. If this parameter does not exist, an error is emitted.

@version $text? Creates a version segment in the documentation and adds the given

$text. If the optional $text is not given, the generator adds the

text which has been passed via Maven configuration parameter

docVersion to the executed documentation tool. If this parame-

ter is not explicitly set, the version number of the Maven project is

used. In this way, the version number within the documentation is

always aligned with the current version number of the project.

Table 6.39: Single-line tags of the MontiArc documentation generator.

Tag Description

{@code $text} Formats the given $text in a typewriter font. This tag can be used

to highlight certain parts of the documentation, e.g., preconditions

or accepted value ranges of incoming ports.

{@escape $text} Escapes the given $text. Thus, further contained tags are not in-

terpreted and HTML parts are escaped. In this way, the complete

given text is printed in the documentation.

{@link $name} Creates a link to the documentation of the model element named

$name. This can be used to reference the documentation of another

model element. For example, ports can be referenced within the

documentation of the component type to document the relation be-

tween input und output ports. If the model element does not exist

in the current model, an error is emitted.

{@link $type} Creates a link to the documentation of the given $type. Component

and data types can be linked. This tag can be used to, e.g., create

a link to the API documentation of the Java class that implements

the behavior of an atomic component or to reference a used con-

stant class or enumeration. Please note that $type has to be fully

qualified.

{@link $type#method} Creates a link to the documentation of the method which is defined

in the given $type. This tag can be used to reference certain helper

methods used within the component. The $type has to be fully qual-

ified and the method can be optionally qualified with a list of pa-

rameters, if needed.

Table 6.40: Multi-line tags of the MontiArc documentation generator.

215

6.7. DOCUMENTATION OF MONTIARC MODELS

6.7.3 Index Page Design

It is possible to add further descriptions to the generated index page. If, for example, the current

project contains a library of related components, the index page should contain further informa-

tion about the library. To influence the design of the generated index page, simply create an

HyperText Markup Language (HTML) file named documentation main.html in the root

model directory. In the default configuration, this is directory src/main/models. Then use

regular HTML syntax to design the index page. In this way, images and links can be added to

the index page. Beside regular HTML, the following special documentation tags are interpreted

within this file:

• @title $name: Sets the given $name as title of the whole generated documentation. Usu-

ally, this should be the complete name of the library or the project (name element in the

pom.xml).

• @brief $text: The given $text is used as text for the generated link that lists all contained

components of the project in the package view. Usually, the artifact id of the project

should be used for this tag (artifactId element in the pom.xml).

• @version $text?: Adds a version segment to the index page. It is processed like the

@version tag documented in Table 6.39.

An exemplary index page that demonstrates the effect of these tags is depicted in Figure 6.41.

The upper-left frame contains a list of links to the documentation of the packages. The lower-left

frame contains a list of links to the component documentations. The index page is displayed in

the right frame.

index page

links to
packages

links to components

titel of the
documentation
(@titel tag)

artifact id of the
project
(@brief tag)

project version
(@version tag)

package summary (@brief tag
in the package documentation)

Figure 6.41: Index page of the generated ABP documentation.

216

6.8. MONTIARC LIBRARIES

6.7.4 Package Documentation

Similar to Java, a MontiArc package is represented by a directory and not by a file. Never-

theless, it is possible to create the documentation of a package to describe its meaning and

the relation of the contained components. To document a package, create a HTML file named

package.html in the directory which represents the package that is to be documented. Use

regular HTML syntax to design the documentation. In contrast to the previously discussed index

documentation, only the @brief tag is interpreted. The given text is displayed as a summary in

the package overview of the generated documentation (see Figure 6.41).

6.8 MontiArc Libraries∗

A library in a general purpose language (GPL) is a collection of behavior implementations which

can be accessed and reused via well defined APIs. Following the principle of information hid-

ing, the provided behavior can be reused without knowing the concrete implementation. Since

MontiArc components encapsulate their internal realization and provide their behavior via well

defined component interfaces, they are best suited to be bundled in reusable component libraries.

Thus, a MontiArc library is a collection of reusable (logically related) components and their im-

plementations which can be instantiated as subcomponents in other MontiArc components. To

support the modeler and ease reuse of components, also the generated documentation is con-

tained in MontiArc libraries.

6.8.1 Structure of a Model Library

MontiArc libraries are structured in three layers: the model layer, the implementation layer, and

the documentation layer (see Figure 6.42). These layers contain distinct artifact kinds which are

bundled in distinct library jar files.

«MA»

Component

Models

«Java, HC»

Atomic Component

Implementations

«symbol table, gen»

Component

Symbol Table

Model Layer

«Java, gen»

Component

Classes

Implementation Layer

Documentation Layer

«class, gen»

Compiled Component

Classes

«html, gen»

Component

Documentation

$(lib)-models.jar

$(lib)-sources.jar

$(lib)-symbols.jar

$(lib).jar

$(lib)-model-docs.jar

Figure 6.42: Layers of a component library.

The Model Layer contains handwritten MontiArc models and their corresponding serialized

symbol table entries (see Section 5.2). The former are packaged in a jar file with the classifier

models, while the latter are packaged in a jar file with the classifier symbols. At least one

of these artifacts needs to be referenced in the modelpath (see Section 5.7) if a component from

this library should be instantiated as a subcomponent.

217

6.8. MONTIARC LIBRARIES

The Implementation Layer contains simulation specific Java classes in source and binary

form. The former are handwritten implementations of atomic components packaged together

with the generated component classes into a jar file with classifier sources. The main jar file

without classifier contains the compiled binaries of these files. The MontiArc generator gener-

ates an interface ITgen for each component type T. If T is instantiated as a subcomponent within

a decomposed component DC, the generator produces a field for the subcomponent in the class

DCCgen that is generated from component DC. This field has the type ITgen. Consequently, a

compile-time and runtime dependency between the classes DCCgen and ITgen exists. If compo-

nent T is located in a library, the corresponding main jar file has to be added to the Java classpath

to fulfill this compile-time and runtime dependency.

The Documentation Layer contains the HTML documentation of the contained components

packaged in a jar file with classifier model-docs. The documentation is derived from com-

ments given in the component models (see Section 6.7.2). To enable the MontiArc Eclipse IDE

to resolve the contained documentation, this jar file has to be added to the Java classpath. In this

way, information about library components is depicted in the autocompletion dialog or when the

mouse is hovering over a component type.

The artifacts of the upper two layers are divided into human readable artifacts and generated

binary artifacts. The former allow to reconstruct the internal implementation of components, i.e.,

handwritten sources. The latter are derived from the former category by processing models with

the MontiArc tooling and implementations with the Java compiler. MontiArc only needs symbol

table entries to load referenced components and the Java compiler only needs the compiled

classes to fulfill the aforementioned compile-time and runtime dependencies. Consequently, a

minimal library only consists of these binary jars. Consequently, this strict separation allows to

release closed source libraries which neither contain MontiArc models nor the source code of

atomic component implementations (see requirement LRQ5.3). Such a library only consists of

the jar files located on the right-hand side of Figure 6.42.

6.8.2 Predefined Libraries

MontiArc provides a set of predefined libraries which can be reused within new projects. Projects

created with the MontiArc project wizard (cf. Section 5.7.3) are already configured to reuse

these libraries. Documentation of the contained library components can be found at the Mon-

tiArc website14. The following libraries are given:

• montiarc-lib-dt: The MontiArc Digital Techniques Library contains basic components

for boolean calculations. Additionally some digital techniques components, e.g., Flip

Flops, are given.

• montiarc-lib-img: The MontiArc Image Library contains components which allow to

process images in a pipes-and-filters manner.

• montiarc-lib-math: The MontiArc Math Library provides basic components for mathe-

matical calculations.

14MontiArc Component Library Documentation, http://www.monticore.de/languages/montiarc/

lib/.

218

http://www.monticore.de/languages/montiarc/lib/
http://www.monticore.de/languages/montiarc/lib/

6.8. MONTIARC LIBRARIES

• montiarc-lib-monitor: The MontiArc Monitoring Library provides components to mon-

itor systems and services. It has been developed in a bachelor thesis [Ix12]. It contains

agent components used to monitor system properties (e.g., CPU or RAM usage) and mon-

itor components which observe external services. These components can be connected

to controller components which collect reported incidents, generate reports, and transmits

them using components from the Network Library.

• montiarc-lib-net: The MontiArc Network Library contains components which provide

access to Internet based services or protocols. Among these are e-mail and instant mes-

saging components.

• montiarc-lib-sim: The MontiArc Simulation Library contains simulation specific com-

ponents used to simulate transmission delays or loss of messages. It further contains sink

and source components to display and inject messages in decomposed components.

• montiarc-lib-util: The MontiArc Utility Library provides a collection of utility com-

ponents. It comprises components to route signals (merge, split), to access and process

files (text, serialized data, compressed archives), and simple encryption and conversion

components.

6.8.3 Creating a Library

Actually, all MontiArc projects that at least produce and publish the binary artifacts described

in Section 6.8.1 can be reused as a library. However, this is not very convenient since at least

two dependencies have to be added to the project that wants to reuse a library. The models

or symbols jar has to be added to the modelpath and the main binary jar has to be added to

the classpath. Optionally, to increase the usability of a library, the model-docs jar has to be

added to the classpath, too.

To ease library reuse, the exported artifacts of a library should be bundled in an aggregating

Maven project. For a detailed description of Maven we refer to [www14k]. An excerpt of

an exemplary aggregating project configuration (pom.xml) is depicted in Listing 6.43. As a

convention, the group id (cf. l. 1) corresponds to the group id of the aggregated library (cf.

ll. 7, 12, 18) and the artifact id is postfixed with -lib (cf. l. 2). The project packaging

(cf. l. 4) has to be set to pom and the dependencies of all artifacts provided by the created

library have to be added. The first dependency provides the main binary jar (cf. ll. 6-10), the

second dependency (cf. ll. 11-16) provides the symbols artifact (see classifier l. 14), and the

third dependency (cf. ll. 17-22) the model documentation with classifier model-docs. Since

Maven transitively resolves dependencies, this configuration also exports further dependencies

defined in the concrete library. Please note that this technique can be also used to combine more

than one library. For example, all predefined MontiArc libraries are aggregated within a single

aggregator project.

6.8.4 Using a Library

To use a library, simply add its dependency aggregator to the dependencies section of the

project’s configuration (pom.xml). As depicted in Listing 6.44, it has to be added as a depen-

dency with type pom (cf. l. 6). This automatically adds the artifacts provided by the aggregator

219

6.9. DISTRIBUTED SIMULATION

pom.xml1 <groupId>$(GROUP_ID)</groupId>

2 <artifactId>$(ARTIFACT_ID)-lib</artifactId>

3 <version>0.0.1</version>

4 <packaging>pom</packaging>

5 <dependencies>

6 <dependency>

7 <groupId>$(GROUP_ID)</groupId>

8 <artifactId>$(ARTIFACT_ID)</artifactId>

9 <version>${project.version}</version>

10 </dependency>

11 <dependency>

12 <groupId>$(GROUP_ID)</groupId>

13 <artifactId>$(ARTIFACT_ID)</artifactId>

14 <classifier>symbols</classifier>

15 <version>${project.version}</version>

16 </dependency>

17 <dependency>

18 <groupId>$(GROUP_ID)</groupId>

19 <artifactId>$(ARTIFACT_ID)</artifactId>

20 <classifier>model-docs</classifier>

21 <version>${project.version}</version>

22 </dependency>

23 </dependencies>

Listing 6.43: A dependency aggregator for a MontiArc library.

to the class- or modelpath. Afterwards the contained components can be used as subcomponent

types and are, e.g., proposed by the autocompletion of the MontiArc IDE.

pom.xml1 <dependencies>

2 <dependency>

3 <groupId>$(GROUP_ID)</groupId>

4 <artifactId>$(ARTIFACT_ID)-lib</artifactId>

5 <version>0.0.1</version>

6 <type>pom</type>

7 </dependency>

8 ...

9 </dependencies>

Listing 6.44: Project dependency configuration to reuse a MontiArc library.

6.9 Distributed Simulation∗

Sometimes, a simulation can be executed faster by distributing several components over distinct

nodes, i.e., distinct threads, processes, and computers. This is especially the case, if the simu-

lated system contains computationally intensive components which are configured in a parallel

220

6.9. DISTRIBUTED SIMULATION

way. The default simulation of a system modeled with MontiArc is designed to be executed

in a single thread. Thus, a parallel execution of components is only simulated. To distribute a

simulation and achieve real parallel execution, several steps have to be performed:

1. Create a host component model for each distributed node.

2. Generate simulation code for these top-level models.

3. Programmatically configure the generated components using TCP/IP simulation ports.

These steps are explained in the following by means of the already known ABP example. The

MontiArc models as well as the Java code created for this example can be downloaded from the

MontiArc website15.

Model and Generate Host Components

Initially, the concrete distribution of the nodes has to be determined and designed. This is per-

formed in the following steps:

1. Create an empty host component model for each simulation node.

2. Replicate each outer port of the original system in one of the host components.

3. Then iterate over the subcomponents of the original system and map each to a node by

replicating it in a host component. To do so, use the following rules. First, if more than one

subcomponent is mapped to the same host component, they should be directly connected

within the original system. Second, if a subcomponent in the original system is connected

to an outer port of the system, it has to be replicated in the host component that replicates

the connected port (step 2).

4. Remove host components which just contain a single subcomponent with a single incom-

ing port. These subcomponents can be directly instantiated on the simulation node later

and must not be wrapped into a host component.

5. Then, iterate over all connectors of the original system. Connectors which connect sub-

components that are deployed to the same node are replicated in the corresponding host

component. Other connectors are simply dropped.

6. Create ports with the same type and direction in the host components for each uncon-

nected port of a subcomponent. Connect the outgoing ports of the subcomponents with

the outgoing ports of the hosts.

7. Introduce a delay component for each unconnected incoming port of a subcomponent.

Then, connect it with the port and the corresponding outer port of the host component.

This is needed to prevent timing deadlocks in the simulation (see Section 3.5.5).

Figure 6.45 depicts the resulting host components DelayedSender and ABPReceiver.

The former simply mirrors the interface of the contained ABPSender subcomponent that has

been developed in this tutorial and adds a delay in front of its ack port. The ABPReceiver

component can be directly reused since it only has one incoming port. Thus, the host component

is not needed for the receiver part of the ABP. Please note that we also excluded the LossyDe-

layedChannel components from the distributed system. Since the created top-level models

are regular MontiArc components, we now use the MontiArc generator to derive Java simulation

classes.

15Tutorial: Alternating Bit Protocol, http://www.monticore.de/languages/montiarc/examples/.

221

http://www.monticore.de/languages/montiarc/examples/

6.9. DISTRIBUTED SIMULATION

msg
ABPSender

sender

String

FixDelay

ABPMessage

boolean

DelayedSender

ack

abpMsg

boolean

ABPReceiver

ack

abpMsg

msg

IP: SENDER_HOST IP: RECEIVER_HOST

TCP-Port=10815

TCP-Port=10816

MA

Figure 6.45: A physically distributed ABP simulation.

Configure Top-Level Components

After code generation has finished, we configure the generated Java components to be used in a

distributed way. Therefore, an execution class has to be created for every distributed simulation

node. This class has to a) configure the node for the distribution and b) execute the configured

component. The concrete distribution is also depicted in Figure 6.45. It can be seen that compo-

nent DelayedSender is deployed on a node with IP address SENDER HOST and component

ABPReceiver is deployed on a node with the IP address RECEIVER HOST. The abpMsg

ports are configured to communicate via TCP/IP port 10815, the ack ports via TCP/IP port

10816.

The Java method depicted in Listing 6.46 configures the ABPReceiver according to the

desired configuration. The following steps are performed:

1. An ABPReceiver instance is created using the corresponding factory (l. 6).

2. The simulation scheduler is configured to use a TCPPortFactory to instantiate sim-

ulation ports and the setup of the receiver is performed (ll. 8 – 12). Consequently, all

instantiated ports within the simulation are TCPPort objects.

3. A TCPPort (an extended simulation port which is capable of communicating via TCP/IP

port sockets) is created. By calling its addReceiver method, it is configured to send

messages to the passed IP address (parameter addr) and the given TCP/IP port number

PORT ACK. The created port is used as outgoing port ack (ll. 14 - 17). Please note that

the TCP/IP port numbers are outsourced as constants to a dedicated utility class which is

not shown here. See Section 9.2 for more information about TCPPorts.

4. The incoming port abpMessage is acquired from the component and configured to listen

on TCP/IP port number PORT ABP (ll. 19 – 23).

5. To get notified if messages are emitted by port message, we also set a TimedObserv-

ablePort as outgoing port message (ll. 25 – 29). The added observer simply prints

received messages to the console (ll. 30 - 36).

The sender part of the distributed ABP simulation is configured vice versa. Thus, its outgo-

ing port abpOut has to send messages to address RECEIVER HOST on TCP/IP port number

222

6.9. DISTRIBUTED SIMULATION

Java1 /**
2 * Configures an ABPReceiver for a distributed simulation.

3 * @param addr IP address of the ABP sender.

4 */

5 public void setUp(String addr) {

6 receiver = ABPReceiverFactory.create();

7

8 // configure scheduler to create TCPPorts

9 IScheduler sched = SchedulerFactory.createDefaultScheduler();

10 IPortFactory factory = new TCPPortFactory();

11 sched.setPortFactory(factory);

12 receiver.setup(sched, new SimpleErrorHandler());

13

14 // configure ack out port

15 TCPPort<Boolean> ackOut = new TCPPort<Boolean>();

16 ackOut.addReceiver(addr, PORT_ACK);

17 receiver.setAck(ackOut);

18

19 // configure and get abp in port

20 IInTCPPort<ABPMessage<String>> abpMsg =

21 (IInTCPPort<ABPMessage<String>>) receiver

22 .getAbpMessage();

23 abpMsg.startListenOn(PORT_ABP);

24

25 // configure message out port

26 TimedObservablePort<String> results =

27 new TimedObservablePort<String>();

28 // Use ’result’ as outgoing port message.

29 receiver.setMessage(results);

30 // observer is updated, if a message is received

31 results.addObserver(new Observer() {

32 @Override

33 public void update(Observable o, Object arg) {

34 System.out.println("Received: " + arg);

35 }

36 });

37 }

Listing 6.46: Configuration of the ABPReceiver for a distributed simulation.

PORT ABP and its incoming port ack has to listen on TCP/IP port number PORT ACK. Fur-

ther, it is implemented as a Runnable that reads input from the command line in an endless

loop. The read strings are then forwarded to the incoming port accept of the configured De-

layedSender instance. Additionally, a
√

is periodically forwarded to the same port to couple

simulation and real time. The complete implementation of the sender configuration is given in

Listing E.13 on page 335.

To start the distributed simulation, both configuration classes have to be executed on the cor-

223

6.9. DISTRIBUTED SIMULATION

responding nodes. The distributed receiver is started by simply instantiating the configuration

class and then calling the depicted setUp method. The sender is started by instantiating the

configuration class, calling its setUp method and finally starting the runnable (either directly

or by passing it to a dedicated thread).

In this example, the input of the simulated system is simply read from the command line, its

output is printed to the console. Input and output has been simplified to focus on the distribution

techniques. Nevertheless, the distributed simulation can be used in regular component tests (see

Section 6.4) as well as optimization tests (see Section 6.6).

224

Chapter 7

MontiArc Extension Method

Reuse is a key technique to increase efficiency of the development process. For example, general

purpose languages (GPLs) facilitate to reuse well tested code which provides functionality with

a well defined interface. Thus, new functions need not to be developed from scratch but can be

build on top of existing libraries. The language workbench MontiCore allows to define reusable

languages which can be extended and combined to new languages [KRV08]. Beside the exten-

sion of the concrete syntax, that is presented in [Kra10], MontiCore also provides mechanisms

for semantic language combination [Völ11, HLMSN+15].

By using these features combined with well defined extension points, the MontiArc language

and the corresponding tools can be reused and extended. This allows for adjusting the language

to a certain domain or to add further language processing tasks, e.g., analysis or metric cal-

culations, while most parts of the language framework can be directly reused in the adjusted

language. This is especially needed, if MontiArc’s architectural style is either too generic or

needs to be adjusted for the current use case (see Section 1.4).

To facilitate the process of language extension and to allow the reuse of as much tooling as

possible, this chapter presents an integrated method to extend MontiArc. The method comprises

structured steps to extend the language, model processing, MontiArc’s runtime environment

(RTE), and the corresponding generators. It does not cover the development of a completely

different target RTE, since this activity leads to the development of a new dedicated generator.

A method for this task is presented in, e.g., [Sch12, Section 5.3].

The method is structured according to the main reasons for extending MontiArc and it sup-

ports the following forms of language extension:

• Model Processing Extension allows to add new features to the MontiArc language it-

self. This comprises the integration of new model analyses, metric calculations, or model

transformations. This method is described in Section 7.1.

• Simulation Extension allows to handle extended syntax in the simulation, to integrate

new simulation features, and to extend or adjust simulation scheduling. The corresponding

method is discussed in Section 7.2.

• Language Extension is used to adjust MontiArc with new model elements or even extend

it to a new architectural style. This requires an extension of the syntax and symbol table

of MontiArc. These methods are discussed in Section 7.3.

Please note that all examples used in this chapter are available on the MontiArc examples

website1.

1MontiArc Language Extension Example Project, http://www.monticore.de/languages/montiarc/

225

http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/

7.1. MODEL PROCESSING EXTENSION

7.1 Model Processing Extension

To realize new features for the MontiArc language, e.g., component analyses or metric calcula-

tions, the model processing, which is described in Section 5.1, has to be extended. A systematic

method to extend model processing of MontiArc models is depicted in Figure 7.1. It comprises

the following steps:

1. Extend Language: As an initial step the supporting activity Extend Language, which

is described in detail in Section 7.3, is to be performed. If needed, it enriches the language

with elements required for the current extension.

2. Objective: Depending on the concrete extension objective, the next activity has to be

chosen.

a) If new model analysis should be added, activity Add Execution Unit is to be

performed. It is described in Section 7.1.1.

b) If preprocessings shall be added, perform activity Add Transformation which

is presented in Section 7.1.2.

3. Adjust Tooling: Both activities are followed by a final activity that configures existing

MontiArc tools to use the created extension. Since the needed adaptations depend on the

current objective, details are given in the corresponding subsections.

[model analysis] [preprocessing]

«Java»

Workflow

Implement
Workflow

Implement
Visitor

Add Execution Unit

Adjust
Tooling

«Java»

Module

Add Transformation

Implement
Transformation

«Java»

Transformation

Extend Model Processing
AD

«Java»

Visitor

[complex]
[simple]

Configure
Transformations

«Java»

Transformation-

ConfigurationFactory

Extend
Language

complex
task?

extension objective?

Figure 7.1: Activities to extend the processing of MontiArc models.

examples/.

226

http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/
http://www.monticore.de/languages/montiarc/examples/

7.1. MODEL PROCESSING EXTENSION

7.1.1 Add Execution Unit

As already discussed in Section 5.1, model processing tasks are realized using execution units.

Thus, new execution units have to be added by registering custom workflows which implement

new features at the ModelingLanguage component of the language that is to be extended

(see Figure 5.1 on page 126). Hence, to extend MontiArc with a new workflow, it has to be

added as an execution unit to the registered MontiArcLanguage instance (see Figure 5.3

on page 127). Extending MontiArc’s model processing is realized by executing the following

activities:

Implement Workflow: At first, a new workflow is to be implemented which realizes the new

language feature. Therefore, follow [Kra10, Section 9.2] and create a new class that extends

class DSLWorkflow. The abstract syntax tree (AST) of the processed model is provided by

the DSLRoot that is passed as parameter to the run method of the created workflow. Simple

features that depend on a few model elements can be directly implemented in the created work-

flow. An example that demonstrates how to implement a custom workflow is given in Listing F.2

on page 338.

Implement Visitor: If a complex feature is to be realized, it might by suitable to implement it

as a visitor [GHJV95] which simplifies traversing the AST. The MontiCore framework already

provides basic classes to realize visitors. As described in [Kra10, Section 9.3.10], new visitors

should be realized as ConcreteVisitors. The following three methods can be implemented

to visit AST nodes of a certain class. A method parameter with the type of the node class that is

to be visited has to be defined.

visit(. . .): is called before child nodes are visited.

endVisit(. . .): is called after child nodes have been visited.

ownVisit(. . .): is called before child nodes are visited. Since automatic traversal of child nodes

is suppressed by this method, own traversal strategies of the child nodes can be realized.

To start a concrete visitor, pass an instance together with the start AST node to the static run

method of class InheritanceVisitor. This should be performed in the aforementioned

workflow implementation.

Adjust Tooling: To add the custom workflow to the MontiArc tool, a custom guice mod-

ule2 has to be created. MontiArc already provides default modules which allow for fine grained

modifications while reusing the majority of the default configuration. The default modules de-

picted in Figure 7.2 are subclasses of AbstractModule provided by guice. The contained

bind* methods are automatically called. Hence, to change a certain injection binding, the cor-

responding bind method has to be overridden in a subclass. The additional*Bindings

methods are provided to add further bindings, e.g., needed by new processing workflows. For

example MontiArc changes the binding to the component factories which are used for symbol

table creation of the ArcD language by overriding method bindComponentFactories().

To customize the used ModelingLanguage, the method bindMontiArcModelingLan-

guage() has to be overridden. A new MontiArcLanguage class is not to be implemented

since the workflow can be easily registered at an instance of the existing modeling language.

An example for a custom module is given in Listing 7.3. The aforementioned method is over-

2MontiArc uses the guice dependency injection framework (https://github.com/google/guice).

227

https://github.com/google/guice

7.1. MODEL PROCESSING EXTENSION

ArcdDefaultModule

additionalBindings()

bindComponentFactories ()

bindComponentImplementationEntryCreator()

bindConnectorFactory()

bindLanguageAndVisitor()

bindMainFactory()

bindPortFactory()

bindArcdFieldFactory()

bindArcdValueFactory()

bindArcdTypeFactory()

bindTrafoConfigurationFactory()

bindCocoCreator()

«abstract»

AbstractModule

configure()

MontiArcDefaultModule

// overrides

final additionalBindings()

bindComponentFactories()

bindLanguageAndVisitor()

bindTrafoConfigurationFactory()

bindCocoCreator()

// adds

additionalMontiArcBindings()

bindLanguageFamily()

bindMontiArcModelingLanguage()

CD

Figure 7.2: Default modules to configure dependency injection.

ridden and left empty to override the default binding (cf. ll. 5 – 8). ModelingLanguage

instances are provided by the factory method given in ll. 9 – 15 as denoted by the @Provides

annotation. It creates a modeling language instance (l. 12) using the injected ILanguage

and registers the custom workflow PortCountWorkflow with the execution name count-

Ports (l. 13) that is defined by the constant COUNT PORTS (l. 2). A MontiArc tool instantiated

with this module is able to process the created custom workflow.

To execute the registered workflow with the MontiArc tool, it has to be activated in the anal-

ysis or synthesis model processing phase (see Figure 5.4 on page 128). For this, suitable ar-

Java1 /** Name of the ’count ports’ execution unit.*/

2 public static final String COUNT_PORTS = "countPorts";

3

4 public static class ProcExtModule extends MontiArcDefaultModule {

5 @Override

6 protected void bindMontiArcModelingLanguage() {

7 // left empty...we simply override default binding.

8 }

9 @Inject @Provides

10 ModelingLanguage getExtendedMontiArcLanguage(ILanguage

11 component) {

12 MontiArcLanguage l = new MontiArcLanguage(component);

13 l.addExecutionUnit(COUNT_PORTS, PortCountWorkflow.create());

14 return l;

15 }

16 }

Listing 7.3: Guice module that adds a new workflow to the MontiArc tool.

228

7.1. MODEL PROCESSING EXTENSION

guments have to be passed to the tool constructor together with an instance of the customized

module. An example is given in Listing 7.4. The custom workflow COUNT PORTS is activated

in the analysis phase for MontiArc models with the arguments given in l. 7. The MontiArc

tool is constructed in l. 10 by passing the defined arguments toolArgs with a custom module

instance to the tool constructor. The tool is then executed by calling its run() method (l. 12).

Java1 // configuration to parse and count ports.

2 String[] toolArgs = new String[] {

3 "src/main/resources/processing",

4 ARG_OUT, OUT_DIR,

5 ARG_SYMTABDIR, SYMTAB_DIR,

6 ARG_ANALYSIS, MONTI_ARC_ROOT_NAME, WF_PARSE,

7 ARG_SYNTHESIS, MONTI_ARC_ROOT_NAME, COUNT_PORTS

8 };

9 // create tool with custom dependency injection module

10 MontiArcTool t = new MontiArcTool(toolArgs, new ProcExtModule());

11 // execute tool

12 t.run();

Listing 7.4: Execute a MontiArc tool with an added workflow.

7.1.2 Add Transformation

To add custom model transformations to the transformation framework which is described in

Section 5.3.3, two process steps have to be performed.

Implement Transformation: First, the transformation to add has to be implemented. There-

fore, the suitable transformation interfaces which are needed to realize the desired transfor-

mation, have to be implemented by a new transformation class. All available transformation

interfaces are listed in Table F.4 on page 341.

Configure Transformations: The TransformationVisitors registered at the Mon-

tiArc tool (see Figure 5.24 on page 148) are set up by a configuration object which is produced

by an ITrafoConfigurationFactory. Thus, a custom factory has to be implemented

that provides a suitable transformation configuration. The relevant interfaces are depicted in

Figure 7.5. Transformations might need a symbol table and are executed by a specific execution

unit. Hence, the create method of the factory gets both as arguments. The name of the execu-

tion unit unitName can be used to produce different transformation configurations for different

phases of model processing. An ITrafoConfiguration simply returns a list of transfor-

mations which are to be executed by the visitor. They are used by transformation workflows

to configure the corresponding transformation visitors. An example for a custom transforma-

tion configuration factory, that also reuses the default transformation configuration, is given in

Listing F.3 on page 339.

Adjust Tooling: To use the custom factory, it has to be injected by guice. Therefore, a de-

dicated guice module has to be created that subclasses the default MontiArc guice module and

229

7.2. SIMULATION EXTENSION

«interface»

ITrafoConfiguration

List<ITransformator> getTrafos()

CD

«interface»

ITrafoConfigurationFactory

Optional<ITrafoConfiguration> create(symtab, unitName)

«creates»

TransformationVisitorTransformationWorkflow

«uses»

«configures»

«executes»

Figure 7.5: Interfaces used as extension points to add further transformations to MontiArc.

overrides its bindTrafoConfigurationFactory() method (see Figure 7.2). The over-

ridden method then has to define the binding of interface ITrafoConfigurationFactory

to the custom factory implementation. The new transformations are executed if the custom mod-

ule is passed to the MontiArc tool as explained in the previous subsection.

7.2 Simulation Extension

Several reasons lead to the need for an extension of the MontiArc simulation which is described

in Chapter 4. For example, new model elements have been introduced which are to be considered

in the simulation. A systematic method for this purpose is depicted in Figure 7.6. It comprises

the following steps:

1. Extend Language: As an initial step, the supporting activity Extend Language,

which is described in detail in Section 7.3, is to be performed.

2. Analyze Purpose: Then, the purpose of the extension is to be analysed. Three main

reasons are handled by the method. First, the syntax of the language has been extended

and new model elements are to be simulated. Second, a new feature should be added to

the simulation. And third, a refined scheduler or a new scheduler strategy is to be realized.

7.2.1 Handle Extended Syntax

The syntax of the language has been extended and new model elements have to be simulated,

too. Therefore, it has to be clarified whether added model elements can be semantically rep-

resented by existing concepts which are already handled by the simulation. In this case, the

extension is implemented by adding a transformation which transforms the new element to a set

of semantically equivalent elements. For example, a connector, which is annotated with a delay,

can be transformed to two connectors and a delay subcomponent that is interconnected between

the original source and target. The activities of Add Transformation are described in Sec-

tion 7.1.2. If a new element is not representable by existing concepts, a new feature has to be

added to the simulation.

7.2.2 Add Feature

Features are added to the MontiArc simulation by performing the following activities:

230

7.2. SIMULATION EXTENSION

Extend Simulation
AD

Analyze Purpose

Extend Scheduling

[extended syntax]
[new scheduler /

scheduling strategy]

Implement
Scheduler

Extend
Language

Implement
Ports and
Factories

new ports
required?

representable
by existing
concepts?

Add

Transformation

[yes] [no]

Extend Code
Generator

simulation RTE
sufficient?

[no]

Extend
Simulation RTE

[yes]
[no]

[yes]

Add Feature

[new feature]

Handle Extended Syntax

Figure 7.6: Activities to extend the simulation of MontiArc models.

1. Simulation RTE sufficient?: Initially, it has to be checked whether the existing simula-

tion RTE is sufficient to integrate the new feature. This is the case if new features can be

realized by extending implementation methods which are already created by the MontiArc

code generator. Further, the new feature has to only depend on interfaces respectively

classes which are already provided by the current simulation RTE.

2. Extend Simulation RTE: If the current simulation RTE is not sufficient, it has to be

extended. This mostly comprises the following activities:

• Subtype existing simulation classes to refine generally used abstract implementa-

tions, e.g., AComponent.

• Extend existing interfaces to add new methods to existing concepts. For example,

further properties like a location or process effort can be added to special components

kinds.

• Introduce new interfaces or classes that represent new elements which are to be sim-

ulated. Introducing new RTE classes can lead up to the need for further extensions

of the simulation. For example, an automaton interface can be designed that defines

methods of the Java representation of an embedded automaton. Since it requires a

certain scheduling strategy, component scheduling has to be extended.

3. Extend Code Generator: To integrate calls to the added feature into generated compo-

nent code, the existing code generator has to be extended. This activity is described in

detail in Section 7.2.4.

231

7.2. SIMULATION EXTENSION

7.2.3 Extend Scheduling

To integrate refined or completely new scheduling strategies into the MontiArc simulation, the

following steps have to be performed:

Implement Scheduler: First, the new scheduler is to be implemented by creating a class

that implements interface IScheduler. Method setupPort is responsible to initialize a

concrete scheduler with the ports of the scheduled components. The concrete scheduling strategy

is to be implemented in method registerPort.

Implement Ports and Factories: Scheduling strategies are also represented in the commu-

nication between port objects and the scheduler. Therefore, new scheduling strategies might

lead up to the implementation of specialized ports which are able to interact well with a new

scheduler. In this case, these ports have to be implemented together with a port factory. This

port factory has to be used by the new scheduler to instantiate port objects (see Figure 4.12 on

page 97).

7.2.4 Code Generator Extension

A structured method to extend the MontiArc code generator is depicted in Figure 7.7. The

generator uses the common generator infrastructure provided by MontiCore (see [Sch12, Sec-

tion 5.2]). The method comprises the following steps:

1. Create Generator Configuration: Initially, a configuration has to be created for the

new generator. This configuration has to bind hook points of the generator with a set of

templates which should be included at the location of the hook point. To create a valid

configuration, it is recommended to copy and adjust the default generator configuration

ComponentMain.ftl which is located in the MontiArc backend jar3. Unbound hook

points serve as extension points which allow to add new templates without adjusting the

existing template structure. A complete list of these extension points is given in Table F.5

on page 342. The names of the hook points determine their location in the generated code.

For example, templates bound to the constructorHook are included at the end of the

generated constructor.

2. Adjust Generated API: If the simulation RTE has not been extended in a previous activ-

ity, this step can be skipped. If it has been extended, the application programming inter-

face (API) of the generated component class hat to be adjusted accordingly by performing

the following activities:

a) Adjust Generated Type Names: The type names of the simulation RTE classes are

not directly used within the templates of the generator. They are imported by the

template calculator SimAPIClassNameCalculator which maps the qualified

class name of an RTE class to its unqualified name. For example, the qualified type

name of the abstract component implementation is accessed by using the variable

${AComponent} in a template. Thus, to replace the generally used superclass of

the generated component class, the call of the aforementioned template calculator

3de.montiarc.be-2.5.0.jar

232

7.2. SIMULATION EXTENSION

has to be replaced with a call to an adjusted version which maps variable ACompo-

nent to the qualified name of the type that is to be used.

b) Implement Method Templates: If the API of the simulation RTE has been extended

by adding new methods to extended component interfaces, these methods usually

have to be implemented by the generated component class. Therefore, new templates

which generate these methods have to be created.

c) Configure New Method/Element Hook: To integrate the created templates into the

generator, its hook point configuration has to be adjusted. If new templates are to

be called with an ASTArcComponent AST node, they have to be mapped to hook

point newMethodsHook. If they need an ASTArcElementAST node, they have

to be mapped to hook point arcElementHook. Both extension points are called

within the body of the generated component.

3. Adjust Existing Methods: Two activities have to be accomplished to adjust existing

generated methods.

a) Implement Extension Templates: First, templates have to be implemented that pro-

duce the code which is to be injected into existing methods. Which AST node type is

available in the these templates is documented in the default generator configuration

respectively in Table F.5 on page 342.

b) Configure Corresponding Method Hook: Finally, the generator configuration has

to be adjusted by adding the created templates to the corresponding method hooks.

Extend Code Generator
ADCreate Generator

Configuration simulation RTE
extended?

[no][yes]

Adjust Existing Methods

Implement
Extension
Templates

Configure
Corresponding
Method Hook

Adjust Generated API

Adjust Generated

Type Names

Configure New
Method/Element

Hook

Implement
Method

Templates

Figure 7.7: Activities to extend the MontiArc code generator.

As described in Table 5.54 on page 175, the adjusted generator can be started by passing the

-generator parameter triple to the MontiArc generator tool. Please note, all template have

to be in the Java class path.

233

7.3. LANGUAGE EXTENSION

7.3 Language Extension

An extension of the MontiArc language is often a preparatory step for extension of the model

processing or the MontiArc simulation. As depicted in Figure 7.8, it comprises the following

structured activities:

1. Analyze Extension: As an initial task, the main extension is to be analyzed to answer the

question whether it depends on existing model elements. If the needed elements already

exist in the MontiArc language, an extension of the language is not needed. Thus, this

preparatory process is finished.

2. Extend Syntax: If needed model elements are not available, the syntax of the language

has to be extended as described in Section 7.3.1. Afterwards, it has to be considered

whether the extended syntax also affects the symbol table. If this is not the case, the

language extension activity is finished.

3. Extend Symbol Table: In the case of an influence on the symbol table, it has to be

extended as described in Section 7.3.2. An influence is given if added elements should

be part of the outer interface of a component (public symbol table) or should be inherited

from a supercomponent (protected symbol table).

Analyze Extension

model element available?
[no]

Extend Language
AD

Extend Syntax

Extend Symbol Table

affects symbol table?

[yes]

[yes]
[no]

Figure 7.8: Activities to extend the MontiArc language.

7.3.1 Syntax Extension

The definition of new architectural styles based on MontiArc requires an extension of the syntax.

Sometimes, also new language features for MontiArc’s basic style need more information than

the given MontiArc language provides. If, e.g., a metric is to be realized which calculates

the mean execution time of decomposed components, it needs the consumed CPU cycles of

contained subcomponents. However, in the default MontiArc language, component definitions

can not be attached with such information. Thus, its syntax needs to be adjusted.

A structured process to extend MontiArc’s syntax is depicted in Figure 7.9. It comprises the

following activities:

1. Analyze Purpose: MontiArc’s syntax can be extended in several ways. Depending on the

concrete purpose, a suitable extension method has to be chosen.

234

7.3. LANGUAGE EXTENSION

a) Extension by Inheritance is most suitable when existing language elements should

be refined or new language elements are to be added.

b) Extension by Embedding is to be used when a new behavior or constraint definition

language is to be added to the provided extension points.

c) Extension by Stereotypes can be used to annotate existing model elements with

further information in a lightweight way.

Analyze Purpose

[add or refine elements]

[add behavior/invariant definitions]

[annotate existing elements]

«grammar»

MG

Design
Language

Configure
Language

Extension by Inheritance

Adjust
Tooling

«lng-file»

MLD

«Java»

Module

Extension by Embedding

Bind
Externals

«lng-file»

MLD

«Java»

Module

Configure
P. Printer

Adjust
Tooling

Extension by Stereotypes

Document
Stereotype

«artifact»

Documen-

tation

Extend Syntax
AD

Figure 7.9: Activities to extend the syntax of MontiArc.

Language Inheritance

To adapt the concrete syntax of the language with new or refined language elements, language

inheritance is suitable. The Architecture Diagram (ArcD) and MontiArc grammars, which are

presented in Section 3.4.3 and Section 3.4.4, provide two interfaces that also serve as extension

points for language inheritance. ArcElement is to be implemented by each production which

defines a nonterminal of a new language element. As a result, such elements can be used every-

where within the body of a component. This also holds for the second interface MontiArc-

Config which is provided for configuration extensions. While both interfaces do not influence

the concrete syntax of the implementing productions, they still affect the types of the resulting

AST classes. Consequently, they indicate a certain meaning, i.e., the nonterminal represents an

architectural element or a component configuration. Further, configuration and regular element

nodes are distinguishable during model processing activities. An example that explains how to

create an extension of the MontiArc language is given in the following. Components defined

235

7.3. LANGUAGE EXTENSION

in the extended language also contain property information for analysis, as, e.g., the component

depicted in Listing 7.10.

MAPR

�

1 component ExtendedMontiArcComponent {

2 // ...

3 property delay = 5;

4 properties {

5 CPU_CYCLES = 10;

6 MEMORY_CONSUMPTION = 150;

7 }

Listing 7.10: Example component which contains extended model elements.

Design Language: First, a grammar has to be created which extends the MontiArc language.

All productions that define nonterminals in the subgrammar which should be available within

a component’s body have to implement one of the aforementioned interfaces. A grammar that

adds the desired property definitions is given in Listing 7.11. The nonterminal SingleProp-

erty (cf. ll. 2f) represents a single property and the nonterminal PropertySet (cf. ll. 5 –

8) a set of properties. Both implement interface MontiArcConfig to indicate their semantics

of a configuration element. Thus, both can be used within a component’s body. Please note that

existing language elements can also be replaced or refined in a sublanguage. Therefore, Mon-

tiCore’s nonterminal inheritance mechanism can be used which corresponds to an alternative in

the grammar. Thus, production A extends B = A RHS can be also read as A = B | A RHS.

Hence, if A should replace B, B has to be set abstract. A detailed discussion of MontiCore’s

grammar format is given in [KRV07b] and [Kra10, Chapter 3].

MG1 grammar ExtendedMontiArc extends mc.umlp.arc.MontiArc {

2 SingleProperty implements MontiArcConfig =

3 "property" Property ;

4

5 PropertySet implements MontiArcConfig =

6 "properties" "{"

7 properties:Property*
8 "}";

9

10 Property =

11 Name ("=" Value)? ";";

12 }

Listing 7.11: MontiCore grammar which adds properties and property sets as new language

elements to the MontiArc language.

Configure Language: Second, a MontiCore language definition has to be implemented that

defines the names of tool related classes. An example is given in Listing 7.12. The name of

the DSLRoot (cf. l. 3), the DSLRoot factory (cf. ll. 5 – 8), as well as the name of the parsing

workflow (cf. ll. 9f) have to be defined (cf. Section 5.1).

