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Abstract

In projects dealing with autonomous vehicles which are driving in different contexts like

highways, urban environments, and rough areas, managing the software’s quality for the

entire data processing chain of sensor- and actuator-based autonomous systems is increas-

ingly complex. One main reason is the early dependency on all sensor’s raw data to setup

the data processing chain and to identify subsystems. These sensors’ data might be ex-

tensive, especially if laser scanners or color camera systems are continuously producing

a vast amount of raw data. Moreover, due to this dependency the sensors’ setup including

their respectively specified mounting positions and calibration information is also neces-

sary to gather real input data from real surroundings’ situations of the system. This is even

more important before actually starting to integrate independently developed subsystems

for carrying out tests for the entire data processing chain.

To reduce this dependency and therefore to decouple tasks from the project’s critical path,

an approach is outlined in this thesis which was developed to support the software en-

gineering for sensor- and actuator-based autonomous systems. This approach relies on

customer’s requirements and corresponding customer’s acceptance criteria as well as the

decoupling of the software engineering from the real hardware environment to allow ap-

propriate system simulations.

Based on the customer’s requirements, formally specified scenarios using a domain spe-

cific language are derived which are used to provide surroundings and suitable situations

for a sensor- and actuator-based autonomous system. From these formally specified sur-

roundings, the required input data is derived for different layers of a sensor data process-

ing system to generate actions within the system’s context. This input data itself depends

on a given sensor model to compute its specific raw data. Amongst others, on the exam-

ple of laser scanners and camera systems, algorithms using modern graphical processing

units are outlined to generate the required raw data even for complex situations.

To realize the aforementioned aspects, a development environment is necessary consisting

of tools for modeling and working with instances of a domain specific language. Further-

more, a software framework is required which provides easily usable and mature solu-

tions for common programming requirements like synchronization for concurrent threads
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or communication in a high-level point of view. For relying on a consistent and homoge-

neous software framework for implementing the concepts, a highly portable and real-time-

capable software framework for distributed applications was realized which was written

entirely from scratch in strictly object-oriented C++. Moreover, this software framework

also integrates the formally modeled input data derived from the specified requirements

and the sensors’ models to allow unattended system simulations to support the acceptance

tests for subsystems or an entire system.

On the example of autonomous vehicles, the applicability of the approach and the soft-

ware framework is demonstrated by implementing a vehicle navigation algorithm which

uses a given digital map for finding the best route to a desired destination from an arbitrar-

ily chosen starting point. This algorithm was developed considering the test-first-principle

and is continuously evaluated by unattended and automatic software tests which are ex-

ecuted on a continuous integration system. Its implementation as well as its evaluation

make use of the aforementioned concepts and algorithms. Therefore, the vehicle’s sur-

roundings were formally modeled together with its necessary sensors using the provided

development tools and environment for performing and evaluating unattended system runs

before the algorithm was put into operation on the real vehicle.
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1 Introduction and Motivation

This chapter provides an overview and introduction for the development of complex

software-intense embedded systems. The main focus is especially on sensor- and actuator-

based autonomous systems which can be found in recent driver assistance systems or even

in autonomous vehicles for example.

1.1 Introduction

The resulting quality of software-intense system development projects depends to a large

extent on well understood customer’s requirements. Thus, every development process

starts with collecting and discussing requirements together with the customer and ends

up in testing the final product against previously defined requirements for matching their

fulfillment on the customer’s demands.

Using these requirements, programmers and engineers develop the system according to

specifications written in regular word processing systems or even in more complex re-

quirements management systems like DOORS [83]. Moreover, specification documents

are the contractual base for collaboration with third party suppliers. Thus, these docu-

ments build an important source for many other development artifacts, for example class

diagrams or test cases.

Furthermore, requirements evolve over time due to technical limitations or legal aspects

in the implementation stage or due to changes to former customer’s circumstances. New

requirements are added while others change. Ideally, the system to be developed should

fulfill every single customer’s requirement at any time or should iteratively fulfill selected

customer’s requirements at dedicated milestones.

Due to shorter production times or output-related project goals, the quality assurance must

be carried out regularly especially for sensor- and actuator-based autonomous systems

which require extensive tests. Even within a tight schedule, regular and automatically

executed test suites which are intended to cover large parts of the system’s source code
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are a proper methodology for the software engineering to get a stable and high quality

product nowadays.

1.2 Motivation

As already mentioned above, requirements found the source for any design decision or

system specification. This important impact is indeed recognized by every project, but the

continuous evaluation of their fulfillment is often difficult to monitor. This is caused by

the specification’s representation itself which is not directly part of a machine-processable

software build and quality assurance process. The main reason is the form on one hand

since specifications are either written in a natural language or entered in databases. On

the other hand, a coherent and consistent methodology for formulating requirements to be

part of the system development process itself does not exist in general.

Natural language-based specifications are simple and quick to formulate but they leave an

enormous gap for misunderstandings and interpretations. Furthermore, modern revision

systems to track changes cannot be applied easily to record and visualize modifications or

changes compared to prior versions.

However, database systems perhaps with Wiki front-ends used for collecting and record-

ing requirements allow a distributed collaboration and version tracking for all responsible

authors, but in general they are not part of the system development and quality assur-

ance process as well. Furthermore, entries in the database may be outdated, invalid, or

contradictory without being noticed by the developer or even the customer.

Newer approaches like the Requirements Interchange Format (RIF) [82] simplify the po-

tentially erroneous process of correct requirements exchange with suppliers by reducing

misunderstandings on both contractual partners. Yet, this format cannot be part of the soft-

ware build process at all due to its heterogeneous layout containing formal elements and

arbitrary binary data. However, they improve the human collaboration between different

project partners.

Moreover, requirements describe only what exactly a customer wants to get. But in gen-

eral, requirements do not describe how and when the customer accepts the developed

system, i.e. which are the customer’s acceptance criteria. This means for the example of

a driver assistance system for automatically parking the vehicle between other vehicles

at the roadside: The main objective of the vehicle’s parking system is evident, but differ-

ent system engineers may have different opinions about when a vehicle is finally parked:

For example, one engineer might prefer a smaller distance to the curb while another does

2
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not. The customer’s acceptance criterion for the system depends on his interpretation of

a specific objective.

Nowadays, proper software engineering methods to tackle the increasing complexity in

embedded systems are still evolving [162]. The main reasons are on one hand the chal-

lenge to integrate complex third party software and on the other hand inappropriate de-

velopment processes to handle complex software platforms; the latter are due to an in-

sufficient evolvement over time compared to the evolvement of the software functions’

complexity.