236

7.3. LANGUAGE EXTENSION

MLD1 language ExtendedMontiArcLanguage {

2

3 root ExtendedMontiArcRoot<MCCompilationUnit>;

4

5 rootfactory ExtendedMontiArcRootFactory for

6 ExtendedMontiArcRoot<MCCompilationUnit> {

7 // ...

8 }

9 parsingworkflow ExtendedMontiArcParsingWorkflow for

10 ExtendedMontiArcRoot<MCCompilationUnit>;

11 }

Listing 7.12: Basic MontiCore language definition of the extended MontiArc language.

Adjust Tooling: Finally, to reuse existing language processing workflows, such as context

condition checks or code generation, the MontiArc modeling language which is used by the

MontiArc tool is to be adapted (class MontiArcLanguage, see activity Adjust Tooling in

Section 7.1.1). Therefore, a custom guice module that configures the existing MontiArcLan-

guage has to be created or extended. An example is given in the appendix in Listing F.1 on page

337. The contained factory method which produces MontiArcLanguage instances replaces

the root factory by overriding method getRootFactory() in a local class (cf. ll. 7-14). To

reuse default model processing tasks, such as symbol table creation or context condition checks,

the corresponding workflows have to be initialized to use the extended DSLRoot (cf. ll. 18-28).

Also the language instance has to be configured to work with the extended DSLRoot instead of

the regular MontiArc root (cf. ll. 15-17). By passing the adjusted guice module to the MontiArc

tool, it is configured to process extended MontiArc models (cf. Listing 7.4).

Language Embedding

Another possibility to extend MontiArc’s syntax is language embedding. According to [KRV08]

and [Kra10, Section 4.2], this technique allows to embed parts of another language into a host

language at predefined extension points. These are given by external nonterminals. To use such

an extension point, one or more bindings to nonterminals of the embedded language have to

be defined in the language definition of the host language. MontiArc offers two external non-

terminals for this purpose. Nonterminal BehaviorEmbedding is used to embed behavior

definition languages into the right-hand side (RHS) of ArcComponentImplementation

(see Listing 3.25 on page 56). InvariantContent is intended for the embedding of con-

straint definition languages into the RHS of MontiArcInvariant (see Listing 3.26 on page

56). In the MontiArc language definition, the former extension point is not bound while the lat-

ter is bound to Object Constraint Language (OCL) expressions as well as Java block statements.

To extend MontiArc with further embeddings, the following steps have to be performed.

Bind Externals: First, a custom language definition has to be created to define the bindings of

the targeted embedding as well as the mandatory elements. An exemplary configuration of the

root factory which defines the embedding of UML/P statecharts (SCs) (cf. [Sch12, Section 3.3])

237

7.3. LANGUAGE EXTENSION

into MontiArc is depicted in Listing 7.13. A start parser is defined (cf. l. 3) named arc

and the SCDefinition parser is bound to the external nonterminal BehaviorEmbedding

(cf. l. 6). Since UML/P SCs itself uses embedded languages to describe actions or pre- and

postconditions, the embedded SCDefinition parser has to be configured accordingly, too.

This is done by the embedding of Java expressions into extension point InvariantContent

and Java block statements into Statements (cf. ll. 9f). Please note that this example further

refines the syntax extension given in Section 7.3.1. Nevertheless, the default MontiArc language

can be extended by embedding, too. Therefore, a root factory for the MontiArc DSLRoot instead

of the extended variant has to be configured in the language definition (cf. l. 2).

MLD1 rootfactory ExtendedMontiArcRootFactory for

2 ExtendedMontiArcRoot<MCCompilationUnit> {

3 MCCompilationUnit arc <<start>>;

4

5 // Embedd statecharts into MontiArc.

6 SCDefinition scp in arc.BehaviorEmbedding(sc);

7

8 // Define statechart embeddings.

9 Expression javaexpr in scp.InvariantContent;

10 BlockStatement javastmt in scp.Statements;

11

12 // SC, MA, and Java pretty printers.

13 prettyprint {

14 mc.umlp.sc.prettyprint.SCConcretePrettyPrinter;

15 mc.umlp.arc.prettyprint.MontiArcConcretePrettyPrinter;

16 mc.javadsl.prettyprint.JavaDSLConcretePrettyPrinter;

17 }

18 }

Listing 7.13: MontiCore language definition of the extended MontiArc language.

Configure Pretty Printer: Then, the pretty printer of the language has to be configured.

This enables the resulting pretty printer to also handle the embedded AST nodes. In the given

example, this is done by registering the SC, the MontiArc, and the Java pretty printer (ll. 12 –

17).

The depicted language configuration allows to process components which contain SCs to

define the component’s behavior. Thus, components like the one depicted in Listing 7.14 can be

defined. The SC (cf. ll. 8 – 14) is embedded into the implementation description of the

component (cf. ll. 7 – 15). It defines an initial state Ping (cf. l. 8) which is switched to state

Pong if port ping receives a true (cf. l. 11). If a false is received, it switches from Pong

to Ping and emits a true on port finished (cf. ll. 12). Please refer to [Sch12, Section 3.3]

for a complete definition of the SC language.

Adjust Tooling: Finally, a guice module has to be created which configures the MontiAr-

cLanguage. It has to be adjusted to use the root factory that has been defined in the corre-

sponding MontiCore language definition. Therefore, the final activity Adjust Tooling, which

is described in the previous section, has to be performed. Please note, if further embeddings

238

7.3. LANGUAGE EXTENSION

MASC1 component MontiArcWithSCComp {

2 timing sync;

3 port

4 in Boolean ping,

5 out Boolean finished;

6

7 implementation sc PingPongImpl {

8 statechart PingPong {

9 initial state Ping;

10 state Pong;

11

12 Ping -> Pong: [ping == true];

13 Pong -> Ping: [ping == false] / {sendFinished(true);}

14 }

15 }

16 }

Listing 7.14: Example component which contains an embedded UML/P SC to define the

behavior of the component.

are defined for the default MontiArc language, only the root factory has to be replaced with the

adjusted one. The model processing workflows need not to be adjusted since they still operate

on the default MontiArc DSLRoot. Again, instances of the extended language can be processed

by passing the custom module to the MontiArc tool (see Listing 7.4 for an example).

Stereotypes

Additionally, stereotypes can be used to add further semantic information to MontiArc compo-

nents without an explicit extension of the modeling language. A stereotype can be preceded to

component definitions, ports, subcomponents, connectors, as well as behavior definitions. Also

stereotypes can be attached to configuration elements like the autoinstantiate or the au-

toconnect statement. The defining production is inherited from the MontiCore Commons

language collection (cf. Figure 3.17 on page 52, [Sch12, Section 3.8]). A stereotype has the

following syntax: << (Name (= value:String)?)+ >>.

However, stereotypes have the drawback that their syntax is not checked by the parser beyond

the aforementioned rule. Thus, a mistyped stereotype name will not result in a parser error.

Document Stereotype: According to [Rum11, Section 2.5], stereotypes are used for dis-

tinct purposes ranging from controlling the code generator to the documentation of unfinished

or underspecified parts of the model. To enrich a new stereotype with an informal semantics,

[Rum11] proposes a stereotype definition template which allows to document the motivation,

preconditions, the kind of use, and the effect of a stereotype. It is recommended to use and prob-

ably extend this template to document a newly introduced stereotype. This documentation can

serve as an informal requirement definition for the tool developer to properly handle elements

annotated with a stereotype. Additionally, it can be integrated into the documentation which is

create for modelers.

239

7.3. LANGUAGE EXTENSION

7.3.2 Symbol Table Extension

An extended syntax of the MontiArc language can lead up to an extension of the symbol table.

A structured method for this purpose is depicted in Figure 7.15. It comprises the following

activities:

1. Analyze Cause: First, the cause which leads up to the symbol table extension needs to be

analyzed. Based on the result, one of the next activities is to be performed.

2. • Adapt Type Language: Is suitable to integrate a new type definition language into

the MontiArc tooling.

• Add Behavior Entry: Is to be performed to represent behavior definitions within the

symbol table which have been defined in an embedded behavior definition language.

• Add Entry: Is suitable to integrate new model elements into the symbol table of

MontiArc.

• Refine Entry: Is used to refine existing entries for refined model elements.

3. Adjust Tooling: Finally, depending on the concrete symbol table extension, the MontiArc

tooling has to be adjusted accordingly.

Analyze Cause

[new behavior
definition]

[refined model element]

Add Behavior Entry

Implement
Entry Classes

Implement
Entry Creator

Adjust
Tooling

Refine Entry

Refine Entry
Implementation

Extend Symbol Table
AD

[added model
element]

Implement
Entry Factory

[yes]

[no]

Add Entry

Implement
Entry Classes

referenced
by other
entries?

[yes]

[no]

Adapt Type
Language

[new type definition language]

referenced
by other
entries?

Extend Symbol
Table Visitor

Figure 7.15: Activities to extend the symbol table of MontiArc.

Adapt Type Language

To integrate a new type language into the MontiArc tooling, an aggregation of the MontiArc

language and the type language has to be performed. This way, types defined in the language

240

7.3. LANGUAGE EXTENSION

to integrate can be referenced within MontiArc models. The symbol table techniques to realize

language aggregation are described in detail in [Völ11, Section 7.4]. The following steps are

needed to integrate a new type language into the symbol table:

1. Adapt Entries: The symbol table entries from the type language have to be translated to

the entry ArcdTypeEntry (see Figure 5.8 on page 135). An adapter [GHJV95] is suit-

able to perform this translation by converting an interface of a class into another interface

which is expected by a client. In case of MontiArc, the client corresponds to the symbol

table that handles ArcdTypeEntries. Thus, the adapter has to translate the interface of

the type entry which is to be integrated into the interface of an ArcdTypeEntry. Please

note that the term interface in this context can be also interpreted as the set of methods

provided by a certain class. Hence, a suitable adapter does not necessarily translates Java

interfaces. An example is given in Figure 7.16. Class CDType2ArcdTypeAdapter

translates calls to the methods provided by class ArcdTypeEntry to methods provided

by the adaptee.

2. Create Qualifiers: MontiArc’s type entries are created either in a unqualified or quali-

fied state in the symbol table construction process. Unqualified entries are adapted during

entry qualification by a dedicated IQualifierClient. Already qualified entries are

adapted afterwards by an IQualifiedEntryHandler. Both discover the correspond-

ing adaptee, create an adapter object, and set the adapter as qualified version of the adapted

entry.

3. Create Resolvers: In addition, new resolver clients are needed to resolve elements of

the adapted type language. These are responsible for resolving elements of the MontiArc

language, e.g., an ArcdTypeEntry. Internally, they use the registered resolver for the

adapee, e.g., a CD type resolver, and return an adapted entry.

4. Adjust Tooling: The created qualifier and resolver components need to be registered at

the language family which is used by the MontiArc tool. A suitable way is to create a

specialized LanguageFamily provider which internally uses the MontiArcLanguage-

FamilyFactory provider and adds the new components to the created object. To use

the new provider, override method bindLanguageFamily of the default MontiArc

guice module and bind the provider to the LanguageFamily class.

CDTypeEntry

CD

CDType2ArcdTypeAdapter adaptee

ArcdTypeEntry

boolean isEnum()
�

boolean isEnum() boolean isEnum()

return adaptee.isEnum();

Figure 7.16: Adapter to translate CD type entries to ArcD type entries.

241

7.3. LANGUAGE EXTENSION

Add Behavior Entry

The MontiArc symbol table serves a dedicated extension point to integrate entries for behav-

ior definitions without creating a new symbol table visitor. To use this extension points, the

following steps have to be performed:

1. Implement Entry Classes: A MontiArc component entry can contain component imple-

mentation entries (see Figure 5.8 on page 135). Depending on the embedded language,

entries have to be implemented which represent the embedding in the MontiArc sym-

bol table. If the embedded language provides its own symbol table, the contained entry

classes can be reused by adapting them to the representing entries. A concrete component

implementation entry then aggregates the adapters or the dedicated entries. Additionally,

resolvers, qualifiers, and deserializers have to be realized which handle the created symbol

table elements.

2. Implement Entry Creator: To integrate these entries as well as the supporting infrastruc-

ture into MontiArc’s symbol table, an IComponentImplementationEntryCre-

ator has to be implemented. It is responsible for constructing the implementation en-

tries, integrating them into the symbol table, and providing the corresponding resolvers,

qualifiers, and deserializers. By extending the abstract class AComponentImplemen-

tationEntryCreator, only entry creation has to be realized.

3. Adjust Tooling: The symbol table visitor delegates implementation entry creation to

a registered manager. The manager then decides based on the currently visited AST

node which implementation entry creator is to be used. As depicted in Listing 7.17, the

creators are then integrated by overriding method bindComponentImplementati-

onEntryCreator in a custom guice module. Further, a provider method which returns

a configured implementation creator manager has to be implemented. Afterwards, the new

implementation entries are available in the symbol table of processed components.

Java1 @Override

2 protected void bindComponentImplementationEntryCreator() {

3 // overridden to remove default binding

4 }

5

6 @Provides

7 protected IComponentImplementationEntryCreatorManager

8 createImplCreationManager() {

9 ComponentImplementationEntryCreatorManager result = new

10 ComponentImplementationEntryCreatorManager();

11 result.addCreator(new ArcSCImplementationEntryCreator());

12 return result;

13 }

Listing 7.17: Integration of implementation entry creators into the MontiArc tool.

242

7.3. LANGUAGE EXTENSION

Add Entry

Since new language elements have to be present in the symbol table as well, e.g., to allow

for context condition checking, representing entries have to be integrated. This is realized by

performing the following steps:

1. Implement Entry Classes: As a first step, the entry itself has to be implemented. Addi-

tionally supporting infrastructure like qualifiers, resolvers, and deserializers for the new

entry have to be developed.

2. Extend Symbol Table Visitor: Then, MontiArc’s symbol table visitor has to be extended

in a subclass. The extended visitor has to implement visit methods for the newly added

language element. There, a new entry has to be constructed and added to the symbol table

in the corresponding scopes. To alleviate further extensions of the language, the entry

should not be created directly but by a dedicated factory. The factory instance could be

injected into the visitor by passing it as an additional constructor argument. If the new

entry shall be referenced by another entry, e.g., by a component entry, the referencing

entry has to be refined as described in the next section.

3. Adjust Tooling: The extended symbol table visitor as well as the supporting infrastruc-

ture have to be integrated into the MontiArc tool. Therefore, method bindLanguage-

AndVisitor has to be overridden in a dedicated guice module. Class Concrete-

ASTAndNameSpaceVisitor has to be bound to the extended visitor class. Similar to

Listing 7.17, the binding to class ILanguage could be realized by a provider method

which creates a new ArcdLanguageComponent and adds the created qualifiers, re-

solvers, and deserializers. If a factory has been implemented which is responsible for

entry creation, an additional binding for the factory has to be defined. It can be defined

in an overridden additionalMontiArcBindings method. Afterwards, the created

entries can be resolved in the name spaces of the MontiArc symbol table.

Refine Entry

Refining an existing entry implementation is needed if the corresponding language element has

been refined or if it should now contain a reference to a newly added language element. In both

cases, the following activities have to be performed:

1. Refine Entry Implementation: First, the entry class which corresponds to the refined

language element (base entry) has to be subclassed. In the subclass, the new references

or information have to be stored. Also qualifiers, resolvers, and deserializers have to be

developed for the refined entry. Please note that the deserializer can reuse functionality

which is provided by the deserializer of the base entry. To reuse existing model processing

workflows which are based on the symbol table, e.g., context condition checks, it has to

be regarded that:

• The refined entry has its own kind and does not reuse the kind of the superclass. This

also enables to develop dedicated context conditions for refined elements.

• An adapter is implemented which translates a refined entry into its base version.

• A resolver should be provided which resolves a refined entry if it is asked to resolve

a base entry.

243

7.3. LANGUAGE EXTENSION

2. Implement Entry Factory: All entries of the MontiArc symbol table are instantiated by

dedicated factories. Thus, a factory has to be created which implements the interface of

the factory that is responsible for producing the base entry. If, e.g., an extended component

entry is developed, a factory has to be created which implements the IComponentEn-

tryFactory interface or subclasses the original factory class.

3. Afterwards, it has to be checked whether the base entry has been referenced by another

entry. In this case, the referencing entry has to be refined, too. If, e.g., a special component

entry has been created, the subcomponent entry has to be refined to provide the new entry

as component type instead of a regular component entry.

4. Extend Symbol Table Visitor: To integrate the information provided by refined model

elements into the symbol table, the creating visitor has to be extended in a subclass. New

visit methods have to handle the refined model elements by creating refined entries, setting

them up, and adding them to the corresponding symbol tables, referencing entries, as well

as scopes.

5. Adjust Tooling: Finally, the tooling has to be adjusted to use the refined factories, the

extended symbol table visitor, as well as the created support classes. To replace the ex-

isting factory, the corresponding method of the default guice module has to be overridden

to bind the factory interface to the class of the extended factory. How to integrate the

extended visitor and the support classes is described in subactivity Adjust Tooling

within activity Add Entry. Afterwards, MontiArc’s symbol table contains all refined

entries and is able to translate between base entries and their refined variants.

244

Chapter 8

Case Studies Using MontiArc

The MontiArc architecture description language (ADL) with the corresponding simulation frame-

work is mainly defined and developed by the Software Engineering workgroup Aachen. In this

chapter, case studies are listed which have been conducted to evaluate the capability of the

framework to develop, simulate, and test distributed information flow architectures. The results

of these case studies have been used to further develop and refine the MontiArc framework to

increase its usability. Section 8.1 gives a brief overview of conducted case studies. Two of

them are presented in more detail. First, the development of components to model and simu-

late TCP/IP communication. Second, MontiArc is used to derive FlexRay clusters from logical

information flow architectures.

8.1 Overview

The following case studies have been conducted to evaluate the MontiArc ADL and the simula-

tion framework:

• Monitoring Online Systems Using MontiArc. In [Ix12], reusable components have been

developed to monitor external services as well as properties of the computer on which they

are executed (agent components). This case study has been mainly conducted to evaluate

MontiArc’s usability as an architectural programming language (APL) (see requirement

LRQ2). Therefore, the simulation runtime environment (RTE) has been extended with

remote ports which have been originally developed for AJava (see Section 9.2). These

ports are able to communicate using regular TCP/IP connections to connect distributed

monitoring agents. A central controller then collects incidents which are reported by the

agents, creates, and sends reports, e.g., per e-mail or an instant messenger. The developed

components are available in the MontiArc Monitoring Library.

• The MontiArc Library has been initially developed in a lab course1. It offers a collection

of reusable components for image processing, digital techniques, mathematical computa-

tions, Internet services, and simulation specific components, e.g., delay or message loss

components. A brief description is given in Section 6.8.2.

• Implementation and Comparison of Distributed System Case Studies Using MontiArc. A

collection of pre-existing case studies, which have been conducted with FOCUS [BDD+93,

1Bachelor Lab Course: Simulation Component Development for MontiArc, http://www.se-rwth.de/

teaching/ss10/montiarc/.

245

http://www.se-rwth.de/teaching/ss10/montiarc/
http://www.se-rwth.de/teaching/ss10/montiarc/

8.2. MODELING AND SIMULATION OF THE TCP/IP STACK

BS01], AutoFOCUS [BHS99, HF10] or Ptolemy [EJL+03], are re-implemented using

MontiArc in [Kau13]. The thesis comprises a Modulo8-counter (FOCUS, [Fuc95]), an

elevator control system (AutoFOCUS, [SW99]), a traffic lights controller (Ptolemy II,

[BFLvH08]), a Railroad Crossing and an assembly line (Ptolemy II, [BOF+10]). The

implementation of the case studies is partially available on GitHub2.

• Modeling and Simulation of the TCP/IP Stack conducted in [Sch13]. Details are given in

Section 8.2.

• Model-Driven Development and Simulation of FlexRay-Based Systems Using MontiArc

conducted in [Rab13] is presented in Section 8.3.

• Interior Light Arbiter. The logical architecture of an arbiter used to control the interior

light of a car3. This case study is used as a running example for the MontiArc chapter in

the Generative Software Engineering lecture. It has been extended with deltas to model

and compare variants of the system using ∆-MontiArc (see Section 9.1) in a project for

the Daimler AG.

• The Alternating Bit Protocol is realized in a small case study which demonstrates the most

aspects of the MontiArc framework, i.e., modeling, behavior implementation, black- and

white-box testing, documentation, and component library design. It is used as a running

example in Chapter 6.

8.2 Modeling and Simulation of the TCP/IP Stack

MontiArc, as presented in this thesis, allows to simulate the logical communication between

clients of a distributed system to predict their interaction in early phases of system development.

In the technical deployment of a system, components interact using communication protocols

that embed these logic messages into suitable data structures which are then transmitted over

the hardware communication link. If this physical connection fails, e.g., the WiFi disconnects

or a server does not correspond in time due to heavy traffic, fallback communication strategies

have to be implemented into the components of a distributed system. To be able to simulate such

scenarios, Transmission Control Protocol (TCP) / Internet Protocol (IP) stack components have

been developed using MontiArc in the bachelor thesis Development and Implementation of the

TCP/IP Stack in MontiArc [Sch13]. These components simulate a selected set of protocols from

the TCP/IP stack, one of the most important protocol stacks which builds the basis of the Internet

[FS11, Chapter 1]. The created components and implementations are available on GitHub2.

8.2.1 The TCP/IP Stack - An Introduction

According to the Internet Engineering Task Force [For89], the TCP/IP stack consists of a set of

layered network protocols which enable data communication in a local area network (LAN) or

2MontiArc examples on GitHub: https://github.com/arnehaber/montiarc-examples
3MontiArc Example Projects, http://www.monticore.de/languages/montiarc/examples/.

246

https://github.com/arnehaber/montiarc-examples
http://www.monticore.de/languages/montiarc/examples/

8.2. MODELING AND SIMULATION OF THE TCP/IP STACK

between multiple connected LANs. As depicted in Figure 8.1, the stack is hierarchically struc-

tured in four different layers which build upon and abstract from a concrete physical network.

The four layers are:

1. The Application Layer provides means to communicate between two nodes independent

from their location, address, and network. The layer is responsible for interchanging

application data which is produced or consumed by application programs.

2. The Transport Layer realizes addressing within a single node. A unique port is assigned

to all programs which communicate via TCP/IP. When a node receives data, these ports

allow to map which data has to be relayed to which program.

3. The Internet Layer is responsible for passing data between different LANs. Therefore,

every participating node is allocated with an IP address that enables targeted sending of

data. Based on this layer, routers are able to forward data to a specific receiver without

overloading the network with flooded data.

4. The Data Link Layer provides functions to send and receive data over logical links. It

serves as an abstraction to the concretely used hardware connection to allow an hardware

independent realization of the upper TCP/IP layers. Its main task is to encode data into

rising and falling potentials which are transmitted via the physical line. Additionally, it

ensures that physical signals are not corrupted by avoiding collision with other signals.

8.2.2 TCP/IP Stack Layers in MontiArc

The four layers of the TCP/IP stack contain a set of protocols which allow to transmit differ-

ent kinds of data. In this bachelor thesis, a selected subset of these protocols has been realized

in MontiArc to simulate HyperText Transfer Protocol (HTTP) connections. Thus, the layers are

TCP/IP-Stack

fromBrowser

toBrowser

toBus

fromBus

ApplicationLayer

DataLinkLayer

TransportLayer

InternetLayer

String

String

«delayed»

TupelBPort

«delayed»

TupelT

«delayed»

IpFrame
«delayed»

DataLinkFrame

«delayed»

TupelT

«delayed»

TupelB

ManchesterSignal

ManchesterSignal

MA

Figure 8.1: Overview of the TCP/IP stack realized in MontiArc (adapted from [Sch13]).

247

8.2. MODELING AND SIMULATION OF THE TCP/IP STACK

realized as decomposed components and the contained subcomponents instantiate protocol com-

ponents. An overview of the realized layer components is given in Figure 8.1. The layers are

connected bidirectional to build up the TCP/IP stack protocol. The layers are pairwise separated

using FixDelay components to avoid simulation deadlocks (see Section 3.5.5). It can be con-

nected to a browser application to receive HTTP requests. The resulting ManchesterSig-

nals encode the transmission over a physical connection (ports toBus, fromBus), where,

according to the IEEE 802.3 standard [IEE12], a rising edge encodes a logical one and a falling

edge a logical null (see, e.g., [For00]). The resulting HTTP response is transmitted back to the

connected application.

The Application Layer contains a single subcomponent which instantiates the HTTP com-

ponent. The architecture of the latter is depicted in Figure 8.2. The target IP address of

HTTP requests is resolved by the Dns subcomponent which implements the Domain Name

System (DNS). Please note that for convenience, the IP address is resolved using a simple

lookup table stored in a file which is loaded from the classpath. GenerateHttpRequest

generates a HTTP-GET-Request. Its payload is encoded to an UTF-8 conform byte array paired

with the target port number into a TupelBPort object by component Utf8Encode. The

result is transmitted to the transport layer via port toTransport. Replies are received via port

fromTransport and the payload is initially decoded by component Utf8Decode. Com-

ponent ReplyBroker then decides whether the reply is a HTTP-GET-Request or a HTTP-

RESPONSE. The former is handled by component GenerateHttpResponse and is af-

terwards encoded and transmitted (see above). Responses are interpreted by component In-

terpreter which drops the HTTP-RESPONSE header and emits the contained HyperText

Markup Language (HTML) document via port toBrowser.

Http

fromBrowser

toBrowser

toTransport

fromTransport

String

String

Generate

HttpRequest
Utf8Encode

Utf8Decode

Dns

Interpreter ReplyBroker

TupelS TupelS

TupelBPort

TupelB

TupelS

TupelS

TupelS

String

Generate

HttpResponse

MA

Figure 8.2: Architecture of the HTTP protocol in MontiArc (adapted from [Sch13]).

The Transport Layer contains a single subcomponent which implements the Transmission

Control Protocol (TCP). The architecture of the Tcp component is omitted for reasons of space.

However, it performs the following steps and activities. TupelBPort objects received from

the Application Layer are encapsulated into TCP transmission frames which are then fragmented

248

8.2. MODELING AND SIMULATION OF THE TCP/IP STACK

into 1500 Byte parts. A control component is responsible to set up or tear down stateful connec-

tions to the target and to transmit the fragmented TCP frame to the underlying Internet Layer

after a checksum has been added. Received data from the underlying layer is validated by com-

paring the contained checksum with the calculated checksum of the payload. Depending on the

contained port number, the payload is forwarded to the target application after the TCP frame

has been removed.

The Internet Layer contains a single subcomponent which implements the Internet Protocol

(IP). Again, the architecture of the Ip component is omitted. The received data from the

Transport Layer is first encapsulated with an IP frame. Since data fragmentation within the IP

protocol has not been realized in this thesis, data is always marked as not fragmented. Finally,

it is transmitted to the underlying Data Link Layer. Received data from the underlying layer is

first validated by comparing the transmitted checksum with a calculated checksum. Afterwards,

the data is passed to a stub component which is responsible for assembling fragmented data.

Since fragmentation is not supported yet, it simply forwards the data to another component that

removes the IP frame and relays the payload to the upper Transport Layer.

The Data Link Layer depicted in Figure 8.3 is realized using Arp, Rarp, and Ether-

net components. Component Arp implements the Address Resolution Protocol (ARP) which

translates the target IP address to a media access control (MAC) address. The Reverse Address

Resolution Protocol (RARP), which is implemented by component Rarp, translates MAC ad-

dresses back to IP addresses (see [For82]). Similar to component Dns, this translations are

realized using a lookup table located in a file which is loaded from the classpath. The contained

Ethernet component is decomposed into three layers itself:

• The Logical Link Control Layer encapsulates IP frames into Ethernet frames and relays

them to the underlying MAC layer. Data received from the underlying layer is validated

and the Ethernet frame is removed before forwarding the data.

• The Media Access Control Layer controls the access to the underlying transport channel

and negotiates access to the channel with other nodes. Collision detection and transmis-

sion is realized using the persistent Carrier Sense Multiple Access/Collision Detection

(CSMA/CD) approach as defined in standard IEEE 802.3.

DataLinkLayer

fromIp Arp
IpFrame

IpFrame

DataLinkFrame

toBus

fromBus
Ethernet

ManchesterSignal

ManchesterSignal

RarptoIp
DataLinkFrame

MA

Figure 8.3: The data link layer that is realized using a combination of Arp, Rarp, and the ethernet

protocol (adapted from [Sch13]).

249

8.3. FLEXRAY COMMUNICATION SIMULATION USING MONTIARC

• The Physical Signaling Layer translates data received from the MAC layer into physical

signals by encoding it into Manchester signals. Vice versa, received Manchester signals

are decoded to data which is then forwarded to the MAC layer.

8.2.3 Conclusion

In the discussed bachelor thesis a total of 13 decomposed and 27 atomic components have been

developed with an average of 2.8 ports, 7 connectors, 3.8 subcomponents, and 13.7 lines of code

(without comments) per component. The maximal depth of the component hierarchy is 5. The

separated layers and their contained subcomponents have been tested from bottom to top by

defining 45 I/O-Tests (see Section 6.4.1) with a total number of 148 tests which cover about 95

% of the manually written code.

Summing up, this case study shows that MontiArc can be used as an APL to develop complex

communication protocols. Due to the time limitation of bachelor theses, parts of the TCP/IP pro-

tocol stack are abstracted to concentrate on the functionality of other parts of the stack. DNS,

ARP, and RARP are realized by simple lookup tables and message routing is omitted. Never-

theless, the presented case study is a base for a MontiArc TCP/IP protocol library which can be

stepwise completed with more protocols from the application layer, e.g., Telnet or FTP. If a cer-

tain designated functionality is not completely realized, it is encapsulated into a dedicated stub

component which already defines the interface of the function. In this way, stub components can

be easily exchanged with realistic component implementations to achieve a full-featured TCP/IP

stack component library.

8.3 FlexRay Communication Simulation Using MontiArc

The complexity of automotive systems is rising constantly. According to Reichelt et al. [RSG+08],

there are about 80 interacting control units in a modern car. Since a pairwise connection between

these control units using direct lines would result in an increased weight, usually bus systems are

used to connect control units. Nowadays, the most used bus system is the CAN-bus which has

been developed in 1983 by Bosch [Rei12]. The greatest disadvantage of the CAN bus is the non-

deterministic message transmission [Hei12]. Depending on the priority of other communication

participants, bus access may be granted or not. This renders the CAN bus unsuitable for future

applications, e.g., X-by-Wire systems such as Steer- or Brake-by-Wire [WNS+05], in which a

reliable message transmission with hard deadlines is vital. Since the FlexRay bus is ten times

faster (up to 10 Mbits/s), has a guaranteed latency, and is error tolerant, it can be regarded as the

successor of the CAN bus. However, according to Heinz [Hei12], a drawback is a more complex

configuration and the associated higher development costs. Each node has to be configured with

32 local parameters and 39 global parameters have to be adjusted for each FlexRay cluster.

To allow for a simple, fast, and experimental simulation of logical systems that should be

deployed to FlexRay networks, a MontiArc FlexRay component library has been developed in

the diploma thesis Model-Driven Development and Simulation of FlexRay-Based Systems Using

MontiArc [Rab13]. To achieve this goal, the following steps have been performed:

250

8.3. FLEXRAY COMMUNICATION SIMULATION USING MONTIARC

1. Initially, the logical architecture of an (abstracted) adaptive cruise control (ACC) system

has been developed. It served as a running example to validate the developed approach.

This example is described in Section 8.3.2.

2. FlexRay components have been developed in MontiArc which allow to simulate FlexRay

communication for this example. It has been distinguished between core and specific

components. The former implement core FlexRay functionality that can be reused in any

other system that is to be simulated. The latter are needed to connect the components

from the specific example to the core FlexRay components. This activity is presented in

Section 8.3.3.

3. Finally, actions have been identified that are needed to transform a logical architecture into

an architecture in which logical components are deployed to FleyRay nodes. Then, a gen-

erator has been implemented that interprets stereotypes within a logical MontiArc model

and derives the needed specific FlexRay components to simulate a concrete deployment

for arbitrary MontiArc models. A brief description of the generator and its configuration

is given in Section 8.3.4.

8.3.1 FlexRay Introduction

FlexRay is a fieldbus system which supports multiple master nodes within point-to-point, star,

and bus connection topologies [Hei12]. It technically supports data rates from 2.5, 5, and 10

Mbit/s per channel. Two channels (channel A and B) can be used to either increase the bandwidth

or transmit data in a redundant way.

An overview of a FlexRay communication node is depicted in Figure 8.4. Each transmission

channel is accessed using a Busdriver which represents the first layer of the FleyRay pro-

tocol. Since the second transmission channel is optional, only one Busdriver is mandatory.

The concrete application is executed on the Host Controller. The FlexRay Commu-

nication Controller implements the FlexRay protocol using a state machine which is

Transmission Channels A & B

Host Controller

FlexRay

Communication

Controller

Busdriver Busdriver

Figure 8.4: Overview of a FlexRay node (adapted from [Hei12]).

251

8.3. FLEXRAY COMMUNICATION SIMULATION USING MONTIARC

called the protocol engine [Hei12]. Additionally, it provides a host specific Controller-Host-

Interface that contains the FlexRay parameters of the node and is accessed by the host controller

to exchange data with other nodes. Three different node kinds exist. Sync nodes are allowed to

send sync frames which are used for clock synchronisation. Coldstart nodes initialize the start

of a node cluster by sending startup frames. Normal nodes have no specific properties.

FlexRay systems are organized in clusters that contain several nodes. Each node in a cluster

has a unique number. Three different cluster kinds exist which are differentiated by the used

synchronisation method and the composition of the contained nodes. The diploma thesis sup-

ports the TT-D and TT-L cluster (see [Con10, Section 1.10]). The former consist of two to 15

coldstart and sync nodes with an unrestricted amount of normal nodes. Such a cluster is more

robust against faulty nodes. However, a longer startup is needed and the complexity is higher.

The TT-L cluster contains a single coldstart node only, which reduces the system complexity. To

simulate further coldstart nodes, it emits a second startup frame during the system initialisation.

FlexRay communication is divided into 64 cycles with a configurable length between 16 µs

and 16 ms. The cycle length is defined by the cluster. In the simulation, communication streams

are separated into time intervals which represent a nanosecond (see Section 4.1). Thus, a com-

munication cycle in the simulation ranges from 16.000 to 16.000.000 time intervals. This time

resolution is needed to support the high sampling rates of the FlexRay protocol. As depicted in

Figure 8.5, each frame consists of four different segments. The Static Segment is divided

into up to 1023 slots, while each slot has a fix mapping to a node from the cluster. Assuming

that this mapping has been configured correctly, the static segment guarantees that every node

of a cluster is at least once able to communicate during a cycle. Messages which are transmitted

in the static segment have a fix payload of maximal 254 byte. The payload is simulated using

class CommunicationData which holds a bit array that represents the payload. In contrast

to the static segment, message transmission is not guaranteed in the optional Dynamic Seg-

ment. It is divided into up to 2047 mini-slots. Further, a single sender can transmit its payload

within multiple mini-slots in this segment. Since nodes transmit data in order of their number,

nodes with a low number have a higher priority and can block the complete dynamic segment

with message transmissions. The optional Symbol Window is designed to transmit prede-

fined symbol messages such as collision avoidance, media test, or wakeup symbols. No data

is transmitted within the following Network Idle Time. It is used by the communication

controllers to synchronize their clocks by adjusting the offset and frequency parameters.

Frame 0 Frame 1 Frame 2
 Frame n Frame n+1 Frame n+2
 Frame 63

Static Segment Dynamic Segment Symbol Window
Network

Idle Time

Figure 8.5: FlexRay communication cycles (adapted from [Hei12]).

252

8.3. FLEXRAY COMMUNICATION SIMULATION USING MONTIARC

8.3.2 The Running Example

To initially develop FlexRay protocol components in MontiArc and to later on evaluate the devel-

oped FlexRay deployment generator, a running example which simulates the logical architecture

of a simplified ACC system has been implemented. An overview of the contained parts of the

system is given in Figure 8.6. The ACC is an extension of a regular cruise control. It adjusts the

velocity of a car based on the distance to the vehicle in front (DistanceSensor) as well as

the current velocity (VelocitySensor). The DisplayElement signals the driver whether

the ACC is active. The desired speed and the allowed distance to the vehicle in front is set

using the ControlElement. The concrete control of the car’s velocity is controlled by the

VelocityActuator.

ACCSystem
VelocitySensor

DisplayElement

ControlElement

VelocityActuator

AdaptiveCruise

Control

DistanceSensor

Double

Double

Double

Double

Double

Boolean

MA

Figure 8.6: Running example of an adaptive cruise control system (adapted from [Rab13]).

8.3.3 Deployment and FlexRay components

To simulate a concrete FlexRay cluster, the running example has been stepwise extended with

core and specific FlexRay components. The former represent core FlexRay functionality such

as bus drivers or communication controllers without the host interface. The latter are needed to

connect the components from the running example to the core FlexRay components.

An exemplary target deployment to a FlexRay cluster is given by component ACCSystem-

Cluster which is depicted in Figure 8.7. It can be seen that each component from the ACC

system is mapped to a node of the FlexRay cluster. The cluster is synchronized using the

TT-D method. The nodes tagged with the stereotype ≪startupNode, syncNode≫, i.e.,

node1, node4, as well as node5, are startup and sync nodes. The untagged nodes node2

and node3 are regular nodes. The Channels component represents the abstraction of a pas-

sive star [Con10, Section 5.3] to connect the nodes of the cluster with two communication chan-

nels. It contains a Junction component to forward messages received from a node to all other

connected nodes. Additionally, it contains a Stub component for each connected node and

253

8.3. FLEXRAY COMMUNICATION SIMULATION USING MONTIARC

communication channel. These stubs realize a configurable bidirectional delay together with a

configurable Disturbance component. The latter allows to simulate disturbances of a certain

communication channel such as bit flips or burst errors. The default delay is configured to 50

nanoseconds which corresponds to a wire length of 25 cm without any disturbance. All depicted

node components, the channels, and the main cluster are specific FlexRay components that are

needed to perform a FlexRay simulation of the running example. The contained Delay com-

ponents are added to avoid simulation deadlocks within communication cycles. Caused by the

Brock- Ackerman anomaly [BA81], such deadlocks occur if a component directly or indirectly

communicates with itself and the resulting communication cycle only contains weakly causal

components (see Section 3.5.5 on page 73).

«clusterSyncMethod=”TT_D”» MA
ACCSystemCluster

«startupNode, syncNode»

DistanceSensor

AdaptiveCruiseControl

node1

node2

DisplayElement

Channels

«startupNode, syncNode»

node5

VelocitySensor

«startupNode, syncNode»

node4

VelocityActuator

node3

ControlElement

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

"

Figure 8.7: Exemplary FlexRay cluster with five nodes which host the components of the cruise

control system (adapted from [Rab13]).

The detailed architecture of node1 is depicted in Figure 8.8. The handcoded components

DistanceSensor and AdaptiveCruiseControl are connected to the FlexRay core

components with a specific HostInterface which translates application specific messages

into general FlexRay messages. The core component CommunicationController con-

trols the communication within the FlexRay communication cycles and frames. BusDriverA

and BusDriverB, both FlexRay core components, are responsible to access communication

channel A respectively B (see Figure 8.4).

8.3.4 The MontiArc FlexRay Generator

To simplify and automate the tasks to model and implement specific FlexRay components

needed to design a FlexRay cluster for MontiArc models, a generator has been developed. Based

on a simple language extension with stereotypes (see Section 7.3.1), the generator is able to pro-

duce components which define the deployment of a FlexRay cluster similar to Figure 8.7. The

available stereotypes to configure the mapping from subcomponents to nodes as well as the con-

254

8.3. FLEXRAY COMMUNICATION SIMULATION USING MONTIARC

MA
node1

BusDriver b

BusDriver a

«handcoded»

DistanceSensor

«handcoded»

AdaptiveCruiseControl
Delay

HostInterface

«specific»
Communication

Controller

Delay

«core»

Delay

Delay Delay

Delay

«core»

«core»

«specific»

Figure 8.8: Detailed architecture of a FlexRay node component (adapted from [Rab13]).

figuration of the resulting cluster are depicted and explained in Table 8.9. Beside the generated

components, the generator additionally creates the behavior implementations of the produced

specific atomic components. This way, the generated cluster is ready-to-use.

Stereotype Default Description

deployToNode – Mandatory for each contained subcomponent. Maps

the annotated subcomponent to the node which is

given by the stereotype value.

startupNode false Optional. The node from the annotated subcompo-

nent is declared to be a startup node. Depending on

the cluster synchronisation method, at least one (TT-

L) or two (TT-D) startup nodes have to be defined.

Each startup node has to be a syncNode, too.

syncNode false Optional. The node from the annotated subcompo-

nent is declared to be a sync node.

stubDelay 50 Optional. Configures the delay of the Stub compo-

nent in nanoseconds which connects the associated

node within the generated Channels component.

Please note that simulation time intervals correspond

to the timespan of a nanosecond. Thus, the default

delay is 50 ticks. The value of the stereotype has to

be a positive integer.

Table 8.9 continued on next page

255

8.3. FLEXRAY COMMUNICATION SIMULATION USING MONTIARC

Stereotype Default Description

stubDisturbance NoDistrubance Optional. Configures the disturbance component of

the Stub component which connects the associated

node within the generated Channels component.

The value associates the component type which is

to be used together with comma separated config-

uration parameters in the format parameter type :

parameter value.

clusterSyncMethod TT-D Optional. Configures the kind of the generated

FlexRay cluster. TT-D as well as TT-L can be used.

attachToChannel A B Optional. Attaches the associated node to the chan-

nel(s)) determined by the stereotype value. Allowed

values are A, B, and A B.

Table 8.9: Stereotypes to configure the FlexRay cluster generator.

8.3.5 Conclusion

In the presented diploma thesis [Rab13], a total amount of 25 core and 25 example specific

components have been developed. The former are composed of 5 decomposed and 20 atomic

components with an average number of 31.0 ports, 108.8 connectors, 15.8 subcomponents, and

121.4 lines of code (without comments). The latter comprise 13 decomposed and 12 atomic

components with an average amount of 3.4 ports, 56.7 connectors, 16.7 subcomponents, and

50.6 lines of code. The maximal depth of the component hierarchy is 4 achieved by the exem-

plary FlexRay cluster. Please note that the most complex component from the running example

without any FlexRay components is the ACCSystem component with 28 lines of code. Thus,

the overall complexity is mostly driven by FlexRay core or example specific FlexRay compo-

nents. However, the former are provided by a library and the latter can be generated by the

developed generator.

Summing up, this case study has shown that it is possible to develop complex protocols and

communication infrastructures with MontiArc. The developed generator can be used to gener-

ate and compare distinct possible FlexRay cluster configurations for a given MontiArc model.

Complex FlexRay components are either available in the developed library or are generated.

However, not all FlexRay features given in the specification have been realized and the active

star is the only available communication topology. Hence, valuable extensions could be further

network topologies specified in [Con10, Chapter 5], e.g., point-to-point connections, a linear

passive bus, or an active star network. Further, a configurable communication cycle would be

worthwhile. Nevertheless, the overhead to compare and simulate diverse FlexRay cluster con-

figurations has been reduced and an initial base for FlexRay simulations using MontiArc has

been developed.

256

Chapter 9

Language Extension Case Studies

MontiArc and the corresponding tools are designed to be reusable and expendable (see require-

ment LRQ3). Chapter 7 presents a structured method for this purpose. It is based on and refined

by experiences made during the development of several languages that extend MontiArc. These

extensions have a broad spectrum ranging from the definition of new architectural styles to the

application of MontiArc outside the domain of architectural modeling. This chapter initially

gives an overview of existing language extensions. Then, three of these extensions are intro-

duced in more detail. First, AJava is presented which adds Java elements to MontiArc. Second,

MontiArcAutomaton is discussed in Section 9.3 which aims at the model-driven development

of robots. Third, the process network model and simulation tool ProNetsim, which is based on

MontiArc and its simulation framework, is presented in Section 9.4.

9.1 Overview

The following languages and case studies extended MontiArc and the corresponding tool frame-

work:

• AJava [HRR10] extends MontiArc with Java methods to directly implement the behavior

within atomic components. AJava is presented in more detail in Section 9.2.

• The Architecture Alignment Checker (AAC) [MSN11] allows to automatically check the

consistency between a Java implementation of a system and its architectural description

specified using MontiArc. It provides tool support to automatically detect architectural

erosion which is caused by software evolution [PW92]. Therefore, a mapping language

has been developed which allows to assign architectural elements to code artifacts such

as packages, classes, and methods. By interpreting the architectural model that defines

allowed interactions and the given mapping, a rule base is build up which describes the

allowed interaction within the target system. The AAC then analyzes the source code of

the system to validate adherence of these rules. By integrating the AAC into a continu-

ous development environment, changes that are not in accordance with the architectural

model can be detected immediately and disallowed access can be corrected. In this way,

architectural conformance can be integrated into an agile development process. The AAC

has been evaluated by analyzing the source code base from the SSELab1 [Her14].

1SSELab, https://sselab.de.

257

https://sselab.de

9.1. OVERVIEW

• The cloudADL [NPR13] is part of the clArc workbench2 which supports the model-based

development of cloud applications. It extends MontiArc by adding replicable ports and

subcomponents to support dynamic architectures. Consequently, context gates are intro-

duced to model the communication context of replicated components. Further, service

ports are integrated into the language to explicitly depict external, not shown communi-

cation such as database access of components. The cloudADL extends MontiArc’s base-

language Architecture Diagram (ArcD) and its symbol table. It further reuses parts of the

defined context conditions and transformations.

• ∆-MontiArc [HRRS11, HKR+11] provides delta modeling [CHS10] techniques for Mon-

tiArc. Delta modeling is a transformational [VG07] software product line (SPL) develop-

ment approach that allows to describe the difference between two variants in terms of mod-

ular deltas. A delta is able to add, replace, modify, and remove model elements. A delta-

oriented product line is defined by a core variant which represents a valid product. Further

variants are defined by deltas that contain the needed modifications to derive a variant

from the core. Since deltas can be also used to describe temporal variability, techniques

to evolve delta-oriented SPLs have been proposed in [HRRS12]. Beyond that, ∆-Monti-

Arc is used as the backend of Delta-Simulink [HKM+13] which applies delta modeling to

Matlab/Simulink. Additionally, the experiences with ∆-MontiArc and the development of

further delta languages led to a constructive method presented in [HHK+13, HHK+15].

This method allows to automatically generate delta-languages for arbitrary textual do-

main specific languages (DSLs). ∆-MontiArc’s grammar extends the MontiArc grammar

to inherit the concrete syntax for delta operations. The symbol table is reused within the

delta-interpreter which takes a core model and a delta configuration to derive a concrete

variant. Subsequently, MontiArc’s context conditions are reused to validate generated

variants.

• MontiArcAutomaton [RRW12, RRW13b, RRW13c, RRW14] extends MontiArc by adding

I/Oω automata [Rum96] to MontiArc components. It is presented in Section 9.3.

• MontiArcHV [HRR+11] introduces a hierarchical variability modeling approach to Mon-

tiArc. In contrast to ∆-MontiArc, variability within components is restricted to explicit

variation points which can be realized by a variant. Variant configurations then map vari-

ation points to the concrete realizing variant. Since variation points can be spread across

the component hierarchy, selected variants are allowed to explicitly map further variants

to other variation points within the component hierarchy. Additional dependencies can be

modeled with constraints that determine requires and excludes relations between variants.

Since variation points can be constrained with cardinalities, they enforce a certain seman-

tics which can be automatically validated. For example, since a car is restricted to four

doors, a variation point that adds window winder functionality for two additional doors

can only be realized once. MontiArcHV comprises two grammars which both extend

the MontiArc grammar. First, HierVarArc adds the nonterminal VariationPoint

which implements interface ArcElement. In this way, variation points can be used

2The clArc Project Page, http://clarc.cc/.

258

http://clarc.cc/

9.2. AJAVA

within component definitions. Second, the VariantDefinitionDSL defines the syn-

tax for variants as well as variant configurations. Therefore, it replaces the header of a

component with a specific variant respectively variant configuration header and reuses the

component body. Thus, reuse is restricted to inheritance of the MontiArc grammar.

• MontiArcSC embeds UML/P [Rum11, Rum12, Sch12] statecharts (SCs) into MontiArc

components to constructively model the behavior of atomic components. It has been

developed in a small case study conducted to validate the MontiArc extension method

described in Chapter 7. MontiArcSC extends MontiArc’s language by embedding, real-

izes the behavior extension point within the symbol table, and derives a new generator by

implementing the provided extension points. MontiArc’s runtime environment (RTE) is

reused without adaption.

• The MontiSecArc architecture description language (ADL) focuses on security aspects

of distributed reactive systems and is currently under development. Beside analyzing

security issues, it aims at enforcing the modeled aspects by generating components which

are directly used within the target system. MontiSecArc extends the MontiArc grammar

and adds a set of security related model elements respectively refines existing elements

accordingly. A few of them are listed in the following:

– Components can be attached with a trust level to analyze whether a component is

trustworthy in the current context.

– Ports can be marked critical to define costly or essential functions. This technique

is used to identify critical paths within the modeled system.

– Specialized connectors define encrypted or unencrypted communication channels.

Also a specialized autoconnect feature to automatically derive encrypted con-

nections is provided.

– To share authentication across different components, identity links with several au-

thentication methods are added.

– The integration of user roles and access control policies attached to ports allow to

model access rules for ports. Consequently, access to functions or services can be

granted to certain users.

Beside an extension of the MontiArc language, MontiSecArc also reuses its context con-

ditions and extends the provided symbol table infrastructure.

• The Production Network Simulation (ProNetsim) is a workbench which allows to model,

simulate, and assess value chains that are globally distributed within a production network.

It is presented in Section 9.4.

9.2 AJava

In software engineering, architectural models serve as crucial development artifacts which define

important properties of the system under development. Software architecture brings together

259

9.2. AJAVA

requirements with a structural view of a system which enables a more effective design and

program understanding as well as formal analysis [ACN02b].

In classical Model-Driven Development (MDD) resp. Model-Driven Architecture (MDA), it

is most often not possible to generate the complete system. Thus, only code frames are derived

which need to be adjusted manually. This approach results in a one-shot generation [KM05].

Consequently, after parts of the system have been initially generated and adjusted per hand, fur-

ther development of the model is complicated since manual adaptions have to be synchronized

with re-generated code over and over again. Additionally, evolution often yields to inconsisten-

cies between the architectural model and the generated general purpose language (GPL) code.

This either renders the model useless after a certain time or the model needs to be aligned man-

ually with the code [HRR10].

Even in regular non-generative software engineering, where architectural models are not used

constructively but for analysis and design, architecture is redundantly present in both: code

and model. Since the architecture has been initially developed, it erodes over time. Implicit

mappings in the code are often tried to be made more explicit by providing GPL libraries with

concepts which represent architectural elements such as JavaBean or FRACTAL components

[BCL+06]. Nevertheless, these libraries are restricted to the expressiveness of the GPL. Further,

object-oriented classes have an interface that defines which methods are provided by the class.

An explicit definition of required methods or functionality is missing.

These problems can be encountered in two different ways that merge architectural modeling

and programming. First, architectural elements can be added to a GPL. Second, GPL elements

can be added to an ADL. The former is related to the aforementioned library approaches or in

a more consequent way realized by ArchJava [ACN02b, ACN02a] and Java/A [BHH+06] (see

Section 2.3.4). The latter approach embeds GPL code into first-level architectural elements.

For example, ComponentJ [SSP08] introduces components with embedded Java methods, pro-

vided, and required interfaces. Similar to ArchJava, connecting these interfaces corresponds

to a transparent delegation of synchronous method calls between objects. In contrast, AJava

[HRR10] adds Java elements to MontiArc components to design an asynchronous, event-driven

architectural programming language (APL).

9.2.1 Example

An exemplary AJava architecture which comprises the components of a coffee machine is de-

picted in Figure 9.1. It internally defines an enumeration CoffeeType that contains valid

coffee choices which are served by the machine. Its main component is the CoffeePro-

cessingUnit which receives the filling quantities of coffee- and espresso beans from the

corresponding BeanSensor subcomponents espressoBs and coffeeBs. It is connected

to an external milk frother via the ports milkEmpty, to be informed whether the milk is empty,

and port milkAmount, to request a certain amount of milk. Finally, it contains a display sub-

component to communicate with the user that enters his coffee choice via port selection.

An excerpt of the CoffeeProcessingUnit AJava implementation is depicted in List-

ing 9.2. Its interface is given by the ports in ll. 2 – 8. It internally stores the availability of milk

in a private field which is declared in l. 10. Its reaction to events received on port milkEmpty

is implemented in the Java method onMilkEmptyReceived (cf. ll. 12 – 20). If the milk

260

9.2. AJAVA

CoffeeMachine

CoffeeType
selection

Integer

milkAmount

Boolean

milkEmpty

CoffeeProcessingUnit

cpu

Boolean

milkEmpty

Boolean

espresso-

Empty

BeanSensor

coffeeBs

CoffeeType

selection

Integer

milkAmountBoolean

coffee-

Empty

Boolean

beanEmpty

BeanSensor

espressoBs

Boolean

beanEmpty

Display
String

message

String

message

public enum CoffeeType {

LatteMacchiato,

Espresso,

Cappucino,

Coffee

}

defined in AJava

Figure 9.1: Architectural model of a coffee machine (according to [HRR10]).

AJava

�

1 component CoffeeProcessingUnit {

2 port

3 in CoffeeType selection,

4 in Boolean espressoEmpty,

5 in Boolean coffeeEmpty,

6 in Boolean milkEmpty,

7 out Integer milkAmount,

8 out String message;

9

10 private boolean milkAvailable;

11

12 public void onMilkEmptyReceived(Boolean milkEmpty) {

13 if (milkEmpty) {

14 this.message.send("Sorry, no milk today.");

15 }

16 else {

17 this.message.send("Got milk!");

18 }

19 this.milkAvailable = !milkEmpty;

20 }

21 }

Listing 9.2: Implementation of the CoffeProcessingUnit in AJava syntax (according

to [HRR10]).

tank is empty, it sends the message "Sorry, no milk today." (cf. l. 14) via port mes-

sage. If the tank got filled up, it sends "Got milk!" via the same port (cf. l. 17). Finally,

it stores the state of the milk tank in the local field milkAvailable to be able to properly

react to selection requests. The shown implementation obeys two implications. First, for each

incoming port an event-processing method has to be implemented that handles the correspond-

ing events. In the example, this is demonstrated for port milkEmpty with the corresponding

onMilkEmptyReceived method. Further event-handling methods are omitted for reasons

261

9.2. AJAVA

of space. Second, the outgoing ports can be accessed like fields of a class and provide methods

to emit messages. This is demonstrated with the send method of port message (cf. ll. 14,

17). Available methods are defined by the API of the underlying RTE and generated code.

9.2.2 Language and Tool Extensions

AJava builds up on MontiArc by extending its syntax, symbol table, generators, and RTE. It

adds a selected set of Java elements to the MontiArc language: local class definitions, methods,

constructors, as well as annotations.

Language Extension: The involved MontiCore grammars that define the syntax of AJava are

depicted in Figure 9.3. The AJava grammar extends the MontiArc grammar and inherits all

language elements. It also adds an external nonterminal and a simple nonterminal. The defining

production of the latter implements the interface ArcElement and its right-hand side (RHS)

contains a reference to the created external. Since it implements the ArcElement interface, it

can be used within the body of a component definition (see Listing 3.20 on page 54). Details

about the external embedding mechanism provided by MontiCore are given in [KRV10, Kra10].

Since only a subset of Java elements should be available in components, the regular JavaDSL

[FM07] is extended by grammar AJava JavaDSL. A production of the latter defines the non-

terminal AJavaEmbedments which bundles the Java elements that should be added to AJava

as alternatives within its RHS. Finally, to use this nonterminal within AJava, it is embedded into

the created external nonterminal. In this way, only the Java elements bundled within the RHS of

production AJavaEmbedments are available in AJava.

Beside the syntax, AJava also extends MontiArc’s symbol table. For this, an AJava method

entry, corresponding resolvers, and qualifiers are implemented to represent methods and con-

structors of a component. MontiArc itself already provides field entries to represent configu-

ration parameters which are reused to represent fields within a component (see Figure 5.8 on

page 135). Additionally, adapters are created to convert Java field entries into AJava field entries

and Java methods into AJava methods. Java entries are automatically build up by the Java sym-

bol table when processing the embedded elements. Further, the component and subcomponent

entries are refined within a subclass that also aggregates the newly created entries. Adapters

and resolvers are added to interpret a port entry as a field entry with the type IOutPort<T>,

whereby T corresponds to the type of the port.

builds on

builds on

AJava

MontiArc

�

AJava_JavaDSL

JavaDSL

embeds

AJava-

Embedments builds on

Defines production AJavaEmbedments that bundles:
type, field, method, and constructor declarations
as well as annotations.

MG

Figure 9.3: MontiCore Grammar hierarchy and embeddings for the AJava language.

262

9.2. AJAVA

Model Processing Extension: Three context conditions have been added to enforce the afore-

mentioned implications. The first validates whether for each incoming port of an atomic com-

ponent a corresponding event-handling method is implemented. The second ensures that con-

structors are implemented correctly and have a parameter for each configuration parameter of a

configurable component. The third checks that no methods are defined within decomposed com-

ponents. Additionally, four transformations are added that qualify Java types within the AJava

abstract syntax tree (AST) of newly added Java model elements.

Simulation Extension: AJava components are compiled against the regular MontiArc RTE

which has been slightly extended to enable physical distribution of components. The added

classes and interfaces as well as their relation to elements from MontiArc’s RTE, these elements

have a gray background color, are depicted in Figure 9.4. Interface IInTCPPort extends the

interface of an incoming simulation port and adds a method to start listening for messages on a

given TCP port. Internally, it starts the associated Runnable InPortTCPServer which is

executed in an own thread and is responsible for receiving messages via the configured TCP port.

Received messages are delegated to the accept()method of the corresponding IInTCPPort

(see Figure 4.10 on page 94).

Message sending is realized by interface IOutTcpPort which extends the interface of an

outgoing simulation port. It adds a method to register a receiver which is accessible by the given

IP address and TCP port. It internally creates and starts an OutPortTCPServer Runnable

in a dedicated thread. Messages, which are send using the send() method of an IOutTcp-

Port, are delegated to all associated servers that perform the TCP transmission.

«interface»

IInSimPort

«interface»

IInTCPPort

startListenOn(int tcpPort)

«interface»

IOutSimPort

«interface»

IOutTcpPort

addReceiver(

String ip, int tcpPort)

InPortTCPServer OutPortTCPServer

«interface»

java.lang.Runnable

TCPPort

*

Port

MontiArc RTE

AJava RTE

TCPPortFactory
«creates»

RTE-CD

Figure 9.4: AJava RTE extensions of the MontiArc RTE.

263

9.2. AJAVA

A concrete implementation of these interfaces is given by class TCPPort. It inherits the im-

plementation from the regular simulation port. Only the aforementioned message delegation to

and from the servers is realized in the TCPPort class. Instances are created by the TCPPort-

Factory which can be passed to any simulation scheduler. TCP connections are created by

calling the startListenOn respectively the addReceivermethods of system components.

Please note that a TCPPort acts like a regular simulation port if no servers are registered. In

this way, only the outer ports of a system component communicate via TCP. Ports of contained

connected subcomponents communicate like regular MontiArc components.

Since the presented RTE extensions are integrated into the simulation by a factory and the

activation is performed by the configuration of system components, the RTE extensions intrin-

sically do not require any extensions of the generator. However, an adaption of the generator is

needed, since atomic AJava components, in contrast to atomic MontiArc components, directly

contain their implementation. Consequently, the generator has to produce concrete instead of

abstract classes for an atomic AJava component. Further, it has to integrate the embedded Java

elements into the generated class. Therefore, two new configuration templates are created, four

templates replace existing templates (component, component body, constructor, and factory) and

a template which integrates the embedded Java code is added. Also four new template calcu-

lators are added. Consequently, a distributed AJava system corresponds to several MontiArc

simulations that are interconnected via TCP remote ports.

9.2.3 Conclusion

The presented language AJava proposes a feasible way to integrate concrete behavior imple-

mentations into the ADL MontiArc which renders a mapping between architecture and code

superfluous [HRR10]. Since MontiArc and its tools are designed for extension, the effort to

realize AJava has been minimized. The experiences made during the development of AJava

have been directly integrated into the MontiArc framework to further ease reuse of the language

and the corresponding tools. For example, an analysis of the AJava generator lead to further

provided extension points. These experiences also influenced the MontiArc extension method

presented in Chapter 7 and the development of AJava serves as an evaluation of this method.

Since AJava has been developed based on an older MontiArc version, some extensions would

not be needed if using the current version. Now, creating a new component and constructor

template is superfluous since resulting class names and modifiers of generated classes are de-

termined by the configuration within the main template. Further, it is easier to add additional

templates which are called to generate content into the resulting class body.

AJava serves as both, a case study for MontiArc extensions as well as a case study for ar-

chitectural programming. The initially developed compiler can be improved, e.g., by adding a

deployment generator which synthesizes the configuration of system components or by adding

IDE support. Nevertheless, it has been shown that non-trivial extensions of the MontiArc lan-

guage can be developed that reuse large parts of the provided MontiArc tools. In this way the

development effort for such languages is reduced.

264

9.3. MONTIARCAUTOMATON

9.3 MontiArcAutomaton

MontiArcAutomaton [RRW12, RRW13b, RRW13c, RRW14] is an extension of MontiArc which

targets at the development of reusable components for the robotics domain. Even simple robotics

applications are inherently complex since they consist of multiple distributed components which

have to be integrated with each other. Nowadays, robotics applications are still highly ex-

perimental, monolithic, and hardly adaptable to different platforms [Mos09, SSL11]. Even

though reuse in robotics is heavily pursued, it mostly is performed on a binary component level

[BBC+07] which still renders the application to be suited for a few target platforms only.

MontiArcAutomaton tries to cope with these problems by integrating MontiArc with I/Oω au-

tomata [Rum96]. This way, robots are structured using MontiArc’s hierarchical decomposition

mechanism, logical as well as physical independent components are developed separately. The

control logic is constructively modeled and thus realized with language-agnostic automata. A

generative approach enables reuse on different target platforms by transforming MontiArcAu-

tomaton models into concrete GPL code which is directly deployed on the target.

Beside the generation of target code, MontiArcAutomaton models are used for analysis. This

comprises type system checks inherited from MontiArc, context condition checks, as well as

formal model checking. An approach to validate the refinement of MontiArcAutomaton com-

ponents using the model checker Mona [EKM98] is outlined in [RRW13b] and presented in

[Rin14]. The MontiArcAutomaton framework has been evaluated in [RRW13a].

9.3.1 Example

A brief example for MontiArcAutomaton models, which has been introduced in [RRW13b], is

depicted in Figure 9.5. A simultaneous localization and mapping (SLAM) bot is built to dis-

cover and map unknown areas. Due to missing position sensors, such as GPS, the robots have

to estimate their position based on their starting position. Thus, the more time has passed, the

more increases the difference between the estimated and the real position. To reduce this dif-

ference and increase the quality of the localisation, the extended SLAM bot also communicates

with other bots for a cooperative discovery of the environment. The SLAM bots are built with a

NXT Lego Brick and consists of the following physical components: a TouchSensor to de-

tect obstacles, two Motor components mRight and mLeft which realize the powertrain, and

a Bluetooth component to interact with other bots. The control logic is given by a Bump-

Control component responsible for the steering, a Timer to realize timeouts and the explored

map is continuously build up by component MapBuilder. Please note that physical compo-

nents are parametrized with additional deployment information. In this way the TouchSensor

is connected to SensorPort.S1 of the NXT Brick.

The logic that controls the autonomous movement is pretty simple. The SLAMRobot should

drive in a straight line until it hits an obstacle with its touch sensor. It will then back off, turn

a bit, and continue exploring the area by driving straight forward. The controls of the SLAM

bot, which realize this driving logic, have been designed in a hardware-independent manner.

The realization of component BumpControl is given in Listing 9.6. Just like in the regular

MontiArc language, the component interface is defined by a set of incoming and outgoing ports

(cf. ll. 2 – 7). The behavior is declared by the embedded automaton (cf. ll. 9 – 21) that consists

265

9.3. MONTIARCAUTOMATON

SLAMRobot

«deploy»

Timer(500)
Motor(MotorPort.B)

mLeft

TouchSensor

(SensorPort.S1)

Motor(MotorPort.A)

mRight
BumpControl

touch sensor set up
to sense on port S1
on NXT Lego Brick

motor set up to use actuator port A

Bluetooth btMapBuilder

MAA

Figure 9.5: A SLAMRobot constructed with an NXT Lego Brick. The architecture and the

behavior of SLAMRobots is modeled with MontiArcAutomaton (according to

[RRW13b]).

of four states: idle, driving, backing, and turning (cf. l. 10) . It starts in the initial

state idle by emitting the STOP command as initial values to both connected motors via the

ports rMot and lMot (cf. l. 11). The contained transitions (cf. ll. 13 – 19) induce the automata

to switch from source to target state and to perform an action when they are triggered. Defined

by the transition given in ll. 13f, the automata respectively the BumpControl switches from

state idle to driving if true is received on port bump. This events corresponds to an initial

activation of the touch sensor after starting the robot. Afterwards, the command FORWARD is

emitted on both ports rMot and lMot to drive straight forward.

9.3.2 Language Extensions

To be able to define the behavior of MontiArc components with I/Oω automata, MontiArc has

been extended to the initial MontiArcAutomaton version presented in [RRW12]. Figure 9.7 a)

depicts that the MontiArcAutomaton grammar directly builds on the MontiArc grammar.

It extends its base-language by adding two productions which implement the ArcElement

interface. Consequently, they can be used directly within the body of a component (see List-

ing 3.20 on page 54). The MontiArcAutomaton grammar is provided in [Rin14, Appendix J].

First, I/Oω automata are added that itself contain the following model elements. States are

used to define the state-space of a component. Transitions are used to define the triggers as well

as the resulting actions for changes of state.

Second, local variables are added which allow to store values during the action of a transition.

Since these variables can be also referenced within the trigger condition of a transition, they im-

plicitly extend the state-space of the automaton. This technique basically counters the explosion

of states and allows to easily implement loops.

Since new language elements are added, also the symbol table is extended. Therefore, the

component entry class (Figure 5.8 on page 135) is extended to additionally contain automata

266

9.3. MONTIARCAUTOMATON

MAA1 component BumpControl {

2 port

3 in Boolean bump,

4 in TimerSignal ts,

5 out TimerCmd tc,

6 out MotorCmd rMot,

7 out MotorCmd lMot;

8

9 automaton {

10 state idle, driving, backing, turning;

11 initial idle / {rMot = STOP, lMot = STOP};

12

13 idle -> driving {bump = true} /

14 {rMot = FORWARD, lMot = FORWARD};

15 driving -> backing {bump = true} /

16 {rMot = BACKWARD, lMot = BACKWARD, tc = DOUBLE_DELAY};

17 backing -> turning {ts = ALERT} /

18 {rMot = FORWARD, tc = DELAY};

19 turning -> driving {ts = ALERT} / {lMot = FORWARD};

20 }

21 }

Listing 9.6: The BumpControl component with an embedded I/Oω automata (according

to [Rin14]).

builds on

builds on

MontiArcAutomaton

MontiArc

�

IOOmegaAutomata

RuleLanguage

embeds

embeds

a) [RRW12] b) [RRW13c]

MG

Figure 9.7: MontiCore Grammar hierarchy for a) the initial MontiArcAutomaton version that

uses inheritance and b) the current MontiArcAutomaton version that uses embedding

to extend MontiArc with I/Oω automata.

entries and entries that represent variables. With these extensions, MontiArcAutomata is able to

reuse most parts of MontiArc’s symbol table and a selected set of context conditions. It provides

its own leJOS 3 based RTE and thus is not able to reuse (parts of) the MontiArc code generator

presented in Section 5.4.

With this initial language setup, one is already able to design robots in a target-language-

3LEJOS - Java for LEGO Mindstorms, http://www.lejos.org/

267

http://www.lejos.org/

9.3. MONTIARCAUTOMATON

agnostic way with MontiArcAutomaton. However, it determines several drawbacks. Using

language extension to add automata to MontiArc components results in hard-wired dependencies

between automaton-defining productions and MontiArc. Particularly, such automata always

have to be defined within a component and can not be used stand-alone as top-level compilation

units.

To encounter these problems, the MontiArcAutomaton language has been revised as depicted

in part b) of Figure 9.7. Basically, the productions which define I/Oω automaton nonterminals

are extracted from grammar MontiArcAutomaton into a dedicated IOOmegaAutomata

grammar. The top-level automaton rule is then embedded into the external nonterminal Behav-

iorEmbedding which is provided by MontiArc (see Listing 3.25 on page 56). As discussed

in [RRW13c], additionally a RuleLanguage is embedded into the same extension point that

allows to define component behavior in an input/output relation given in a table-like syntax.

As already mentioned, MontiArcAutomaton does not reuse MontiArc’s RTE and the corre-

sponding generators. Instead it provides a set of RTE/generator combinations itself. These are:

• A leJOS RTE and corresponding generators which allow to deploy MontiArcAutomaton

models to Lego NXT Bricks is presented in [RRW12, Rin14].

• A Python based RTE and generators with direct ROS4 integration.

• A generator for Mona verifications to enable formal reasoning about automata refinement

is discussed in [RRW13b, Rin14].

• For visualisation, an EMF core generator is provided [RRW13b].

9.3.3 Conclusion

The (ongoing) development of the MontiArcAutomaton language has shown that reuse and ex-

tension of the MontiArc language fronted is possible and worthwhile. Beside the syntax, Mon-

tiArcAutomaton additionally reuses and extends MontiArc’s symbol table and a selected set of

context conditions. The generator and RTE are not reused.

The experiences made during the development of MontiArcAutomaton directly influenced

the language extension method for MontiArc (see Chapter 7). Beside a practical use case and

requirement providing stakeholder, MontiArcAutomaton has been the main influence to a) add

a behavior definition extension point to the MontiArc grammar and b) to figure out techniques

and methods for extensions within MontiCore’s symbol table framework. Actually, the external

nonterminal which is provided to embed arbitrary behavior definition languages leads to the

concept of a generic extension point in MontiArc’s symbol table (see Section 7.3.2).

4The Robot Operating System, http://www.ros.org/

268

http://www.ros.org/

9.4. PROCESS NETWORK SIMULATION

9.4 Process Network Simulation

The Process Network Simulation (ProNetsim)5 aims at modeling and simulation of distributed

value chains within a global production network. Rodrigue et al. [RCS13] define a value chain

as a “[. . .] functionally integrated network of production, trade and service activities that covers

all the stages in a supply chain, from the transformation of raw materials, through intermediate

manufacturing stages, to the delivery of a finished good to a market”. Additionally, they claim

that each of these activities corresponds to a node which transforms its inputs to one or many

outputs with an added value. In the following, these nodes are called process steps. Each

process step can be assigned to a different location which leads to a value chain that is distributed

across several locations. On the one hand, production costs can be reduced by this course of

action. On the other hand, transport costs and total production time are increased. Since the total

added value and processing time of such a value chain interrelate with much more parameters,

an automatic simulation and comparison of different scenarios is helpful to assess a concrete

scenario.

Since the graphical representation of value chains is pretty similar to the graphical syntax

of MontiArc, values chains have been initially modeled as plain MontiArc models regarding a

simple mapping:

• Value chains correspond to decomposed and production steps to atomic components.

• Subcomponents either represent another value chain or a process step.

• Transports between nodes of a value chain are represented by connectors.

• Commodities, i.e., raw materials or (partially) finished goods, are described by data types.

• Input- and output ports correspond to the input and the resulting output of a process step

or value chain.

• Further variable parameters that together define one or many scenarios are defined within

a spreadsheet.

In this way, the simulation of value chains has already been possible. Nevertheless, Monti-

Arc’s syntax seem to be less intuitive for process network domain experts. Also, to adjust the

semantics of the MontiArc simulation to the semantics of a value chain, some intermediate com-

ponents have to be introduced that blurred the intended value chain. This semantic difference is

discussed in Section 9.4.2.

9.4.1 Example

An exemplary value chain PipeProduction for the industrial manufacturing of pipes is de-

picted in Figure 9.8. Its input is given by Iron and Zinc which are casted to a PipeWork-

piece in the Casting process step. The workpiece is then transported to the Assembly

process step. Further, Plastic and Gum are processed to SealingMaterial by the Seal-

ingMaterialProduction. The SealingMaterial is passed to the SealProduc-

5ProNetsim has been funded by a RWTH University Dean’s Seed Fund in 2011. It has been developed in cooper-

ation with the Production Engineering chair, Laboratory for Machine Tools and Production Engineering (WZL),

RWTH Aachen University. We especially thank our research assistants Juha Veikko Lauttamus, Sebastian Roidl,

and Minh Quan Tran for large parts of the implementation as well as Daniel Kupke (WZL) for the constructive

feedback and fruitful discussions.

269

9.4. PROCESS NETWORK SIMULATION

PipeProduction

Iron

Zinc Pipe

Plastic

Gum

SealingMaterial

Seal

GumResidue

Casting Assembly

PipeWorkpiece

SealingMaterial
Production

Seal
Production

Monitoring

Pipe

Post
Processing

value chain

process step

90%

10%

transport of raw materials
or (sub-) products

divided transport

VC

Figure 9.8: Exemplary value chain that models the dependencies between different process steps

to manufacture pipes.

tion which produces Seals. The Assembly combines the seals with a workpiece to a Pipe.

Since commodities cannot be copied, a transport with more targets has the semantics of a choice.

Thus, such connectors have to be tagged with percent values that define the probability, that a

commodity emitted by a sender is transported to a certain receiver. If these values are omitted,

the commodities are evenly spread to all receivers. Consequently, after monitoring the pipes,

10 % of them have to be post processed and are sent back to the Monitoring process step.

90 % are expected to pass the monitoring immediately. Summing up, the depicted value chain

produces pipes as main and gum residue as side product.

To be able to simulate the modeled value chain, at least one scenario has to be configured.

Therefore, several properties have to be set within a predefined spreadsheet. Figure 9.9 depicts

an excerpt of four scenarios defined for value chain PipeProduction. It has been created by

performing the following activities:

1. Define locations, their energy costs, and the hour rates per wage group. A location is

referenced by its Code. In the example, two locations are defined: Germany and Poland.

Please note that a location must not necessarily correspond to a country. It is also possible

to define several locations within the same country.

2. Calculate the distance between all locations. Since street routing may not be symmetric,

always both directions between two locations have to be given. In the example, the trans-

port distance from Germany to Poland amounts to 780 km, while the transport distance to

other direction amounts to 760 km.

3. Define transport costs per unit and km for all commodities and how many units of a com-

modity can be transported together (not shown in the example). The last property assumes

270

9.4. PROCESS NETWORK SIMULATION

Location Code energy costs (€ / kWh) wage group I (€ / h) wage group II (€ / h)

Germany D 0.18 40 60

Poland Pl 0.11 8 10

Machine ID Energy Consumption (kWh) Machine-Hour Rate (€ / h) Location Name

D.Casting11 20 60 D Casting11

Pl.Casting9 35 65 PL Casting9

Pl.WorkStat01 10 80 PL WorkStat01

D.WorkStat0815 5 30 D WorkStat0815

Distance (km) D Pl

D 0 780

Pl 760 0

Commodity Transport Costs (€ / Unit per km) '

Iron 0.01 "

Pipe 0.10 "

Process Step Machine ID Length (min) Effort in wage group

I (min)

Effort in wage group

II (min)

Casting D.Casting11 100 30 0

Casting Pl.Casting9 110 35 0

Assembly D.WorkStat0815 5 5 0

Assembly Pl.WorkStat01 5 5 0

VCCfg
"

Figure 9.9: Scenario definition for value chain PipeProduction within spreadsheets.

a standardized transport container.

4. Model the machines that are available at the defined locations. For convenience, the ID

of a machine consists of the corresponding location code and the name of the machine.

Further, a machine consumes a certain amount of energy. The machine-hour rate defines

the costs per hour.

5. Design a production plan by defining the amount of input commodities together with the

costs per unit (not shown in the example).

6. By mapping process steps to machines in association with the needed machine time and

effort for each wage group, scenarios are defined. If more than one mapping for a process

step is given, the combination of all valid mappings result in multiple scenarios. Assuming

that each non-shown process step of the example is uniquely mapped to a single machine,

the configuration in Figure 9.9 produces exactly four scenarios. Please note that more than

one process step can be mapped to a single machine. In that case, the machine can only

be used by a single process step at each point in time.

9.4.2 Discuss Language Extension

As already mentioned, the semantic of a ProNetsim simulation differs from the semantic of a

MontiArc simulation. This especially manifests in the following items:

• Commodities cannot be broadcasted: In MontiArc, messages are simply transmitted to all

connected receivers of a sender. This is possible since data messages can simply be copied.

Physical commodities cannot be broadcasted and are transported to a single receiver only.

Thus, a one-to-many connection has the semantics of a broadcast in MontiArc and the

271

9.4. PROCESS NETWORK SIMULATION

semantics of a choice in ProNetsim.

• Multiple senders: In MontiArc, the sender of a message always has to be unique while a

process step can receive the same commodity type from different senders. Consequently,

many-to-one connections are forbidden in MontiArc while they are allowed in ProNetsim.

• Transport time: According to the underlying FOCUS framework, transmitting a message

is instantaneous. In contrast, transport of commodities always takes time according to the

defined configuration.

• Locking resources: Since MontiArc aims at modeling logical functions, the concretely

used hardware resources are out of scope and are not regarded within a simulation. In

contrast, process steps are mapped to physical machines and need exclusive access. On

that account, resources need to be locked while processing input commodities to prevent

access from further process steps.

Following Karsai et al. [KKP+09], elements with different meaning respectively semantics

should differ in their representation, too. Thus, MontiArc can still be used as input for the code

generator, but a domain-specific frontend is needed which matches the semantics of value chains

and additionally is intuitive for process network experts.

Consequently, a ProNetsim DSL is developed which allows to model value chains and process

steps. The essence of the developed grammar is depicted in Listing C.4 on page 312. Each

compilation unit defines either a value chain or a process step, has a name, and contains arbitrary

many process definition elements. The provided elements are:

• Value chain nodes either instantiate another value chain or another process step. The type

of the instantiated node is followed by an optional name. The name has to be used if more

than one node with the same type is instantiated. Finally, a transport directly connects the

node with further nodes or output commodity channels.

• Commodity channels define the input or output of a certain commodity type. The op-

tional amount defines how many units of a certain commodity are needed to produce

output commodities. In a value chain, a transport directly connects input channels with

the receiving contained nodes.

The targets of a transport can be annotated with a probability value. If one source (either a

commodity channel or value chain node) is connected to more than one receiver, the sum of the

target probabilities has to be 100.

To reuse MontiArc’s generator and its RTE, ProNetsim models have to be transformed to

MontiArc models while obtaining the intended semantics. This is performed in the following

steps:

• ProNetsim models are pretty printed into MontiArc syntax. Model elements or attributes

that do not have a MontiArc counterpart are represented by stereotypes. Ports that repre-

sent a commodity channel with annotated amount are tagged with an ≪amount≫ stereo-

type with an assigned value. Connectors that represent transports with multiple targets are

annotated with a ≪probability≫ stereotype with a comma-separated value for each

receiver.

• To prevent simulation deadlocks (see Section 3.5.5), a delay component is added to all

feedback loops.

• To support many-to-one connections, merge components are added which forward re-

272

9.4. PROCESS NETWORK SIMULATION

ceived messages respectively commodities from all incoming ports to the single outgoing

port.

To adjust the semantics of a value chain simulation accordingly, also MontiArc’s RTE is ex-

tended as depicted in Figure 9.10. Please note that interfaces with a gray background color

belong to MontiArc’s RTE. Process steps in the simulation are represented by interface IPro-

cessStep which extends the regular component interface. To gain access to the concretely

configured costs and energy consumption, a process step is associated with a concrete machine

(IMachine) which belongs to a location (ILocation). A process step collects received input

commodities until the needed amount of all commodity types is reached. Then it registers at the

assigned machine to acquire the next free production slot using method register(). If the

machine is ready, it is blocked while the process step is producing its output commodities that

are represented by the interface ICommodity. When the process step finished the production,

the associated machine is released using method release(). Also special IProNetPorts

are added which realize the functionality to send commodities to one receiver exclusively in-

stead of broadcasting a commodity to all connected receivers. To be able to properly compute

the transportation costs to the receiver, the sender of a commodity is passed as parameter to the

send() method. Added receivers will receive produced commodities based on their associated

probability (prob) passed to method addReceiver(rec, prob).

RTE-CD

«interface»

IPort<T>

«interface»

IComponent

«interface»

IProNetPort<T extends ICommodity>

addReceiver(IInPort rec, int prob)

send(T com, IProcessStep sender)

«interface»

ICommodity

getTotalProcessingTime()

getValue()

getName()
«interface»

IProcessStep

getDuration()

getEffortInWageGroup

getName

calculateCosts()

setup(IParamSetup, IScheduler,

IErrorHandler)

«interface»

IMachine

getEnergyConsuption()

getMachineHourRate()

getName()

register(IProcessStep)

release(IProcessStep)

-

*

*

«interface»

ILocation

getEnergyCosts()

getManpowerCosts()

getName() * «interface»

ISimulationRunner

«simulates»

«interface»

ISimulationExporter

«executes»

1

«interface»

ISimulator

«interface»

ISimulationMetric *

*

**

MontiArc RTE ProNetsim RTE

Figure 9.10: ProNetsim extensions of the MontiArc RTE.

An additional generator converts the configuration given in the spreadsheet into configuration

classes which implement interface IParamSetup. For each contained scenario, a simulation

runner is generated that implements ISimulationRunner. It sets up the associated process

step with the parameter configuration and is able to simulate the process step. These runners

273

9.4. PROCESS NETWORK SIMULATION

are executed by a central simulator (ISimulator) in a dedicated thread which also collects

the results of finished simulations. Consequently, multiple scenarios are simulated in paral-

lel. When all simulations have delivered their results, the simulator triggers registered metrics

(ISimulationMetric) to analyze the results. Exemplary metrics are: the lowest average

processing time, the lowest total processing time, and the lowest total costs metrics. The results

of the simulation and metric executions are finally exported using the registered ISimula-

tionExporter. Since a preconfigured simulator is generated too, no manual programmatic

configuration is needed.

Summing up, ProNetsim reuses MontiArc’s language to be able to reuse the corresponding

generator which is designed for the MontiArc AST. In doing so, also the symbol table, the

transformations, and a selected set of context conditions are indirectly reused. Regarding the

derived ProNetsim-MontiArc generator, only a small amount of original MontiArc templates

and template operators are instantiated within the ProNetsim generator. The complete generator

has been initially copied and adjusted to generate according to the ProNetsim RTE. Afterwards,

13 unmodified templates have been removed and the original templates have been reintegrated

from the classpath.

9.4.3 Conclusion

With the presented ProNetsim workbench one is able to model value chains with an intuitive

domain-specific syntax. Flexible configurations and scenario definitions of the modeled value

chain are defined in an Excel spreadsheet template which has shown to be very comfortable for

domain experts. The generated simulation can be executed out of the box without hand-coding

a single line of code. ProNetsim can be easily extended with further metrics or report generators

which can be seamlessly integrated into the RTE architecture.

Nevertheless, further improvements can still be integrated into ProNetsim. More fine-grained

values and configurable parameters lead to more reliable and detailed simulation results. For

example, different storage costs, import duties for transports across borders, a fine-grained dif-

ferentiation between transport-, storage-, as well as production durations, or changeover costs for

machines used by different process steps are possible. The latter also motivates the integration

of sophisticated, configurable, and interchangeable machine scheduling strategies.

Regarding reuse and extension of MontiArc, ProNetsim also demonstrates that it is possible

to reuse MontiArc’s language, generators and RTE to extend them with an adjusted (runtime)

semantics. Since ProNetsim has been developed based on a very early MontiArc version, which

comprises a generator that has not been designed for extension, only a few templates and calcu-

lators could be reused via the classpath. Although, one can argue that copy and paste is a form

of reuse, it is definitely not the best and cleanest form. However, by adapting ProNetsim to the

most current MontiArc version, duplication of templates could be completely omitted by using

well defined extension points of the generator.

274

Chapter 10

Discussion and Conclusion

The presented architecture description language (ADL) MontiArc has been designed based on a

detailed set of language and simulation specific requirements which have been derived from the

posed research questions (see Chapter 2). These requirements are important for an extendable

ADL (RQ2) which is also used as an architectural programming language (APL) for rapid pro-

totyping of such systems (RQ4). The developed ADL MontiArc has a core architectural style

which corresponds to the FOCUS modeling framework [BS01]. Since the core language only

provides mandatory ADL modeling elements, i.e., components, connectors, and architectural

configuration (see [MT00]), it is easy to learn (RQ1). Together with the underlying FOCUS

semantic framework, it provides enough information to simulate MontiArc models which can

be composed from user-defined and library components (RQ3). The corresponding simulation

runtime environment (RTE) and FOCUS scheduling strategies are presented in Chapter 4. The

technical realization of the language and the corresponding tools are defined in Chapter 5.

The structured method presented in Chapter 7 is suitable to adjust the language and the ar-

chitectural style. It allows to add more detailed model elements to the language, to extend and

refine existing elements, or to integrate concrete behavior definitions into component definitions.

In this way, MontiArc can be adjusted to specific needs of the target domain.

The reminder of this chapter starts with a detailed discussion whether MontiArc fulfills the

defined requirements for architectural modeling and simulation. Finally, the thesis is concluded

in Section 10.3.

10.1 Requirements for Architectural Modeling

The language related requirements given in Section 2.1 are derived from the posed research

questions RQ1, RQ2, and RQ3. The following discussion clarifies how these requirements are

met by the developed MontiArc ADL.