Moreover, today’s development projects consist of many developers and the resulting

quality suffers from insufficient tested software artifacts due to undiscovered software

and system bugs. Finally, an approach to test the entire system after integration is missing,

often due to inadequate resource allocation for software and system testing.

Especially for the automotive domain, an increasing complexity in Electronic Control

Units (ECU) and caused by their integration in vehicle buses is remarkable in the last

years [61, 171]. To overcome these problems, the Automotive Open System Architecture

(AUTOSAR) approach was founded in 2002 by several Original Equipment Manufacturers

(OEM), namely BMW, Daimler, and Volkswagen to standardize tools, interfaces, and

processes. Using AUTOSAR, the exchange of ECUs or software components between

different suppliers should be simplified. But AUTOSAR itself is not capable of handling

directly customer’s requirements and acceptance criteria because this is not its intended

scope [77].

Newer approaches in software engineering have developed different methods for auto-

matic software tests even in early stages of the development process. These methods are

known as unit tests to specify expected results of a function or algorithm for a given set

of input values [102]. But they only validate the algorithm’s conformance to one spe-

cific sample or to specific boundaries, but they cannot prove the absence of errors or even

verify its formal correctness.

Furthermore, unit tests are mainly used to figure out discrete and time independent algo-

rithms. For evaluating continuous algorithms which require continuous input data from

complex surroundings in terms of closed-loops-tests, the concept behind unit tests must

be extended. Mock objects enable the specification of complex system behavior even if

some parts are unavailable. Mock objects are used to substitute subsystems or parts of

the entire system like database connections by imitating the sub-system’s behavior and

replies to function calls. Thus, their usage is usually limited to parts of an entire system.

For software and systems realized using the Java programming language, a stable and
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mature set of tools for checking the software and system’s quality is available. Further-

more, this tooling is well integrated in graphical Integrated Development Environments

(IDE) like Eclipse providing all necessary information to the developer at a glance which

is sponsored by all important software suppliers like Oracle, IBM, and Google.

Yet, besides a mature tooling comparable to Java systems, the fundamental source of

requirements and their corresponding acceptance criteria are still lacking. For ensuring

the system quality, the use of its specifying requirements is eligible. Modern development

processes stay abreast of changes by defining iterative development cycles which integrate

the customer to lower communication barriers.

1.3 Main Goals and Results

The early and intense integration of customer’s requirements in the development process

shortens response times and reduces misunderstandings. Nevertheless, a formal require-

ments specification which can be directly used as a consistent, traceable, and formal arti-

fact as part of the software engineering and not only for project management is missing.

Moreover, the development and evaluation of sensor- and actuator-based autonomous sys-

tems is getting more and more complex nowadays caused by an increasing amount of

sensors’ raw data. Furthermore, testing such systems is also getting more extensive due

to more complex or dangerous situations which have to be set up in the systems’ surround-

ings to provide the required input data.

Hence, for reducing the software’s dependency on a mostly complete sensor’s setup wait-

ing for required input data before starting the actual development, an appropriate method-

ology is necessary to support the development, integration, and evaluation of these sys-

tems already at early stages. Depending on the system to be developed, the interactive

development as well as the system’s evaluation require a large and complex stationary

and dynamic context which cannot be achieved by using the aforementioned mock ob-

jects.

A methodology which integrates the requirements and appropriate acceptance criteria for

the software quality process is required for sensor- and actuator-based autonomous sys-

tems. The conceptual theory presented in this thesis is to use the customer’s requirements

and acceptance criteria to derive a formal machine-processable specification of the sys-

tem’s context of a System Under Development (SUD) to generate and perform interactive

as well as unattended and automatable simulations for the SUD. The following goals have

been achieved:
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• Circumstances of a sensor- and actuator-based autonomous system development

project are analyzed. Hereby, the design of a Domain Specific Language (DSL) to

specify the system’s context of an SUD based on the customer’s requirements to

describe an autonomous vehicle’s behavior in its system’s context is developed.

• Having formulated the system’s context as basis for the system development, the

definition of metrics for measuring the evolving requirements’ fulfillment is subject

for analysis. Hence, the customer’s acceptance criteria are the basis for deriving

metrics which are used to validate the developed system.

• Unit tests are the right choice to perform unattended and automatic regression tests.

But for complex software systems especially based on algorithms which produce

and process continuous input data, the sole use of unit tests or mock objects is insuf-

ficient. Thus, a software engineering methodology which includes the automatable

system’s evaluation of an SUD is presented which requires the definition and imple-

mentation of an unattendedly executable system simulation. The aforementioned

metrics are used to establish a concept similar to unit tests.

• To realize the system simulation framework which should not be a stand-alone tool

but shall instead use the same concepts and software environment like the regu-

lar system development for reducing the tools’ heterogeneity, a highly portable

and real-time-capable software framework written entirely from scratch in object-

oriented C++ was developed which simplifies the development of distributed appli-

cations.

• Finally, a proof-of-concept for the software framework and the outlined methodol-

ogy as well is given by performing a case study on the example of the development

for an autonomous ground vehicle.

1.4 Thesis’ Structure

The thesis is structured as follows. First, the context and history of autonomous vehi-

cles is presented because they are the ongoing example for this thesis. Afterwards, the

overall software engineering methodology to completely decouple and thus to virtualize

the software and system development from any real hardware implementation is outlined.

Following, the theoretical background for formulating a DSL to specify the system’s con-

text of autonomous ground vehicles in a machine-processable manner is presented. This

DSL is used in a software framework called Hesperia which itself supports the develop-

ment of distributed real-time applications. Furthermore, it can be used as a framework for
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realizing embedded software by providing high-level interfaces and ready-to-use imple-

mentation patterns for common programming tasks. These tasks include synchronous and

asynchronous communication between processes and systems, handling for complex data

structures, or high-level programming concepts. Second, the entire system simulation

framework which is a core part of the methodology is realized by using this framework

and thus is directly incorporated into the framework.

Afterwards, the evaluation of the fulfillment of the customer’s requirements using all parts

as described before in so-called system simulations is outlined. Furthermore, interactive

inspection as well as unattended monitoring of a running SUD are described before a

proof-of-concept is given by presenting an example for developing an algorithm for an

autonomous ground vehicle using the elaborated concepts. Finally, related work is dis-

cussed as well as an overall conclusion of this work with an outlook for future approaches

is given.

1.5 Publications

This thesis mainly bases on several contributions describing aspects of this work. In the

following, a list of these publications is given.