10.1.1 LRQ1: Architectural Style

MontiArc is developed as a basic ADL with a single core architectural style. It provides the

mandatory architectural modeling features defined by Medvidovic and Taylor [MT00]: compo-

nents, interfaces, connectors, and architectural configuration.

LRQ1.1: MontiArc component types fulfill the following requirements:

LRQ1.1.1: The MontiArc ADL provides several concepts to adapt subcomponents to the current

context and to reuse component definitions.

275

10.1. REQUIREMENTS FOR ARCHITECTURAL MODELING

– Subcomponents instantiate MontiArc components within a decomposed component.

In this way, components can be reused within the context of another component with-

out copy and paste. Declared subcomponents are validated by the context conditions

R3, R4, R9, R10, R13, CV1, CV6, and CV7

– Generic components can be defined by declaring generic type parameters (see List-

ing 3.19). Generic types can be used as data types from ports and configuration

parameters. Generics are consistently handled within all processing steps of Mon-

tiArc’s tool chain. Context conditions R9 and R15 (see Section 3.5.3) support the

valid definition and usage of generic components.

– Configurable components can be defined by declaring a list of configuration parame-

ters (see Listing 3.19). Values can be assigned to these parameters when instantiating

a configurable component. These parameters are consistently handled within all pro-

cessing steps of MontiArc’s tool chain. The context conditions R10 and R14 (see

Section 3.5.3) help to use configurable components in a valid way.

– Component inheritance allows to define a component as an extension of a supercom-

ponent (see Listing 3.19). A component inherits all model elements of the protected

model interface (see Section 5.2.5) from its supercomponent. Consequently, the

component interface as well as the architectural configuration of the supercompo-

nent are inherited. Inheritance relations are validated by context conditions R11,

R12, R14, and R15.

LRQ1.1.2: By using the MontiCore compilation unit concept, MontiArc components are orga-

nized in packages and have a qualified name (see Section 3.4.3). The qualified name is

composed by combining the name of the package with the name of the component. This

has the advantage, that the location of the compilation unit (file), which contains the com-

ponent definition, and the component name are in a defined relation. A description of this

concept is given in [GKR+06, Section 5.1].

LRQ1.1.3: The timing domain of a component can be selected within a component definition

(see Section 3.3.1, Listing 3.29). The following timing domains are available. They are

derived from the underlying FOCUS domains of timed, time-synchronous, and untimed

streams [BS01, Chapter 4]:

– Instant components are time-aware and processes port-specific data events. Their

results are emitted without delay.

– Delayed components are time-aware and process port-specific data events with pro-

cessing time (delay ≥ 1).

– Untimed components are not aware of time and only process port-specific data events.

– Synchronous (sync) components are time-aware and synchronously process tuples

of data events without delay and without explicit processing of time.

– Causal synchronous (causalsync) components are like synchronous components, but

have delayed output.

LRQ1.1.4: Inner component definitions can be defined and automatically instantiated. This

is only possible for inner components without generic type or configuration parameters.

Since these concepts aim at component reuse, they are rarely used for inner component

definitions. Automatic instantiation can be achieved by either using the optional instance

276

10.1. REQUIREMENTS FOR ARCHITECTURAL MODELING

name of an inner component definition (see Listing 3.18) or by activating the autoin-

stantiate feature (see Section 3.3.3, Listing 3.28). The former is realized by transfor-

mation ”Create Subcomponents from Named Inner Component Definitions”, the latter by

transformation ”Autoinstantiate” (see Section 5.3.1).

LRQ1.1.5: The MontiArc ADL does not offer any means to share the state of a component

directly with other components. Components solely interact via their component interface.

LRQ1.2: The component interface of a MontiArc component is described by a set of sepa-

rate incoming and outgoing ports that are able to receive respectively send messages (see Sec-

tion 3.2.2 and Listing 3.21). A port always has a type that determines the data type of the

processable messages. According to requirement LRQ1.4, naming of ports is optional. Incom-

ing and outgoing ports serve as connection point for incoming respectively outgoing FOCUS

channels. The public model interface of a MontiArc component is defined by MontiArc’s sym-

bol table (see Section 5.2.5). It also contains information about generic type parameters and

configuration parameters since both are needed to instantiate generic respectively configurable

components.

LRQ1.3: The architectural configuration of decomposed MontiArc components is given by

a set of ArcElements (see Listing 3.20) such as subcomponents and connectors. When in-

stantiated as subcomponents, atomic and decomposed components are treated the same way. To

ensure that the FOCUS properties of a channel holds, created connections are validated by the

context conditions CO1-CO3, R1, R2, R5-R8, CV5, CV6, and CG1 (see Section 3.5).

LRQ1.4: Naming for ports and subcomponents is optional and their type and name can be

used synonymously. The correct use of such implicit names is enforced by context conditions

B1 and CV7 as well as MontiArc’s symbol table.

LRQ1.5: The required Autoconnect feature is provided with two different strategies: type

and port (see Section 3.3.2). It is realized by the transformation “Autoconnect Strategies” that

is presented in Section 5.3.1. Thus, MontiArc provides means to automatically connect ports

with the same unique name respectively type. This autoconnect mechanism can be controlled

on the component level.

LRQ1.6: Constraints can be defined within components using OCL/P [Rum11, Chapter 3]

and Java expressions. Both expression kinds have to evaluate to a Boolean expression. Since

nonterminals of the respective language are embedded into the external nonterminal Invari-

antContent (see Section 3.4.4), MontiArc is adaptable to use further constraint languages.

This is realized by using MontiCore’s embedding mechanism (see [KRV08]).

LRQ1.7: MontiArc components, their interfaces, and contained elements can be documented

with Java style comments. A documentation generator is provided that automatically derives

JavaDoc like documentation from the contained comments (see Section 6.7). Thus, it is possible

to document components and the contained model elements in an agile way.

LRQ1.8: A suitable mapping from MontiArc’s basic architectural model elements to the

Architecture Analysis and Design Language (AADL) is presented in Section 3.6. Language

concepts, which are not present in the respective other language, are highlighted and possible

emulations are discussed.

277

10.1. REQUIREMENTS FOR ARCHITECTURAL MODELING

10.1.2 LRQ2: Usability

LRQ2.1: To increase the usability of MontiArc, a Maven plug-in is provided (see Section 5.7.2).

It builds upon the MontiArc command line interface (CLI) and allows to process and validate

MontiArc models, generates code, and automatically executes tests within a Maven build. To

simplify the development of component libraries and to support distributed development with

MontiArc, it further allows to built MontiArc projects on continuous integration (CI) servers.

LRQ2.2: MontiArc further provides an integrated development environment (IDE) that is

realized as an Eclipse plug-in. It supports active specification (see [MT00]) of components with

a context sensitive auto-completion. Depending on the context, available types (component as

well as data types), connector sources and valid targets, and appropriate keywords are proposed.

The documentation of library components (cf. requirement LRQ5) is integrated in the auto-

completion to provide information about externally defined models.

LRQ2.3: Context conditions are defined in Section 3.5 which validate the correct usage of

the provided architectural elements. Violations, which result in error or warning messages, are

attached to the corresponding location in the editor of the IDE. In this way, direct feedback is

provided to the modeler.

LRQ2.4: A quick start with MontiArc is eased by the contained wizard that sets up a com-

pletely configured MontiArc project. Thus, modeled components can be immediately analyzed,

simulations can be generated, tests can be executed, and component documentation can be de-

rived. Created projects are configured to automatically integrate predefined component libraries

(see Section 6.8.2). Further wizards are provided to create new component types and component

black-box tests (see Section 6.4.1).

LRQ2.5: Since the MontiArc IDE is realized as an Eclipse plug-in, all available distributed

revision control clients for Eclipse can be used. MontiArc components are textual models. Thus,

they can be managed by revision control systems, such as CVS1, Subversion2, and git3, to sup-

port distributed development. Also, different versions of textual models can be easily merged

and current changes can be automatically validated by using the Maven plugin-in. Further, ag-

ile and distributed development of components is supported. Changes in a component library,

which influence depending projects, can be detected fast by using CI servers. This is easily

possible, since the most CI servers, e.g., Jenkins4, natively support the headless execution of the

provided Maven plug-in (see Section 5.7.2). Headless execution means, that a build is executed

without an available IDE and without user interaction.

LRQ2.6: To be used as an APL, an easy adoption and good usability is needed. To enable

a quick start, Chapter 6 presents a complete tutorial with all required how-tos. By means of

a running example, all aspects of the development of MontiArc components are introduced

and explained. Beyond, further documentation is given about MontiArc’s tools, libraries, the

physical distribution of simulation components, and the integration of native implementations.

Publicly available example projects5 provide running examples for the tutorial and demonstrate

1The Concurrent Versions System, http://www.nongnu.org/cvs/
2ApacheTMSubversion R©, https://subversion.apache.org/.
3Git –fast-version-control, http://git-scm.com/.
4Jenkins - An extensible open source continuous integration server, https://jenkins-ci.org/
5MontiArc Example Projects, http://www.monticore.de/languages/montiarc/examples/.

278

http://www.nongnu.org/cvs/
https://subversion.apache.org/
http://git-scm.com/
https://jenkins-ci.org/
http://www.monticore.de/languages/montiarc/examples/

10.1. REQUIREMENTS FOR ARCHITECTURAL MODELING

further aspects of the development of MontiArc components. Also, MontiArc has been used by

students in several case studies. A subset of these are presented in Chapter 8.

10.1.3 LRQ3: Reusability and Extensibility

The MontiArc language and the corresponding tooling is designed to be extendable, and thus

adjustable to different domains. This is achieved by fulfilling the following requirements.

LRQ3.1: A structured method that addresses language and tool extensions is presented in

Chapter 7. Several languages that adjusted MontiArc to different domains are discussed in

Chapter 9. It is shown that architectural elements can be added and refined to allow new analysis

or adjust the language.

LRQ3.2: MontiArc does not provide means to describe respectively define the behavior of

atomic components itself. The concrete behavior is either defined by decomposition or external

behavior descriptions (see requirement SRQ2). Nevertheless, it is possible to embed behavioral

descriptions directly into atomic component definitions, e.g., to adjust MontiArc to a specific

target language. For this, a predefined extension point is provided which allows to embedd

behavioral descriptions defined in another behavior description language.

LRQ3.3: Modularity of the MontiArc ADL and the corresponding tools is achieved by a

strict separation of language frontends, generators, and the RTE into separated Java projects.

Due to MontiCore’s context condition framework and MontiArc’s transformation framework

(see Section 5.3.3), even single context conditions or transformations can be reused in extended

languages.

10.1.4 LRQ4: Type System

LRQ4.1: MontiArc’s symbol table provides a concrete type system for architectural elements. It

also contains an abstract type system for object-oriented data type definitions (see Section 5.2).

The developed context conditions validate connections according to this abstract type system.

The transformations and generators only operate with these abstract types. To integrate a con-

crete data type system, suitable adapters have to be integrated (see Section 7.3.2).

LRQ4.2: As a default realization of the abstract type system, MontiArc reuses the type system

of class diagrams (CDs) defined by the UML/P [Rum11, Rum12, Sch12]. Thus, data types used

within an architectural model can be defined in CDs. Since Java is the target language of the

simulation generators, a second default realization is given by reusing Java’s type system. Hence,

it is also possible to define classes, interfaces, and enumerations in Java and use them as data

types within MontiArc components. Both data type systems are adapted to the abstract data type

system using language aggregation techniques described in [Völ11, HLMSN+15]. Please note,

both type systems can be used in parallel. In this way, data types referenced within a single

model can be partially defined in Java classes and in CDs.

10.1.5 LRQ5: Libraries

MontiArc components can be packaged into component libraries which can be reused in distinct

modeling projects (see Section 6.8.1). However, reuse on an architectural layer imposes certain

279

10.2. SIMULATION REQUIREMENTS

requirements on the underlying ADL which are defined by McVeigh et al. [MKM06] (Alter,

NoImpact, NoSource, and Upgrade). The latter two are consolidated into the following subre-

quirements. The former are fulfilled by the MontiArc ADL. MontiArc library components can

be either extended using inheritance or adapted in a dedicated decomposed component. Alterna-

tively, if the sources of a library are available, components can be copied, altered, and released

as a new (local) version of the library. In this way, library components can be altered to adapt

them to a new context. These alterations do not require changes of the original model and, thus,

do not influence other users of a library (NoImpact).

LRQ5.1: MontiArc libraries are released as a set of Maven artifacts which have a unique iden-

tifier and a version number (project coordinates). The unique identifier is given by the library’s

group ID in combination with its artifact ID. An existing library can be simply integrated into a

MontiArc project by adding its coordinates to the dependencies of the project (see Section 6.8.4).

Alterations of a MontiArc libraries are released with a new version number. Thus, updates of

a library can but must not be accepted. If an update is accepted and an altered component has

been changed, the aforementioned alteration technique, which reuses inheritance or adaptation,

allows to adjusted the altered component to the incoming changes.

LRQ5.2: MontiArc’s tooling is based on the underlying MontiCore DSLTool framework.

Since MontiCore also provides model loading from jar files, reuse of library components is

transparent for the user.

LRQ5.3 The structure of MontiArc libraries strictly separates source and binary artifacts

which are contained in distinct released library artifacts. To reuse a library, at least its binary

artifacts have to be available. In this way, the intellectual property of closed source libraries can

be retained. Since the integration of libraries is realized on a technical layer, the modeler can

reuse components from a closed source library in exactly the same way as components from a

library with available sources.

10.2 Simulation Requirements

The developed FOCUS simulation allows to explore and validate MontiArc component models

in an agile way. In combination with the MontiArc ADL, it can be used as an APL which is

suitable to rapidly prototype system models. According to Baumeister et al. [BHH+06], an

APL integrates architectural elements into a programming language. Since MontiArc is mainly

an ADL and not a programming language, this is achieved in another way that still offers the ad-

vantages of architectural programming, i.e., prevention of architectural erosion and enforcement

of the architecture on the programming level.

The former is achieved since MontiArc models are the primary development artifacts when

programming with MontiArc. The provided generator (see Section 5.4.2) produces abstract

implementations for atomic components which have to be extended to implement the concrete

behavior in Java. Consequently, evolution has to be primary performed on the architectural layer

which immediately affects the programming layer. This is possible since the generated code is

not manually adjusted (see Section 5.5.2) and an agile build infrastructure is provided (see Sec-

tion 5.7.2). Further, the architecture is enforced on the programming layer using a generative

approach (see Section 5.4). Architectural elements are available in the implementation by pro-

280

10.2. SIMULATION REQUIREMENTS

viding a well defined application programming interface (API) with architectural elements. In

this way, implementing the behavior of an atomic MontiArc component corresponds to archi-

tectural programming.

10.2.1 SRQ1: Platform Independence

The MontiArc simulations is executable on different platforms without the need for specialized

compilation. The selected implementation language Java is a platform independent, object-

oriented general purpose language (GPL) that translates sources into platform independent byte-

code. The bytecode is then interpreted by platform specific implementations of the Java Virtual

Machine (JVM). Thus, it has to be clarified whether the developed simulation RTE is compatible

with many JVMs.

The most common JVMs, such as Oracle’s Java SE6 or OpenJDK7, support a rich set of APIs

and concepts. However, several JVMs are tailored to embedded and mobile devises such as the

Java Platform Micro Edition (Java ME)8 or JamVM9. Since the embedded target hardware has

less resources than regular computers, these JVMs typically do not support the full range of

APIs. A standard for embedded JVMs is the Connected Limited Device Configuration (CLDC)

[JSR14]. It defines precisely which classes of Java’s default API have to be supported by em-

bedded JVMs. While previous versions of the CLDC have not supported the Collections library,

the most recent version does. In contrast, the Reflection APIs is still not supported.

The developed simulation framework uses Java Collections and avoids the Reflection API.

Since the RTE and generated classes do not depend on external dependencies, compatibility to

the most recent CLDC is ensured. The developed RTE has been tested on Java SE 6 – 8 and

open JDK 6 and 7 on windows and linux computers. It has also been tested on a JamVM in

combination with the GNU classpath10 executed on a Raspberry Pi model B11. Consequently,

requirement SRQ1 is fulfilled.

10.2.2 SRQ2: External Component Implementation

The behavior of atomic MontiArc components is implemented externally and the implementa-

tion can be flexibly exchanged before a simulation is executed. Atomic MontiArc component

models do not contain a reference to the concrete implementation. Consequently, there is no

hard-wired dependency between the component model and its implementation.

The developed RTE follows a strict separation of interfaces and implementations. All classes

of the RTE (see Section 4.2) and all classes produced by MontiArc’s generator (see Section 5.4)

only have dependencies to interfaces. Concrete instances are created by factories (see Sec-

tion 5.5.2) that are also used to integrate the implementations of atomic components into the

6Java SE at a Glance, http://www.oracle.com/technetwork/java/javase/overview/index.

html.
7OpenJDK, http://openjdk.java.net/.
8Java ME, http://www.oracle.com/technetwork/java/embedded/javame/index.html.
9JamVM, http://jamvm.sourceforge.net/.

10GNU Classpath, https://www.gnu.org/software/classpath/.
11Raspberry Pi, http://www.raspberrypi.org.

281

http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://openjdk.java.net/
http://www.oracle.com/technetwork/java/embedded/javame/index.html
http://jamvm.sourceforge.net/
https://www.gnu.org/software/classpath/
http://www.raspberrypi.org

10.2. SIMULATION REQUIREMENTS

simulation.

To interchange concrete implementations of interfaces, direct instantiation of objects using

the new statement is completely avoided. Thus, generated classes for decomposed components

use contained subcomponents only via their generated Java interface. Object instantiation of

subcomponents is handled using generated singleton factories [GHJV95]. By creating custom

component factories that instantiate alternative implementations of atomic components, com-

ponent implementations can be exchanged (see Section 5.5.2). The same method allows to

exchange implementations of decomposed components with stubs (see Section 6.4.2).

10.2.3 SRQ3: Mathematical Foundation

The MontiArc simulation implements the communication model of FOCUS. Outgoing ports di-

rectly transmit data and tick messages to connected incoming ports. A record of these transmis-

sions directly corresponds to a FOCUS stream that describes the timed communication between

sender and receiver. Since streams are mostly not needed during the execution of a simulation,

streams are not recorded by default to reduce the amount of allocated memory (see requirement

SRQ10). For testing and analyses, several ports can be flexibly replaced with test ports which

explicitly record transmitted messages in a stream data structure that can be analyzed during or

after the execution of a simulation. Examples that demonstrate how to test MontiArc compo-

nents are given in Section 6.4.

Even though the simulation is executed in a single thread with synchronous blocking method

calls, atomic components are implemented in an event-based manner. Therefore, component im-

plementations have to provide suitable methods which are automatically called by the scheduler

to stimulate components with incoming events as described in Section 4.4. Produced messages

are then transmitted using the send() methods from the outgoing ports of the component’s

interface. Although the following message transmission and possible event propagation by the

scheduler takes some real time, no simulation time has past when the control flow returns to the

component. Consequently, the simulation is logically asynchronous and event-based.

In conformity with FOCUS channels, connections in the simulation are unidirectional and

connect one sender with one or more receivers. This structural property is granted by the devel-

oped RTE (see Section 4.2.2).

A FOCUS component encapsulates its internal state and exclusively interacts with connected

components by exchanging messages. On a structural layer, this is enforced by the provided

RTE and the generated component classes. However, since atomic components are implemented

manually, it is possible to implement dirty components (see Definition 5.1). These share the

state of all component instances by introducing static fields which can be even accessed by other

component implementations. Less obvious violations of this property can be achieved if side

effects are produced outside the state space of the component, e.g., by manipulating the file

system. This problem is encountered in two ways. First, dirty components must be marked with

the @sideEffects annotation together with a detailed description of the side effects (see

Section 6.7). If dirty components are not explicitly marked, the user of such a component is not

able to predict the side effects. This is especially harmful since dirty communication bypasses

the simulation time. Second, guidelines for the development of dirty components are given in

Section 5.5.3.

282

10.2. SIMULATION REQUIREMENTS

Beyond, analyses of the handwritten source code could be executed to identify malicious

communication. Therefore, additional input is needed which classifies classes or packages of

the Java API as safe or unsafe. First experiences with the Architecture Alignment Checker (see

Section 9.1) lead to promising results. However, an automatic analysis of atomic component

implementations is not yet integrated into the MontiArc tool chain.

10.2.4 SRQ4: Component Timing Classification

The MontiArc simulation supports components of all timing domains defined in Section 4.4.

Components process an event trace which is produced from the incoming channels based on

their timing domain. The underlying simulation and scheduling is based on timed streams that

correspond to channels in FOCUS. The concrete mapping from message streams to event traces

is realized by the generated code as described in Section 5.4.2. Time and data events (see

Definition 4.4 and 4.3) are propagated to components with instant or delayed timing. Data event

tuples (see Definition 4.5) are propagated to synchronous and causal synchronous components.

Untimed components solely process data events.

10.2.5 SRQ5: Simulation Time

The simulation time is realized by using FOCUS streams to simulate interaction between com-

ponents (see Section 4.1). In FOCUS, time is modeled with logical messages called ticks (
√

).

The developed simulator simulates the flow of ticks through the simulated system with explicit

tick messages. Ticks are synchronized by the scheduler (see Section 4.3.2) to increase the local

clocks. Consequently, the simulation time represented by ticks is decoupled from the real time

and requirement SRQ5 is fulfilled.

10.2.6 SRQ6: Distribution

A common approach to simulate event-bases system is the implementation of a global event

queue [DIHK+01, Chapter 15]. Events are annotated with receiver time stamps, the producer,

and the receiver of the event. If an event is produced, it is added to the global event queue that

is sorted according to the receiver time stamps. A global clock is increased to the next recent

receiver time stamp and the corresponding event is propagated to the receiver. Synchronizing a

global event queue of a distributed simulation leads to additional overhead which is introduced

by managing the events of all distributed nodes within a single queue. Consequently, the node

which hosts the global event queue is a bottleneck that routes the communication between all

nodes [Cra96].

In contrast, the event-based MontiArc simulation directly transmits all data and tick messages

from a sender to the connected receiver. The synchronization of the simulation time is performed

locally at the incoming ports of a component (see Section 4.4, Section 4.3). Consequently, no

further synchronization overhead is needed between distinct nodes of a distributed simulation

and requirement SRQ6 is fulfilled. A process model to derive distributed simulations and a

small case study is given in Section 6.9.

283

10.2. SIMULATION REQUIREMENTS

10.2.7 SRQ7 : Component Testing

The behavior of MontiArc components is testable using the developed simulation. This com-

prises a deterministic execution of the simulator as well as testable black-box, white-box, and

timing behavior of components.

SRQ7.1: A deterministic execution of a simulation is guaranteed if the scheduling, the mes-

sage transport, and all simulated components are deterministic. A deterministic component

always generates the same output for equal received input streams. Two streams s1, s2 ∈ Mω

are equal iff both are a prefix of each other (s1 ⊑ s2 and s2 ⊑ s1, see Table 4.1). Thus, equal

streams contain the same messages and ticks in the same order. The mappings defined in Sec-

tion 4.4 conceptually allow multiple valid data event traces for two or more given input streams.

This conforms to the FOCUS property, that the order of messages contained in the same time

interval of two different streams is not determined [BS01]. Consequently, a deterministic com-

ponent has to produce the same results for the same input streams, even if data events received

from distinct ports within the same time interval are propagated in a different order. However, a

deterministic scheduler always propagates the same events in an identical order for an identical

simulation input.

In contrast to the modeled target system, components in the MontiArc simulation run in a sin-

gle thread and the execution order of the components is determined by the scheduler. Assuming

that only deterministic components are involved in a simulation, also the scheduler has to be

deterministic to ensure deterministic results. This can be arguable affirmed with the following

considerations:

• The simulation and all contained components always have the same state after the setup.

This is guaranteed since the setup code does not change and the structure of the simulated

system is static.

• Since the input streams of the simulation are always the same, only the order of propagated

data events within the distinct time frames may differ during multiple executions.

• Because only deterministic components are involved, the order of input events does not

matter. Consequently, the involved components always produce the same output.

• If a data message is received on a port that is blocked by a tick, the data is buffered until

the port is reactivated.

• Ticks are used to synchronize the distinct input channels of a component. Since the input

streams of the repeated simulation are always the same, tick scheduling always leads to

the same time events in the event trace.

• After propagating a time event to the component, the blocked ports are reactivated to

schedule buffered messages. The reactivation order might influence determinism. Since

the scheduler stores the ports of a component in a list (see attribute comp2Port in Fig-

ure 4.12), they always have the order in which they are inserted into the list. This is done

during the setup of the components which does not change between two executions of the

simulation. Hence, the activation of ports is performed in a deterministic order that does

not change during distinct executions of the simulation.

SRQ7.2: Since the simulation scheduler is deterministic, the behavior of components is

testable. JUnit [www13c] is well suited to implement automatically executable component tests.

284

10.2. SIMULATION REQUIREMENTS

For this, the component under test is set up with a scheduler and the outgoing ports are allo-

cated with test ports. Then, the incoming ports are fed with input streams that stimulate the

component. The produced output messages are then stored in the streams of the outgoing test

ports. These are compared with the expected results. To simplify the creation of black-box tests,

MontiArc provides a stream based test language that automatically generates JUnit tests from

input and expected streams. The test language is presented in Section 6.4.1.

SRQ7.3: White-box tests aim at validating interaction patterns between subcomponents of

a decomposed component. Subcomponents of a decomposed component can be instrumented

with test ports, too. In this way, the information flow within a decomposed component can be

analyzed. Methods and techniques to implement white-box tests for MontiArc components are

explained in Section 6.4.2.

SRQ7.4: Generated decomposed components only have a loose dependency to the Java in-

terfaces of their contained subcomponents. Thus, subcomponents, which are irrelavant for the

current test or have a non-deterministic behavior, can be exchanged with mock components.

SRQ7.5: Since the developed stream data structure supports all operations given in Table 4.1,

the timed behavior of a component under test can be validated.

Please note that it is also possible to realize specialized scheduler strategies for testing since

the simulation scheduler could be exchanged (see requirement SRQ9.2). For example, deter-

minism of components (see above) can be tested by using a scheduler that deterministically

synchronizes ticks, does not change the order of events on a single port, but varies the event

propagation order between distinct ports of a component. Using such a scheduler in repeatedly

executed simulations, deterministic components still have to generate the same output for the

same simulation input. If the output varies between different executions, the tested component

is not deterministic.

10.2.8 SRQ8: Extensibility

A consequent use of Java interfaces within the RTE and the generated code decouples concrete

implementation classes. Using object oriented inheritance and substitution, existing implemen-

tations can be easily replaced with type compatible extensions (see Section 7.2). The extendable

generator infrastructure allows to integrate the created extensions into the generated simulation

classes (see Section 7.2.4).

10.2.9 SRQ9: Scheduler

SRQ9.1: MontiArc provides a default scheduler implementation which can be used to execute

a logically asynchronous, event-based simulation of MontiArc components. The implemented

scheduling strategy is presented in Section 4.3.

SRQ9.2: As already mentioned, Java interfaces are consequently used to define the interfaces

of generated and RTE classes. Hence, it is possible to flexibly interchange the concretely used

implementation of an interface. Therefore, a custom scheduler can be realized which implements

the scheduler interface IScheduler and an instance can be passed to the setup method of

the component that is to be simulated (see Figure 4.10 on page 94). Actually, this technique has

been used to compare distinct scheduler implementations in Section 4.5.

285

10.3. CONCLUSION

SRQ9.3: MontiArc restricts the number of schedulers for a single component to one. Never-

theless, each component instance can be controlled by a dedicated scheduler instance. There-

fore, override the setup() method within an atomic component implementation, ignore the

passed scheduler object, instantiate the dedicated scheduler, and call super.setup() with

the dedicated scheduler instance. This technique can also be used to replace the scheduler of

all subcomponents of a decomposed component. In this case, also a dedicated factory has to

be implemented which instantiates the adjusted decomposed component instead of the original

version.

10.2.10 SRQ10: Optimizations

Runtime and memory inefficiencies have to be avoided. Several design decisions are influenced

by this requirement. Further, several optimizations of the scheduler or the generated code have

been performed. These are:

• No dedicated representation of a connector exists in the RTE. Since the semantics of

a FOCUS channel (immediate, reliable, and order preserving) corresponds to a direct

connection of outgoing and incoming ports, connector objects are superfluous.

• Port instances are only created for incoming ports. Since the default port implementation

can act as incoming and outgoing ports (see Figure 4.10), the incoming ports of a receiver

are used as outgoing ports from the sender. This is automatically realized during the setup

of decomposed components.

• The internal data structures of the default scheduler have been replaced after a detailed

comparison of alternatives in Section 4.5.

• Further redundant objects have been reduced for certain component patterns (see Sec-

tion 5.6). This especially comprises the reduction of redundant forwarding ports and the

reuse of a central tick object.

10.3 Conclusion

The thesis at hand poses the research question: How to design an ADL that copes with the imped-

iments of architectural modeling in practice? The approach to answer this questions was, first, to

analyze existing ADLs which target at the domain of interactive systems and identify, whether

an existing modeling language can be extended to fulfill the derived requirements. Also APLs

have been examined since they are suitable to rapidly prototype architectures in early develop-

ment stages. Since no language fulfills all defined requirements, MontiArc has been developed

as a case study to explore and evaluate concepts to answer the posed question. By summarizing

own experiences and impediments documented in the literature, the following subquestions have

been derived.

RQ1 How to design a lightweight and easy to learn ADL? This question is addressed

by defining an ADL which contains only a restricted set of mandatory architectural elements.

According to Medvidovic and Taylor [MT00], these elements are components, ports, connectors,

and the possibility to define architectural configurations. To be easy to learn, a language has to be

ready to use. In contrast to other extendable ADLs with a reduced set of modeling elements, such

286

10.3. CONCLUSION

as Acme [GMW97] or xADL [DvdHT01], MontiArc has a concrete architectural style based

on a formal mathematical model named FOCUS [BDD+93, BS01]. This formal foundation

gives MontiArc models a strong semantics and MontiArc is ready to use without the need for

extension.

Furthermore, an IDE is necessary to assist new users with the syntax and semantics of the lan-

guage. Features known from GPL IDEs, such as keyword highlighting, automatically executed

syntax checks and context conditions, or active modeling, are suitable to achieve a fast rising

learning curve. Most of these features, however, are more suitable for textual than graphical

modeling languages.

RQ2 How to design an extendable ADL which allows to reuse as much tooling as possi-

ble? As discussed in this thesis, several extendable ADLs exist in practice. Among them are

languages such as the Unified Modeling Language (UML) [OMG11b], the System Modeling

Language (SysML) [OMG12], the AADL [FGH06], Acme, or xADL. While the syntax of all

these languages can be extended, a following extension of the corresponding tooling results in

high effort or incompatibility to the original language.

The research question is answered in this thesis by the definition of a structured method

for ADL extensions. It covers extensions of the tooling such as analyses, transformations, or

simulations, and is based on the language extension and combination techniques discussed in

[Völ11, HLMSN+15]: language aggregation, language embedding, and language inheritance.

However, several preconditions have to be met to use all proposed extension methods. First,

the underlying language development framework has to support the named extension techniques.

If, e.g., language inheritance is not supported, resulting copy and paste extensions are hard to

maintain and new features or bugfixes of the base language cannot be easily transfered to the

extension. Also the underlying technical infrastructure has to be designed in an extendable way.

Thus, it has to be possible to flexibly exchange language processing components. In MontiArc,

this is achieved with dependency injection and the consistent use of implementation interfaces.

Further, it prove successful to design context condition checks and transformations in a way that

allows to modularly add or remove single checks or transformations. In doing so, checks for

new model elements can be added easily while reusing the predefined context checks from the

superlanguage.

Another important aspect of extensibility is the needed effort to create an extension and the

modularity of the language infrastructure. Some of the analyzed languages require to checkout

the complete language infrastructure and compile it together with the extension. In contrast,

MontiArc can be extended by simply defining the needed dependencies in the build system.

Finally, extension points of the language as well as the tooling have to be documented. If a

documentation is missing, developers have to identify these extension points in the source code

themself, which is a very sophisticated task.

RQ3 Which concepts can be applied to an ADL to support reuse of architectural models?

This question is addressed by three aspects. First, the language itself has to provide concepts

that alleviate reuse. In MontiArc, this are:

• Separation between component type definition and component instantiation. It allows to

reuse defined components as subcomponent in an object oriented way.

• Means to configure component definitions when they are instantiated. This comprises

287

10.3. CONCLUSION

generic and configurable components.

• Component inheritance allows to refine existing component definitions with a richer in-

terface and functionality.

• Also delta modeling techniques [CHS10] adopted by ∆-MontiArc [HRRS11, HKR+11]

are well suited to reuse component models in component variants.

Second, the underlying technical infrastructure has to support reuse in a controlled way. A

well defined library concept is suitable to ease reuse. Therefore, the library requirements de-

fined by McVeigh et al. [MKM06] - Alter, NoImpact, NoSource, and Upgrade (see requirement

LRQ5) - have to be fulfilled by an ADL. By using the modelpath concept of MontiCore and a

strict separation of released library artifacts (see Section 6.8.1), MontiArc fulfills these require-

ments.

Third, the documentation of components is an important factor to ease reuse. The interface,

the state space, and the behavior of a component have to be documented. Further, the documen-

tation has to be seamlessly integrated into the IDE and a provided library. In this way, black-box

library components can be reused, even if the source models are not available.

RQ4 How to integrate agile development methods with architectural modeling to allow

for incremental modeling and early validation of the architecture? Again, this question

is addressed by multiple aspects of the thesis respectively MontiArc. The early validation of

architectures is supported by automatically executed model analysis and model simulations.

The former guarantees well formed models and that connections are correct according to the

type system. The latter allows to explore and validate the behavior of architectural prototypes.

To speed up the development effort of architectural prototypes, the following agile develop-

ment concepts have to be provided by an agile ADL:

• Testing: Automatically executable tests used as regression tests. This way, negative im-

pact of changed models and behavior implementations to other parts of the architecture

can be detected. This comprises component black-box and white-box tests.

• Automatic builds: By providing a headless build infrastructure which can be executed

outside the provided IDE, component tests can be automatically executed on continuous

integration servers such as Jenkins. This is especially useful in a multi-project setup. If a

single project is changed, not all projects need to be tested on the local machine.

• Distributed development: Models need to be manageable by a revision control system

(RCS). Graphical models or textual XML based models are less suited for standard RCSs

since model merging is not easily possible and additional effort has to be taken. Since pure

textual models can be simply merged with a text-based diff, textual modeling languages

are better suited for distributed development. Additionally, automatic builds and testing

needs to be available to automatically validated merged models afterwards.

• In place documentation: Agile methods avoid a documentation based development pro-

cess. Needed documentation is given as source code comments directly in the code. If the

code is changed, the documentation can be aligned as well. MontiArc adapts this concept

and uses comments and documentation tags to automatically generate component docu-

mentations. As already mentioned, these documents are also integrated in libraries and

the MontiArc IDE.

By elaborating the posed research questions, this thesis contributes to two areas of research:

288

10.3. CONCLUSION

language engineering and architectural modeling. It provides a consistent case study for:

1. Language aggregation and extension with MontiCore’s symbol table framework [Völ11,

HLMSN+15].

2. Development of modular context conditions for model analyses [Völ11, Sch12].

3. Development of extendable code generators based on [Sch12].

4. Development of model libraries with the MontiCore framework.

5. Development of a modeling IDE based on [KRV07a].

Thus, it contributes to the domain specific language (DSL) toolbench MontiCore [GKR+06,

Kra10] by evaluating developed concepts. Experiences made during the development of Mon-

tiArc have been reflected back into the named concepts.

Furthermore, it contributes to the research area of architectural modeling by providing an

ADL that copes with the impediments of architectural modeling in practice (see [WH05, Woo05,

Pan10, MLM+13]. Language engineering and agile methods have been applied to an ADL. In

this way, an easy to learn ADL with an IDE and headless build tools have been designed. It

can be integrated into existing tool chains; designed models can be incrementally developed. It

comes with a simple, but mathematically founded, architectural style which can be easily ad-

justed and extended. Also, the component library concepts defined by McVeigh et al. [MKM06]

have been implemented, evaluated, and elaborated. Finally, the methods of architectural pro-

gramming, as for example given in ArchJava [ACN02b] or JAVA/A [BHH+06], have been

adopted and adjusted.

The concepts developed for MontiArc can be adopted by ADLs from the community. This

especially comprises the following aspects:

• Data type system: In practice, a huge amount of data types is used in distributed ap-

plications. For example, in the automotive domain, a distinct data type is most often

defined for each message channel. Thus, there is quite some effort to define data types

in a proprietary type definition language of an ADL and in the target GPL. Also, both

type definitions have to be kept aligned with each other. Thus, an ADL should have the

ability to process externally defined data types. Until now, none of the observed related

languages (see Section 2.3) provides this feature.

• Automatic and continuous analyses: To support incremental and collaborative modeling,

automatically executable analyses are suited to continuously analyse a model and detect

inconsistencies. Especially headless executions of the ADL tools without user interaction

are well suited to automatically analyse models on a CI server. In this way, a model

can be incrementally extended by different developers. Some observed languages already

provide tools with a CLI which can be used for this purpose. Others depend on user

interaction to, e.g., execute analyses and tests.

• Extendability: Two aspects are important for an extendable ADL. First, feasible exten-

sions have to be identified and documented. Especially, the dependencies between dif-

ferent extensions have to be clarified. If, e.g, a new language element is to be added,

model analyses, transformations, and code generators have to be extended as well. Espe-

cially, such extensions have to be encapsulated in a separated module without the need for

adjusting the language core or depending on its source code.

Second, the effort to create an extension has to be low. Off course this also comprises

289

10.3. CONCLUSION

a good documentation of the extension points and extension mechanisms. Nevertheless,

also the reuse and combination of existing languages with an ADL in a component based

way yields to a saving of time. If well tested languages are used for such a combina-

tion, the quality of the result can also be increased compared to a development from the

scratch. Therefore, however, the underlying language workbench has to support the ex-

tension methods: language aggregation, language embedding, and language inheritance.

• Timed FOCUS simulation: MontiArc contains scheduling algorithms for the timed simu-

lation of FOCUS models. Also the combination of different timing domains is handled by

the MontiArc simulation. These techniques can be especially interesting for AutoFocus 3

[HST10, HF10, www14f] since it shares the mathematical foundation with MontiArc but

is restricted to the simulation of time-synchronous streams.

• Model libraries: Almost all observed ADLs allow to define or reuse models in libraries.

However, none of these languages fulfills the component library requirements defined

by McVeigh et al. [MKM06]. Especially the ability to handle closed-source libraries

is missing in all regarded library concepts. Also a concrete versioning and dependency

management is missing. As demonstrated by MontiArc, using software build tools for

this purpose, such as Maven, is expedient. Nevertheless, a well defined structure of the

released library artifacts is mandatory.

Regarding the current state of MontiArc and the experiences made during the development,

additional research might be done in the area of language engineering.

• Generator interfaces: The MontiArc code generator is developed in an extendable way.

It provides extension points which can be used to integrate new code generator templates

or replace existing code generator templates with new ones. Nevertheless, the underlying

framework does not validate whether added generator templates are suitable for the used

extension point. A generator interface, as for example mentioned by Roth et al. [RR15],

can be used to compose generators in a component based way. It has to define a) which

source model elements are passed to an extension point and b) which target code respec-

tively model elements have to be produced by a generator which is added to an extension

point. Also the configuration of generators can be defined in a product-line way using

feature diagrams. Together, composed generators can be analysed for validity.

• Symbol table generation: The used symbol table infrastructure provided by MontiCore

based on the concepts presented in [Völ11, HLMSN+15] are well suited to realize lan-

guage reuse and composition. Nevertheless, the effort to implement the needed implemen-

tation artifacts can be reduced drastically by generating parts of the symbol table. While

parts of the symbol table can be easily generated from the language defining grammar,

language composition requires new concepts for the automatic synthesis of the required

implementation artifacts.

• IDE extensions: MontiArc allows to reuse large parts of the implemented tooling for

languages which extend MontiArc: context conditions, symbol table components, trans-

formations, the underlying transformation framework, and code generators. However, it

is not possible to directly extend the corresponding MontiArc Eclipse editor. To reduce

the effort of developing IDEs for sublanguages, research in this direction is needed.

Also some further research in the area of architectural modeling and ADLs might be done:

290

10.3. CONCLUSION

• Native casestudy: A suitable pattern and a proof of concept for the simulation of native

C components is presented in Section 6.3.2. This technique could be validated in a larger

case study, e.g., in the embedded domain. Evaluating the simulation performance in such a

setup, the reuse and integration of existing libraries, and the integration of object oriented

native languages remains to be done. The latter is especially interesting since it solves the

issue with the automatically shared state of C components.

• Architectural alignment: The Architecture Alignment Checker (AAC) mentioned in Sec-

tion 9.1 allows to automatically check the consistency between a Java implementation of

a system and its architectural description specified using MontiArc. The presented con-

cept might be extended in multiple ways. First, it could be transfered and adapted to

the domain of information flow architectures which is more suitable for architectural de-

scriptions in MontiArc. Second, an agile development method might be developed which

allows to continuously validate the architectural conformance of systems and keeps the

effort of aligning architecture and code low. Therefore, a seamless integration into build

tools which are used on continuous integration servers is mandatory. Third, also an in-

tegration into IDEs is promising. Automatically marking forbidden dependencies and

communications based on the architectural model immediately alerts developers that their

implementation is not conform with the architecture. Also, the autocompletion function-

ality can be extended to only propose elements, such as classes, fields, or methods, which

are conform to the architecture in the current context. Finally, the AAC consistency checks

are based on a manually created mapping from architectural elements to elements of the

target language. Techniques to (semi-) automatically derive such mappings from a given

architecture and implementation will reduce the effort to apply architecture alignment

checks to a running project.

• Aggregated timing: In the MontiArc simulation, all ticks mark the end of a logically

equidistant time interval. If distinct time resolutions within a system are of interest, always

the highest time resolution has to be chosen for the complete system simulation. Thus, if

parts of a system produce events every millisecond, and other parts produce events every

hour, a logical time interval corresponds to a millisecond. In the simulation, this leads to

many unnecessary time events for components with a coarser time resolution. To speed

up the simulation, consecutive time intervals which do not contain any message could be

aggregated and scheduled together. To schedule simulations with distinct time resolutions,

new scheduling strategies have to be developed.

291

292

Appendix A

Index of Abbreviations

AADL Architecture Analysis and Design Language

ABP Alternating Bit Protocol

ACC adaptive cruise control

AD activity diagram

ADL architecture description language

API application programming interface

APL architectural programming language

ArcD Architecture Diagram

ARP Address Resolution Protocol

AST abstract syntax tree

CD class diagram

CI continuous integration

CLI command line interface

DET data event tuple

DNS Domain Name System

DSL domain specific language

EBNF Extended Backus-Naur Form

GPL general purpose language

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDE integrated development environment

IP Internet Protocol

JNI Java Native Interface

JVM Java Virtual Machine

LAN local area network

LHS left-hand side

LRQ language requirement

MAC media access control

MDA Model-Driven Architecture

MDD Model-Driven Development

OCL Object Constraint Language

OD object diagram

OMG Object Management Group

RARP Reverse Address Resolution Protocol

293

RCS revision control system

RHS right-hand side

RRS round robin scheduler

RTE runtime environment

SC statechart

SD sequence diagram

SPL software product line

SUD system under development

SysML System Modeling Language

TCP Transmission Control Protocol

UML Unified Modeling Language

294

Appendix B

Diagram and Listing Tags

Stereotype Description

≪abstract≫ An abstract class in a CD.

≪artifact≫ A produced or consumed file or object in an AD.

≪creates≫ Denotes that one element creates another.

≪delayed≫ The annotated connector delays transmitted messages.

≪enum≫ An enumeration in a CD.

≪gen≫ Generated element.

≪handcoded≫ Handcoded element.

≪interface≫ An interface in a CD.

≪uses≫ Denotes that one element uses another.

≪workflow≫ Denoted activity in an AD is implemented as a workflow.

Table B.1: Explanation of the used stereotypes within listings and tags.

295

Tag Description

AD
Activity Diagram

AJava
AJava Diagram

CD
Class Diagram

I/O-Test
I/O Test Definition

Java
Java Source Code

MA
MontiArc Diagram

MAPR
MontiArc with Property Extension

MASC
MontiArc with SC Extension

MAA
MontiArcAutomaton Diagram

Meta-CD
Metamodel Class Diagram

MG
MontiCore Grammar

MLD
MontiCore Language Definition

Nsp.-OD
Namespace Object Diagram

pom.xml Maven Project Configuration

Product-CD Class Diagram of the Resulting Simulation Product

RT-OD Runtime Object Diagram

RTE-CD RTE Class Diagram

Symtab-OD Symbol Table Object Diagram

VC
Value Chain Diagram (ProNetsim)

VCCfg Value Chain Configuration (ProNetsim)

. . . Annotates an incomplete diagram.

Table B.2: Explanation of the used tags in listings and figures.

296

Appendix C

Grammars

C.1 Architectural Diagrams Grammar

MG1 package mc.umlp.arcd;

2

3 version "$LastChangedDate: 2014-06-05 15:31:04 +0200 (Do, 05 Jun

4 2014) $, $LastChangedRevision: 2862 $";

5 /**
6 * Grammar for common architectural elements. Provides

7 * infrastructure for component definitions, component

8 * interface definitions, and the hierarchical structure

9 * of components.

10 *
11 * @author Arne Haber

12 * (last commit) $LastChangedBy: ahaber $

13 * @version $LastChangedDate: 2014-06-05 15:31:04 +0200 (Do, 05

14 * Jun 2014) $

15 * $LastChangedRevision: 2862 $

16 */

17 grammar ArchitectureDiagram extends

18 de.monticore.lang.common.CommonValues {

19

20 /* ==*/

21 /* ======================= OPTIONS ======================*/

22 /* ==*/

23 options {

24 compilationunit ArcComponent

25 nostring

26 parser lookahead=5

27 lexer lookahead=7

28 }

29

30 /* ==*/

31 /* ===================== PRODUCTIONS ====================*/

32 /* ==*/

33 /**
34 * A component may contain arbitrary many ArcElements.

35 * This interface may be used as an extension point to

297

C.1. ARCHITECTURAL DIAGRAMS GRAMMAR

36 * enrich components with further elements.

37 */

38 interface ArcElement;

39

40 /**
41 * External to embed languages that allow implementing

42 * component behavior.

43 */

44 external BehaviorEmbedding;

45

46 /**
47 * A component is a unit of computation or a data store.

48 * The size of a component may scale from a single

49 * procedure to a whole application. A component may be

50 * either decomposed to subcomponents or is atomic.

51 *
52 * {@attribute stereotype an optional stereotype}

53 * {@attribute name type name of this component}

54 * {@attribute instanceName if this optional name is given,

55 * a subcomponent is automatically created that

56 * instantiates this inner component type. This is only

57 * allowed for inner component definitions.}

58 * {@attribute head is used to set generic types, a

59 * configuration and a parent component}

60 * {@attribute body contains the architectural elements

61 * inherited by this component}

62 */

63 /ArcComponent implements

64 (Stereotype? "component" Name Name? ArcComponentHead "{")=>

65 ArcElement =

66 Stereotype?

67 "component" Name (instanceName:Name)?

68 head:ArcComponentHead

69 body:ArcComponentBody;

70

71 /**
72 * A components head is used to define generic type

73 * parameters that may be used as port types in the

74 * component, to define configuration parameters that may

75 * be used to configure the component, and to set the

76 * parent component of this component.

77 *
78 * {@attribute genericTypeParameters a list of type

79 * parameters that may be used as port types in the

80 * component}

81 * {@attribute parameters a list of ArcParameters that

82 * define a configurable component. If a configurable

83 * component is referenced, these parameters have to be

84 * set.}

298

C.1. ARCHITECTURAL DIAGRAMS GRAMMAR

85 * {@attribute superComponent the type of the super

86 * component}

87 */

88 /ArcComponentHead =

89 (options {greedy=true;}:

90 genericTypeParameters:TypeParameters)?

91 ("[" parameters:ArcParameter

92 ("," parameters:ArcParameter)* "]")?

93 ("extends" superComponent:ReferenceType)?;

94

95 /**
96 * The body contains architectural elements of

97 * this component.

98 *
99 * {@attribute arcElement list of architectural elements}

100 */

101 /ArcComponentBody =

102 "{"

103 ArcElement*
104 "}";

105

106 /**
107 * An ArcInterface defines an interface of a component

108 * containing in- and outgoing ports.

109 *
110 * {@attribute stereotype an optional stereotype}

111 * {@attribute ports a list of ports that are contained in

112 * this interface}

113 */

114 /ArcInterface implements (Stereotype? "port")=> ArcElement =

115 Stereotype?

116 "port" ports:ArcPort ("," ports:ArcPort)* ";";

117

118 /**
119 * Used to embedd behavior implementations.

120 *
121 * {@attribute kind embedding kind}

122 * {@attribute behaviorEmbedding the concrete embedding}

123 */

124 ArcComponentImplementation implements (Stereotype?

125 "implementation" kind:Name Name? "{")=> ArcElement =

126 Stereotype? "implementation" kind:Name Name? "{"

127 BehaviorEmbedding(parameter kind)

128 "}";

129

130

131 /**
132 * An incoming port is used to receive messages, an

133 * outgoing port is used to send messages of a specific

299

C.1. ARCHITECTURAL DIAGRAMS GRAMMAR

134 * type.

135 *
136 * {@attribute stereotype an optional stereotype}

137 * {@attribute incoming true, if this is an incoming port}

138 * {@attribute outgoing true, if this is an outgoing port}

139 * {@attribute type the message type of this port}

140 * {@attribute name an optional name of this port}

141 */

142 /ArcPort =

143 Stereotype?

144 (incoming:["in"] | outgoing:["out"])

145 Type Name?;

146

147 /**
148 * A subcomponent is used to create one or more instances

149 * of another component. This way the hierarchical

150 * structure of a component is defined.

151 *
152 * {@attribute stereotype an optional stereotype}

153 * {@attribute type the type of the instantiated component}

154 * {@attribute arguments list of configuration parameters

155 * that are to be set, if the instantiated component is

156 * configurable.}

157 * {@attribute instances list of instances that should be

158 * created}

159 */

160 /ArcSubComponent implements

161 (Stereotype? "component" ReferenceType

162 ("(" | Name | ";"))=> ArcElement =

163 Stereotype?

164 "component"

165 type:ReferenceType

166 ("(" arguments:CVExpression

167 ("," arguments:CVExpression)* ")")?

168 (instances:ArcSubComponentInstance

169 ("," instances:ArcSubComponentInstance)*)? ";";

170

171 /**
172 * A subcomponent instance binds the name of an instance

173 * with an optional list of simple connectors used to

174 * connect this instance with other subcomponents/ports.

175 *
176 * {@attribute name the name of this instance}

177 * {@attribute connectors list of simple connectors}

178 */

179 /ArcSubComponentInstance =

180 Name

181 ("[" connectors:ArcSimpleConnector

182 (";" connectors:ArcSimpleConnector)* "]")?;

300

C.1. ARCHITECTURAL DIAGRAMS GRAMMAR

183

184 /**
185 * A connector connects one source port with one or many

186 * target ports.

187 *
188 * {@attribute source source port or component instance

189 * name}

190 * {@attribute targets a list of target ports or component

191 * instance names}

192 */

193 /ArcConnector implements

194 (Stereotype? "connect" QualifiedName "->")=>ArcElement=

195 Stereotype?

196 "connect" source:QualifiedName "->"

197 targets:QualifiedName ("," targets:QualifiedName)* ";";

198

199 /**
200 * A simple way to connect ports.

201 *
202 * {@attribute source the source port or component instance

203 * name}

204 * {@attribute targets a list of target port or component

205 * instance names}

206 */

207 /ArcSimpleConnector =

208 Stereotype? source:QualifiedName "->" targets:QualifiedName

209 ("," targets:QualifiedName)*;

210

211 /**
212 * ArcParameters are used in configurable components.

213 *
214 * {@attribute Type the type of the parameter}

215 * {@attribute name the name of the parameter}

216 */

217 /ArcParameter =

218 Type Name;

219

220

221 /* ==*/

222 /* =================== ASTRULES =========================*/

223 /* ==*/

224 // replacement of ASTCNode with UMLPNode

225 ast ArcComponent astextends

226 /mc.umlp.common._ast.UMLPNode;

227 ast ArcComponentHead astextends

228 /mc.umlp.common._ast.UMLPNode;

229 ast ArcComponentBody astextends

230 /mc.umlp.common._ast.UMLPNode;

231 ast ArcPort astextends

301

C.2. MONTIARC GRAMMAR

232 /mc.umlp.common._ast.UMLPNode;

233 ast ArcConnector astextends

234 /mc.umlp.common._ast.UMLPNode;

235 ast ArcSimpleConnector astextends

236 /mc.umlp.common._ast.UMLPNode;

237 ast ArcSubComponent astextends

238 /mc.umlp.common._ast.UMLPNode;

239 ast ArcSubComponentInstance astextends

240 /mc.umlp.common._ast.UMLPNode;

241 ast ArcParameter astextends

242 /mc.umlp.common._ast.UMLPNode;

243 }

Listing C.1: ArchitectureDiagram.mc: Common MontiCore grammar for

architectural diagrams.

C.2 MontiArc Grammar

MG1 package mc.umlp.arc;

2

3 version "$LastChangedDate: 2015-01-19 12:45:03 +0100 (Mo, 19 Jan

4 2015) $, $LastChangedRevision: 3080 $";

5 /**
6 * Grammar for MontiArc. Extends common components with

7 * behavior information and configurations.

8 *
9 * @author Arne Haber

10 * (last commit) $LastChangedBy: ahaber $

11 * @version $LastChangedDate: 2015-01-19 12:45:03 +0100 (Mo, 19

12 * Jan 2015) $

13 * $LastChangedRevision: 3080 $

14 */

15 grammar MontiArc extends mc.umlp.arcd.ArchitectureDiagram {

16

17 /* ==*/

18 /* ======================= OPTIONS ======================*/

19 /* ==*/

20 options {

21 compilationunit ArcComponent

22 nostring

23 parser lookahead=5

24 lexer lookahead=7

25 }

26

27 /* ==*/

28 /* ===================== PRODUCTIONS ====================*/

29 /* ==*/

302

C.2. MONTIARC GRAMMAR

30 //

31

32 /**
33 * MontiArc components may contain arbitrary many

34 * configurations. These configurations have to

35 * implement this interface.

36 */

37 interface MontiArcConfig extends ArcElement;

38

39 /**
40 * An invariant constrains the behavior of a component.

41 *
42 * {@attribute kind the optional kind of this invariant.}

43 * {@attribute name name of the invariant}

44 * {@attribute invariantExpression the invariant defined

45 * in the language ’kind’}

46 */

47 MontiArcInvariant implements

48 (Name? "inv" Name ":")=> ArcElement =

49 (kind:Name)? "inv" Name ":"

50 invariantExpression:InvariantContent(parameter kind) ";";

51

52 /**
53 * AutoConnect is used to connect ports automatically.

54 *
55 * {@attribute stereotype optional stereotype}

56 * {@attribute type autoconnect unambigous ports with the

57 * same type}

58 * {@attribute port autoconnect unambigous ports with the

59 * same name and compatible type}

60 * {@attribute off do not use autoconnection (default)}

61 */

62 MontiArcAutoConnect implements MontiArcConfig =

63 "autoconnect" Stereotype?

64 (["type"] | ["port"] | ["off"]) ";";

65

66 /**
67 * Autoinstantiate is used to instantiate inner components

68 * without generic parameters or configuration parameters

69 * automatically. If more then one instance of this inner

70 * component is created by using a reference, the

71 * automatically instantiated reference will disappear.

72 *
73 * {@attribute stereotype optional stereotype}

74 * {@attribute on turns autoinstantiate on}

75 * {@attribute off turns autoinstantiate off (default)}

76 */

77 MontiArcAutoInstantiate implements MontiArcConfig =

78 "autoinstantiate" Stereotype?

303

C.2. MONTIARC GRAMMAR

79 (["on"] | ["off"]) ";";

80

81 /**
82 * Sets the timing of a component.

83 *
84 * {@attribute stereotype optional stereotype}

85 * {@attribute instant a timed component}

86 * {@attribute delayed a timed component with delay}

87 * {@attribute causalsync a causal synchronous component}

88 * {@attribute sync a synchronous component}

89 */

90 MontiArcTiming implements MontiArcConfig =

91 "timing" Stereotype?

92 (["instant"] | ["delayed"] | ["untimed"] | ["causalsync"] |

93 ["sync"]) ";";

94

95 /* ==*/

96 /* =================== ASTRULES =========================*/

97 /* ==*/

98 // toString for ArcInvariant

99 ast MontiArcInvariant astextends

100 /mc.umlp.common._ast.UMLPNode =

101 method public String toString() {

102 return (this.getKind() != null ?

103 this.getKind() + " " : "") + "inv " +

104 this.getName();

105 };

106 // replacement of ASTCNode with UMLPNode

107 ast MontiArcTiming astextends

108 /mc.umlp.common._ast.UMLPNode;

109 ast MontiArcAutoInstantiate astextends

110 /mc.umlp.common._ast.UMLPNode;

111 ast MontiArcAutoConnect astextends

112 /mc.umlp.common._ast.UMLPNode;

113 }

Listing C.2: MontiArc.mc: MontiCore grammar for MontiArc.

304

C.3. I/O TEST LANGUAGE GRAMMAR

C.3 I/O Test Language Grammar

MG1 package de.monticore.lang.ctd;

2

3 version "$LastChangedDate: 2015-03-19 11:34:20 +0100 (Do, 19 Mrz

4 2015) $, $LastChangedRevision: 3135 $";

5 /**
6 * Grammar for intput/output component black box tests.

7 *
8 * @author Arne Haber

9 * (last commit) $LastChangedBy: ahaber $

10 * @version $LastChangedDate: 2015-03-19 11:34:20 +0100 (Do, 19

11 * Mrz 2015) $

12 * $LastChangedRevision: 3135 $

13 */

14 grammar ComponentIOTestDSL

15 extends de.monticore.lang.common.CommonValues {

16

17 /* ==*/

18 /* ======================= OPTIONS ======================*/

19 /* ==*/

20 options {

21 compilationunit ArcTestSuite

22 lexer lookahead=8

23 }

24

25 /* ==*/

26 /* ===================== PRODUCTIONS ====================*/

27 /* ==*/

28

29 /**
30 * Compilation unit of an I/O based test.

31 *
32 * {@attribute name name of the test suite}

33 * {@attribute componentUnderTest testee tested by the test

34 * suite}

35 * {@attribute elements contained test suite elements}

36 */

37 ArcTestSuite =

38 "testsuite" Name "for" ComponentUnderTest "{"

39 elements:ArcTestSuiteElement*
40 "}";

41

42 /**
43 * Testee that corresponds to a component instance.

44 *
45 * {@attribute type component type}

46 * {@attribute arguments optional configuration parameter

305

C.3. I/O TEST LANGUAGE GRAMMAR

47 * arguments}

48 */

49 ComponentUnderTest =

50 type:ReferenceType

51 ("(" arguments:CVExpression ("," arguments:CVExpression)* ")"

52)?;

53

54 /**
55 * Interface for elements within a test suite.

56 */

57 interface ArcTestSuiteElement;

58

59 /**
60 * Interface for variable declarations.

61 */

62 interface ArcFieldDeclaration extends ArcTestSuiteElement;

63

64 /**
65 * Interface for stream variable declarations.

66 */

67 interface ArcStreamFieldDeclaration extends

68 ArcFieldDeclaration;

69

70 /**
71 * A field variable is visible within the complete

72 * test suite.

73 *
74 * {@attribute type field type}

75 * {@attribute name field name}

76 * {@attribute value optional value assignment}

77 */

78 ArcVariableField implements ArcFieldDeclaration =

79 Type Name ("=" Value)? ";";

80

81 /**
82 * A stream field is a stream that is visible within

83 * the complete test suite.

84 *
85 * {@attribute type type of the elements contained in the

86 * stream}

87 * {@attribute name field name}

88 * {@attribute arcStream stream assigned to this variable }

89 */

90 /ArcStreamField implements ArcStreamFieldDeclaration =

91 "Stream" TypeArguments Name "=" ArcStream ";";

92

93 /ArcStreamMatcherField implements ArcStreamFieldDeclaration =

94 "StreamMatcher" TypeArguments Name "=" ArcStream ";";

95

306

C.3. I/O TEST LANGUAGE GRAMMAR

96

97 /**
98 * Enumeration for setup options.

99 */

100 enum TestOption =

101 // run once before test suite

102 "@BeforeSuite" |

103 // run before each test

104 "@Before" |

105 // run after each test

106 "@After" |

107 // run once after test suite

108 "@AfterSuite";

109

110 /**
111 * Allows a specific test setup/tear down.

112 *
113 * {@attribute testOption defines when the setup

114 * is executed}

115 * {@attribute setupEmbeddment what is to be executed}

116 */

117 / ArcTestSetup implements ArcTestSuiteElement =

118 TestOption "{"

119 SetupEmbeddment

120 "}";

121

122 /**
123 * External for setup/tearDown embedding.

124 */

125 external SetupEmbeddment;

126

127 /**
128 * A concrete test case.

129 *
130 * {@attribute name name of the test case}

131 * {@attribute repetitions optional amount of repetitions}

132 * {@attribute localSetup optional local test setup}

133 * {@attribute arcTestInput test input}

134 * {@attribute arcExpectedResult expected results}

135 * {@attribute arcExpectedStates expected states as String}

136 * {@attribute arcAssert optional assertions}

137 * {@attribute localTearDown optional local tear down}

138 */

139 / ArcTest implements ArcTestSuiteElement =

140 "test" Name ("repeat" repetitions:IntLiteral "times")? "{"

141 localVariables:ArcFieldDeclaration*
142 localSetup:ArcTestSetup?

143 ArcTestInput

144 ArcExpectedResult

307

C.3. I/O TEST LANGUAGE GRAMMAR

145 ArcAssert?

146 localTearDown:ArcTestSetup?

147 "}";

148

149 /**
150 * Defines the input of a test case.

151 *
152 * {@attribute arcStreamAssignment input streams}

153 */

154 ArcTestInput =

155 "input" "{"

156 ArcStreamAssignment*
157 "}";

158

159 /**
160 * Defines the expected results of a test case.

161 *
162 * {@attribute arcStreamAssignment expected output streams}

163 */

164 ArcExpectedResult =

165 "expect" "{"

166 ArcStreamAssignment*
167 "}";

168

169 /**
170 * For further assertions.

171 *
172 * {@attribute assertDefinition contains the concrete

173 * assertions.}

174 */

175 ArcAssert =

176 "assert" "{"

177 AssertDefinition

178 "}";

179

180 /**
181 * External for assertions.

182 */

183 external AssertDefinition;

184

185 /**
186 * Assigns a stream to a port.

187 *
188 * {@attribute portName name of the port}

189 * {@attribute portNameAsString if the name of the port is

190 * a keyword of this grammar, escape it as a string}

191 * {@attribute variable name of a stream field}

192 * {@attribute stream local definition of a stream}

193 */

308

C.3. I/O TEST LANGUAGE GRAMMAR

194 ArcStreamAssignment =

195 (portName:Name | portNameAsString:String) ":"

196 (variable:Name | stream:ArcStream) ";";

197

198 /**
199 * Defines a stream.

200 *
201 * {@attribute elements elements of this stream.}

202 */

203 ArcStream =

204 "<" (elements:MultipliedStreamElement (","

205 elements:MultipliedStreamElement)*)? ">";

206

207 /**
208 * Element of a stream.

209 *
210 * {@attribute multiplier multiplier of the element}

211 * {@attribute negated optional, true, if this element is

212 * negated}

213 * {@attribute value value of the element}

214 * {@attribute optional optional, true, if this element is

215 * optional}

216 */

217 MultipliedStreamElement =

218 Multiplier ([negated:"!"])? Value ([optional:"?"])?;

219

220 /**
221 * Contains optional content. If set, it has

222 * either a fix amount or a range.

223 *
224 * {@attribute amount fix amount}

225 * {@attribute lower lower bound of a range}

226 * {@attribute upper upper bound of a range}

227 */

228 Multiplier =

229 ((amount:IntLiteral "*") |

230 ("[" lower:IntLiteral "," upper:IntLiteral "]" "*"))?;

231

232 /**
233 * A tick represents borders of time intervals.

234 */

235 Tick implements Value =

236 "Tk";

237

238 /**
239 * Any value.

240 */

241 UndefinedValue implements Value =

242 "_";

309

C.3. I/O TEST LANGUAGE GRAMMAR

243

244 /**
245 * Bundles stream elements to groups.

246 *
247 * {@attribute elements list of aggregates elements}

248 */

249 ValueGroup implements ("(" MultipliedStreamElement)=> Value =

250 "(" elements:MultipliedStreamElement (","

251 elements:MultipliedStreamElement)* ")";

252

253 /* ==*/

254 /* =================== ASTRULES =========================*/

255 /* ==*/

256 /**
257 * Adds a getName() and getType() method to field

258 * declarations.

259 */

260 ast ArcFieldDeclaration =

261 method public String getName(){}

262 method mc.types._ast.ASTType getType(){};

263

264 /**
265 * Adds a getTypeArguments() method.

266 */

267 ast ArcStreamFieldDeclaration =

268 method mc.types._ast.ASTTypeArguments getTypeArguments(){};

269

270 /**
271 * Redefines getPortName() method to either use attribute

272 * portName or use escaped portNameAsString.

273 */

274 ast ArcStreamAssignment =

275 method public String getPortName() {

276 if (this.portName == null && this.getPortNameAsString()

277 != null) {

278 this.portName = this.getPortNameAsString().

279 replace("\"", "");

280 }

281 return this.portName;

282 };

283

284 /**
285 * Adds a hasMultiplier() method to multiplied

286 * stream elements.

287 */

288 ast MultipliedStreamElement =

289 method public boolean hasMultiplier() {

290 return (multiplier.getAmount() != null ||

291 multiplier.getUpper() != null ||

310

C.3. I/O TEST LANGUAGE GRAMMAR

292 multiplier.getLower() != null);

293 };

294

295 /**
296 * Adds a toString() method.

297 */

298 ast ArcStreamAssignment =

299 method public String toString() {

300 String res = "";

301 mc.ast.ASTNode parent = get_Parent().get_Parent();

302 if (parent instanceof ASTArcExpectedResult) {

303 res += "out";

304 }

305 else if (parent instanceof ASTArcTestInput) {

306 res += "in";

307 }

308 res += "port ";

309 res += getPortName();

310 return res;

311 };

312

313 /**
314 * Adds a toString() method.

315 */

316 ast ArcVariableField =

317 method public String toString() {

318 String res = getName();

319 res += " : ";

320 res += mc.types.helper.TypesPrinter.printType(getType());

321 return res;

322 };

323

324 /**
325 * Adds a toString() method.

326 */

327 ast ArcStreamField =

328 method public String toString() {

329 String res = getName();

330 res += " : ";

331 res +=

332 mc.types.helper.TypesPrinter.printType(getType());;

333 return res;

334 };

335 /**
336 * Adds a toString() method.

337 */

338 ast ArcStreamMatcherField =

339 method public String toString() {

340 String res = getName();

311

C.4. PROCESS NETWORK SIMULATION GRAMMAR

341 res += " : ";

342 res +=

343 mc.types.helper.TypesPrinter.printType(getType());;

344 return res;

345 };

346 }

Listing C.3: ComponentIOTestDSL.mc: MontiCore grammar for I/O tests.

C.4 Process Network Simulation Grammar

MG1 grammar ProNetSim {

2

3 options {

4 compilationunit ProcessDefinition

5 }

6

7 interface ProcessDefinitionElement;

8

9 ProcessDefinition =

10 (["valueChain"] | ["processStep"]) Name "{"

11 ProcessDefinitionElement*
12 "}";

13

14 CommodityChannel implements ProcessDefinitionElement =

15 (["input"] | ["output"]) type:Name

16 ("[" amount:INT "]")?

17 receiver:Transport? ";";

18

19 ValueChainNode implements ProcessDefinitionElement =

20 (["valueChain"] | ["processStep"]) type:QualifiedName

21 Name? receiver:Transport? ";";

22

23 Transport =

24 "->" receivers:Target ("," receivers:Target)*;

25

26 Target =

27 targetNode:Name ("(" probability:INT ")")?;

28 }

Listing C.4: ProNetSim.mc: Essence of the ProNetsim MontiCore grammar.

312

Appendix D

AADL Examples

Meta-CD

ComponentTypePropertySet
Component

Implementation

Features

Type

Package

public protected* *

implements

Property

* *

*

extends

extends

0,1 0,1

AbstractComponent

Type
«enumeration»

Category

software: thread, …

hardware: memory,…

system

abstract

subcomponents

connections

subprogramCalls

flowImplementations

�

flows

Annex

*

�

prototypes

modes

1

Figure D.1: Extract of the AADL metamodel (adapted from [FGH06, FG12]).

313

AADL1 package SubcompSnippets

2 public

3 with Snippets_cfg;

4 with Base_Types;

5 with Data_Model;

6

7 data Cmd

8 properties

9 Data_Model::Data_Representation => Enum;

10 Data_Model::Enumerators=>("PULL", "PUSH");

11 Data_Model::Representation => ("0", "1");

12 end Cmd;

13

14 abstract A

15 features

16 string: in event data port Base_Types::String;

17 command: in event data port Cmd;

18 integer: out event data port Base_Types::Integer;

19 end A;

20 abstract implementation A.AImpl

21 -- ...

22 end A.AImpl;

23

24 abstract Ext extends A

25 end Ext;

26 abstract implementation Ext.ExtImpl extends A.AImpl

27 end Ext.ExtImpl;

28

29 abstract B

30 features

31 sIn: in event data port Base_Types::String;

32 sOut: out event data port Base_Types::String;

33 properties

34 Snippets_cfg::p1=>1;

35 Snippets_cfg::p2=>"bar";

36 end B;

37 abstract implementation B.BImpl

38 end B.BImpl;

39

40 abstract C

41 prototypes

42 K: data;

43 V: data Base_Types::Integer;

44 features

45 msgIn: in event data port V;

46 msgOut: out event data port K;

47 end C;

48 abstract implementation C.CImpl

314

49 end C.CImpl;

50

51 system D

52 features

53 sIn: in event data port Base_Types::String;

54 sOut: out event data port Base_Types::String;

55 iOut: out event data port Base_Types::Integer;

56 end D;

57

58 system implementation D.DImpl

59 subcomponents

60 a: abstract A.AImpl;

61 myExt: abstract Ext.ExtImpl;

62

63 myB1: abstract B.BImpl {

64 Snippets_cfg::p1=>5;

65 Snippets_cfg::p2=>"foo";

66 };

67

68 c: abstract C.CImpl (

69 K => data Base_Types::String,

70 V => data Base_Types::Integer

71);

72

73 connections

74 cona: port sIn -> myB1.sIn;

75 conb: port c.msgOut -> sOut;

76 conc: port myB1.sOut -> a.string;

77 cond: port myB1.sOut -> myExt.string;

78 cone: port myExt.integer -> iOut;

79 end D.DImpl;

80

81 end SubcompSnippets;

Listing D.2: Complete AADL specifications with the examples from Section 3.6.

315

316

Appendix E

Tutorial Material

E.1 Implementations

Java1 public class ABPInnerSenderImpl extends

2 abp.gen.AABPSender_ABPInnerSender {

3

4 /** ABP_S_1: To remember the last received ack. */

5 private boolean transmissionFlag;

6

7 /** ABP_S_2: To buffer messages. */

8 private Queue<String> buffer;

9

10 /** Used timeout. */

11 public static final int TIMEOUT = 3;

12 /** Default constructor. */

13 public ABPInnerSenderImpl() {

14 // ABP_S_3 implicitly:

15 // ABP_S_3.1 buffer empty -> RDY,

16 // ABP_S_3.2 buffer not empty -> W8ING

17 buffer = new LinkedList<String>(); // ABP_S_4

18 transmissionFlag = true;// ABP_S_1

19 }

20

21 @Override

22 protected void treatAck(Boolean ack) {

23 // message has been transmitted and the flag from the message

24 // has been returned

25 if (ack == transmissionFlag) { // ABP_S_6.2

26 // remove msg from buffer

27 buffer.poll();

28

29 // invert transmission flag

30 transmissionFlag = !transmissionFlag;

31

32 // if no further messages are buffered, stop timer

33 if (buffer.isEmpty()) {

317

E.1. IMPLEMENTATIONS

34 // stop timer

35 sendSetTimer(-1);

36 }

37 // if messages are buffered, send next one

38 else {

39 sendMessage(buffer.peek());

40 }

41 }

42 // ABP_S_5.2: implicitly buffer is empty -> RDY -> ignore ack

43 // ABP_S_6.3: resend message, wrong flag received

44 else if (!buffer.isEmpty()) {

45 sendMessage(buffer.peek());

46 }

47 }

48

49 @Override

50 protected void treatMessage(String message) {

51 if (buffer.isEmpty()) { // ABP_S_5.1 RDY

52 // store into buffer, if we need to resend it

53 buffer.add(message);

54 sendMessage(message);

55 }

56 else { // ABP_S_6.1 W8ING

57 buffer.add(message);

58 }

59 }

60 /**
61 * Encapsulates given message into an {@link ABPMessage} that

62 * is

63 * emitted via port abpMessage. Additionally the timer is set

64 * and

65 * will call back in TIMEOUT time intervals.

66 *
67 * @param msg data to send

68 */

69 private void sendMessage(String msg) {

70 ABPMessage abpMessage = new ABPMessage(transmissionFlag,

71 msg);

72 sendAbpMessage(abpMessage);

73 sendSetTimer(TIMEOUT - 1);

74 }

75

76 @Override

77 protected void treatTimerEvent(Boolean message) {

78 // ABP_S_6.4: timer expired (message = true)

79 if (message && !buffer.isEmpty()) {

80 // resend message

81 sendMessage(buffer.peek());

82 }

318

E.1. IMPLEMENTATIONS

83 }

84

85 @Override

86 protected void timeStep() {/*ignore*/}

87 }

Listing E.1: Initial behavior implementation of component ABPInnerSender.

Java1 public class ABPReceiverImpl extends abp.gen.AABPReceiver {

2

3 /** ABP_R_1: To store last received ack. */

4 private boolean lastReceivedMessageFlag;

5 /** Default constructor. */

6 public ABPReceiverImpl() {

7 lastReceivedMessageFlag = false; // ABP_R_2

8 }

9

10 @Override

11 protected void treatAbpMessage(ABPMessage message) {

12 // ABP_R_3: last and current message differ

13 if (lastReceivedMessageFlag != message.isAck()) {

14 // invert flag

15 lastReceivedMessageFlag = !lastReceivedMessageFlag;

16

17 // send transmitted message

18 sendMessage(message.getContent());

19

20 // send ack of received message

21 sendAck(lastReceivedMessageFlag);

22 }

23 else { // ABP_R_4

24 // send last ack to reorder the last message again

25 sendAck(lastReceivedMessageFlag);

26 }

27 }

28 }

Listing E.2: Initial behavior implementation of component ABPReceiver.

319

E.2. I/O-TEST MODELS

E.2 I/O-Test Models

I/O-Test1 package abp;

2

3 testsuite ABPSenderTest for ABPSender {

4

5 String msg1 = "Hello";

6 String msg2 = "MontiArc";

7 ABPMessage abpMsg1;

8 ABPMessage abpMsg2;

9

10 @Before {

11 abpMsg1 = new ABPMessage(true, msg1);

12 abpMsg2 = new ABPMessage(false, msg2);

13 }

14

15 test noInput {

16 input {

17 message : <10 * Tk>;

18 ack : <10 * Tk>;

19 }

20 expect {

21 abpMessage : <10 * Tk>;

22 }

23 }

24

25 test encapsulateMsg {

26 input {

27 message : <msg1>;

28 ack : <>;

29 }

30 expect {

31 abpMessage : <abpMsg1>;

32 }

33 }

34

35 test repeatMessage {

36 input {

37 message : <msg1, 15 * Tk>;

38 ack : <15 * Tk>;

39 }

40 expect {

41 abpMessage : <5 * (abpMsg1, 3 * Tk), abpMsg1>;

42 }

43 }

44

45 test alternateMessages {

46 input {

320

E.2. I/O-TEST MODELS

47 message : <5 * (msg1, Tk, msg2, Tk)>;

48 ack : <5 * (Tk, true, Tk, false)>;

49 }

50 expect {

51 abpMessage : <5 * (abpMsg1, Tk, abpMsg2, Tk)>;

52 }

53 }

54

55 test bufferMessages {

56 input {

57 message : <5 * (msg1, msg2), 10 * Tk>;

58 ack : <5 * (Tk, true, Tk, false)>;

59 }

60 expect {

61 abpMessage : <5 * (abpMsg1, Tk, abpMsg2, Tk)>;

62 }

63 }

64 }

Listing E.3: I/O-Test suite for component ABPSender.

I/O-Test1 package abp;

2 import abp.ABPReceiver;

3

4 testsuite ABPReceiverTest for ABPReceiver {

5

6 ABPMessage ack;

7 ABPMessage nack;

8

9 @Before {

10 ack = new ABPMessage(true, "ACK");

11 nack = new ABPMessage(false, "NACK");

12 }

13

14 test noMessages {

15 input {

16 // type: ABPMessage

17 abpMessage : <100 * Tk>;

18 }

19 expect {

20 // type: java.lang.Boolean

21 ack : <100 * Tk>;

22 // type: java.lang.String

23 message : <100 * Tk>;

24 }

25 }

26

27 test testRepeatAckTimed {

28 input {

321

E.2. I/O-TEST MODELS

29 // type: abp.ABPMessage

30 abpMessage : <10 * (ack, Tk)>;

31 }

32 expect {

33 // type: java.lang.Boolean

34 ack : <10 * (true, Tk)>;

35 // type: java.lang.String

36 message : <"ACK", 10 * Tk>;

37 }

38 }

39

40 test testRepeatAckUntimed {

41 input {

42 // type: abp.ABPMessage

43 abpMessage : <10 * ack>;

44 }

45 expect {

46 // type: java.lang.Boolean

47 ack : <10 * true>;

48 // type: java.lang.String

49 message : <"ACK">;

50 }

51 }

52

53 test testRepeatNackTimed {

54 input {

55 // type: abp.ABPMessage

56 abpMessage : <10 * (nack, Tk)>;

57 }

58 expect {

59 // type: java.lang.Boolean

60 ack : <10 * (false, Tk)>;

61 // type: java.lang.String

62 message : <10 * Tk>;

63 }

64 }

65

66 test testRepeatNackUntimed {

67 input {

68 // type: abp.ABPMessage

69 abpMessage : <10 * nack>;

70 }

71 expect {

72 // type: java.lang.Boolean

73 ack : <10 * false>;

74 // type: java.lang.String

75 message : <>;

76 }

77 }

322

E.2. I/O-TEST MODELS

78

79 test testRepeatAckNackTimed {

80 input {

81 // type: abp.ABPMessage

82 abpMessage : <10 * (ack, Tk, nack, Tk)>;

83 }

84 expect {

85 // type: java.lang.Boolean

86 ack : <10 * (true, Tk, false, Tk)>;

87 // type: java.lang.String

88 message : <10 * ("ACK", Tk, "NACK", Tk)>;

89 }

90 }

91

92 test testRepeatAckNackUntimed {

93 input {

94 // type: abp.ABPMessage

95 abpMessage : <10 * (ack, nack)>;

96 }

97 expect {

98 // type: java.lang.Boolean

99 ack : <10 * (true, false)>;

100 // type: java.lang.String

101 message : <10 * ("ACK", "NACK")>;

102 }

103 }

104 }

Listing E.4: I/O-Test suite for component ABPReceiver.

I/O-Test1 package abp;

2

3 testsuite ABPTest for ABP {

4

5 test noInput {

6 input {

7 // type: java.lang.String

8 msg : <10 * Tk>;

9 }

10 expect {

11 // type: java.lang.String

12 transmittedMsg : <11 * Tk>;

13 }

14 }

15

16 String msg = "Hello MontiArc";

17

18 test messageTransmission repeat 10000 times {

19 input {

323

E.3. WHITE-BOX TESTS

20 // type: java.lang.String

21 msg : <msg, 100 * Tk>;

22 }

23 expect {

24 // type: java.lang.String

25 transmittedMsg : <[1, 101] * Tk, msg, [0, 101] * Tk>;

26 }

27 }

28 }

Listing E.5: I/O-Test suite for system component ABP.

E.3 White-Box Tests

ABP

msg
transmitted

Msg

ABPSender

sender

ABPReceiver

receiver

LossyDelayed

Channel med1

String

LossyDelayed

Channel med2

ABPMessage ABPMessage

booleanboolean

instrumented
port

MA

String

Figure E.6: Instrumented ports of ABP’s subcomponents in the white-box test given in List-

ing E.7.

JUnit1 public class ABPWhiteBoxTestWithParameterManipulation {

2 private final Tick<String> tick = Tick.<String> get();

3 private ABP testee;

4 private IStream<ABPMessage> senderOutStream;

5 private IStream<Boolean> senderAckInStream;

6 private IStream<String> receiverOutStream;

7

8 @Before

9 public void setUp() {

10 setUpFactory();

11 testee = new ABP();

12 IScheduler s = SchedulerFactory.createDefaultScheduler();

13 s.setPortFactory(new TestPortFactory());

14 testee.setup(s, new SimpleErrorHandler());

15

16 senderOutStream = ((ITestPort<ABPMessage>) testee.getSender()

324

E.3. WHITE-BOX TESTS

17 .getAbpMessage()).getStream();

18 receiverOutStream = ((ITestPort<String>) testee.getReceiver()

19 .getMessage()).getStream();

20 senderAckInStream = ((ITestPort<Boolean>) testee.getMed2()

21 .getPortOut()).getStream();

22 }

23 private void setUpFactory() {

24 // register test factory

25 LossyDelayedChannelFactory.register(

26 new LossyDelayedChannelTestFactory());

27 }

28 @After

29 public void tearDown() {

30 LossyDelayedChannelFactory.reset();

31 }

32

33 @Test

34 public void testAckOfMessage() {

35 String m = "Hello MontiArc";

36 boolean expectedAck = true;

37 testee.getMsg().accept(m);

38 testee.getMsg().accept(tick);

39 testee.getMsg().accept(tick);

40

41 // message sent once?

42 assertEquals(1, senderOutStream.getUntimedHistory().size());

43 assertEquals(expectedAck,

44 senderOutStream.getUntimedHistory().get(0).isAck());

45 assertEquals(m,

46 senderOutStream.getUntimedHistory().get(0).getContent());

47

48 // Message transmitted once in time interval 1?

49 assertEquals(1,

50 receiverOutStream.getUntimedHistory().size());

51 assertTrue(receiverOutStream.getUntimedHistory().contains(m));

52 assertEquals(1, receiverOutStream.firstTimeIntervalOf(m));

53

54 // Message acknowledged in time interval 2?

55 assertEquals(1,

56 senderAckInStream.getUntimedHistory().size());

57 assertTrue(senderAckInStream.getUntimedHistory().get(0));

58 assertEquals(2, senderAckInStream.firstTimeIntervalOf(true));

59

60 // Two time frames have passed?

61 assertEquals(2, testee.getLocalTime());

62 }

63

64 class LossyDelayedChannelTestFactory extends

65 LossyDelayedChannelFactory {

325

E.3. WHITE-BOX TESTS

66 @Override

67 protected <T> ILossyDelayedChannel<T> doCreate(

68 IRandomFunction f, int delay) {

69 // always set loss rate to zero

70 return super.doCreate(new ControlledRandom("1"), delay);

71 }

72 }

73 }

Listing E.7: White-box test that uses parameter manipulation to adjust the configuration of

ABP’s LossyChannel subcomponents.

JUnit1 public class ABPMockingTest {

2 private ABP testee;

3 private TestPort<String> receiverOut;

4

5 protected IScheduler getScheduler() {

6 return SchedulerFactory.createDefaultScheduler();

7 }

8 @Before

9 public void setUp() {

10 // init user defined factory

11 LossyDelayedChannelFactory.register(

12 new LossyDelayedChannelTestFactory());

13 testee = new ABP();

14 testee.setup(getScheduler(), new SimpleErrorHandler());

15 receiverOut = new TestPort<String>();

16 testee.setTransmittedMsg(receiverOut);

17 }

18

19 @After

20 public void tearDown() {

21 LossyDelayedChannelFactory.reset();

22 }

23

24 @Test

25 public void testAlternatingBit() {

26 LDCMock<ABPMessage> m1 = (LDCMock<ABPMessage>)

27 testee.getMed1();

28 LDCMock<Boolean> m2 = (LDCMock<Boolean>) testee.getMed2();

29 int amount = 1000;

30 for (int i = 0; i < amount; i++) {

31 String msg = "Msg " + i;

32 testee.getMsg().accept(msg);

33 assertEquals(i + 1, m1.called);

34 assertEquals(i + 1, m2.called);

35 assertEquals(msg, m1.lastMessage.getContent());

36 if (i % 2 == 0) {

37 assertTrue(m1.lastMessage.isAck());

326

E.3. WHITE-BOX TESTS

38 assertTrue(m2.lastMessage);

39 }

40 else {

41 assertFalse(m1.lastMessage.isAck());

42 assertFalse(m2.lastMessage);

43 }

44 }

45 assertEquals(amount, receiverOut.getStream().size());

46 }

47

48 class LossyDelayedChannelTestFactory

49 extends LossyDelayedChannelFactory {

50 /**
51 * @see ma.sim.gen.factories.LossyDelayedChannelFactory

52 * #doCreate(int, int)

53 */

54 @Override

55 protected <T> ILossyDelayedChannel<T> doCreate(IRandomFunction

56 f,

57 int delay) {

58 return new LDCMock<T>(new ControlledRandom("1"), delay);

59 }

60 }

61

62 class LDCMock<T> extends ALossyDelayedChannelStub<T> {

63 public int called = 0;

64 public T lastMessage;

65

66 public LDCMock(IRandomFunction f, int delay) {

67 super(f, delay);

68 }

69

70 /**
71 * @see ma.sim.gen.ALossyDelayedChannelStub#treatPortIn(

72 * java.lang.Object)

73 */

74 @Override

75 protected void treatPortIn(T message) {

76 sendPortOut(message);

77 called++;

78 lastMessage = message;

79 }

80 }

81 }

Listing E.8: Mocking subcomponents in a test.