• In [131], some aspects of design patterns are presented and discussed for imple-

menting safety in embedded systems. Embedded systems as an example from the

automotive context are chosen. For this thesis, the presented design patterns had an

impact on the concepts of the software framework Hesperia which is presented in

Chapter 5.

• The work in [54] outlines design criteria and general considerations for the develop-

ment of the autonomously driving vehicle “Caroline” which is explained in greater

detail in Section 2.3. Furthermore, aspects of the international competition 2007

DARPA Urban Challenge are presented.

• The publication [10] presents a preliminary concept for testing intelligent algo-

rithms which use continuous input data to produce discrete or continuous output

data. This aspect is elaborated in Chapter 6 which presents an enhanced and inte-

grated concept for testing algorithms from sensor- and actuator-based autonomous

systems at various layers with different types of input data like sensor raw data or

abstract high-level data.

• Further details of the previous contribution and its application in the project for

developing “Caroline” are outlined in [11]. In that publication, first aspects about
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the methodical integration of the system simulation concept in a development pro-

cess which is based on the customer’s requirements are presented. This concept is

elaborated in Chapter 3.

• Conclusions and results from the application of the system simulation concept in

the project for developing “Caroline” are presented at a workshop during the “Inter-

national Conference on Robotics and Automation” in [12].

• The publication [9] along with [122] present results and conclusions from the “Car-

OLO” project and the vehicle “Caroline” and its performance in the international

competition 2007 DARPA Urban Challenge. These contributions describe all as-

pects about the hardware setup, the software architecture, the algorithms used on

the vehicle, and the concept of the quality assurance process.

• In [7], the automatically driving vehicle “iCar” for highways is presented. In this

work, a strategical and tactical software component for deriving driving decisions

and especially its quality assurance are outlined. Some more details about this

vehicle are given in Chapter 2.

• The work in [18] explains and discusses an algorithm for generating synthetic sen-

sor raw data using a GPU on the example of a single layer laser scanner. The

algorithm itself is elaborated and embedded in the software framework Hesperia.

The algorithm is outlined in detail in Section 6.4.6.

• In [17], the software framework Hesperia is presented. An in-depth description of

the framework is given in Chapter 5.

• The publication [21] describes the so-called Berkeley Aachen Robotics Toolkit

(BART) and its application for integrating and calibrating new sensors. The soft-

ware toolkit BART combines the features of the software frameworkHesperia with

elements of the software framework IRT developed at the “Autonomous Ground Ve-

hicles” group at the Center for Hybrid and Embedded Software Systems (CHESS)

at University of Berkeley, California. In Chapter 8, the application of the software

framework Hesperia for developing an algorithm to navigate a vehicle on a digital

map is described.

• In [19], first ideas for using a simulation-based approach to support the software

quality assurance- and evaluation-team are outlined. These ideas were developed

and applied to the CarOLO project during the 2007 DARPA Urban Challenge.
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2 Autonomous Ground Vehicles

The continuous example used in this thesis are Autonomous Ground Vehicles (AGV) as

specific sensor- and actuator-based systems. This chapter introduces AGVs and gives a

brief historic overview about their evolution. Finally, a technical overview describing a

more generic system architecture for sensor- and actuator-based autonomous systems is

presented to found the base for the further chapters.

2.1 History of Autonomous Ground Vehicles

The history of AGVs started on January 29, 1886 with patent number 37,435 given by

the Kaiserliche Patentamt of the German Reich for the invention: Vehicle with gas engine

[16]. That date can be regarded as the birthday of vehicles with combustion engines which

changed fundamentally today’s life.

The vision for driving autonomously was already presented 1939 at the World Fair in

New York in the General Motors (GM) Pavilion [52]. In 1950 already, GM demonstrated

a conceptual vehicle that was able to follow autonomously a buried cable emitting a Ra-

dio Frequency (RF) signal [164]. But only about 60 years later, GM’s Chief Executive

Officer (CEO) from 2003–2009 [66], Rick Wagoner, announced at the 2006 Consumer

Electronics Show in Las Vegas the sale of autonomously driving vehicles by 2018 [33].

His announcement based probably on the success of the company’s sponsorship for the

CarnegieMellon University in the 2007 DARPAUrban Challenge Competition [141, 147].

A more detailed description of the 2007 DARPA Urban Challenge and the participation

of Technische Universität Braunschweig is provided in Section 2.3. Considering today’s

focus on low energy cars this goal might be changed or delayed in the near future.

The first automatically driving vehicle however was documented in 1961 from Stanford

University. The robot named Cart was remotely controlled by a camera-based approach.

It drove at an average speed of 0.0016m/s which meant 1m in ten to 15 minutes. The

robot was extended by Carnegie Mellon University for speeds up to 0.016m/s. These
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robots needed up to five minutes for computing a drivable trajectory from an acquired

camera image [106].

Further work was carried out in 1977 by Tsukuba Mechanical Engineering Laborato-

ries, Japan for the development of a robot guide dog. The robots MELDOG I–IV were

equipped using ultra sonic and camera devices for obstacle detection [150, 151]. Those

results led in 1979 to the development of a vehicle for camera-based road guidance. That

car drove about 50m with a maximum speed of about 8m/s [159].

In the 1980s, DARPA funded a project for autonomous land vehicles. During this project,

a vehicle capable to follow roads automatically using active Light Detection And Ranging

(LIDAR) sensors was developed. Also, Carnegie Mellon University was among the project

partners [4].

The first activities in Germany were carried out by the Universität der Bundeswehr

München in the first half of the 1980s. The vehicle “Versuchsfahrzeug zur autonomen

Mobilität und Rechnersehen”, vehicle for autonomous mobility and computer vision (Va-

MoR) based on a Daimler-Benz van achieved in 1986 a maximum speed of about 25m/s

on a separated highway. The car was able to drive autonomously for the lateral control

[177].

Based on the success of the aforementioned VaMoR vehicle, from 1987 to 1994 the Eu-

ropean Commission funded the Program for European Traffic of Highest Efficiency and

Unprecedented Safety (PROMETHEUS) [26, 27]. Within this program, Daimler-Benz

developed an autonomous road vehicle named “Vision Technology Application” (VITA)

which was able to stay inside its own lane, to detect obstacles inside the current lane, to

change the lane to the left or right neighbor lane initiated by the driver, and to detect in-

tersections [160, 161]. Another vehicle resulting from the PROMETHEUS project was

named “VaMoRs PKW”, VaMoR’s automobile (VaMP). That vehicle proved a long-run

reliability for more than 1,000km with an average speed of 36m/s [15, 41].