327

E.4. GENERALIZED COMPONENTS

E.4 Generalized Components

MA1 package abp;

2

3 component ABPReceiver<T> {

4 timing untimed;

5 port

6 in ABPMessage<T> abpMessage,

7 out Boolean ack,

8 out T message;

9 }

Listing E.9: Generalized receiver component model.

MA1 package abp;

2

3 import ma.sim.LossyDelayedChannel;

4 import ma.sim.IRandomFunction;

5

6 component ABP<T>[IRandomFunction rand, int delay, int timeout] {

7

8 port

9 in T msg,

10 out T transmittedMsg;

11

12 component ABPSender<T>(timeout)

13 sender [abpMessage -> med1.portIn];

14

15 component LossyDelayedChannel<ABPMessage<T>>(rand, delay)

16 med1 [portOut -> receiver.abpMessage];

17

18 component ABPReceiver<T>

19 receiver [ack -> med2.portIn;

20 message -> transmittedMsg];

21

22 component LossyDelayedChannel<Boolean>(rand, delay)

23 med2 [portOut -> sender.ack];

24

25 connect msg -> sender.message;

26 }

Listing E.10: Generalized abp component model.

328

E.5. OPTIMIZATION TESTING

E.5 Optimization Testing

Java1 public class RunAbpStatistics {

2 public static void main(String[] args) {

3 // create a new workbook

4 Workbook wb = new HSSFWorkbook();

5 // create a new sheet

6 Sheet sh = wb.createSheet();

7 int rownum = 0;

8 createHeader(sh);

9

10 final int experimentAmount = 5000;

11 final Tick<String> tick = Tick.<String> get();

12 final String transmittedMsg = "Hello MontiArc";

13

14 for (int lossrate = 10; lossrate <= 80; lossrate += 10) {

15 for (int delay = 1; delay <= 10; delay++) {

16 int timeout = 2 * delay + 1;

17 // from apache commons math

18 final DescriptiveStatistics ds = new

19 DescriptiveStatistics();

20 for (int i = 0; i < experimentAmount; i++) {

21 // setup ABP

22 ABP<String> abp = new ABP<String>(new

23 JavaRandom(lossrate), delay, timeout);

24 IScheduler s =

25 SchedulerFactory.createDefaultScheduler();

26 s.setPortFactory(new TestPortFactory());

27 abp.setup(s, new SimpleErrorHandler());

28 TestPort<Boolean> ack = (TestPort<Boolean>)

29 abp.getSender().getAck();

30

31 // sent message

32 abp.getMsg().accept(transmittedMsg);

33 // sent ticks until msg is acknowledged

34 while (ack.getStream().getUntimedHistory().isEmpty()) {

35 abp.getMsg().accept(tick);

36 }

37 // passed simulation time

38 int time = ack.getStream().getCurrentTime();

39 ds.addValue(time);

40 }

41 System.out.println("Computed statistics for ABP(" +

42 lossrate + ", " + delay + ", " + timeout + ")");

43 rownum++;

44 addToTable(sh, rownum, lossrate, delay, timeout,

45 ds.getMin(), ds.getMax(), ds.getMean(),

46 ds.getStandardDeviation(), ds.getPercentile(50));

329

E.5. OPTIMIZATION TESTING

47 }

48 }

49 writeTable(wb, "target/statistics/abp.xls");

50 }

51

52 /**
53 * Stores the given {@link Workbook} in a file determined by the

54 *
55 * given location.

56 *
57 * @param wb {@link Workbook} to store

58 * @param location file location

59 */

60 static void writeTable(Workbook wb, String location) {

61 FileOutputStream out;

62 try {

63 File result = new File(location);

64 if (!result.exists()) {

65 result.getParentFile().mkdirs();

66 result.createNewFile();

67 }

68 out = new FileOutputStream(result);

69 wb.write(out);

70 out.close();

71 System.out.println("Results written to: " +

72 result.getAbsolutePath());

73 }

74 catch (FileNotFoundException e) {

75 e.printStackTrace();

76 }

77 catch (IOException e) {

78 e.printStackTrace();

79 }

80 }

81

82 /**
83 *
84 * Creates a table row with the given value entries.

85 *
86 * @param sh current sheet

87 * @param rownum row number to create

88 * @param lossrate lossrate value

89 * @param delay delay value

90 * @param timeout timeout value

91 * @param min min value

92 * @param max max value

93 * @param mean mean value

94 * @param stdDev standard deviation value

95 * @param median median value

330

E.5. OPTIMIZATION TESTING

96 */

97 static void addToTable(Sheet sh, int rownum, double lossrate,

98 double delay, double timeout, double min, double max,

99 double mean, double stdDev, double median) {

100 Row r = sh.createRow(rownum);

101 r.createCell(0).setCellValue(lossrate);

102 r.createCell(1).setCellValue(delay);

103 r.createCell(2).setCellValue(timeout);

104 r.createCell(3).setCellValue(min);

105 r.createCell(4).setCellValue(max);

106 r.createCell(5).setCellValue(mean);

107 r.createCell(6).setCellValue(stdDev);

108 r.createCell(7).setCellValue(median);

109 }

110

111 /**
112 *
113 * Creates a table header row in the given {@link Sheet}.

114 *
115 * @param sh {@link Sheet} to use

116 */

117 static void createHeader(Sheet sh) {

118 Row r = sh.createRow(0);

119 r.createCell(0).setCellValue("LossRate");

120 r.createCell(1).setCellValue("Delay");

121 r.createCell(2).setCellValue("Timeout");

122 r.createCell(3).setCellValue("Min");

123 r.createCell(4).setCellValue("Max");

124 r.createCell(5).setCellValue("Mean");

125 r.createCell(6).setCellValue("Standard Deviation");

126 r.createCell(7).setCellValue("Median");

127 }

128 }

Listing E.11: Collecting statistical data over the impact of the parameters loss rate and delay

of component ABP.

331

E.5. OPTIMIZATION TESTING

Java1 public class RunAbpStatisticsParallel {

2

3 private final static int EXPERIMENT_AMOUNT = 5000;

4

5 /**
6 * Used to store simulation parameters and results.

7 */

8 static class SimResult {

9 private final int lossrate, delay, timeout;

10 private final DescriptiveStatistics stats;

11

12 private SimResult(int lossrate, int delay, int timeout) {

13 this.lossrate = lossrate;

14 this.delay = delay;

15 this.timeout = timeout;

16 this.stats = new DescriptiveStatistics();

17 }

18 private void addResult(double time) {

19 stats.addValue(time);

20 int stepSize = 20;

21 if (lossrate > 60) {

22 stepSize = 5;

23 }

24 int proc = EXPERIMENT_AMOUNT / 100 * stepSize;

25 int amount = stats.getValues().length;

26 if (amount % proc == 0) {

27 System.out.println((amount / proc * stepSize) +

28 " % finished of (" + lossrate + ", " +

29 delay + ", " + timeout + ")");

30 }

31 }

32 }

33

34 /**
35 * Executes a concrete scenario and stores the result using

36 * {@link SimResult#addResult(double)}.

37 */

38 static class SimulationTask implements Runnable {

39 private final CountDownLatch latch;

40 private final SimResult result;

41

42 private SimulationTask(CountDownLatch l, SimResult result) {

43 this.latch = l;

44 this.result = result;

45 }

46

47 @Override

48 public void run() {

332

E.5. OPTIMIZATION TESTING

49 String transmittedMsg = "Hello MontiArc";

50 Tick<String> tick = Tick.<String> get();

51 // setup ABP

52 ABP<String> abp = new ABP<String>(

53 new JavaRandom(result.lossrate), result.delay,

54 result.timeout);

55 IScheduler s = SchedulerFactory.createDefaultScheduler();

56 s.setPortFactory(new TestPortFactory());

57 abp.setup(s, new SimpleErrorHandler());

58 TestPort<Boolean> ack = (TestPort<Boolean>)

59 abp.getSender().getAck();

60

61 // sent message

62 abp.getMsg().accept(transmittedMsg);

63

64 // sent ticks until msg is acknowledged

65 while (ack.getStream().getUntimedHistory().isEmpty()) {

66 abp.getMsg().accept(tick);

67 }

68 // passed simulation time

69 int time = ack.getStream().getCurrentTime();

70 result.addResult(time);

71 latch.countDown();

72 }

73 }

74

75 public static void main(String[] args) throws

76 InterruptedException {

77 int cores = Runtime.getRuntime().availableProcessors();

78 ExecutorService exec = Executors.newFixedThreadPool(cores);

79 final int lossRateMax = 80;

80 final int delayMax = 10;

81 // used to monitor the amount of finished simulations

82 final CountDownLatch latch = new CountDownLatch(

83 (lossRateMax / 10) * delayMax * EXPERIMENT_AMOUNT);

84

85 List<SimResult> results = Lists.newLinkedList();

86 for (int lossr = 10; lossr <= lossRateMax; lossr += 10) {

87 for (int delay = 1; delay <= delayMax; delay++) {

88 int timeout = 2 * delay + 1;

89 SimResult r = new SimResult(lossr, delay, timeout);

90 results.add(r); // store result object

91 for (int exp = 0; exp < EXPERIMENT_AMOUNT; exp++) {

92 exec.submit(new SimulationTask(latch, r));

93 }

94 }

95 }

96 latch.await(); // wait until all tasks have finished

97 // export results to spread sheet...

333

E.5. OPTIMIZATION TESTING

98 // create a new workbook

99 Workbook wb = new HSSFWorkbook();

100 // create a new sheet

101 Sheet sh = wb.createSheet();

102 createHeader(sh);

103 int rownum = 1;

104 for (SimResult r : results) {

105 DescriptiveStatistics ds = r.stats;

106 addToTable(sh, rownum, r.lossrate, r.delay, r.timeout,

107 ds.getMin(), ds.getMax(), ds.getMean(),

108 ds.getStandardDeviation(), ds.getPercentile(50));

109 rownum++;

110 }

111 writeTable(wb, "target/statistics/abp_parallel.xls");

112 exec.shutdown();

113 }

114 }

Listing E.12: Parallel execution of simulations to collext statistical data over the impact of

the parameters loss rate and delay of component ABP.

334

E.6. DISTRIBUTED SIMULATION

E.6 Distributed Simulation

Java1 public final class RemoteAbpSender implements Runnable {

2

3 private IDelayedSender<String> sender;

4 private static final Tick<String> TICK = Tick.<String> get();

5

6 /**
7 * Configures a DelayedSender for a distributed simulation.

8 * @param addr IP address of the ABP receiver.

9 */

10 public void setUp(String addr) {

11 sender = DelayedSenderFactory.create(2, 1);

12

13 // configure scheduler to use TCPPortFactory

14 IScheduler sched = SchedulerFactory.createDefaultScheduler();

15 IPortFactory factory = new TCPPortFactory();

16 sched.setPortFactory(factory);

17 sender.setup(sched, new SimpleErrorHandler());

18

19 // configure abp out port

20 TCPPort<ABPMessage<String>> abpOut =

21 new TCPPort<ABPMessage<String>>();

22 abpOut.addReceiver(addr, PORT_ABP);

23 sender.setAbpMessage(abpOut);

24

25 // Get and configure ack in port

26 IInTCPPort<Boolean> ack = (IInTCPPort<Boolean>)

27 sender.getAck();

28 ack.startListenOn(PORT_ACK);

29 }

30

31 /**
32 * Sends the given message to port message.

33 * @param msg message to send

34 */

35 public void sendMessage(String msg) {

36 System.out.println("Sending: " + msg);

37 sender.getMessage().accept(msg);

38 }

39

40 /**
41 * Sends a tick to port message.

42 */

43 public void sendTick() {

44 sender.getMessage().accept(TICK);

45 }

46

335

E.6. DISTRIBUTED SIMULATION

47 /**
48 * Main method to start a distributed sender.

49 *
50 * @param args not used

51 */

52 public static void main(String[] args) {

53 String addr;

54 if (args.length >= 2) {

55 addr = args[1];

56 }

57 else {

58 addr = RECEIVER_HOST;

59 }

60 final RemoteAbpSender ras = new RemoteAbpSender();

61 ras.setUp(addr);

62 ras.run();

63 }

64

65 @Override

66 public void run() {

67 // periodically triggers ras to send a tick

68 Ticker ticker = new Ticker(this);

69 new Thread(ticker).start();

70

71 // scanner is used to read input from console

72 Scanner scanner = new Scanner(System.in);

73 try {

74 boolean running = true;

75 while (running) {

76 String input = scanner.next();

77 if ("exit".equals(input)) {

78 running = false;

79 }

80 this.sendMessage(input);

81 }

82 }

83 finally {

84 // close scanner and stop threads

85 scanner.close();

86 ticker.stop();

87 ((TCPPort<ABPMessage<String>>)

88 sender.getAbpMessage()).stop();

89 ((TCPPort<Boolean>) sender.getAck()).stop();

90 ((TCPPort<String>) sender.getMessage()).stop();

91 }

92 }

93 }

Listing E.13: Configuration and execution of a distributed ABP sender.

336

Appendix F

Language Extension Material

Java1 @Override

2 protected void bindMontiArcModelingLanguage() {

3 // left empty...we simply override default binding.

4 }

5 @Inject @Provides

6 ModelingLanguage getExtendedMontiArcLanguage(ILanguage component)

7 {

8 MontiArcLanguage lng = new MontiArcLanguage(component) {

9 @Override

10 public DSLRootFactory<?> getRootFactory(

11 IModelInfrastructureProvider ip, IErrorDelegator eh,

12 String enc) {

13 return new ExtendedMontiArcRootFactory(ip, eh, enc);

14 }

15 };

16 lng.getDslRootClassForUserNames().put(MONTI_ARC_ROOT_NAME,

17 ExtendedMontiArcRoot.class);

18 lng.setRootClass(ExtendedMontiArcRoot.class);

19 lng.addExecutionUnit(WF_PARSE, new

20 ExtendedMontiArcParsingWorkflow());

21 lng.addExecutionUnit(WF_CREATE_SYMTAB,

22 new CreateExportedInterfaceWorkflow<ExtendedMontiArcRoot>(

23 ExtendedMontiArcRoot.class, lng));

24 lng.addExecutionUnit(WF_INIT_CHECK,

25 new PrepareCheckWorkflow<ExtendedMontiArcRoot>(

26 ExtendedMontiArcRoot.class, lng));

27 lng.addExecutionUnit(WF_PRE_CHECK_TRAFO,

28 new PreCoCoCheckMontiArcTransformationWorkflow

29 <ExtendedMontiArcRoot>(ExtendedMontiArcRoot.class));

30 return lng;

31 }

Listing F.1: Method getExtendedMontiArcLanguage(...) which provides an

extended MontiArc modeling language in a guice module that extends the

MontiArc default module.

337

Java1 public class PortCountWorkflow<T extends DSLRoot<? extends

2 ASTMCCompilationUnit>> extends DSLWorkflow<T> {

3

4 public static PortCountWorkflow<MontiArcRoot> create() {

5 return new

6 PortCountWorkflow<MontiArcRoot>(MontiArcRoot.class);

7 }

8 public PortCountWorkflow(Class<T> rootClass) {

9 super(rootClass);

10 }

11

12 @Override

13 public void run(T dslroot) {

14 ASTArcComponent component = dslroot.getAst().getType();

15 int ports = countPorts(component);

16

17 StringBuilder sb = new StringBuilder();

18 sb.append("Component ");

19 sb.append(component.getName());

20 sb.append(" has ");

21 sb.append(ports);

22 sb.append(" ports.");

23 GeneratedFile result =

24 GeneratedFileHelper.createDeferredFileFromQualifiedName(

25 dslroot.getName(), "stats");

26 result.setContent(sb);

27 dslroot.addFile(result);

28 }

29

30 private int countPorts(ASTArcComponent component) {

31 int result = 0;

32 for (ASTArcElement element :

33 component.getBody().getArcElement()) {

34 if (element instanceof ASTArcInterface) {

35 result += ((ASTArcInterface) element).getPorts().size();

36 }

37 else if (element instanceof ASTArcComponent) {

38 result += countPorts(((ASTArcComponent) element));

39 }

40 }

41 return result;

42 }

43 }

Listing F.2: A custom workflow that counts the ports of processed components.

338

Java1 public class CustomTrafoConfigFactory extends

2 MontiArcTrafoConfigurationFactory {

3

4 @Override

5 public Optional<ITrafoConfiguration> create(final

6 SymbolTableInterface symtab, String workflow) {

7 // get MontiArc transformations from super class for the given

8 // workflow

9 final Optional<ITrafoConfiguration> maTrafos =

10 super.create(symtab, workflow);

11 ITrafoConfiguration cfg = null;

12 // add a transformation that is executed before context

13 // condition checks

14 if (workflow.equals(ToolConstants.WF_PRE_CHECK_TRAFO)) {

15 cfg = new ITrafoConfiguration() {

16 private final List<ITransformator> trafos =

17 Lists.newArrayList();

18 @Override

19 public List<ITransformator> getTrafos() {

20 if (trafos.isEmpty()) {

21 // add custom transformation

22 trafos.add(new ExpandSubcomponentTrafo(symtab));

23 // add MontiArc transformations, if present

24 if (maTrafos.isPresent()) {

25 trafos.addAll(maTrafos.get().getTrafos());

26 }

27 }

28 return trafos;

29 }

30 };

31 }

32 if (cfg != null) {

33 return Optional.of(cfg);

34 }

35 else if (maTrafos.isPresent()) {

36 return maTrafos;

37 }

38 // no transformation from this factory or a superclass

39 else {

40 return Optional.absent();

41 }

42 }

43 }

Listing F.3: A custom transformation configuration factory that adds an additional

transformation.

339

Transformation Interface Description

ICompilationUnitTransformation Provides methods to transform the compilation unit

at start and end of the abstract syntax tree (AST)

traversal.

IComponentTransformation Provides methods to transform component nodes

(see Listing 3.18 on page 53). These methods are

called before and after traversing a component AST

node.

IComponentHeadTransformation Provides a method to transform the head of a com-

ponent (see Listing 3.19 on page 53). It may be used

to transform generic type parameters, configuration

parameters, and the extends clause of the current

component.

IPortTransformation Provides a method to transform ports of a compo-

nent (see Listing 3.21 on page 54).

IComponentImplementation-

Transformation

Provides a method to transform component imple-

mentations (see Listing 3.25 on page 56). A ICom-

ponentImplementationTransformation is responsi-

ble for a certain embedded implementation lan-

guage.

ISubComponentTransformation Provides a method to transform subcomponents.

Please note that this transformation is called on sub-

component AST nodes only (see Listing 3.22 on

page 55). Available subcomponent instance nodes

(see Listing 3.23) have to be handled by this trans-

formation manually.

IConnectorTransformation Provides methods to transform simple (see List-

ing 3.23 on page 55) and normal connectors (see

Listing 3.24).

IParameterListTransformation Provides a method to transform the parameter list

of a parameterizable component (see Listing 3.19

on page 53).

ITypeParametersTransformation Provides a method to transform generic type param-

eters of a generic component (see Listing 3.19 on

page 53, l. 2).

IAutoConnectTransformation Provides a method to transform autoconnect state-

ments (see Listing 3.27 on page 57).

IAutoInstantiateTransformation Provides a method to transform autoinstantiate

statements (see Listing 3.28 on page 57).

Table F.4 continued on next page

340

Transformation Interface Description

IConstraintTransformation Provides a method to transform constraints (see

Listing 3.26 on page 56).

ITimingTransformator Provides a method to transform the timing of a com-

ponent (see Listing 3.29 on page 57).

Table F.4: Available transformation interfaces provided by MontiArc’s transformation frame-

work for the ArcD (top) and MontiArc language (bottom).

Hook Point AST Node Location Description

arcElementHook ArcElement class body Generic extension points for ele-

ments of a component.

checkConstraints-

Hook

ArcComponent checkConstraints()Extension points for constraint

definitions.

constructorHook ArcComponent constructor Extension point to add code at the

end of the generated constructor

(cf. Figure 5.31 on page 153).

getLocalTime-

Hook

ArcComponent getLocalTime() Extension point to add code to

the getLocalTime() method

of decomposed components.

handleMessage-

Hook

ArcComponent handleMessage() Allows to add code to the end

of the handleMessage(...)

method. Called for timed, timed

delaying, and untimed compo-

nents (cf. Figure 5.33 on page

154).

handleMessage-

TimeSyncHook

ArcComponent handleMessage() Allows to add code to the end

of the handleMessage(...)

method. Called for time-

synchronous components (cf.

Figure 5.33 on page 154).

handleTickStart-

Hook

ArcComponent handleTick() Extension point to add code at

the start of the handleTick()

method (cf. Figure 5.35 on page

156).

handleTickEnd-

Hook

ArcComponent handleTick() Extension point to add code at

the end of the handleTick()

method (cf. Figure 5.35 on page

156).

Table F.5 continued on next page

341

Hook Point AST Node Location Description

newMethods-

Hook

ArcComponent class body Generic extension point to add

new methods to the generated

class.

setupStartHook ArcComponent setup() Extension point that allows to add

code to the start of the setup()

method (cf. Figure 5.32 on page

153 for atomic components, cf.

Section 5.4.3 on page 156 for de-

composed components).

setupEndHook ArcComponent setup() Extension points that allows to add

code to the end of the setup()

method (cf. setupStartHook).

getPortHook ArcPort port getter Allows to add code to the getter

methods of a component (see Sec-

tion 5.4.2 on page 151 and Sec-

tion 5.4.3 on page 157 for a de-

scription of the generated code for

ports of atomic and decomposed

component).

setPortHook ArcPort port setter Allows to add code to the outgoing

port setter methods of a compo-

nent (cf. hook point getPortHook).

sendOutPortHook ArcPort send methods Allows to add code to the send

methods that are generated for

each outgoing port of an atomic

component (cf. Figure 5.34 on

page 155).

getSubcomponent-

Hook

ArcSubCompo-

nentInstance

subcomponent

getter

Extension point that adds code to

the end of the generated protected

getter method for subcomponents

(cf. Figure 5.37 on page 158).

getConfigParam-

Hook

ArcParameter parameter getter Allows to add code to the end

of the protected parameter get-

ter methods that are generated for

configurable components (cf. Fig-

ure 5.31 on page 153).

Table F.5: Unbound hook points that serve as extension points of the MontiArc component gen-

erator. These extensions are called with the given AST node and generate code within

the given location of the target code.

342

Appendix G

Curriculum Vitae

Name Haber

Vorname Arne

Geburtstag 20.03.1983

Geburtsort Wolfsburg

Staatsangehörigkeit deutsch

seit 2015 System Analytiker & Software Entwickler

Schier Consult GmbH

Braunschweig

2009 - 2014 Wissenschaftlicher Mitarbeiter

Lehrstuhl für Software Engineering

RWTH Aachen

2009 Abschluss als Diplom-Wirtschaftsinformatiker

2003 - 2009 Studium der Wirtschaftsinformatik an der TU Braunschweig

2002 - 2003 Zivildienst

2002 Abitur

1993 - 2002 Orientierungsstufe & Gymnasium Wolfsburg

1989 - 1993 Grundschule Wendschott

343

344

Bibliography

[AAAG+05] Marwan Abi-Antoun, Jonathan Aldrich, David Garlan, Bradley Schmerl, Nagi

Nahas, and Tony Tseng. Software Architecture with Acme and ArchJava (Re-

search Demonstration). In Proceedings of the 27th International Conference on

Software Engineering, St. Louis, MS, May 2005.

[AAG93] Gregory Abowd, Robert Allen, and David Garlan. Using Style to Understand

Descriptions of Software Architecture. ACM SIGSOFT Software Engineering

Notes, 18(5):9–20, 1993.

[Abr96] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge Uni-

versity Press, New York, NY, USA, 1996.

[ACN02a] Jonathan Aldrich, Craig Chambers, and David Notkin. Architectural Reasoning

in ArchJava. In ECOOP ’02: Proceedings of the 16th European Conference on

Object-Oriented Programming, pages 334–367, London, UK, 2002. Springer-

Verlag.

[ACN02b] Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connecting

Software Architecture to Implementation. In International Conference on Soft-

ware Engineering (ICSE) 2002. ACM Press, 2002.

[AG97] Robert Allen and David Garlan. A Formal Basis for Architectural Connection.

ACM Transactions on Software Engineering and Methodology, 6(3):213–249,

July 1997.

[AGST04] Jonathan Aldrich, David Garlan, Bradley Schmerl, and Tony Tseng. Modeling

and Implementing Software Architecture with Acme and ArchJava. In Compan-

ion to the 19th Annual ACM SIGPLAN Conference on Object-oriented Program-

ming Systems, Languages, and Applications, OOPSLA ’04, pages 6–7, New

York, NY, USA, 2004. ACM.

[AJ002] ArchJava Language Reference Manual, Version 1.0, 2002. http:

//archjava.fluid.cs.cmu.edu/papers/archjava-language.

pdf.

[All97] Robert J. Allen. A Formal Approach to Software Architecture. PhD Thesis

CMU-CS-97-144, School of Computer Science, Carnegie Mellon University,

1997.

[AP11] Alexia Allanic and Emilien Perico. TOPCASED 5.0.0 Collaborative Work Tu-

torial, 2011.

345

http://archjava.fluid.cs.cmu.edu/papers/archjava-language.pdf
http://archjava.fluid.cs.cmu.edu/papers/archjava-language.pdf
http://archjava.fluid.cs.cmu.edu/papers/archjava-language.pdf

Bibliography

[AS10] Jenny Abramov and Arnon Sturm. Supporting Layered Architecture Specifica-

tions: A Domain Modeling Approach. In Ilia Bider, Terry Halpin, John Krogstie,

Selmin Nurcan, Erik Proper, Rainer Schmidt, and Roland Ukor, editors, Enter-

prise, Business-Process and Information Systems Modeling, Lecture Notes in

Business Information Processing 50, pages 195–207. Springer Berlin Heidel-

berg, 2010.

[BA81] J. Dean Brock and William B. Ackerman. Scenarios: A Model of Non-

determinate Computation. In J. Dı́az and I. Ramos, editors, Formalization of

Programming Concepts, LNCS 107, pages 252–259. Springer Berlin Heidel-

berg, 1981.

[BBC+07] Davide Brugali, Alex Brooks, Anthony Cowley, Carle Côté, Antonio

Domı́nguez-Brito, Dominic Létourneau, Françis Michaud, and Christian

Schlegel. Trends in Component-Based Robotics. In Davide Brugali, editor,

Software Engineering for Experimental Robotics, Springer Tracts in Advanced

Robotics 30, chapter 8, pages 135–142. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2007.

[BBS06] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling Heterogeneous

Real-time Components in BIP. In Proceedings of the Fourth IEEE International

Conference on Software Engineering and Formal Methods, SEFM ’06, pages

3–12, Washington, DC, USA, 2006. IEEE Computer Society.

[BCH+08] Kari Ann Briski, Poonam Chitale, Valerie Hamilton, Allan Pratt, Brian Starr,

Jim Veroulis, and Bruce Villard. Minimizing Code Defects to Improve Software

Quality and Lower Development Costs. White paper, IBM Rational Software

Analyzer and IBM Rational PurifyPlus Software, October 2008.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2 edition,

2003.

[BCK+09] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, VietYen Nguyen,

Thomas Noll, and Marco Roveri. The COMPASS Approach: Correctness, Mod-

elling and Performability of Aerospace Systems. In Bettina Buth, Gerd Rabe,

and Till Seyfarth, editors, Computer Safety, Reliability, and Security, LNCS

5775, pages 173–186. Springer Berlin Heidelberg, 2009.

[BCK+14] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Panagiotis Katsaros,

Konstantinos Mokos, Viet Yen Nguyen, Thomas Noll, Bart Postma, and Marco

Roveri. Spacecraft early design validation using formal methods. Reliability

Engineering & System Safety, 132(0):20 – 35, 2014.

[BCL+06] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-

Bernard Stefani. The FRACTAL component model and its support in Java. Soft-

ware, Practice, and Experiance, 36:1257–1284, 2006.

[BCR06] Manfred Broy, Marı́a Victoria Cengarle, and Bernhard Rumpe. Towards a Sys-

346

Bibliography

tem Model for UML. The Structural Data Model. Technical Report TUM-I0612,

TU Munich, Germany, June 2006.

[BCR07a] Manfred Broy, Marı́a Victoria Cengarle, and Bernhard Rumpe. Towards a Sys-

tem Model for UML. Part 2: The Control Model. Technical Report TUM-I0710,

TU Munich, Germany, February 2007.

[BCR07b] Manfred Broy, Marı́a Victoria Cengarle, and Bernhard Rumpe. Towards a Sys-

tem Model for UML. Part 3: The State Machine Model. Technical Report TUM-

I0711, TU Munich, Germany, February 2007.

[BDD+93] Manfred Broy, Frank Dederich, Claus Dendorfer, Max Fuchs, Thomas Gritzner,

and Rainer Weber. The Design of Distributed Systems - An Introduction to

FOCUS. Technical Report TUM-I9202, Technische Univerität München, 1993.

[BEH+02] Ulrik Brandes, Markus Eiglsperger, Ivan Herman, Michael Himsolt, and

M. Scott Marshall. GraphML Progress Report Structural Layer Proposal. In

Petra Mutzel, Michael Jünger, and Sebastian Leipert, editors, Graph Drawing,

LNCS 2265, pages 501–512. Springer Berlin Heidelberg, 2002.

[BEJV93] Pam Binns, Matt Englehart, Mike Jackson, and Steve Vestal. Domain-Specific

Software Architectures for Guidance, Navigation and Control. INTERNA-

TIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE EN-

GINEERING, 1993.

[BFLvH08] Christopher Brooks, Thomas Huining Feng, Edward A. Lee, and Reinhard von

Hanxleden. Multimodeling: A Preliminary Case Study. Technical Report

UCB/EECS-2008-7, Electrical Engineering and Computer Sciences University

of California at Berkeley, 2008.

[BGL09] Stefan Björnander, Lars Grunske, and Kristina Lundqvist. Timed Simulation of

Extended AADL-Based Architecture Specifications with Timed Abstract State

Machines. In Raffaela Mirandola, Ian Gorton, and Christine Hofmeister, edi-

tors, Architectures for Adaptive Software Systems, LNCS 5581, pages 101–115.

Springer Berlin Heidelberg, 2009.

[BHH+06] Hubert Baumeister, Florian Hacklinger, Rolf Hennicker, Alexander Knapp, and

Martin Wirsing. A Component Model for Architectural Programming. Elec-

tronic Notes in Theoretical Computer Science, 160(0):75–96, 2006. Proceed-

ings of the International Workshop on Formal Aspects of Component Software

(FACS 2005).

[BHS99] Manfred Broy, Franz Huber, and Bernhard Schätz. AutoFocus– Ein Werkzeug-

prototyp zur Entwicklung eingebetteter Systeme. Informatik Forschung und En-

twicklung, 14(3):121–134, 1999.

[Bin00] Robert V. Binder. Testing Object-Oriented Systems - Models, Patterns, and

Tools. Addison-Wesley, 2000.

[BLF14] Omar Bahy Badreddin, Timothy C. Lethbridge, and Andrew Forward. A Novel

347

Bibliography

Approach to Versioning and Merging Model and Code Uniformly. In MODEL-

SWARD, pages 254–263, 2014.

[Blo08] Joshua Bloch. Effective Java. Java Series. Pearson Education, 2nd edition, 2008.

[BMR12] Jan Olaf Blech, Dongyue Mou, and Daniel Ratiu. Reusing Test-Cases on Differ-

ent Levels of Abstraction in a Model Based Development Tool. In Proceedings

7th Workshop on Model-Based Testing, MBT 2012, Tallinn, Estonia, 25 March

2012., pages 13–27, 2012.

[Boe88] Barry W. Boehm. A Spiral Model of Software Development and Enhancement.

Computer, 21(5):61–72, 1988.

[BOF+10] Kyungmin Bae, Peter Csaba Olveczky, Thomas Huining Feng, Edward A. Lee,

and Stavros Tripakis. Verifying Hierarchical Ptolemy II Discrete-Event Mod-

els Using Real-Time Maude. Technical Report UCB/EECS-2010-50, Electrical

Engineering and Computer Sciences University of California at Berkeley, 2010.

[BR05] Manfred Broy and Andreas Rausch. Das neue V-Modell R©XT. Informatik-

Spektrum, 28(3):220–229, 2005.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of Interactive

Systems. Focus on Streams, Interfaces and Refinement. Springer Verlag Heidel-

berg, 2001.

[CCO+05] Sagar Chaki, Edmund Clarke, Joël Ouaknine, Natasha Sharygina, and Nishant

Sinha. Concurrent Software Verification with States, Events, and Deadlocks.

Formal Aspects of Computing, 17(4):461–483, 2005.

[CEP+06] Vaclav Cechticky, Martin Egli, Alessandro Pasetti, O. Rohlik, and Tullio Var-

danega. A UML2 Profile for Reusable and Verifiable Software Components for

Real-Time Applications. In Maurizio Morisio, editor, Reuse of Off-the-Shelf

Components, LNCS 4039, pages 312–325. Springer Berlin Heidelberg, 2006.

[CGR08a] Marı́a Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model

Semantics of Class Diagrams. Informatik-Bericht 2008-05, TU Braunschweig,

Germany, 2008.

[CGR08b] Marı́a Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model

Semantics of Statecharts. Informatik-Bericht 2008-04, TU Braunschweig, Ger-

many, 2008.

[CHS10] Dave Clarke, Michiel Helvensteijn, and Ina Schaefer. Abstract Delta Modeling.

In Proceedings of the 9th International Conference on Generative Programming

and Component Engineering, GPCE ’10, pages 13–22, New York, NY, USA,

2010. ACM.

[Con10] FlexRay Consortium. FlexRay Communications System Electrical Physical

Layer Specification Version 3.0.1, 2010.

[Cra96] Donald C. Craig. Extensible Hierarchical Object-Oriented Logic Simulation

348

Bibliography

with an Adaptable Graphical User Interface. PhD thesis, Memorial University

of Newfoundland, 1996.

[CRBS09] M. Yassin Chkouri, Anne Robert, Marius Bozga, and Joseph Sifakis. Translating

AADL into BIP - Application to the Verification of Real-Time Systems. In

Michel R.V. Chaudron, editor, Models in Software Engineering, LNCS 5421,

pages 5–19. Springer Berlin Heidelberg, 2009.

[Cza04] Krzysztof Czarnecki. Overview of Generative Software Development. In Un-

conventional Programming Paradigms (UPP) 2004, 15-17 September, Mont

Saint-Michel, France, number 3566 in LNCS, pages 326–341. Springer, 2004.

[DIHK+01] John Davis II, Christopher Hylands, Bart Kienhuis, Edward A. Lee, Jie Liu,

Xiaojun Liu, Lukito Muliadi, Steve Neuendorffer, Jeff Tsay, Brian Vogel, and

Yuhong Xiong. Heterogeneous Concurrent Modeling and Design in Java. Tech-

nical Report UCB/ERL M01/12, Department of Electrical Engineering and

Computer Sciences, University of California at Berkeley, 2001.

[DvdHT01] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. A Highly-

Extensible, XML-Based Architecture Description Language. In Working

IEEEAFIP Conference on Software Architecture, pages 103–112, Amsterdam,

The Netherlands, August 2001. IEEE.

[DvdHT02] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. An Infrastructure

for the Rapid Development of XML-based Architecture Description Languages.

In Software Engineering, 2002. ICSE 2002. Proceedings of the 24rd Interna-

tional Conference on, pages 266–276, Orlando, Florida, May 2002. ACM.

[DvdHT05] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. A Comprehensive

Approach for the Development of XML-Based Software Architecture Descrip-

tion Languages. ACM Transactions on Software Engineering and Methodology

(TOSEM), 14(2):199–245, 2005.

[EJL+03] Johan Eker, Jörn W. Janneck, A. Edward Lee, Jie Liu, Xiaojun Liu, Jozef Lud-

vig, Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong. Taming Hetero-

geneity – the Ptolemy Approach. Proceedings of the IEEE, 91(1):127–144,

2003.

[EKM98] Jacob Elgaard, Nils Klarlund, and Anders Møller. MONA 1.x: new techniques

for WS1S and WS2S. In Computer-Aided Verification, (CAV ’98), LNCS 1427,

pages 516–520. Springer-Verlag, 1998.

[Fei14] Peter Feiler. An Incremental Life-cycle Assurance Strategy for Critical System

Certification. In Proceedings and Presentations of the Ninth Annual TSP Sym-

posium. TSP Symposium, November 2014.

[FFL05] Benoı̂t Fraikin, Marc Frappier, and Régine Laleau. State-based versus Event-

based Specifications for Information Systems: a Comparison of B and EB3.

Software and System Modeling, 4(3):236–257, 2005.

349

Bibliography

[FG12] Peter H. Feiler and David P. Gluch. Model-Based Engineering with AADL: An

Introduction to the SAE Architecture Analysis & Design Language. Addison-

Wesley, 2012.

[FGH06] Peter Feiler, David Gluch, and John Hudak. The Architecture Analysis & De-

sign Language (AADL): An Introduction. Technical Report Technical Note

CMU/SEI-2006-TN-011, Software Engineering Institute, Carnegie Mellon Uni-

versity, Pittsburgh, Pennsylvania, February 2006.

[FHKS09] Jan Friedrich, Ulrike Hammerschall, Marco Kuhrmann, and Marc Sihling. Das

V-Modell XT. In Das V-Modell R©XT, Informatik im Fokus, Seiten 1–32.

Springer Berlin Heidelberg, 2009.

[FK05] William B. Frakes and Kyo Kang. Software Reuse Research: Status and Future.

IEEE Transactions on Software Engineering, 31(7):529–536, July 2005.

[FM07] Christoph Ficek and Fabian May. Umsetzung der Java 5 Grammatik für Monti-

Core. Studienarbeit, Institut für Software Systems Engineering, Carl-Friedrich-

Gauß-Fakultät, Technische Universität Braunschweig, 2007.

[For82] Internet Engineering Task Force. RFC 826: An Ethernet Address Resolution

Protocol – or – Converting Network Protocol Addresses to 48.bit Ethernet Ad-

dress for Transmission on Ethernet Hardwar, November 1982. Updated by RFCs

5227, 5494.

[For89] Internet Engineering Task Force. RFC 1122: Requirements for Internet Hosts –

Communication Layers, October 1989.

[For00] Roger Forster. Manchester Encoding: Opposing Definitions Resolved. Engi-

neering Science and Education Journal, 9(6):278–280, Dec 2000.

[FP09] Steve Freeman and Nat Pryce. Growing Object-Oriented Software, Guided by

Tests. Addison-Wesley Professional, 2009.

[FS11] Kevin R. Fall and W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Proto-

cols. Addison-Wesley Professional Computing Series. Pearson Education, 2011.

[FSD03] Marc Frappier and Richard St-Denis. EB3: an Entity-based Black-box Spec-

ification Method for Information Systems. Software and Systems Modeling,

2(2):134–149, July 2003.

[Fuc95] Max Fuchs. Formal Design of a Modulo-N Counter. Technical Report TUM-

I9512, Technische Univerität München, 1995.

[Gal04] Daniel Galin. Software Quality Assurance: From Theory to Implementation.

Pearson education, 2004.

[GAO94] David Garlan, Robert Allen, and John Ockerbloom. Exploiting style in archi-

tectural design environments. SIGSOFT Softw. Eng. Notes, 19(5):175–188, De-

cember 1994.

[Gar95] David Garlan. An introduction to the Aesop system, 1995.

350

Bibliography

[GGR06] Boris Gajanovic, Hans Grönniger, and Bernhard Rumpe. From MDD Concepts

to Experiments and Illustrations, chapter Model Driven Testing of Time Sensi-

tive Distributed Systems, pages 131–148. ISTE Ltd., 2006.

[GH10] Olivier Gilles and Jérôme Hugues. Expressing and Enforcing User-Defined Con-

straints of AADL Models. In 15th IEEE International Conference on Engineer-

ing of Complex Computer Systems (ICECCS), pages 337–342, March 2010.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-

fessional, 1995.

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bern-

hard Rumpe. View-based Modeling of Function Nets. In Proceedings of the

Object-oriented Modelling of Embedded Real-Time Systems (OMER4) Work-

shop, Paderborn, Germany, October 2007.

[GHK+15] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pedram

Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk

Reiss, Alexander Roth, Bernhard Rumpe, Martin Schindler, and Andreas Wort-

mann. A Comparison of Mechanisms for Integrating Handwritten and Generated

Code for Object-Oriented Programming Languages. In Slimane Hammoudi,

Luis Ferreira Pires, Philippe Desfray, and Joaquim Filipe Filipe, editors, Pro-

ceedings of the 3rd International Conference on Model-Driven Engineering and

Software Development, pages 74–85, Angers, Loire Valley, France, February

2015. SciTePress.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven

Völkel. MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung

domänspezifischer Sprachen. Informatik-Bericht 2006-04, TU Braunschweig,

Deutschland, August 2006.

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven

Völkel. MontiCore: a Framework for the Development of Textual Domain Spe-

cific Languages. In 30th International Conference on Software Engineering

(ICSE 2008), Leipzig, Germany, May 10-18, 2008, Companion Volume, pages

925–926, 2008.

[GMW97] David Garlan, Robert Monroe, and David Wile. Acme: An Architecture De-

scription Interchange Language. In Proceedings of the 1997 Conference of the

Centre for Advanced Studies on Collaborative Research, CASCON ’97. IBM

Press, 1997.

[Hau06] Matthew Hause. The SysML Modelling Language. In Fifth European Systems

Engineering Conference, September 2006.

[Hei12] Matthias Heinz. Modellbasierte Entwicklung und Konfiguration des zeitges-

teuerten FlexRay Bussystems. Steinbuch Series on Advances in Information

Technology / Karlsruher Institut für Technologie, Institut für Technik der Infor-

351

Bibliography

mationsverarbeitung. KIT Scientific Publishing, Karlsruhe, 2012.

[Her14] Christoph Herrmann. Integrierte Software Engineering Services zur effizienten

Unterstützung von Entwicklungsprojekten. Aachener Informatik-Berichte, Soft-

ware Engineering Band 16. Shaker Verlag, Aachen, Deutschland, 2014.

[HF10] Florian Hölzl and Martin Feilkas. AutoFocus 3 - A Scientific Tool Prototype

for Model-Based Development of Component-Based, Reactive, Distributed Sys-

tems. In Holger Giese, Gabor Karsai, Edward Lee, Bernhard Rumpe, and Bern-

hard Schätz, editors, Model-Based Engineering of Embedded Real-Time Sys-

tems, LNCS 6100, pages 317–322. Springer Berlin Heidelberg, 2010.

[HG13] Jérôme Hugues and Serban Gheoghe. The AADL Constraint Annex. In SAE

2013 AeroTech Congress & Exhibition, Montreal, Canada, September 2013. un-

published.