Parallel to the PROMETHEUS effort in Europe, the vehicle “Rapidly Adapting Lateral

Position Handler” (RALPH), developed by Carnegie Mellon University drove success-

fully from Pittsburgh, PA through eight states to San Diego, CA. The lateral control was

operating autonomously and was implemented using a vision-based approach whereas

the speed was controlled by a human safety driver. Its average speed was about 25m/s

[117, 118, 119].

Daimler-Benz demonstrated 1994 the vehicle “Optically Steered Car” (OSCAR) which

was an approach for vision-based adaptive intelligent cruise control [62]. In 1998, Daim-

lerChrysler enhanced that approach within a vehicle called “Urban Traffic Assistant”
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(UTA) combining autonomous following a lead vehicle for highways and urban environ-

ments [57] as well as assistance in inner-city areas [65] using a vision-based approach.

One main area of interest was the traffic sign and traffic light detection as well as pedes-

trian detection in urban environments [58, 59, 60].

From 1996 to 2001, the Italian government funded a project to realize autonomous driv-

ing using only passive sensors [29]. The vehicle named ARGO drove nearly 2,000km

in June 1998 on Italian highways with a maximum distance of 54.3km without human

intervention [28].

Besides independent AGVs, research also concentrates on the development of virtual ve-

hicle platoons or automated highway systems. The European program Promote Chauffeur

I from 1996 to 1998 and Promote Chauffeur II from 2000 to 2003 were carried out for

virtual platooning for trucks. The main goal for those programs was the development of a

virtual tow bar for saving fuel by lowering the distance between several trucks. The result-

ing truck platoon drove with a distance of 15m between each other at a speed of nearly

23m/s [137, 138]. The results of that program were further analyzed using a scenario-

based approach subject to building a platoon, driving as part of a platoon, and leaving a

platoon [79].

In California, the program Partners for Advanced Transit and Highways (PATH) [142]

and in Japan, the program Intelligent Multi-mode Transit System (IMTS) [2] were set up

to foster research in the similar area. The main focus for these programs is to increase the

number of vehicles and the safety on highways and to lower environmental pollution.

In 1998, Volkswagen demonstrated its autonomously driving vehicle KLAUS. Using

KLAUS, human exposure for test drivers could be significantly lowered [134, 173].

In 2004, DARPA announced and carried out the first Grand Challenge called “Barstow

to Primm” named by the course which led from Barstow, CA to Primm, NV [139]. The

course had a length of about 142 miles. The participation consisted of a qualification and

a vehicle inspection prior to the final event. None of the 15 competitors completed the

course and the farthest distance traveled autonomously was about 7.4 miles by Carnegie

Mellon University’s team [139].

For enforcing a higher quality of the competition’s entries, DARPA announced the repe-

tition in 2005 named “Desert Classic” and modified the entire qualification process [70].

The process consisted of a video submission demonstrating basic vehicle’s capabilities,

on site inspections carried out by DARPA’s officials prior to the National Qualification

Event (NQE). The NQE was meant to be the semifinal to select the competitors for the fi-

nal event. From initially 195 competitors, only 43 teams achieved the semifinal. 23 teams
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achieved the final event held on October 8, 2005 for completing the 131.6 miles course

started at Primm, NV. Only five teams completed the entire course, four of them within

the 10 hours time limit, from which the vehicle named “Stanley” of Stanford University

won the race and the $2 million first prize [71].

Figure 2.1: Autonomously driving vehicle “Caroline” at the 2007 DARPA Urban Chal-

lenge in Victorville, CA. This vehicle was the contribution from Technische Universität

Braunschweig for that international competition. The vehicle was a 2006 Volkswagen Pas-

sat station wagon which was modified for driving autonomously in urban environments.

Detailed information about the vehicle, its modifications, and its performance during the

competition can be found at [122].

In May 2006, DARPA announced a subsequent competition for AGVs, the 2007 DARPA

Urban Challenge which also declared the goal to be reached by the competitors [170].

The qualification process was similar to the one for the previous challenge, consisting of

a video submission, a demonstration at performers’ site, and a semifinal along with the

final taking place in Victorville, CA at the former George Air Force Base from October

26 to October 31, 2007. 35 teams from initially 89 competitors achieved the semifinal and

only eleven qualified for the final event held on November 3, 2007. The contribution of

Technische Universität Braunschweig named “Caroline” shown in Figure 2.1 was among

the eleven finalists and achieved as the best European competitor the seventh place [122].

Team Tartan Racing from the Carnegie Mellon University won the Urban Challenge and

the $2 million first prize [141].

In spring 2008, Volkswagen together with regional research and development partners

presented “Intelligent Car” at the Ehra proving ground as shown in Figure 2.2. The ve-

hicle which based on a 2006 Volkswagen Passat station wagon demonstrated its abilities

for automatic driving on highways which was demonstrated on the proving ground from

Volkswagen in Ehra. For achieving that goal, the vehicle analyzes its surroundings and

recommends passing maneuvers of slower vehicles. Its maximum speed was about 36m/s
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[172].

Figure 2.2: Vehicle “Intelligent Car” from Volkswagen at the company’s own proving

ground in Ehra. This vehicle was able to drive automatically on highways by continu-

ously evaluating its surroundings to derive suitable driving propositions for safely passing

slower moving vehicles for example. Further information about the vehicle can be found

at [7]; image credit: Volkswagen Corporation.

The first European variant of a program similar to the challenges organized by DARPA

was held in 2006 by Bundeswehr (German Federal Armed Forces). Unlike the American

challenges, this program which is called European Land Robot Trial (ELROB) is not a

competition but a demonstration of the capabilities of the current robotics research. The

program is split into a Military ELROB (M-ELROB) and a Civilian ELROB (C-ELROB)

demonstration which alternate yearly. In 2009, C-ELROB took place from June, 15 to

June, 18 in Oulu, Finland [56].

The Netherlands are organizing an international challenge on cooperative driving. The

goal within this challenge is to interact with other traffic participants to optimize the

overall traffic flow. Currently, rules and judging of the participants are discussed. The

event will probably take place in 2011 [81].

2.2 Architecture of Sensor- and Actuator-based Systems

This section describes the general architecture of sensor- and actuator-based autonomous

systems from a functional point of view in general which can be also found in AGVs as

mentioned in several publications [41, 122, 155, 172]. Furthermore, necessary software
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and system components for proper system function are outlined as well. First, neces-

sary definitions and terms are given before afterwards a brief overview over one concrete

example is presented.

2.2.1 Terms and Definitions

In the following, a list of definitions for the following chapters is given.

• Automatically driving vehicle. An automatically driving vehicle is able to drive for

itself under supervision of the driver. A recent popular example is an automatic

parking system or “intelligent Car” [7, 172].

• Autonomously driving vehicle. Contrary, an autonomously driving vehicle is a robot

trying to reach a predefined goal for itself without interventions of a driver. An

example is “Caroline” as described shortly in Section 2.3 or the vehicle described

in the case study in Chapter 8.2.1.

• System. This term is the short term for sensor- and actuator-based autonomous

system which can be for example an automatically or autonomously driving vehicle

with all components including its software.

• Subsystem. Hereby, either a software or hardware component from a system is

denoted.

• System’s context. The system’s context denotes the environment for which the sys-

tem is designed for. This includes elements from its surroundings as well as techni-

cal dependencies for correct operation. The short term context is used interchange-

ably.

• Surroundings. Surroundings of an autonomously driving vehicle are all visible ele-

ments like pedestrians, trees, or lane markings as well as logical elements like speed

limits for example as described in Section 4.3.

• Rigid body. A surroundings’ element which does not change its shape when transla-

tions or rotations are applied, i.e. the distances between all points forming its shape

do not change. For the sake of simplification, collisions with other rigid bodies and

their impact are explicitly excluded. The terms body and element are used inter-

changeably as well.

• Real-time. By this term, a context is denoted which is not entirely controllable,

mostly caused by an independent time source or uncontrollable elements.
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2.2.2 General System Architecture

An autonomously or automatically driving vehicle is a system interacting with the sys-

tem’s context by continuously detecting its surroundings, assessing and interpreting the

detected environment for deriving an action, and performing an action. In recent literature,

a sensor- and actuator-based autonomous system is also be regarded as a Cyber Physical

System (CPS) [94].

Figure 2.3: General system architecture of a sensor- and actuator-based autonomous sys-

tem consisting of a Perception Layer, aDecision Layer, and an Action Layer. The leftmost

layer is responsible for gathering information from the system’s context by processing in-

coming data from all available sensors. Furthermore, this layer applies algorithms for

fusing and optimizing potentially uncertain sensors’ raw data to derive a reliable abstract

representation. This abstract representation is the input data for the next layer which in-

terprets and evaluates this abstract model to derive an action. This action is passed to the

rightmost layer which calculates required set points for the control algorithms. To support

the development as well as to supervise the data processing chain which is realized by the

aforementioned three stages the support layer provides appropriate tools for visualizing,

capturing, and replaying data streams. The overall data processing chain realized by this

architecture is closed by the environmental system’s context as indicated by the dotted

arrows.

The general system architecture for sensor- and actuator-based systems is shown in Figure

2.3. It consists of three major parts which form a data processing chain to modify incom-

ing data: Data Perception Layer, Decision Deriving Layer, and Action Layer. These parts

describe the data flow for a sensor’s datum through the system for causing some action
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in the system’s context while the data’s complexity might decrease during processing.

Beyond, an additional layer is depicted for supporting these major parts for example by

simply recording the data flow.

The first layer is the perception layer. This layer is the adapter for continuously acquiring

data from any source into the system. As shown in the diagram data may be acquired

from outside the system denoted by Sensor 1 like data from a GPS. The acquisition of

internal data from the system itself like an odometer is indicated by Sensor 2. This data

may be improved and combined with another sensor’s data using a sensor data fusion as

explained in greater detail in [75] for example. Furthermore, preset data like a digital map

can be provided by this layer.

The following layer is named decision layer which is fed by the perception layer. In this

part, all continuously incoming data is situationally interpreted to feed back information

to the perception layer for optimizing the data acquisition. Mainly, the Situational assess-

ment provides processed data to a short and an optional long term planner to generate a

decision for the next layer. Furthermore, both planners influence each other to avoid short

term decisions which do not accomplish the system’s overall goal. Otherwise, if none

short term decision could be derived, the long term plan must be adjusted regarding the

changed situation.

The last processing stage is called action layer which receives its data from the decision

layer. In this layer an abstract decision is split up into set points fed to controllers for

the system’s actuators by the Action supervisor. The Action generator represents all con-

trollers and performs the actual low-level controlling by monitoring feedback variables

to compute new actuating variables. Obviously, this generator modifies the system it-

self but may also influence the system’s context by transmitting data as indicated by the

white outer frame around the system. Shortcuts from the perception layer into the action

layer which bypass the decision layer can also be found in sensor- and actuator-based

autonomous systems to reduce the latency for example. However, in Figure 2.3 these

shortcuts are not explicitly shown.

All aforementioned elements and layers are assisted by the support layer. The layer it-

self is not part of the data processing chain but maintains the chain by logging events,

recording or simply visualizing the data flow, and monitoring the system’s overall state.

Due to the system’s interactions with the reality in perhaps critical applications like an

Adaptive Cruise Control (ACC) system, the support layer must not interfere the actual

data processing chain. Thus, its operation must be non-invasive and non-reactive.

The system architecture for a sensor- and actuator-based autonomous system is common

for many AGVs. Thus, this architecture of a continuously data processing system interact-
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ing with its surroundings is the base for all further chapters. In the following, an example

for an AGV implementing the aforementioned model is presented.

2.3 Example: Autonomously Driving Vehicle “Caroline”

In this section, an overview of the autonomously driving vehicle “Caroline” is presented.

“Caroline”, named according to the founder of Technische Universität Carolo-Wilhelmina

at Braunschweig, Carl I., is a 2006 Volkswagen Passat station wagon. It is able to drive

autonomously in urban environments and competed with only ten other teams in the 2007

DARPA Urban Challenge final event [140].

(a) Caroline’s sensor setup for the front side: Several sen-

sors with different measuring principles and overlap-

ping viewing angles and ranges are used to perceive

reliably its surroundings. To detect stationary and dy-

namic obstacles like parked or moving cars, active sen-

sors like laser scanners and radars are used; for sensing

lane markings or drivable areas cameras with different

resolutions were used.

(b) Caroline’s trunk which carries the

processing units: Automotive com-

puters were used running a De-

bian Linux with a special real-time

Linux kernel.

Figure 2.4: Overview of Caroline’s sensors and trunk (based on [122]).

In Figure 2.4, the general setup of the vehicle is shown. On the left hand side, the sensors

for environmental perception are depicted, whereas the right hand side shows the comput-

ing units in the trunk. “Caroline” was equipped with a redundant sensor configuration to

improve the perception’s reliability on one hand and to enhance the abstract environmen-

tal model produced from the sensor data fusion by using different measuring principles

for overlapping fields of view on the other hand.