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller,

Bernhard Rumpe, and Ina Schaefer. Engineering Delta Modeling Languages.

In Proceedings of the 17th International Software Product Line Conference

(SPLC’13), pages 22–31, Tokyo, Japan, September 2013. ACM.

[HHK+15] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller,

Bernhard Rumpe, Ina Schaefer, and Christoph Schulze. Systematic Synthesis of

Delta Modeling Languages. International Journal on Software Tools for Tech-

nology Transfer, pages 1–26, 2015.

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bern-

hard Rumpe, and Ina Schaefer. First-Class Variability Modeling in Mat-

lab/Simulink. In Proceedings of the Seventh International Workshop on Vari-

ability Modelling of Software-intensive Systems (VaMoS’13), pages 11–18, Pisa,

Italy, January 2013. ACM, New York, NY, USA.

[HKR+11] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina Schaefer.

Delta-oriented Architectural Variability Using MontiCore. In ECSA ’11 5th Eu-

ropean Conference on Software Architecture: Companion Volume, New York,

NY, USA, September 2011. ACM New York.

[HLMSN+15] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez,

Bernhard Rumpe, Steven Völkel, and Andreas Wortmann. Integration of Hetero-

geneous Modeling Languages via Extensible and Composable Language Com-

ponents. In Slimane Hammoudi, Luis Ferreira Pires, Philippe Desfray, and

Joaquim Filipe Filipe, editors, Proceedings of the 3rd International Conference

on Model-Driven Engineering and Software Development, pages 19–31, Angers,

Loire Valley, France, February 2015. SciTePress.

[HLP+14] Florian Hölzl, Christian Leuxner, Birgit Penzenstadler, Martin Haldenmair,

Christoph Döbber, and Andreas Wandinger. AutoFOCUS 3 The Picture Book.

Technical report, Institut für Informatik, Software and Systems Engineering, TU

Munich, 2014. unpublished, 13.12.14.

352

Bibliography

[Hoa85] Charles A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[Hom12] Christoph Hommelsheim. Entwicklung eines erweiterbaren Generator-

Frameworks für Modelldokumentationen. Bachelor thesis, RWTH Aachen Uni-

versity, February 2012.

[HRR10] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. Towards Architectural

Programming of Embedded Systems. In Tagungsband des Dagstuhl-Workshop

MBEES: Modellbasierte Entwicklung eingebetteterSysteme VI, Informatik-

Bericht 2010-01, pages 13 – 22, Dagstuhl Castle, Germany, February 2010.

fortiss GmbH, Germany.

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der

Linden. Hierarchical Variability Modeling for Software Architectures. In Pro-

ceedings of International Software Product Lines Conference (SPLC’11), pages

150–159, Munich, Germany, August 2011. IEEE Computer Society.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architectural

Modeling of Interactive Distributed and Cyber-Physical Systems. Technical Re-

port AIB-2012-03, RWTH Aachen University, February 2012.

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Modeling

for Software Architectures. In Tagungsband des Dagstuhl-Workshop MBEES:

Modellbasierte Entwicklung eingebetteterSysteme VII, pages 1 – 10, Munich,

Germany, February 2011. fortiss GmbH.

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving

Delta-oriented Software Product Line Architectures. In D. Garlan and R. Ca-

linescu, editors, Large-Scale Complex IT Systems. Development, Operation and

Management, 17th Monterey Workshop 2012, LNCS 7539, pages 183–208, Ox-

ford, UK, March 2012. Springer, Germany.

[HST10] Florian Hölzl, Maria Spichkova, and David Trachtenherz. AutoFocus Tool

Chain. Technical Report TUM-I1021, Technische Universität München, novem-

ber 2010.

[HWF+10] Jörgen Hansson, Lutz Wrage, Peter H. Feiler, John Morley, Bruce Lewis, and

J’erôme Hugues. Architectural Modeling to Verify Security and Nonfunctional

Behavior. Security Privacy, IEEE, 8(1):43–49, January 2010.

[ICG+04] James Ivers, Paul Clements, David Garlan, Robert Nord, Bradley Schmerl,

and Oviedo Silva. Documenting Component and Connector Views with UML

2.0. Technical Report CMU/SEI-2004-TR-008, Software Engineering Institute,

Carnegie Mellon University, 2004.

[IEE11] IEEE Standard for Standard SystemC Language Reference Manual, September

2011. http://standards.ieee.org/getieee/1666/download/

1666-2011.pdf.

[IEE12] IEEE 802.3TM: Standard for Ethernet, 2012. http://standards.ieee.

353

http://standards.ieee.org/getieee/1666/download/1666-2011.pdf
http://standards.ieee.org/getieee/1666/download/1666-2011.pdf
http://standards.ieee.org/about/get/802/802.3.html
http://standards.ieee.org/about/get/802/802.3.html
http://standards.ieee.org/about/get/802/802.3.html

Bibliography

org/about/get/802/802.3.html.

[Ix12] Tim Ix. Entwicklung einer wiederverwendbaren Komponentenbibliothek zur

Überwachung von Online-Systeme. Bachelor thesis, RWTH Aachen University,

2012.

[JSR14] JSR 360: Connected Limited Device Configuration 8., April 2014. https:

//www.jcp.org/en/jsr/detail?id=360.

[Kau13] Oliver Kautz. Implementation and Comparison of Distributed System Case

Studies Using MontiArc. Bachelor thesis, RWTH Aachen University, 2013.

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin

Schindler, and Steven Völkel. Design Guidelines for Domain Specific Lan-

guages. In M. Rossi, J. Sprinkle, J. Gray, and J.-P. Tolvanen, editors, Proceed-

ings of the 9th OOPSLA Workshop on Domain-Specific Modeling (DSM’09),

Techreport B-108, pages 7–13, Orlando, Florida, USA, October 2009. Helsinki

School of Economics.

[KM05] Martin Kempa and Zoltán Adám Mann. Model Driven Architecture. Informatik-

Spektrum, 28(4):298–302, 2005.

[KND+09] Roy Kawahara, Hiroaki Nakamura, Dolev Dotan, Andrei Kirshin, Takashi

Sakairi, Shinichi Hirose, Kohichi Ono, and Hiroshi Ishikawa. Verification of

Embedded System’s Specification Using Collaborative Simulation of SysML

and Simulink Models. In International Conference on Model-Based Systems

Engineering, 2009 (MBSE ’09)., pages 21–28, March 2009.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering. Aachener Informatik-Berichte, Software

Engineering Band 1. Shaker Verlag, Aachen, Deutschland, März 2010.

[KRH+05] Petri Kukkala, Jouni Riihimäki, Marko Hännikäinen, Timo D. Hämäläinen, and

Klaus Kronlöf. UML 2.0 Profile for Embedded System Design. In Proceedings

of the conference on Design, Automation and Test in Europe - Volume 2, DATE

’05, pages 710–715, Washington, DC, USA, 2005. IEEE Computer Society.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Devel-

opment using Domain Specific Modelling Languages. In J. Gray, J.-P. Tolvanen,

and J. Sprinkle, editors, Proceedings of the 6th OOPSLA Workshop on Domain-

Specific Modeling 2006 (DSM’06), Technical Report TR-37, pages 150–158,

Portland, Oregon, USA, October 2006. Jyväskylä University, Finland.

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor Genera-

tion for Compositional DSLs in Eclipse. In J. Sprinkle, J. Gray, M. Rossi, and

J.-P. Tolvanen, editors, Proceedings of the 7th OOPSLA Workshop on Domain-

Specific Modeling (DSM’07), Technical Reports TR-38, Montreal, Quebec,

Canada, October 2007. Jyväskylä University, Finland.

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition of

354

http://standards.ieee.org/about/get/802/802.3.html
http://standards.ieee.org/about/get/802/802.3.html
http://standards.ieee.org/about/get/802/802.3.html
https://www.jcp.org/en/jsr/detail?id=360
https://www.jcp.org/en/jsr/detail?id=360

Bibliography

Abstract and Concrete Syntax for Textual Languages. In Proceedings of Models

2007, pages 286–300, 2007.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular De-

velopment of Textual Domain Specific Languages. In R.F. Paige and B. Meyer,

editors, Proceedings of the 46th International Conference Objects, Models,

Components, Patterns (TOOLS-Europe), LNBIP 11, pages 297–315, Zurich,

Switzerland, July 2008. Springer, Germany.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Frame-

work for Compositional Development of Domain Specific Languages. Inter-

national Journal on Software Tools for Technology Transfer (STTT), 12(5):353–

372, September 2010.

[LAPJ10] Marc M. Lankhorst, Henderik Alex P., and Henk Jonkers. The Anatomy of the

Archimate Language. International Journal of Information System Modeling

and Design, 1(1):1–32, 2010.

[Lee10] Edward A. Lee. Disciplined Heterogeneous Modeling. In Dorina C. Petriu,

Nicolas Rouquette, and Øystein Haugen, editors, Model Driven Engineering

Languages and Systems, LNCS 6395, pages 273–287. Springer Berlin Heidel-

berg, 2010.

[Lim94] W.C. Lim. Effects of Reuse on Quality, Productivity, and Economics. Software,

IEEE, 11(5):23–30, September 1994.

[LKA+95] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug

Bryan, and Walter Mann. Specification and Analysis of System Architecture

Using Rapide. IEEE Transactions on Software Engineering, 21:336–355, 1995.

[LNPR+13] Markus Look, Antonio Navarro Pérez, Jan Oliver Ringert, Bernhard Rumpe, and

Andreas Wortmann. Black-box Integration of Heterogeneous Modeling Lan-

guages for Cyber-Physical Systems. In B. Combemale, J. De Antoni, and R. B.

France, editors, Proceedings of the 1st Workshop on the Globalization of Model-

ing Languages (GEMOC), CEUR Workshop Proceedings 1102, Miami, Florida,

USA, 2013.

[LV95] David C. Luckham and James Vera. An Event-Based Architecture Defini-

tion Language. IEEE Transactions on Software Engineering, 21(9):717–734,

September 1995.

[MBB95] Walcélio L. Melo, Lionel C. Briand, and Victor R. Basili. Measuring the Impact

of Reuse on Quality and Productivity in Object-Oriented Systems. Technical Re-

port CS-TR-3395, University of Maryland, Departement of Computer Science,

College Park, MD, USA, January 1995.

[MDEK95] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Specifying Dis-

tributed Software Architectures. In Proceedings of the 5th European Software

Engineering Conference, pages 137–153, London, UK, 1995. Springer-Verlag.

355

Bibliography

[MDT07] Nenad Medvidovic, Eric Dashofy, and Richard N. Taylor. Moving Architectural

Description from Under the Technology Lamppost. Information and Software

Technology, 49(1):12–31, 2007.

[MK96] Jeff Magee and Jeff Kramer. Dynamic Structure in Software Architectures. SIG-

SOFT Softw. Eng. Notes, 21(6):3–14, October 1996.

[MKM06] Andrew McVeigh, Jeff Kramer, and Jeff Magee. Using Resemblance to Sup-

port Component Reuse and Evolution. In Proceedings of the 2006 Conference

on Specification and Verification of Component-based Systems, SAVCBS ’06,

pages 49–56, New York, NY, USA, 2006. ACM.

[MLM+13] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and

Antony Tang. What Industry Needs from Architectural Languages: A Survey.

IEEE Transactions on Software Engineering, 39(6):869–891, 2013.

[Mos09] Pieter J. Mosterman. Elements of a Robotics Research Roadmap: A Model-

Based Design Perspective, 2009.

[MSMB04] J. Bret Michael, Man-Tak Shing, Michael H. Miklaski, and Joel D. Babbitt.

Modeling and Simulation of System-of-Systems Timing Constraints with UML-

RT and OMNeT++. In Proceedings of the 15th IEEE International Workshop

on Rapid System Prototyping, 2004., pages 202–209, June 2004.

[MSN11] Pedram Mir Seyed Nazari. Architektur Alignment von Java Systemen. Diploma

thesis, RWTH Aachen University, September 2011.

[MSUW02] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. Model-Driven

Architecture. In Jean-Michel Bruel and Zohra Bellahsene, editors, Advances

in Object-Oriented Information Systems, LNCS 2426, pages 290–297. Springer

Berlin Heidelberg, 2002.

[MT00] Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison

Framework for Software Architecture Description Languages. IEEE Transac-

tions on Software Engineering, 26(1):70–93, January 2000.

[NBKN14] Viet Yen Nguyen, Benjamin Bittner, Joost-Pieter Katoen, and Thomas Noll.

Compositional Analysis Using Component-Oriented Interpolation. In Proceed-

ings of the Formal Aspects of Component Software (FACS 2014), 2014.

[NPR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architectures

as Interactive Systems. In I. Ober, A. S. Gokhale, J. H. Hill, J.-M. Bruel,

M. Felderer, D. Lugato, and A. Dabholka, editors, Proceedings of the 2nd

International Workshop on Model-Driven Engineering for High Performance

and Cloud Computing, CEUR 1118, pages 15–24, Miami, Florida, USA, 2013.

CEUR-WS.org.

[NXD+04] Leila Naslavsky, Lihua Xu, Marcio Dias, Hadar Ziv, and Debra J. Richardson.

Extending xADL with Statechart Behavioral Specification. In Proceedings of

the Twin Workshops on Architecting Dependable Systems at International Con-

356

Bibliography

ference of Software Engineering, pages 22–26, 2004.

[ÖBM10] Peter C. Ölveczky, Artur Boronat, and José Meseguer. Formal Semantics and

Analysis of Behavioral AADL Models in Real-Time Maude. In John Hatcliff

and Elena Zucca, editors, Formal Techniques for Distributed Systems, LNCS

6117, pages 47–62. Springer Berlin Heidelberg, 2010.

[OL06] Ian Oliver and Vesa Luukkala. On UML’s Composite Structure Diagram. In

Proceedings of the 5th Workshop on System Analysis and Modelling, June 2006.

[OL07a] Martin Ouimet and Kristina Lundqvist. The TASM Toolset: Specification, Sim-

ulation, and Formal Verification of Real-Time Systems. In Werner Damm and

Holger Hermanns, editors, Computer Aided Verification, LNCS 4590, pages

126–130. Springer Berlin Heidelberg, 2007.

[OL07b] Martin Ouimet and Kristina Lundqvist. The Timed Abstract State Machine Lan-

guage: An Executable Specification Language for Reactive Real-Time Systems.

In Proceedings of the 15th International Conference on Real-Time and Network

Systems (RTNS ’07), 2007.

[ÖM07] Peter C. Ölveczky and José Meseguer. Semantics and Pragmatics of Real-Time

Maude. Higher-Order and Symbolic Computation, 20(1-2):161–196, 2007.

[OMG11a] Object Management Group. OMG UML Profile for MARTE: Modeling and

Analysis of Real-Time Embedded Systems, version 1.1. http://www.omg.

org/spec/MARTE/1.1/, 2011. Release date June 2011.

[OMG11b] Object Management Group. OMG Unified Modeling Language (UML), version

2.4.1. http://www.omg.org/spec/UML/2.4.1/, 2011. Release date

August 2011.

[OMG12] Object Management Group. OMG Systems Modeling Language (SysML), Ver-

sion 1.3.. http://www.omg.org/spec/SysML/1.3/, 2012. Release

date June 2012.

[Pan10] Rajesh K. Pandey. Architectural Description Languages (ADLs) vs UML: A

Review. SIGSOFT Software Engineering Notes, 35(3):1–5, May 2010.

[PBF+07a] Russell S. Peak, Roger M. Burkhart, Sanford A. Friedenthal, Miyako W. Wilson,

Manas Bajaj, and Injoong Kim. Simulation-Based Design Using SysML Part 1:

A Parametrics Primer. In INCOSE International Symposium, pages 1516–1535.

Wiley Online Library, 2007.

[PBF+07b] Russell S. Peak, Roger M. Burkhart, Sanford A. Friedenthal, Miyako W. Wilson,

Manas Bajaj, and Injoong Kim. Simulation-Based Design Using SysML Part 2:

Celebrating Diversity by Example. In INCOSE International Symposium, pages

1535–1556. Wiley Online Library, 2007.

[Pet13] Marian Petre. UML in Practice. In 35th International Conference on Software

Engineering (ICSE 2013), pages 722–731, San Francisco, CA, USA, May 2013.

357

http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/SysML/1.3/

Bibliography

[Pto14] Claudius Ptolemaeus, editor. System Design, Modeling, and Simulation using

Ptolemy II. Ptolemy.org, 2014.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Soft-

ware Architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–52,

October 1992.

[Rab13] Rajeevan Rabindran. Model-Driven Development and Simulation of FlexRay-

Based Systems Using MontiArc. Diploma thesis, RWTH Aachen University,

July 2013.

[RCS13] Jean-Paul Rodrigue, Claude Comtois, and Brian Slack. The Geography of Trans-

port Systems. Routledge, New York, New York, NY, USA, 3rd edition, 2013.

[Rei12] Konrad Reif. Bussysteme. In Automobilelektronik, Seiten 1–34.

Vieweg+Teubner Verlag, 2012.

[Rin14] Jan Oliver Ringert. Analysis and Synthesis of Interactive Component and Con-

nector Systems. Aachener Informatik-Berichte, Software Engineering Band 19.

Shaker Verlag, Aachen, Deutschland, 2014.

[Roy70] Winston W. Royce. Managing the Development of Large Software Systems. In

Proceedings of IEEE WESCON, pages 1–9, August 1970.

[RR11] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on Streams, Stream

Processing Functions, and State-Based Stream Processing. International Jour-

nal of Software and Informatics, 5(1-2):29–53, July 2011.

[RR15] Alexander Roth and Bernhard Rumpe. Towards Product Lining Model-Driven

Development Code Generators. In Slimane Hammoudi, Luis Ferreira Pires,

Philippe Desfray, and Joaquim Filipe Filipe, editors, Proceedings of the 3rd

International Conference on Model-Driven Engineering and Software Develop-

ment, pages 539–545, Angers, Loire Valley, France, February 2015. SciTePress.

[RRW12] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. A Requirements

Modeling Language for the Component Behavior of Cyber Physical Robotics

Systems. In Seyff, N. and Koziolek, A., editor, Modelling and Quality in Re-

quirements Engineering: Essays Dedicated to Martin Glinz on the Occasion of

His 60th Birthday, pages 133–146. Monsenstein und Vannerdat, Münster, 2012.

[RRW13a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. A Case Study on

Model-Based Development of Robotic Systems using MontiArc with Embedded

Automata. In Holger Giese, Michaela Huhn, Jan Philipps, and Bernhard Schätz,

editors, Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung eingebetteter

Systeme, pages 30–43, 2013.

[RRW13b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Software

Architecture Structure and Behavior Modeling to Implementations of Cyber-

Physical Systems. Software Engineering 2013 Workshopband, LNI P-215:155–

170, May 2013.

358

Bibliography

[RRW13c] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiArcAu-

tomaton: Modeling Architecture and Behavior of Robotic Systems. In Work-

shops and Tutorials Proceedings of the 2013 IEEE International Conference on

Robotics and Automation (ICRA’13), pages 10–12, Karlsruhe, Germany, May

2013.

[RRW14] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Multi-Platform

Generative Development of Component & Connector Systems using Model and

Code Libraries. In 1st International Workshop on Model-Driven Engineering for

Component-Based Systems (ModComp 2014), CEUR Workshop Proceedings 1,

pages 26 – 35, Valencia, Spain, September 2014.

[RSG+08] Stephan Reichelt, Karsten Schmidt, Frank Gesele, Nils Seidler, and Wolfram

Hardt. Nutzung von FlexRay als zeitgesteuertes automobiles Bussystem im

AUTOSAR-Umfeld. In Peter Holleczek and Birgit Vogel-Heuser, Editoren,

Mobilität und Echtzeit, Informatik aktuell, Seiten 79–87. Springer Berlin Hei-

delberg, 2008.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter

Systeme. Herbert Utz Verlag Wissenschaft, München, Deutschland, 1996.

[Rum11] Bernhard Rumpe. Modellierung mit UML. Springer, Deutschland, 2te Edition,

September 2011.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfälle,

Refactoring. Springer, Deutschland, 2te Edition, Juni 2012.

[SAE11] SAE Standard AS5506/2: SAE Architecture Analysis and Design Language

(AADL) Annex Volume 2., January 2011. http://standards.sae.org/

as5506/2/.

[SAE12] SAE Standard AS5506B: Architecture Analysis and Design Language (AADL

V2.1)., September 2012. http://standards.sae.org/as5506b/.

[SAE14] SAE Standard SAE AS 5506/1: Architecture Analysis and Design Language

(AADL) Annex Volume 1: Annex A: Graphical AADL Notation, Annex C:

AADL Meta-Model and Interchange Formats, Annex D: Language Compliance

and Application Program Interface Annex E: Error Model Annex., July 2014.

http://standards.sae.org/wip/as5506/1a/.

[Sch01] Bradley Schmerl. xAcme: CMU Acme Extensions to xArch, 2001. https:

//www.cs.cmu.edu/˜acme/pub/xAcme/guide.pdf.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der

UML/P. Aachener Informatik-Berichte, Software Engineering Band 11. Shaker

Verlag, Aachen, Deutschland, 2012.

[Sch13] Stefan Schubert. Development and Implementation of the TCP/IP Stack in Mon-

tiArc. Bachelor Thesis, RWTH Aachen University, 2013.

[Sel98] Bran Selic. Using UML for Modeling Complex Real-Time Systems. In Frank

359

http://standards.sae.org/as5506/2/
http://standards.sae.org/as5506/2/
http://standards.sae.org/as5506b/
http://standards.sae.org/wip/as5506/1a/
https://www.cs.cmu.edu/~acme/pub/xAcme/guide.pdf
https://www.cs.cmu.edu/~acme/pub/xAcme/guide.pdf

Bibliography

Mueller and Azer Bestavros, editors, Languages, Compilers, and Tools for Em-

bedded Systems, Lecture Notes in Computer Science 1474, pages 250–260.

Springer Berlin Heidelberg, 1998.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an

Emerging Discipline. Prentice Hall, 1996.

[SGW94] Bran Selic, Garth Gullekson, and Paul T Ward. Real-Time Object-Oriented Mod-

eling. John Wiley & Sons New York, 1994.

[SSL11] Christian Schlegel, Andreas Steck, and Alex Lotz. Model-Driven Software De-

velopment in Robotics: Communication Patterns as Key for a Robotics Compo-

nent Model. In Daisuke Chugo and Sho Yokota, editors, Introduction to Modern

Robotics. iConcept Press, 2011.

[SSP08] João Costa Seco, Ricardo Silva, and Margarida Piriquito. ComponentJ:

A Component-Based Programming Language with Dynamic Reconfiguration.

Computer Science and Information Systems, 05(2), 2008.

[ŞVE03] Ahmet Y. Şekercioğlu, András Varga, and Gregory K. Egan. Parallel Simulation

Made Easy With OMNeT+. In Proceedings of the 15th European Simulation

Symposium (ESS2003), October 2003.

[SW99] Frank Strobl and Alexander Wisspeintner. Specification of an Elevator Control

System – An AutoFocus Case Study. Technical Report TUM-I9906, Technische

Univerität München, 1999.

[tBFGM08] Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, and Franco Mazzanti.

An Action/State-Based Model-Checking Approach for the Analysis of Commu-

nication Protocols for Service-Oriented Applications. In Stefan Leue and Pedro

Merino, editors, Formal Methods for Industrial Critical Systems, LNCS 4916,

pages 133–148. Springer Berlin Heidelberg, 2008.

[TMD09] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. Software Archi-

tecture: Foundations, Theory, and Practice. Wiley Publishing, 2009.

[TSS08] Jean-François Tilman, Romain Sezestre, and Amélie Schyn. Simulation of Sys-

tem Architectures with AADL. In Proceedings of 4th International Congress on

Embedded Real-Time Systems, ERTS ’08, Toulouse, France, 2008.

[Var14] András Varga. OMNeT++ User Manual Version 4.6, November 2014.

[VG07] Markus Völter and Iris Groher. Product Line Implementation using Aspect-

Oriented and Model-Driven Software Development. In Software Product Line

Conference, 2007. SPLC 2007. 11th International, pages 233–242, September

2007.

[VGV09] Roberto Varona-Gómez and Eugenio Villar. AADL Simulation and Performance

Analysis in SystemC. In Proceedings of the 14th IEEE International Conference

on the Engineering of Complex Computer Systems, pages 323–328. IEEE Com-

puter Society, June 2009.

360

Bibliography

[VGV10] Roberto Varona-Gómez and Eugenio Villar. Aads+: Aadl simulation including

the behavioral annex. In Proceedings of the 15th IEEE International Conference

on Engineering of Complex Computer Systems, pages 379–384. IEEE Computer

Society, March 2010.

[VH08] András Varga and Rudolf Hornig. An Overview of the OMNeT++ Simulation

Environment. In Proceedings of the 1st International Conference on Simula-

tion Tools and Techniques for Communications, Networks and Systems & Work-

shops, Simutools ’08, pages 60:1–60:10, ICST, Brussels, Belgium, Belgium,

2008. ICST (Institute for Computer Sciences, Social-Informatics and Telecom-

munications Engineering).

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer Sprachen.

Aachener Informatik-Berichte, Software Engineering Band 9. Shaker Verlag,

Aachen, Deutschland, 2011.

[WH05] Eoin Woods and Rich Hilliard. Architecture Description Languages in Practice

Session Report. In Proceedings of the 5th Working IEEE/IFIP Conference on

Software Architecture (WICSA 2005), pages 243–246, 2005.

[Wil06] Doris Wild. AutoFocus 2 – Das Bilderbuch. Technical Report TUM-I0610,

Institut für Informatik, Technische Universität München, 2006.

[WNS+05] Cédric Wilwert, Nicolas Navet, Ye-Qiong Song, Françoise Simonot-Lion, et al.

Design of Automotive X-by-Wire Systems. The Industrial Communication

Technology Handbook, 2005.

[Woo05] Eoin Woods. Architecture Description Languages and Information Systems Ar-

chitects: Never the Twain Shall Meet?, February 2005. IFIP WG 2.10 Software

Architecture Meeting White Paper.

[www11] The Ptolemy Project website. http://ptolemy.eecs.berkeley.edu/,

2011. Accessed 06/2011.

[www12] MontiCore website http://www.monticore.de, 2012. Accessed

02/2012.

[www13a] Antlr website http://www.antlr.org, 2013. Accessed 01/2013.

[www13b] Freemarker website http://freemarker.org/, 2013. Accessed 01/2013.

[www13c] JUnit website http://junit.org/, 2013. Accessed 03/2013.

[www13d] Matlab/Simulink website http://de.mathworks.com/, 2013. Accessed

12/2013.

[www13e] Xtext website https://eclipse.org/Xtext/, 2013. Accessed 12/2013.

[www14a] AADL Inspector website http://www.ellidiss.com/products/

aadl-inspector/, 2014. Accessed 12/2014.

[www14b] AADL website http://www.aadl.info, 2014. Accessed 12/2014.

361

http://ptolemy.eecs.berkeley.edu/
http://www.monticore.de
http://www.antlr.org
http://freemarker.org/
http://junit.org/
http://de.mathworks.com/
https://eclipse.org/Xtext/
http://www.ellidiss.com/products/aadl-inspector/
http://www.ellidiss.com/products/aadl-inspector/
http://www.aadl.info

Bibliography

[www14c] ADML website http://www.opengroup.org/architecture/

adml/adml_home.htm, 2014. Accessed 12/2014.

[www14d] Alternating Bit Protocol in the Free On-Line Dictionary of Computing

http://foldoc.org/Alternating+bit+protocol, 2014. Ac-

cessed 03/2014.

[www14e] ArchStudio website http://isr.uci.edu/projects/archstudio/,

2014. Accessed 12/2014.

[www14f] AutoFocus 3 website http://af3.fortiss.org/, 2014. Accessed

12/2014.

[www14g] COMPASS Project website http://compass.informatik.

rwth-aachen.de/, 2014. Accessed 12/2014.

[www14h] CPN-AMI website http://move.lip6.fr/software/CPNAMI/,

2014. Accessed 03/2014.

[www14i] fortis website http://www.fortiss.org/, 2014. Accessed 12/2014.

[www14j] Maven build lifecycle website https://maven.apache.org/guides/

introduction/introduction-to-the-lifecycle.html, 2014.

Accessed 05/2014.

[www14k] Maven website https://maven.apache.org/, 2014. Accessed 05/2014.

[www14l] Modelica website https://www.modelica.org/, 2014. Accessed

12/2014.

[www14m] Ocarina website http://www.openaadl.org/ocarina.html, 2014.

Accessed 12/2014.

[www14n] OMNeT++ website http://omnetpp.org/, 2014. Accessed 12/2014.

[www14o] Osate 2 website https://wiki.sei.cmu.edu/aadl/index.php?

title=Osate_2&oldid=4742, 2014. Accessed 12/2014.

[www14p] RAMSES website http://penelope.enst.fr/aadl/wiki/

Projects#RAMSES, 2014. Accessed 12/2014.

[www14q] Ruby on Rails website http://www.rubyonrails.org/, 2014. Ac-

cessed 03/2014.

[www14r] SCoPE website http://www.teisa.unican.es/gim/en/scope/

scope_web/scope_home.php, 2014. Accessed 12/2014.

[www14s] taste website http://taste.tuxfamily.org/, 2014. Accessed

12/2014.

[www14t] The Acme Project website. https://www.cs.cmu.edu/˜acme/, 2014.

Accessed 12/2014.

[www14u] The AcmeStudio website. https://www.cs.cmu.edu/˜./acme/

AcmeStudio/index.html, 2014. Accessed 12/2014.

362

http://www.opengroup.org/architecture/adml/adml_home.htm
http://www.opengroup.org/architecture/adml/adml_home.htm
http://foldoc.org/Alternating+bit+protocol
http://isr.uci.edu/projects/archstudio/
http://af3.fortiss.org/
http://compass.informatik.rwth-aachen.de/
http://compass.informatik.rwth-aachen.de/
http://move.lip6.fr/software/CPNAMI/
http://www.fortiss.org/
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/
https://www.modelica.org/
http://www.openaadl.org/ocarina.html
http://omnetpp.org/
https://wiki.sei.cmu.edu/aadl/index.php?title=Osate_2&oldid=4742
https://wiki.sei.cmu.edu/aadl/index.php?title=Osate_2&oldid=4742
http://penelope.enst.fr/aadl/wiki/Projects#RAMSES
http://penelope.enst.fr/aadl/wiki/Projects#RAMSES
http://www.rubyonrails.org/
http://www.teisa.unican.es/gim/en/scope/scope_web/scope_home.php
http://www.teisa.unican.es/gim/en/scope/scope_web/scope_home.php
http://taste.tuxfamily.org/
https://www.cs.cmu.edu/~acme/
https://www.cs.cmu.edu/~./acme/AcmeStudio/index.html
https://www.cs.cmu.edu/~./acme/AcmeStudio/index.html

Bibliography

[www14v] TINA website http://projects.laas.fr/tina//papers.php,

2014. Accessed 03/2014.

[www14w] Validas AG website http://www.validas.de/, 2014. Accessed 12/2014.

[www14x] xADL website. http://isr.uci.edu/projects/xarchuci/, 2014.

Accessed 18/2014.

[www14y] xArch website. http://isr.uci.edu/architecture/xarch/, 2014.

Accessed 18/2014.

[www15a] CDO model repositories website http://www.eclipse.org/cdo/,

2015. Accessed 12/2015.

[www15b] Papyrus website http://www.eclipse.org/papyrus/, 2015. Ac-

cessed 03/2015.

[www15c] PolarSys website http://www.polarsys.org/, 2015. Accessed 03/2015.

[www15d] VNuSMV website http://nusmv.fbk.eu/, 2015. Accessed 12/2015.

[www15e] Z3 website https://github.com/Z3Prover/z3, 2015. Accessed

12/2015.

[Xio02] Yuhong Xiong. An Extensible Type System for Component-Based Design. PhD

thesis, EECS Department, University of California, Berkeley, 2002.

[YHMP09] Zhibin Yang, Kai Hu, Dianfu Ma, and Lei Pi. Towards a Formal Semantics for

the AADL Behavior Annex. In Design, Automation & Test in Europe Conference

& Exhibition, 2009. DATE’09., pages 1166–1171. IEEE, 2009.

363

http://projects.laas.fr/tina//papers.php
http://www.validas.de/
http://isr.uci.edu/projects/xarchuci/
http://isr.uci.edu/architecture/xarch/
http://www.eclipse.org/cdo/
http://www.eclipse.org/papyrus/
http://www.polarsys.org/
http://nusmv.fbk.eu/
https://github.com/Z3Prover/z3

364

List of Figures

1.1 Component type definition LightCtrl that defines the architecture of the in-

terior light control of a car. 6

3.17 MontiCore grammar hierarchy of the MontiArc language. 52

3.30 Namespaces and identifier declarations in MontiArc with embedded OCL/P con-

straints. 58

3.55 CG1: Communication cycle between subcomponents. 74

4.3 Excerpt of component LightCtrl. 90

4.4 Instantiation of components as simulation objects. Step 1: instantiate compo-

nents from top to bottom. 90

4.5 Instantiation of components as simulation objects. Step 2: instantiate ports of

atomic components. 91

4.6 Instantiation of components as simulation objects. Step 3.1: instantiate forward-

ing ports. 91

4.7 Instantiation of components as simulation objects. Step 3.2: create connections. 92

4.8 Instantiation of components as simulation objects. Optimized object structure. . 92

4.9 Components and Ports in MontiArc’s runtime environment (RTE). 93

4.10 MontiArc’s RTE. The User RTE parts are used when setting up a simulation or

atomic components are implemented. Parts of the Simulator RTE are used by

the scheduler and the generated simulation code (see section 5.4). 94

4.11 Components and Timing in MontiArcs RTE. 95

4.12 Default Simulation Scheduler. 97

4.13 Scheduled component c and the state of it’s ports. 97

4.14 Scheduling data messages on a tickfree port. 98

4.15 Scheduling data messages on a blocked port. 99

4.16 Scheduling of any
√

messages. 100

4.17 Scheduling the final
√

message. 101

4.18 Scheduling of data or
√

messages on a port which is already involved in a

scheduling process. 102

4.19 Object diagram which depicts the initial situation of the ’waking up ports’ scenario.103

4.20 Reorganization and waking up of ports. 104

4.21 Creation of timing domain specific event traces from timed input streams. . . . 106

4.26 Component setup used to compare the round robin scheduler (RRS) and the

presented MontiArc scheduler. 112

365

List of Figures

4.27 Comparison results: Round robin vs. MontiArc scheduler. The Performance

Increase Factor is the quotient of the average execution time of the RRS

and the average execution time of the MontiArc scheduler. Number of Mes-

sages = Number of ticks + Number of data messages. 113

4.28 Component LoadTest 2 50 used to compare the discussed scheduler variants

in a setup with many subcomponents with few ports. 116

4.29 Component LoadTest 100 8 used to compare the discussed scheduler vari-

ants in a setup with few subcomponents that have many ports. 117

4.30 Scheduler comparison results of the average execution time in milliseconds for

component LoadTest 2 50. The tick frequency of the distinct scenarios is rang-

ing from 64 to one. 118

4.31 Scheduler comparison results of the average execution time in milliseconds for

component LoadTest 100 8. The tick frequency of the distinct scenarios is rang-

ing from 64 to one. 119

5.1 Important classes of the MontiCore DSLTool-Framework according to [Kra10]. 126

5.2 Technical realization of MontiCore’s language composition mechanisms accord-

ing to [Völ11, Sch12]. 127

5.3 Object graph of the MontiArc DSLTool with the technical languages it uses. . . 127

5.4 Overview of MontiArc workflows and produced artifacts. 128

5.5 Relation of namespaces, symbol tables, and entries (according to [Völ11]). . . . 130

5.6 Most important technical symbol table components (according to [Völ11]). . . 132

5.7 Namespace hierarchy of component LightCtrl. 134

5.8 Entry classes of the MontiArc symbol table and their relations. 135

5.10 Relation between type definition and type reference manifested in the MontiArc

symbol table. 138

5.12 Difference between the public and the protected model interface. 139

5.14 Pre CoCo Trafo: Instantiation of Named Inner Component Definitions. 141

5.15 Pre CoCo Trafo: Qualify Subcomponent Connectors. 142

5.16 Pre CoCo Trafo: Expand autoconnect port (a) and type (b). 143

5.17 Pre CoCo Trafo: Expand Autoinstantiate. 143

5.18 Pre Codegeneration Trafo: Name Implicitly Named Subcomponents. 144

5.19 Pre Codegeneration Trafo: Name Implicitly Named Ports. 145

5.20 Pre Codegeneration Trafo: Expand Simple Connectors. 145

5.21 Pre Codegeneration Trafo: Qualify all Types. 146

5.22 Pre Codegeneration Trafo: Connecting Unconnected Incoming Ports of Sub-

components. 147

5.23 Pre Codegeneration Trafo: Connecting Unconnected Ports of Subcomponents. . 147

5.24 Important classes of MontiArc’s transformation framework. 148

5.26 Generated interface for a timed component. 150

5.27 Generated interface for an untimed component. 150

5.28 Generated interface for a generic component. 151

5.29 Generated abstract class for an atomic component. 152

366

List of Figures

5.30 Implementation of the component interface for an atomic component. 152

5.31 Generated code for a configurable atomic component. 153

5.32 Setting up atomic components. 153

5.33 Message propagation of atomic components. 154

5.34 Message sending of atomic components. 155

5.35 Generated method handleTick() that emits ticks at the end of a time interval. . . 156

5.36 Incoming ports of decomposed components. 157

5.37 Code generation for subcomponents. 158

5.38 Generated code for connectors from incoming ports of decomposed components

to incoming ports of subcomponents. 159

5.39 Generated code for connectors which connect two subcomponents. 159

5.40 Generated code for connectors which connect outgoing ports of subcomponents

with outgoing ports of decomposed components. 160

5.41 Atomic component DoorEvalUntimed, the corresponding generated super-

class, and the implementation. 161

5.43 Synchronous atomic component Adder, the corresponding generated super-

class, and the handwritten implementation. 163

5.45 Timed component Timer, the corresponding generated superclass, and the hand-

written implementation. 164

5.47 Generated factory for component DoorEval. 166

5.48 Custom factory to inject behavior implementations with custom names. 167

5.49 Exemplary dirty components. 168

5.51 Extension of the RTE to support single-in components. 170

5.52 Optimization: Difference between the generated code for single-in and regular

atomic components. 171

5.53 Optimization: Avoiding not needed ForwardPorts in decomposed components. . 172

5.58 MontiArc Eclipse integrated development environment (IDE). 180

6.1 Install MontiArc in Eclipse using the MontiArc update site. 182

6.2 A MontiArc Eclipse project. 183

6.3 Alternating Bit Protocol component model. 184

6.4 Import the initial example project. 186

6.5 Updating a Maven project. 186

6.9 Editor autocompletion to add subcomponents. 188

6.13 A running MontiArc Maven plugin. 190

6.14 Quick fix to add missing event methods. 191

6.15 Interactive ABP simulation. 192

6.18 Pattern to integrate existing C code into atomic MontiArc components. 194

6.21 Metamodell with the most important elements of the I/O-Test Language. 197

6.25 Screenshot of executed I/O-Tests with the failing test bufferMessages2. . . 200

6.26 Instrumented ports of ABPSender’s subcomponents in a white-box test. 201

6.36 Involved classes of a parallelized optimization test. 211

6.41 Index page of the generated ABP documentation. 216

367

List of Figures

6.42 Layers of a component library. 217

6.45 A physically distributed ABP simulation. 222

7.1 Activities to extend the processing of MontiArc models. 226

7.2 Default modules to configure dependency injection. 228

7.5 Interfaces used as extension points to add further transformations to MontiArc. 230

7.6 Activities to extend the simulation of MontiArc models. 231

7.7 Activities to extend the MontiArc code generator. 233

7.8 Activities to extend the MontiArc language. 234

7.9 Activities to extend the syntax of MontiArc. 235

7.15 Activities to extend the symbol table of MontiArc. 240

7.16 Adapter to translate class diagram (CD) type entries to Architecture Diagram

(ArcD) type entries. 241

8.1 Overview of the TCP/IP stack realized in MontiArc (adapted from [Sch13]). . . 247

8.2 Architecture of the HTTP protocol in MontiArc (adapted from [Sch13]). 248

8.3 The data link layer that is realized using a combination of Arp, Rarp, and the

ethernet protocol (adapted from [Sch13]). 249

8.4 Overview of a FlexRay node (adapted from [Hei12]). 251

8.5 FlexRay communication cycles (adapted from [Hei12]). 252

8.6 Running example of an adaptive cruise control system (adapted from [Rab13]). 253

8.7 Exemplary FlexRay cluster with five nodes which host the components of the

cruise control system (adapted from [Rab13]). 254

8.8 Detailed architecture of a FlexRay node component (adapted from [Rab13]). . . 255

9.1 Architectural model of a coffee machine (according to [HRR10]). 261

9.3 MontiCore Grammar hierarchy and embeddings for the AJava language. 262

9.4 AJava RTE extensions of the MontiArc RTE. 263

9.5 A SLAMRobot constructed with an NXT Lego Brick. The architecture and the

behavior of SLAMRobots is modeled with MontiArcAutomaton (according to

[RRW13b]). 266

9.7 MontiCore Grammar hierarchy for a) the initial MontiArcAutomaton version

that uses inheritance and b) the current MontiArcAutomaton version that uses

embedding to extend MontiArc with I/Oω automata. 267

9.8 Exemplary value chain that models the dependencies between different process

steps to manufacture pipes. 270

9.9 Scenario definition for value chain PipeProduction within spreadsheets. . 271

9.10 ProNetsim extensions of the MontiArc RTE. 273

D.1 Extract of the AADL metamodel (adapted from [FGH06, FG12]). 313

E.6 Instrumented ports of ABP’s subcomponents in the white-box test given in List-