Depending on the desired perception of the surroundings’ elements, different types of

sensors were used. “Caroline” detected the road and drivable area in front of the vehicle,

lane markings from the own and the left and right neighbor lanes, and stationary and

17



Automating Acceptance Tests on the Example of Autonomous Vehicles

dynamic obstacles. At the rear side, sensors to perceive stationary and dynamic obstacles

only were mounted.

Starting at the lowermost surroundings’ element to detect, “Caroline” used a color camera

combined with two one layer laser scanners to detect the shape and the course of drivable

terrain up to about 50m at 10Hz. Using this information, the vehicle could drive on the

road by centering itself between curbs or on similar colored and shaped ground [20]. For

using the correct side of a road, potentially available lane markings were detected using a

setup of four color cameras looking up to 35m with a Field of View (FOV) of 58° at 10Hz

as well [99].

For detecting stationary and moving obstacles, only active sensors with varying measuring

principles for different distances were used. To detect obstacles at the farthest distance, a

beam LIDAR sensor for up to 200m with a FOV of 12° was mounted below the license

plate. For a FOV of 240° up to 60m, two scanning four layers laser scanners operating as

a fusion cluster were mounted on the left and right front section. Between both sensors,

a radar sensor covers the FOV of 40° up to 150m. From all these sensors, the raw or pre-

processed data by the sensor’s own ECU was fused using a sensor data fusion to generate

an abstract environmental model from the vehicle’s surroundings [45].

Following the perception layer, the decision layer analyzed and interpreted the pre-

processed data as next stage in the data processing chain. “Caroline” used an approach

based on [128] for generating weighted curvatures using its situational assessment. The

highest rated curvature was chosen to compute a trajectory to be driven by the action layer.

For controlling the vehicle in rule-based situations, this approach was enhanced with an

interceptive system taking control at intersections or for performing a U-turn for example.

Using trajectories from the previous stage, the action layer supervised the vehicle’s overall

state and computed the necessary set points for the actual controlling algorithms. Further-

more, preset complex maneuvers like performing a U-turn could be commanded from the

decision layer by issuing a command providing an appropriate U-turn polygon to be used

as the area to carry out a U-turn [174, 175].

The vehicle’s support layer consisted not only of simple logging and supervising compo-

nents for run-time. Moreover, a graphical run-time visualization [98] to be used also as

front-end for the simulation of “Caroline” during development was provided [11]. Further

information in greater detail can be found in [9, 122].
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3 Methodology for Automating

Acceptance Tests

In this chapter, a methodology for automating acceptance tests during the system develop-

ment is presented. Furthermore, preconditions, requirements, and necessary concepts for

implementing a supporting tool chain are derived which are elaborated in the following

chapters.

3.1 General Considerations

Referring to [31], [120], and [162], related research challenges especially in automotive

software and systems engineering–which can also be applicable for similar domains for

system development relying on sensors and actuators–for this work include nowadays:

• Languages, models, and traceability for requirements engineering. Approaches for

handling requirements must include the customer’s point of view. However, since

most requirements are provided in natural language, they cannot be directly part of

the software and system development process by definition.

Furthermore, as required by process audits to achieve a certain level of certification,

not only requirements which might stem from customers but also change requests

caused by identified faults in the software or due to changed circumstances must be

tracked down to single lines of code. Hence, a machine-processable integration of

these requirements into the system and software development process is desirable

to support these tasks.

• Middleware to enable communication between heterogeneous systems. Today’s

vehicles are equipped with different communication infrastructures, for example

CAN-, Flexray-, or LIN-buses; even newer ones are evaluated in research depart-

ments of various OEMs. Moreover, Road Side Units (RSU) enabling communi-

cation between a vehicle and its infrastructure need to be covered by technical
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approaches which require a reliable, safe, and uncompromised communication be-

tween sender and one or many receivers. Furthermore, due to changing hardware

platforms and thus changing ECUs, software shall be robust and thus embrace these

changes with only a minimum of additional system tests.

• Continuous integration of evolving software artifacts. Well supported by tools for

the Java programming language, this aspect is currently quite time-consuming for

sensor- and actuator-based autonomous systems due to insufficient tools. This is

caused by the dependency on sensor’s input data to stimulate the data processing

chain. Furthermore, sometimes complex situations must be set up in the system’s

context to evaluate an SUD’s actions.

In the following, the generic system architecture for sensor- and actuator-based au-

tonomous systems is analyzed to identify requirements and preconditions related to the

V-model development process to derive a development methodology which is independent

from the real existing hardware already at early stages. Moreover, this methodology shall

allow an automation of acceptance tests by deriving the system’s context of an SUD based

on the customer’s requirements in a machine-processable manner to integrate it directly

into the system- and software development process for addressing the aforementioned

issues.

3.2 Virtualizing a Sensor- and Actuator-based

Autonomous System for the V-model-based

Development Process

In Figure 3.1, the V-model alongside with the previously discussed general system archi-

tecture for sensor- and actuator-based autonomous systems is depicted. The development

process starts on its highest level with an analysis of the customer’s requirements. For

the development of a sensor- and actuator-based autonomous system, these requirements

describe in general the customer’s observable behavior of the system in its intended sys-

tem’s context as shown in Figure 2.3. From a different point of view, these requirements

describe the “interface” and “behavior” of the system.

When developing sensor- and actuator-based autonomous systems, the software develop-

ment depends not only on the real hardware environment including actuators and sensors

with their corresponding mounting positions and fields of view, but also on the system’s

context causing various and often unlimited different situations which must be handled
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Figure 3.1: Methodology which uses the customer’s requirements from the topmost level

of the V-model as the basis for a formal specification of the system’s context. This speci-

fication is used to generate the required input data for the different layers of a sensor- and

actuator-based autonomous system. Moreover, completing the customer’s requirements,

its acceptance criteria are used to specify metrics for evaluating individual layers or the

entire data processing system.

safely and in time by the SUD. Thus, several limitations unveil for the software engineer-

ing which are selectively listed in the following:

• Dependency on the sensors may delay the software development. Due to the fact

that the sensors’ raw data is necessary to develop appropriate software components

to evaluate and interpret the system’s context for generating an abstract model of

its surroundings, the development of these components is delayed until situation-

dependent raw data can be produced even if the software architecture is decomposed

into layers with interfaces. Thus, the availability and mounting of sensors is on the

project’s critical path.

• Early and continuous integration of software components is hardly possible. Fol-

lowed by the aforementioned issue, the continuous and early integration of inde-

pendent software artifacts is hardly possible. Thus, issues which arise from the

component’s interaction or from architectural faults cannot be fixed early and cause

delays later on.
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• Test automation is only possible in a limited manner. Caused by the dependency

on sensors’ raw data, automation for unit tests and thus an automated continuous

integration system is only available for selected parts of the software system. Thus,

a report about the quality and robustness for the entire system is only possible when

it is integrated and tested in reality which is impossible for each single modification

to the entire source code.

• Dependency on continuous input data from the system’s context. To feed required in-

put data into the data processing chain of a sensor- and actuator-based autonomous

system, its actions within its intended system’s context cause on one hand reac-

tions in the surroundings. On the other hand, these reactions of all elements from

the system’s context must be returned into the data processing chain in terms of

a closed-loop. However, the closing of the data processing chain can be realized

at different layers of the chain as shown in Figure 2.3. Therefore, various abstrac-

tions from the system’s context are required for the different layers; for example,

the necessary input data for a sensor data fusion module needs to be more complex

compared to the input data which is necessary for a high-level planning algorithm

which may only require an aggregated abstraction from the system’s context.

In the following, a methodology is outlined which addresses these challenges for the soft-

ware engineering in the development of sensor- and actuator-based autonomous systems.

3.2.1 Preconditions and Limitations

For applying recent methodologies from the software engineering domain including test

automation to all parts of the system’s software, several preconditions must be met. These

are listed in the following.

• Formal specification of the system’s context. For developing a sensor- and actuator-

based autonomous system which relies on stimuli from its intended system’s con-

text, input data must be available to provide information about its surroundings.

To get this data in a reliable and consistent manner, the SUD’s system’s context

including stationary and dynamic elements must be specified formally to provide

scenarios. These scenarios are re-usable artifacts which are machine-processable in

the software development process and can be derived from the customer’s require-

ments.

• Specification of customer’s acceptance criteria. For carrying out acceptance tests to

evaluate the behavior of the SUD, metrics which reflect the customer’s acceptance
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criteria must be specified. These metrics are used to evaluate the SUD’s behavior

on stimuli from the stationary and dynamic system’s context.

• Decoupling the system and software development process from the real hardware

environment and the system’s context. To realize an automatic validation of the

SUD, the software and system development must be operable in a purely virtualized

manner. Thus, the SUD itself must be available in a completely virtualized way.

Therefore, the CPS’s interface to its real world must be virtualized. Hence, a model

of each sensor and actuator must be available to decouple the SUD from its sur-

roundings. Furthermore, a fail-safe, reproducible, and convenient framework to

support the active software development as well as the automated validation must

be available which is able to provide the required input data for a data stream pro-

cessing system using sensors to understand its surroundings and actuators to interact

with its surroundings.

• Enabling the testability. To apply software testing methods on the SUD, the system

itself and especially its components which may be supplied by third party contribu-

tors must be testable. Thus, a testable architecture must be available which supports

the testing of individual layers or even subsystems.

However, a purely virtualized system and software development process can extend and

partly substitute real system tests but cannot completely substitute them. The main rea-

sons are the simplifications and assumptions which were made in developing a model to

feed data into the SUD. Instead, the main goal behind a software development process

which bases on a virtualization of the SUD is to reduce the dependencies to the real hard-

ware environment and the system’s context to increase the overall SUD’s software quality

by enabling the usage of well established software engineering methodologies like test

automation and continuous integration. Thus, an increase in efficiency for evaluating the

system’s quality is possible by using automatable software tests.

3.2.2 Formal Specification of the System’s Context

For using the customer’s requirements as part of the software development process to spec-

ify the SUD’s system’s context as shown in Figure 3.1, a formal representation in form

of a so-called formal language is necessary. Nowadays, these languages which help to

address selected issues of a chosen domain are called DSLs contrary to so-called General

Purpose Languages (GPL) which do not cover a specific domain but rather provide more

widely applicable concepts. A DSL consists of a set of specific words which are called
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the alphabet of the language or which are more commonly known as keywords. Further-

more, these keywords must be composed in a formally specified way which is defined in

a so-called language’s grammar to create valid sentences which meet the grammar.

The main advantage of grammar’s compliant sentences is that any tools which use them

for further data processing can safely assume that the provided input data is valid if and

only if the sentence is compliant to the grammar. Thus, the content of a given sentence

can safely be evaluated if it is formally correct; this fact is called syntactical correctness.

However, syntactical correctness is necessary but not sufficient i.e. any sentence which is

compliant to a given grammar must not be automatically meaningful. Therefore, further

concepts like the Object Constraint Language (OCL) which is part of the Unified Model-

ing Language (UML) can be used to specify constraints for parts of a sentence. Another

way to evaluate the semantic validity of a sentence is to perform a post-processing step

after evaluating the sentence’s syntactical correctness during the so-called parsing step.

Therefore, all atomic pieces of a sentence are evaluated using a specific program which is

often part of the parser.

To create a suitable DSL, the domain has to be carefully analyzed by a domain expert first.

This analysis yields meaningful atomic pieces of the domain with potential attributes

which describe varying parts. Moreover, relations between these pieces are defined and

further specified. The resulting artifact is for example a UML class diagram which re-

flects identified elements from the analyzed domain. The diagram itself is the base to

derive necessary non-terminals and terminals for the grammar. In Chapter 4, an analy-

sis for the domain for sensor- and actuator-based autonomous systems on the example

of autonomously driving vehicles is carried out which yielded a grammar to describe the

system’s context.

The resulting grammar is not only the base to define the system’s context for autonomous

vehicles. It is also the Single Point of Truth (SPOT) to generate the required input data for

the different layers of a sensor- and actuator-based system as shown in Figure 3.1 on the

left hand side of the general system architecture for sensor- and actuator-based systems.

Therefore, further algorithms which are described in greater detail in Chapter 6 evaluate

the given grammar’s instances to provide the required input data.

3.2.3 Specification of Customer’s Acceptance Criteria

As already mentioned unit tests are nowadays an established methodology [130] to define

an executable specification for an expected algorithm’s behavior. Therefore, the consid-

ered algorithm is structurally analyzed to derive necessary test cases; however, during the
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actual test process the algorithm is regarded as a black box. The analysis is necessary to

identify the required test data which is fed into the algorithm to compare the algorithm’s

results with the expected output data. Moreover, using continuous integration systems

like [38] the test execution can be automated to report regularly on the software’s quality

unattendedly.