ing E.7. 324

368

Listings

3.1 Component LightCtrl with its inner component definition Arbiter in tex-

tual MontiArc syntax. The contained subcomponents are automatically con-

nected using the autoconnect feature. 41

3.2 Definition of component type A. 43

3.3 Definition of component type Ext as an extension of component A. 43

3.4 Definition of configurable component type B. 43

3.5 Definition of generic component type C. 44

3.6 Interface definition of component type A. 44

3.7 Definition of data types using an UML/P class diagram (CD). 44

3.8 Interface definition of generic component type C. 45

3.9 Subcomponent declarations in MontiArc syntax. 46

3.10 Connector definitions from component D in MontiArc syntax. 46

3.11 Inner component type definitions in MontiArc syntax. 47

3.12 Selection of the causal synchronous time domain for component J. 48

3.13 Using the autoconnect statement. 48

3.14 Using the autoinstantiate statement. 49

3.15 The definition of Java and OCL constraints. 49

3.16 A simplified MontiCore grammar which defines an automaton language (based

on [GKR+06]). 51

3.18 ArchitectureDiagram.mc: Definition of nonterminal ArcComponent

for component type definitions. 53

3.19 ArchitectureDiagram.mc: Definition of nonterminals ArcComponent-

Head and ArcParameter. 53

3.20 ArchitectureDiagram.mc: Definition of nonterminal ArcComponent-

Body. 54

3.21 ArchitectureDiagram.mc: Definition of nonterminals ArcInterface

and ArcPort. 54

3.22 ArchitectureDiagram.mc: Definition of nonterminal ArcSubCompo-

nent. 55

3.23 ArchitectureDiagram.mc: Definition of nonterminal ArcSubCompo-

nentInstance which allows to explicitly name subcomponents and option-

ally associate simple connectors. 55

3.24 ArchitectureDiagram.mc: Definition of nonterminal ArcConnector. 55

3.25 ArchitectureDiagram.mc: External behavior implementation embedding

in Architecture Diagram (ArcD). 56

369

Listings

3.26 MontiArc.mc: Definition of nonterminal MontiArcInvariant. 56

3.27 MontiArc.mc: Definition of nonterminal MontiArcAutoConnect. . . . 57

3.28 MontiArc.mc: Definition of nonterminal MontiArcAutoInstantiate. 57

3.29 MontiArc.mc: Definition of nonterminal MontiArcTiming. 57

3.31 B1: Violation of context condition B1 by using names more than once in a

namespace. 59

3.32 B2: Instance names of component definitions. 60

3.33 CO1: Qualified sources and targets of connectors. 60

3.34 CO2: Correct and invalid sources of simple connectors. 61

3.35 CO3: Using unqualified sources and targets in connectors. 62

3.36 R1: Ambiguous senders of connectors that have the same port as target. 62

3.37 R2: Ambiguous senders of connectors that have the same port of a subcompo-

nent as target. 63

3.38 R3: Using qualified subcomponent types. 63

3.39 R4: Using unqualified but imported subcomponent types. 64

3.40 R5: Subcomponents in qualified connector parts. 64

3.41 R6: Ports in qualified connector parts. 65

3.42 R7: Sources of simple connectors. 65

3.43 R8: Type compatible connectors. 66

3.44 R9: Using generic component types as subcomponent types. 67

3.45 R10: Using configurable component types as subcomponent types. 67

3.46 R11: An inheritance cycle of components ABPReceiver and CommonRe-

ceiver. 68

3.47 R12: Structural extension cycle. 68

3.48 R13: Subcomponent reference cycle. 68

3.49 R14: Inheritance of component parameters. 69

3.50 R15: Inheritance of generic type parameters. 70

3.51 CV1 and CV2: Naming Conventions of MontiArc. 71

3.52 CV5: Using all ports. 72

3.53 CV6: Using all ports of subcomponents. 72

3.54 CV7: Using implicit and explicit names for elements with the same type. . . . 73

3.56 Architecture Analysis and Design Language (AADL) specification of compo-

nent type A and its implementation AImpl. 75

3.57 AADL specification of component type Ext and its implementation ExtImpl

as an extension of component type A and implementation AImpl. 76

3.58 AADL property set which defines the configuration parameters of a configurable

component. 77

3.59 Default values of configuration parameters in AADL. 77

3.60 Defining type parameters with AADL data prototypes. 77

3.61 AADL interface definition of component type A. 78

3.62 An enumerated data component that defines data type Cmd. 78

3.63 Using prototypes as port data types in AADL. 78

3.64 Subcomponents and connections in AADL. 80

370

Listings

3.65 Emulating inner component definitions in AADL. 81

5.25 Exemplary implementation of a MontiArc transformation. 149

5.42 Implementation of atomic component DoorEvalUntimed which handles sin-

gle data events. 162

5.44 Implementation of synchronous atomic component Adder. 163

5.46 Implementation of atomic timed component Timer which handles single data

and time events. 164

6.6 The port interface of component ABP. 187

6.7 ABPSender component port interface. 187

6.8 ABPReceiver component port interface and timing domain. 187

6.10 Subcomponents and connectors of the ABP component. 189

6.11 The interface of ABPSender’s inner component ABPInnerSender. 190

6.12 Further subcomponents of component ABPSender and their connections. . . . 190

6.16 Atomic component NativeAdder that is implemented in native C. 193

6.17 Native implementation of add functionality. 193

6.19 Mapping from null to zero and computation delegation to the native method in

class NativeAdderImpl. 194

6.20 Wrap Java Native Interface (JNI) specific elements within a dedicated wrapper. 195

6.22 Setup ABPMessage message objects to be used in the ABPSender test. . . . 199

6.23 Test proper message encapsulation of component ABPSender. 199

6.24 Timeout test for the ABPSender. 199

6.27 Setup method of a white-box test for component ABPSender. 202

6.28 Implementation of a white-box test for component ABPSender. 203

6.29 A local test factory to manipulate parameter values of LossyDelayedChan-

nel subcomponents. 204

6.30 Register the parameter manipulating local factory and clean up after test execution.204

6.31 Mock implementation of decomposed component LossyDelayedChannel. 205

6.32 Using mocked subcomponents in a test case. 206

6.33 Generalized component ABPSender. 207

6.34 Adjusted ABPSender I/O-Test. 209

6.35 Setup of an optimization test for component ABP. 210

6.37 Executing a parallel optimization test. 211

6.38 MontiArc Maven plugin configuration to generate documentation. 213

6.43 A dependency aggregator for a MontiArc library. 220

6.44 Project dependency configuration to reuse a MontiArc library. 220

6.46 Configuration of the ABPReceiver for a distributed simulation. 223

7.3 Guice module that adds a new workflow to the MontiArc tool. 228

7.4 Execute a MontiArc tool with an added workflow. 229

7.10 Example component which contains extended model elements. 236

7.11 MontiCore grammar which adds properties and property sets as new language

elements to the MontiArc language. 236

371

Listings

7.12 Basic MontiCore language definition of the extended MontiArc language. . . . 237

7.13 MontiCore language definition of the extended MontiArc language. 238

7.14 Example component which contains an embedded UML/P statechart (SC) to

define the behavior of the component. 239

7.17 Integration of implementation entry creators into the MontiArc tool. 242

9.2 Implementation of the CoffeProcessingUnit in AJava syntax (according

to [HRR10]). 261

9.6 The BumpControl component with an embedded I/Oω automata (according

to [Rin14]). 267

C.1 ArchitectureDiagram.mc: Common MontiCore grammar for architec-

tural diagrams. 297

C.2 MontiArc.mc: MontiCore grammar for MontiArc. 302

C.3 ComponentIOTestDSL.mc: MontiCore grammar for I/O tests. 305

C.4 ProNetSim.mc: Essence of the ProNetsim MontiCore grammar. 312

D.2 Complete AADL specifications with the examples from Section 3.6. 314

E.1 Initial behavior implementation of component ABPInnerSender. 317

E.2 Initial behavior implementation of component ABPReceiver. 319

E.3 I/O-Test suite for component ABPSender. 320

E.4 I/O-Test suite for component ABPReceiver. 321

E.5 I/O-Test suite for system component ABP. 323

E.7 White-box test that uses parameter manipulation to adjust the configuration of

ABP’s LossyChannel subcomponents. 324

E.8 Mocking subcomponents in a test. 326

E.9 Generalized receiver component model. 328

E.10 Generalized abp component model. 328

E.11 Collecting statistical data over the impact of the parameters loss rate and delay

of component ABP. 329

E.12 Parallel execution of simulations to collext statistical data over the impact of the

parameters loss rate and delay of component ABP. 332

E.13 Configuration and execution of a distributed Alternating Bit Protocol (ABP)

sender. 335

F.1 Method getExtendedMontiArcLanguage(...) which provides an ex-

tended MontiArc modeling language in a guice module that extends the Mon-

tiArc default module. 337

F.2 A custom workflow that counts the ports of processed components. 338

F.3 A custom transformation configuration factory that adds an additional transfor-

mation. 339

372

List of Tables

2.1 Overview of language features provided by the examined related work. 36

2.2 Overview of simulation features provided by the examined related work. 38

3.66 Overview of basic language concepts and their representation in MontiArc and

AADL. 82

3.67 Overview of advanced language concepts and their availability in MontiArc and

AADL. 83

4.1 FOCUS operators for untimed and timed streams based on [RR11]. 88

4.2 Representation of MontiArc elements in the simulation. 89

4.22 Exemplary event propagation from timed streams to instant event traces. 107

4.23 Event propagation from timed streams to untimed event traces. 108

4.24 Exemplary event propagation from timed streams to synchronous event traces. . 110

4.25 Properties of MontiArc’s timing domains. 111

4.32 Amount of Java operations needed to realize scheduling operations with a BitSet

and a PortMap based scheduler. 121

5.9 Entry kinds of the MontiArc symbol table. 137

5.11 Elements of the public and protected model interfaces. 139

5.13 Overview of MontiArc transformations executed in the associated workflow. . . 140

5.50 Impact of dirty implementations on the simulation time. 168

5.54 Parameters of the MontiArcGeneratorTool. 175

5.55 Provided MontiArc generators in package mc.umlp.arc. 176

5.56 Goals of the MontiArc Maven Plugin and their target phases. 177

5.57 Configuration parameters of the MontiArc Maven Plugin. 178

6.39 Single-line tags of the MontiArc documentation generator. 215

6.40 Multi-line tags of the MontiArc documentation generator. 215

8.9 Stereotypes to configure the FlexRay cluster generator. 256

B.1 Explanation of the used stereotypes within listings and tags. 295

B.2 Explanation of the used tags in listings and figures. 296

F.4 Available transformation interfaces provided by MontiArc’s transformation frame-

work for the Architecture Diagram (ArcD) (top) and MontiArc language (bottom).341

373

List of Tables

F.5 Unbound hook points that serve as extension points of the MontiArc component

generator. These extensions are called with the given AST node and generate

code within the given location of the target code. 342

374

Related Interesting Work from the SE Group, RWTH Aachen

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using an executable, yet

abstract and multi-view modeling language for modeling, designing and programming still allows to use

an agile development process.” Modeling will be used in development projects much more, if the benefits

become evident early, e.g with executable UML [Rum02] and tests [Rum03]. In [GKRS06], for example,

we concentrate on the integration of models and ordinary programming code. In [Rum12] and [Rum11],

the UML/P, a variant of the UML especially designed for programming, refactoring and evolution, is

defined. The language workbench MontiCore [GKR+06] is used to realize the UML/P [Sch12]. Links

to further research, e.g., include a general discussion of how to manage and evolve models [LRSS10], a

precise definition for model composition as well as model languages [HKR+09] and refactoring in various

modeling and programming languages [PR03]. In [FHR08] we describe a set of general requirements for

model quality. Finally [KRV06] discusses the additional roles and activities necessary in a DSL-based

software development project. In [CEG+14] we discuss how to improve reliability of adaprivity through

models at runtime, which will allow developers to delay design decisions to runtime adaptation.

Generative Software Engineering

The UML/P language family [Rum12, Rum11] is a simplified and semantically sound derivate of the

UML designed for product and test code generation. [Sch12] describes a flexible generator for the UML/P

based on the MontiCore language workbench [KRV10, GKR+06]. In [KRV06], we discuss additional

roles necessary in a model-based software development project. In [GKRS06] we discuss mechanisms

to keep generated and handwritten code separated. In [Wei12] demonstrate how to systematically derive

a transformation language in concrete syntax. To understand the implications of executability for UML,

we discuss needs and advantages of executable modeling with UML in agile projects in [Rum04], how

to apply UML for testing in [Rum03] and the advantages and perils of using modeling languages for

programming in [Rum02].

Unified Modeling Language (UML)

Many of our contributions build on UML/P, which is described in the two books [Rum11] and [Rum12]

implemented in [Sch12]. Semantic variation points of the UML are discussed in [GR11]. We discuss for-

mal semantics for UML [BHP+98] and describe UML semantics using the “System Model” [BCGR09a],

[BCGR09b], [BCR07b] and [BCR07a]. Semantic variation points have, e.g., been applied to define class

diagram semantics [CGR08]. A precisely defined semantics for variations is applied, when checking va-

riants of class diagrams [MRR11c] and objects diagrams [MRR11d] or the consistency of both kinds of

diagrams [MRR11e]. We also apply these concepts to activity diagrams [MRR11b] which allows us to

check for semantic differences of activity diagrams [MRR11a]. We also discuss how to ensure and iden-

tify model quality [FHR08], how models, views and the system under development correlate to each other

[BGH+98] and how to use modeling in agile development projects [Rum04], [Rum02]. The question how

to adapt and extend the UML is discussed in [PFR02] describing product line annotations for UML and

more general discussions and insights on how to use meta-modeling for defining and adapting the UML

are included in [EFLR99] and [SRVK10].

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use, but need

appropriate tooling. The MontiCore language workbench [GKR+06], [KRV10], [Kra10] allows the spe-

Related Interesting Work from the SE Group, RWTH Aachen

cification of an integrated abstract and concrete syntax format [KRV07b] for easy development. New

languages and tools can be defined in modular forms [KRV08, Völ11] and can, thus, easily be reused.

[Wei12] presents a tool that allows to create transformation rules tailored to an underlying DSL. Varia-

bility in DSL definitions has been examined in [GR11]. A successful application has been carried out

in the Air Traffic Management domain [ZPK+11]. Based on the concepts described above, meta mode-

ling, model analyses and model evolution have been discussed in [LRSS10] and [SRVK10]. DSL quality

[FHR08], instructions for defining views [GHK+07], guidelines to define DSLs [KKP+09] and Eclipse-

based tooling for DSLs [KRV07a] complete the collection.

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals, streams of

telephone or video data, method invocation, or data structures passed between software services. We use

streams, statemachines and components [BR07] as well as expressive forms of composition and refi-

nement [PR99] for semantics. Furthermore, we built a concrete tooling infrastructure called MontiArc

[HRR12] for architecture design and extensions for states [RRW13b]. MontiArc was extended to des-

cribe variability [HRR+11] using deltas [HRRS11] and evolution on deltas [HRRS12]. [GHK+07] and

[GHK+08] close the gap between the requirements and the logical architecture and [GKPR08] extends

it to model variants. [MRR14] provides a precise technique to verify consistency of architectural views

against a complete architecture in order to increase reusability. Co-evolution of architecture is discussed

in [MMR10] and a modeling technique to describe dynamic architectures is shown in [HRR98].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling. The me-

chanisms for distributed systems are shown in [BR07] and algebraically underpinned in [HKR+07]. Se-

mantic and methodical aspects of model composition [KRV08] led to the language workbench MontiCore

[KRV10] that can even be used to develop modeling tools in a compositional form. A set of DSL design

guidelines incorporates reuse through this form of composition [KKP+09]. [Völ11] examines the compo-

sition of context conditions respectively the underlying infrastructure of the symbol table. Modular editor

generation is discussed in [KRV07a].

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and detailedness

is discussed in [HR04]. We defined a semantic domain called “System Model” by using mathematical

theory in [RKB95, BHP+98] and [GKR96, KRB96]. An extended version especially suited for the UML

is given in [BCGR09b] and in [BCGR09a] its rationale is discussed. [BCR07a, BCR07b] contain detai-

led versions that are applied to class diagrams in [CGR08]. [MRR11a, MRR11b] encode a part of the

semantics to handle semantic differences of activity diagrams and [MRR11e] compares class and object

diagrams with regard to their semantics. In [BR07], a simplified mathematical model for distributed sys-

tems based on black-box behaviors of components is defined. Meta-modeling semantics is discussed in

[EFLR99]. [BGH+97] discusses potential modeling languages for the description of an exemplary object

interaction, today called sequence diagram. [BGH+98] discusses the relationships between a system, a

view and a complete model in the context of the UML. [GR11] and [CGR09] discuss general require-

ments for a framework to describe semantic and syntactic variations of a modeling language. We apply

these on class and object diagrams in [MRR11e] as well as activity diagrams in [GRR10]. [Rum12] de-

fines the semantics in a variety of code and test case generation, refactoring and evolution techniques.

[LRSS10] discusses evolution and related issues in greater detail.

Related Interesting Work from the SE Group, RWTH Aachen

Evolution & Transformation of Models

Models are the central artifact in model driven development, but as code they are not initially correct

and need to be changed, evolved and maintained over time. Model transformation is therefore essential

to effectively deal with models. Many concrete model transformation problems are discussed: evoluti-

on [LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], refactoring [Rum12, PR03], trans-

lating models from one language into another [MRR11c, Rum12] and systematic model transformati-

on language development [Wei12]. [Rum04] describes how comprehensible sets of such transformati-

ons support software development and maintenance [LRSS10], technologies for evolving models wi-

thin a language and across languages, and mapping architecture descriptions to their implementation

[MMR10]. Automaton refinement is discussed in [PR94, KPR97], refining pipe-and-filter architectures is

explained in [PR99]. Refactorings of models are important for model driven engineering as discussed in

[PR03, Rum12]. Translation between languages, e.g., from class diagrams into Alloy [MRR11c] allows

for comparing class diagrams on a semantic level.

Variability & Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one manufacturer

develops several products with many similarities but also many variations. Variants are managed in a

Software Product Line (SPL) that captures product commonalities as well as differences. Feature dia-

grams describe variability in a top down fashion, e.g., in the automotive domain [GHK+08] using 150%

models. Reducing overhead and associated costs is discussed in [GRJA12]. Delta modeling is a bottom

up technique starting with a small, but complete base variant. Features are additive, but also can modify

the core. A set of commonly applicable deltas configures a system variant. We discuss the application of

this technique to Delta-MontiArc [HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can

not only describe spacial variability but also temporal variability which allows for using them for soft-

ware product line evolution [HRRS12]. [HHK+13] describes an approach to systematically derive delta

languages. We also apply variability to modeling languages in order to describe syntactic and semantic

variation points, e.g., in UML for frameworks [PFR02]. Furthermore, we specified a systematic way to

define variants of modeling languages [CGR09] and applied this as a semantic language refinement on

Statecharts in [GR11].

Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physical en-

tities. Contributions for individual aspects range from requirements [GRJA12], complete product lines

[HRRW12], the improvement of engineering for distributed automotive systems [HRR12] and autono-

mous driving [BR12a] to processes and tools to improve the development as well as the product itself

[BBR07]. In the aviation domain, a modeling language for uncertainty and safety events was develo-

ped, which is of interest for the European airspace [ZPK+11]. A component and connector architecture

description language suitable for the specific challenges in robotics is discussed in [RRW13b]. Monito-

ring for smart and energy efficient buildings is developed as Energy Navigator toolset [KPR12, FPPR12,

KLPR12].

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including Petri nets

or temporal logics. Software engineering is particularly interested in using statemachines for modeling

systems. Our contributions to state based modeling can currently be split into three parts: (1) under-

standing how to model object-oriented and distributed software using statemachines resp. Statecharts

Related Interesting Work from the SE Group, RWTH Aachen

[GKR96, BCR07b, BCGR09b, BCGR09a], (2) understanding the refinement [PR94, RK96, Rum96] and

composition [GR95] of statemachines, and (3) applying statemachines for modeling systems. In [Rum96]

constructive transformation rules for refining automata behavior are given and proven correct. This theory

is applied to features in [KPR97]. Statemachines are embedded in the composition and behavioral speci-

fication concepts of Focus [BR07]. We apply these techniques, e.g., in MontiArcAutomaton [RRW13a]

as well as in building management systems [FLP+11].

Robotics

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an inher-

ent heterogeneity of involved domains, relevant platforms, and challenges. The engineering of robotics

applications requires composition and interaction of diverse distributed software modules. This usually

leads to complex monolithic software solutions hardly reusable, maintainable, and comprehensible, which

hampers broad propagation of robotics applications. The MontiArcAutomaton language [RRW13a] ex-

tends ADL MontiArc and integrates various implemented behavior modeling languages using MontiCore

[RRW13b] that perfectly fit Robotic architectural modelling. The LightRocks [THR+13] framework al-

lows robotics experts and laymen to model robotic assembly tasks.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication systems

as well as advanced active and passive safety-systems result in complex embedded systems. As these

feature-driven subsystems may be arbitrarily combined by the customer, a huge amount of distinct va-

riants needs to be managed, developed and tested. A consistent requirements management that connects

requirements with features in all phases of the development for the automotive domain is described

in [GRJA12]. The conceptual gap between requirements and the logical architecture of a car is clo-

sed in [GHK+07, GHK+08]. [HKM+13] describes a tool for delta modeling for Simulink [HKM+13].

[HRRW12] discusses means to extract a well-defined Software Product Line from a set of copy and

paste variants. Quality assurance, especially of safety-related functions, is a highly important task. In

the Carolo project [BR12a, BR12b], we developed a rigorous test infrastructure for intelligent, sensor-

based functions through fully-automatic simulation [BBR07]. This technique allows a dramatic speedup

in development and evolution of autonomous car functionality, and thus enables us to develop software

in an agile way [BR12a]. [MMR10] gives an overview of the current state-of-the-art in development and

evolution on a more general level by considering any kind of critical system that relies on architectural de-

scriptions. As tooling infrastructure, the SSElab storage, versioning and management services [HKR12]

are essential for many projects.

Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2 emissions is

an important challenge. Thus, energy management in buildings as well as in neighbourhoods becomes

equally important to efficiently use the generated energy. Within several research projects, we developed

methodologies and solutions for integrating heterogeneous systems at different scales. During the design

phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12, KPR12] is used for tech-

nical specification of building services already. We adapted the well-known concept of statemachines to

be able to describe different states of a facility and to validate it against the monitored values [FLP+11].

We show how our data model, the constraint rules and the evaluation approach to compare sensor data

can be applied [KLPR12].

Related Interesting Work from the SE Group, RWTH Aachen

Cloud Computing & Enterprise Information Systems

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-based

application and service architectures with high complexity, criticality and new application domains. It

promises to enable new business models, to lower the barrier for web-based innovations and to increa-

se the efficiency and cost-effectiveness of web development [KRR14]. Application classes like Cyber-

Physical Systems [HHK+14], Big Data, App and Service Ecosystems bring attention to aspects like

responsiveness, privacy and open platforms. Regardless of the application domain, developers of such

systems are in need for robust methods and efficient, easy-to-use languages and tools [KRS12]. We tack-

le these challenges by perusing a model-based, generative approach [NPR13]. The core of this approach

are different modeling languages that describe different aspects of a cloud-based system in a concise

and technology-agnostic way. Software architecture and infrastructure models describe the system and its

physical distribution on a large scale. We apply cloud technology for the services we develop, e.g., the

SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also for our tool demonstrators and

our own development platforms. New services, e.g., collecting data from temperature, cars etc. can now

easily be developed.

Related Interesting Work from the SE Group, RWTH Aachen

References

[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & Systems Enginee-

ring Process and Tools for the Development of Autonomous Driving Intelligence. Journal of

Aerospace Computing, Information, and Communication (JACIC), 4(12):1158–1174, 2007.

[BCGR09a] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Conside-

rations and Rationale for a UML System Model. In K. Lano, editor, UML 2 Semantics and

Applications, pages 43–61. John Wiley & Sons, November 2009.

[BCGR09b] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Definition

of the UML System Model. In K. Lano, editor, UML 2 Semantics and Applications, pages

63–93. John Wiley & Sons, November 2009.

[BCR07a] Manfred Broy, María Victoria Cengarle, and Bernhard Rumpe. Towards a System Model

for UML. Part 2: The Control Model. Technical Report TUM-I0710, TU Munich, Germany,

February 2007.

[BCR07b] Manfred Broy, María Victoria Cengarle, and Bernhard Rumpe. Towards a System Model

for UML. Part 3: The State Machine Model. Technical Report TUM-I0711, TU Munich,

Germany, February 2007.

[BGH+97] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Krüger, Bernhard Rumpe,

Monika Schmidt, and Wolfgang Schwerin. Exemplary and Complete Object Interaction

Descriptions. In Object-oriented Behavioral Semantics Workshop (OOPSLA’97), Technical

Report TUM-I9737. TU Munich, Germany, 1997.

[BGH+98] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schwerin. Systems,

Views and Models of UML. In Proceedings of the Unified Modeling Language, Technical

Aspects and Applications, pages 93–109. Physica Verlag, Heidelberg, Germany, 1998.

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katharina Spies. Soft-

ware and System Modeling Based on a Unified Formal Semantics. In Workshop on Require-

ments Targeting Software and Systems Engineering (RTSE’97), LNCS 1526, pages 43–68.

Springer, 1998.

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Modellierung als Grundlage

der Software- und Systementwicklung. Informatik-Spektrum, 30(1):3–18, Februar 2007.

[BR12a] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years after the Urban

Challenge: The Anticipatory Vehicle as a Cyber-Physical System. In Automotive Software

Engineering Workshop (ASE’12), pages 789–798, 2012.

[BR12b] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving Software. In

C. Rouff and M. Hinchey, editors, Experience from the DARPA Urban Challenge, pages

243–271. Springer, Germany, 2012.

[CEG+14] Betty Cheng, Kerstin Eder, Martin Gogolla, Lars Grunske, Marin Litoiu, Hausi Müller,

Patrizio Pelliccione, Anna Perini, Nauman Qureshi, Bernhard Rumpe, Daniel Schneider,

Frank Trollmann, and Norha Villegas. Using Models at Runtime to Address Assurance

for Self-Adaptive Systems. In Models@run.time, LNCS 8378, pages 101–136. Springer,

Germany, 2014.

Related Interesting Work from the SE Group, RWTH Aachen

[CGR08] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model Semantics

of Class Diagrams. Informatik-Bericht 2008-05, TU Braunschweig, Germany, 2008.

[CGR09] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability within Mode-

ling Language Definitions. In Conference on Model Driven Engineering Languages and

Systems (MODELS’09), LNCS 5795, pages 670–684. Springer, 2009.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-Modelling Semantics

of UML. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of

Businesses and Systems, pages 45–60. Kluver Academic Publisher, 1999.

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualität als Indikator für

Softwarequalität: eine Taxonomie. Informatik-Spektrum, 31(5):408–424, Oktober 2008.

[FLP+11] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe.

State-based Modeling of Buildings and Facilities. In Enhanced Building Operations Con-

ference (ICEBO’11), 2011.

[FPPR12] M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. The Energy Na-

vigator - A Web-Platform for Performance Design and Management. In Energy Efficiency

in Commercial Buildings Conference(IEECB’12), 2012.

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bernhard Rumpe.

View-based Modeling of Function Nets. In Object-oriented Modelling of Embedded Real-

Time Systems Workshop (OMER4’07), 2007.

[GHK+08] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Rothhardt, and

Bernhard Rumpe. Modelling Automotive Function Nets with Views for Features, Vari-

ants, and Modes. In Proceedings of 4th European Congress ERTS - Embedded Real Time

Software, 2008.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. Modeling Variants

of Automotive Systems using Views. In Modellbasierte Entwicklung von eingebetteten

Fahrzeugfunktionen, Informatik Bericht 2008-01, pages 76–89. TU Braunschweig, 2008.

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System Model

with State. Technical Report TUM-I9631, TU Munich, Germany, July 1996.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.

MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung domänspezifischer Spra-

chen. Informatik-Bericht 2006-04, CFG-Fakultät, TU Braunschweig, August 2006.

[GKRS06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, and Martin Schindler. Integration von

Modellen in einen codebasierten Softwareentwicklungsprozess. In Modellierung 2006 Con-

ference, LNI 82, Seiten 67–81, 2006.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. Technical Report

TUM-I9533, TU Munich, Germany, October 1995.

[GR11] Hans Grönniger and Bernhard Rumpe. Modeling Language Variability. In Workshop on

Modeling, Development and Verification of Adaptive Systems, LNCS 6662, pages 17–32.

Springer, 2011.

[GRJA12] Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-Level Require-

ments Management and Complexity Costs in Automotive Development Projects: A Problem

Statement. In Requirements Engineering: Foundation for Software Quality (REFSQ’12),

2012.

Related Interesting Work from the SE Group, RWTH Aachen

[GRR10] Hans Grönniger, Dirk Reiß, and Bernhard Rumpe. Towards a Semantics of Activity Dia-

grams with Semantic Variation Points. In Conference on Model Driven Engineering Lan-

guages and Systems (MODELS’10), LNCS 6394, pages 331–345. Springer, 2010.

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller, Bernhard

Rumpe, and Ina Schaefer. Engineering Delta Modeling Languages. In Software Product

Line Conference (SPLC’13), pages 22–31. ACM, 2013.

[HHK+14] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard Rumpe, and

Klaus Wehrle. User-driven Privacy Enforcement for Cloud-based Services in the Internet of

Things. In Conference on Future Internet of Things and Cloud (FiCloud’14). IEEE, 2014.

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bernhard Rum-

pe, and Ina Schaefer. First-Class Variability Modeling in Matlab/Simulink. In Variability

Modelling of Software-intensive Systems Workshop (VaMoS’13), pages 11–18. ACM, 2013.

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.

An Algebraic View on the Semantics of Model Composition. In Conference on Model

Driven Architecture - Foundations and Applications (ECMDA-FA’07), LNCS 4530, pages

99–113. Springer, Germany, 2007.

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völ-

kel. Scaling-Up Model-Based-Development for Large Heterogeneous Systems with Com-

positional Modeling. In Conference on Software Engineeering in Research and Practice

(SERP’09), pages 172–176, July 2009.

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A Plug-In-Based

Framework for Web-Based Project Portals. In Developing Tools as Plug-Ins Workshop

(TOPI’12), pages 61–66. IEEE, 2012.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of ”Se-

mantics”? IEEE Computer, 37(10):64–72, October 2004.

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic Component Inter-

faces. In Technology of Object-Oriented Languages and Systems (TOOLS 26), pages 58–70.

IEEE, 1998.

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der Linden.

Hierarchical Variability Modeling for Software Architectures. In Software Product Lines

Conference (SPLC’11), pages 150–159. IEEE, 2011.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architectural Modeling

of Interactive Distributed and Cyber-Physical Systems. Technical Report AIB-2012-03,

RWTH Aachen University, February 2012.

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Modeling for Soft-

ware Architectures. In Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte Ent-

wicklung eingebetteterSysteme VII, pages 1 – 10. fortiss GmbH, 2011.

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving Delta-oriented

Software Product Line Architectures. In Large-Scale Complex IT Systems. Development,

Operation and Management, 17th Monterey Workshop 2012, LNCS 7539, pages 183–208.

Springer, 2012.

[HRRW12] Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Einführung eines Pro-

duktlinienansatzes in die automotive Softwareentwicklung am Beispiel von Steuergeräte-

software. In Software Engineering Conference (SE’12), LNI 198, Seiten 181–192, 2012.

Related Interesting Work from the SE Group, RWTH Aachen

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler, and

Steven Völkel. Design Guidelines for Domain Specific Languages. In Domain-Specific

Modeling Workshop (DSM’09), Techreport B-108, pages 7–13. Helsinki School of Econo-

mics, October 2009.

[KLPR12] Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe. Modeling Cyber-

Physical Systems: Model-Driven Specification of Energy Efficient Buildings. In Modelling

of the Physical World Workshop (MOTPW’12), pages 2:1–2:6. ACM, October 2012.

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Specification and Refine-

ment with State Transition Diagrams. In Workshop on Feature Interactions in Telecommu-

nications Networks and Distributed Systems, pages 284–297. IOS-Press, 1997.

[KPR12] Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie Navigator. In

H. Lichter and B. Rumpe, Editoren, Entwicklung und Evolution von Forschungssoftware.

Tagungsband, Rolduc, 10.-11.11.2011, Aachener Informatik-Berichte, Software Enginee-

ring Band 14. Shaker Verlag, Aachen, Deutschland, 2012.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen Sprachen im

Software-Engineering. Aachener Informatik-Berichte, Software Engineering Band 1. Sha-

ker Verlag, März 2010.

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based mathematical model

for distributed information processing systems - SysLab system model. In Workshop on

Formal Methods for Open Object-based Distributed Systems, IFIP Advances in Information

and Communication Technology, pages 323–338. Chapmann & Hall, 1996.

[KRR14] Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud Computing. Springer,

Schweiz, December 2014.

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical Systems

- eine Herausforderung für die Automatisierungstechnik? In Proceedings of Automation

2012, VDI Berichte 2012, Seiten 113–116. VDI Verlag, 2012.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Development using

Domain Specific Modelling Languages. In Domain-Specific Modeling Workshop (DSM’06),

Technical Report TR-37, pages 150–158. Jyväskylä University, Finland, 2006.

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor Generation for Com-

positional DSLs in Eclipse. In Domain-Specific Modeling Workshop (DSM’07), Technical

Reports TR-38. Jyväskylä University, Finland, 2007.

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition of Abstract and

Concrete Syntax for Textual Languages. In Conference on Model Driven Engineering Lan-

guages and Systems (MODELS’11), LNCS 4735, pages 286–300. Springer, 2007.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular Development

of Textual Domain Specific Languages. In Conference on Objects, Models, Components,

Patterns (TOOLS-Europe’08), LNBIP 11, pages 297–315. Springer, 2008.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Framework for Com-

positional Development of Domain Specific Languages. International Journal on Software

Tools for Technology Transfer (STTT), 12(5):353–372, September 2010.

[LRSS10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz, and Jonathan Sprinkle. Model

Evolution and Management. In Model-Based Engineering of Embedded Real-Time Systems

Workshop (MBEERTS’10), LNCS 6100, pages 241–270. Springer, 2010.

Related Interesting Work from the SE Group, RWTH Aachen

[MMR10] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving Software Architecture Descriptions

of Critical Systems. IEEE Computer, 43(5):42–48, May 2010.

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic Differencing

for Activity Diagrams. In Conference on Foundations of Software Engineering (ESEC/FSE

’11), pages 179–189. ACM, 2011.

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational Semantics for

Activity Diagrams using SMV. Technical Report AIB-2011-07, RWTH Aachen University,

Aachen, Germany, July 2011.

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class Diagrams Ana-

lysis Using Alloy Revisited. In Conference on Model Driven Engineering Languages and

Systems (MODELS’11), LNCS 6981, pages 592–607. Springer, 2011.

[MRR11d] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object Diagrams. In Object-

Oriented Programming Conference (ECOOP’11), LNCS 6813, pages 281–305. Springer,

2011.

[MRR11e] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically Configurable Consis-

tency Analysis for Class and Object Diagrams. In Conference on Model Driven Engineering

Languages and Systems (MODELS’11), LNCS 6981, pages 153–167. Springer, 2011.

[MRR14] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Component and Connec-

tor Models against Crosscutting Structural Views. In Software Engineering Conference

(ICSE’14), pages 95–105. ACM, 2014.

[NPR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architectures as Interac-

tive Systems. In Model-Driven Engineering for High Performance and Cloud Computing

Workshop, CEUR Workshop Proceedings 1118, pages 15–24, 2013.

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line Annotations with

UML-F. In Software Product Lines Conference (SPLC’02), LNCS 2379, pages 188–197.

Springer, 2002.

[PR94] Barbara Paech and Bernhard Rumpe. A new Concept of Refinement used for Behaviour

Modelling with Automata. In Proceedings of the Industrial Benefit of Formal Methods

(FME’94), LNCS 873, pages 154–174. Springer, 1994.

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Architectures. In Con-

gress on Formal Methods in the Development of Computing System (FM’99), LNCS 1708,

pages 96–115. Springer, 1999.

[PR03] Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Specifications. In Kilov,

H. and Baclavski, K., editor, Practical Foundations of Business and System Specifications,

pages 281–297. Kluwer Academic Publishers, 2003.

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior. In B. Harvey

and H. Kilov, editors, Object-Oriented Behavioral Specifications, pages 265–286. Kluwer

Academic Publishers, 1996.

[RKB95] Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes mathematisches

Modell verteilter informationsverarbeitender Systeme - Syslab-Systemmodell. Technischer

Bericht TUM-I9510, TU München, Deutschland, März 1995.

Related Interesting Work from the SE Group, RWTH Aachen

[RRW13a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Software Architec-

ture Structure and Behavior Modeling to Implementations of Cyber-Physical Systems. In

Software Engineering Workshopband (SE’13), LNI 215, pages 155–170, 2013.

[RRW13b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiArcAutomaton: Mo-

deling Architecture and Behavior of Robotic Systems. In Conference on Robotics and

Automation (ICRA’13), pages 10–12. IEEE, 2013.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Systeme.

Herbert Utz Verlag Wissenschaft, München, Deutschland, 1996.

[Rum02] Bernhard Rumpe. Executable Modeling with UML - A Vision or a Nightmare? In T. Clark

and J. Warmer, editors, Issues & Trends of Information Technology Management in Con-

temporary Associations, Seattle, pages 697–701. Idea Group Publishing, London, 2002.

[Rum03] Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In Symposium on

Formal Methods for Components and Objects (FMCO’02), LNCS 2852, pages 380–402.

Springer, November 2003.

[Rum04] Bernhard Rumpe. Agile Modeling with the UML. In Workshop on Radical Innovations of

Software and Systems Engineering in the Future (RISSEF’02), LNCS 2941, pages 297–309.

Springer, October 2004.

[Rum11] Bernhard Rumpe. Modellierung mit UML. Springer Berlin, 2te Edition, September 2011.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfälle, Refactoring.

Springer Berlin, 2te Edition, Juni 2012.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P. Aa-

chener Informatik-Berichte, Software Engineering Band 11. Shaker Verlag, 2012.

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai. Metamodelling:

State of the Art and Research Challenges. In Model-Based Engineering of Embedded Real-

Time Systems Workshop (MBEERTS’10), LNCS 6100, pages 57–76. Springer, 2010.

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and Andreas Wort-

mann. A New Skill Based Robot Programming Language Using UML/P Statecharts. In

Conference on Robotics and Automation (ICRA’13), pages 461–466. IEEE, 2013.

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer Sprachen. Aachener

Informatik-Berichte, Software Engineering Band 9. Shaker Verlag, 2011.

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformationssprachen. Aachener

Informatik-Berichte, Software Engineering Band 12. Shaker Verlag, 2012.

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige, Kumardev Chat-

terjee, Andreas Horst, and Bernhard Rumpe. On Demand Data Analysis and Filtering for

Inaccurate Flight Trajectories. In Proceedings of the SESAR Innovation Days. EUROCON-

TROL, 2011.

Related Interesting Work from the SE Group, RWTH Aachen

	Introduction
	Terms and Definitions
	Motivation
	Context
	Objectives
	Main Results
	Thesis' Structure

	Requirements for Architectural Modeling and Simulation
	Requirements for Architectural Modeling
	Simulation Requirements
	Currently existing ADLs
	AADL
	Acme and xADL
	AutoFocus 3
	ArchJava and Java/A
	Ptolemy II
	UML and SysML
	Summary

	MontiArc ADL
	A MontiArc Example
	Basic Architectural Model Elements
	Component Type Definition
	Component Interface
	Architectural Configuration

	Advanced Architectural Model Elements
	Component Timing
	Autoconnect
	Autoinstantiate
	Constraints

	MontiArc Language Definition
	Foundations: MontiCore 3
	Language Structure
	Architecture Diagram Grammar Walk-Through
	MontiArc Grammar Walk-Through

	Context Conditions
	General Conditions
	Connections
	Referential Integrity
	Conventions
	Code Generation

	AADL Compatibility
	AADL Components
	AADL Interfaces
	AADL Architectural Configuration
	Further AADL Modeling Elements
	Summary

	Simulating MontiArc Models
	Foundations for the Simulator
	Runtime Environment
	Intended Object Structure @Runtime
	Simulation Runtime Environment

	Scheduling
	Scheduling of Data Messages
	Scheduling of Ticks
	Scheduling already Scheduled or Blocked Ports
	Waking up Ports

	Timing Classification
	Instant Timing
	Delayed Timing
	Untimed
	Synchronous Timing
	Causal Synchronous Timing
	Timing Domain Overview

	Optimization and Runtime Measurement
	Simple Round Robin Scheduling
	Further Optimization potential
	Scheduler Variants
	Comparison Setup
	Results
	Discussion of the Results

	Technical Design Decisions

	Technical Realization of MontiArc
	Model Processing
	Symbol Table
	Foundations
	Symbol Table Construction
	MontiArc Symbol Table: Namespace Hierarchy
	MontiArc Symbol Table: Structure
	MontiArc Symbol Table: Model Interfaces

	Transformations
	Pre Context-Condition Transformations
	Pre Code Generation Transformations
	Implementation

	Generation of Simulation Code
	Component Interfaces
	Atomic Components
	Decomposed Components

	Atomic Component Behavior Implementation
	Implementation
	Integration of Handwritten Code
	Components with Side-Effects

	Reduction of Redundant Objects
	Atomic Components with a Single Incoming Port
	Reduction of ForwardPorts in Decomposed Components
	Reuse of Tick Objects

	MontiArc Tools
	Command Line Interface
	MontiArc Maven Plugin
	Eclipse IDE

	Tutorial: Development and Simulation of MontiArc Components
	Getting Started
	Illustrative Example - Alternating Bit Protocol
	Requirements
	Example Setup
	Modeling

	Behavior Implementation
	Behavior Implementation in Java
	Native Behavior Implementation

	Validation of MontiArc Models
	Model-Based Black-box Tests
	White-box Testing of Decomposed Models

	Generalize Components
	Optimization Testing
	Documentation of MontiArc Models
	Enabling the Documentation Generator
	Document Components
	Index Page Design
	Package Documentation

	MontiArc Libraries
	Structure of a Model Library
	Predefined Libraries
	Creating a Library
	Using a Library

	Distributed Simulation

	MontiArc Extension Method
	Model Processing Extension
	Add Execution Unit
	Add Transformation

	Simulation Extension
	Handle Extended Syntax
	Add Feature
	Extend Scheduling
	Code Generator Extension

	Language Extension
	Syntax Extension
	Symbol Table Extension

	Case Studies Using MontiArc
	Overview
	Modeling and Simulation of the TCP/IP Stack
	The TCP/IP Stack - An Introduction
	TCP/IP Stack Layers in MontiArc
	Conclusion

	FlexRay Communication Simulation Using MontiArc
	FlexRay Introduction
	The Running Example
	Deployment and FlexRay components
	The MontiArc FlexRay Generator
	Conclusion

	Language Extension Case Studies
	Overview
	AJava
	Example
	Language and Tool Extensions
	Conclusion

	MontiArcAutomaton
	Example
	Language Extensions
	Conclusion

	Process Network Simulation
	Example
	Discuss Language Extension
	Conclusion

	Discussion and Conclusion
	Requirements for Architectural Modeling
	LRQ1: Architectural Style
	LRQ2: Usability
	LRQ3: Reusability and Extensibility
	LRQ4: Type System
	LRQ5: Libraries

	Simulation Requirements
	SRQ1: Platform Independence
	SRQ2: External Component Implementation
	SRQ3: Mathematical Foundation
	SRQ4: Component Timing Classification
	SRQ5: Simulation Time
	SRQ6: Distribution
	SRQ7: Component Testing
	SRQ8: Extensibility
	SRQ9: Scheduler
	SRQ10: Optimizations

	Conclusion

	Index of Abbreviations
	Diagram and Listing Tags
	Grammars
	Architectural Diagrams Grammar
	MontiArc Grammar
	I/O Test Language Grammar
	Process Network Simulation Grammar

	AADL Examples
	Tutorial Material
	Implementations
	I/O-Test Models
	White-Box Tests
	Generalized Components
	Optimization Testing
	Distributed Simulation

	Language Extension Material
	Curriculum Vitae
	Bibliography
	List of Figures
	Listings
	List of Tables