Inspired by the aforementioned methodology this concept shall be applied to the final step

of the V-model for automating the acceptance tests. Therefore, the necessary input data is

generated from the detailed and formal specification of the system’s context either to feed

data into the sensor models or into a model for an entire data processing layer as shown in

Figure 3.1. Contrary to the structural analysis which is necessary to specify appropriate

unit tests for an algorithm as sketched above, the customer evaluates the resulting system

mainly by validating its behavior according to the customer’s own acceptance criteria.

Additionally to the formally specified system’s context which is derived from the cus-

tomer’s requirements, the customer’s acceptance criteria must be gathered to define ap-

propriate acceptance tests; recent requirements management tools like the Volère Require-

ments Specification [167] enforce to define so-called fit criteria to support the evaluation

of the requirement’s fulfillment. Adapting this concept to the area of sensor- and actuator-

based autonomous systems the final evaluation consists of measuring various aspects of

the system’s behavior in its intended context. On the example of autonomous vehicles,

these criteria include minimum and maximum distances to stationary and dynamic obsta-

cles, timings, and legally correct behavior in different situations. During the 2007 DARPA

Urban Challenge competition, a specific document was released [39] which describes very

detailed the evaluation criteria which were applied manually by the DARPA judges during

the competition.

These criteria which measure the system’s performance in its intended system’s context

can also be realized alike the evaluation of an algorithm using unit tests. Therefore, com-

parable to the system’s evaluation in reality the system must be supervised continuously

and any applicable evaluation criteria must be applied continuously to the SUD regarding

its system’s context.

3.2.4 Decoupling the SUD’s Evaluation from the Real Hardware

Environment and System’s Context

To realize an evaluation for a sensor- and actuator-based system as shown in Figure 3.2,

its system’s context is necessary. As mentioned before, this system’s context is derived
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from the customer’s requirements specification which is provided using a DSL. Thus, a

formal, repeatable, and consistent representation of an SUD’s surroundings is available.

Figure 3.2: Activity diagram showing the required steps to evaluate automatically a

sensor- and actuator-based autonomous system: First, on the left hand side the steps for

setting up the test environment are shown. Afterwards, the iterative evaluation of the

SUD’s behavior is depicted by the gray steps which are continuously executed until the

evaluation is finished due to fulfilling all customer’s acceptance criteria for the specified

test or due to violating a certain criterion. Finally, a summarizing report is created.

To feed appropriate input data into the SUD, a model of its sensors which simulates a

specific sensor’s measurement principle or at least an abstraction from its sensors by using

a so-called layer’s model is necessary. The latter represents an entire layer encapsulating

all available sensors by providing already pre-processed data which reflects an abstract

representation of the SUD’s surroundings. Thus, the SUD’s interface to its surroundings

is specified.

As the next step, the so-called testbed is setup for the SUD. The testbed is a run-time

environment for controlling the scheduling for the SUD and its system’s context to ensure

a repeatable and consistent execution for all SUD’s components and its surroundings,

supervising the entire communication, and providing a system-wide time source.

Following, the actual evaluation loop is executed. Therefore, the initial SUD’s state re-

lated to its system’s context is evaluated. Then, the system-wide time is incremented to

calculate the next states for t = t+1 for the SUD on one hand and its system’s context on

the other hand. Within this time step, the SUD may calculate next values for the actuat-

ing variables or process incoming data using its situation assessment module for example.
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After modifying the SUD, its execution is suspended to generate the data for the SUD’s

surroundings for the current time step based on the SUD’s behavior. Therefore, specific

models which are using the system’s context to calculate and provide the necessary data

for the different layers of the SUD are required. Finally, the current situation is evaluated

to start over again.

The aforementioned evaluation reflects not only a purely virtualized way to evaluate a

software system for sensor- and actuator-based autonomous systems but it also resembles

the way the real system may be tested: First, the surroundings and a given situation must

be prepared; then, the SUD must be set up followed by an initial evaluation of the current

test setup. Then, the SUD is executed with the given parameters to operate in the pre-

pared system’s context and situation while it is continuously supervised by a test team for

example. Afterwards, a final report for the test is created. Hence, this real test scheme for

a sensor- and actuator-based autonomous system was the template for purely virtualized

evaluation.

Compared to methodologies like Software-in-the-Loop (SiL) and Model-in-the-Loop

(MiL), this methodology bases on the SPOT principle realized by a DSL to specify the

system’s context. Thus, instances from this DSL are used as the only source to generate

automatically all necessary and specific input data to close the loop for the various lay-

ers of the data processing chain. Furthermore, the DSL and the concepts outlined in the

following chapters are embedded into a common framework to provide a seamless integra-

tion of the validation concepts for acceptance tests which themselves are inspired by unit

tests. Finally, due to the integration into a framework, the methodology is self-contained

in general and, thus, scales with the number of users. Thus, it can be used interactively on

one hand to evaluate an SUD, but it can also be unattendedly automated on the other hand

by any existing Continuous Integration System (CIS) as described for example in Section

8.2.5.

3.2.4.1 Interceptable and Component-based Applications

An SUD may consist of several only loosely coupled independent components to tackle

the customer’s desired systems using the divide and conquer principle. Furthermore, to

support the scheduler for the SUD and its surroundings as described in the following, all

components must be structured similarly in a software architectural sense. Therefore, the

data processing part of a component which is a part of the data processing chain can be

identified from the component’s software architecture in a pre-defined way, and thus, the

component can be intercepted easily.
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Moreover, to support a consistent setup of the testbed for all independently running SUD’s

components, centralized configuration data must be deployed to all components nonethe-

less whether they are running on only one computing node or distributedly on several

computing nodes. Furthermore, only those data which is particularly meant for a specific

component should be deployed to avoid side-effects or dependencies on other unrelated

configuration data.

3.2.4.2 Non-Reactive and Supervisable Communication

Comparable to a consistent internal structure of all running SUD’s components, their

communication must be precisely specified and typed as well to inspect incoming data

at run-time to avoid misleading behavior inside a component. Furthermore, to avoid in-

terfering SUD’s components or evaluating components, directed point-to-point commu-

nication between a priori known communication partners must not be used for the core

data processing components. Instead, a fast and bus-like communication which allows

non-reactive inspection both for monitoring components and for evaluating components

shall be chosen.

However, bus-like communication may cause packet drops caused by an increasing com-

munication load. Assuming components which communicate with a high frequency for

updating their previously sent data with new information, packet drops may be neglected

if they appear rarely and thus do not reduce the data’s quality of all awaiting components.

However, this issue depends on the final applications’ partitioning on the intended hard-

ware platform. Real-time aspects for data processing and exchange depend on an actual

implementation. Therefore, these aspects are discussed in Section 8.1.

Furthermore, not only the actual data processing step inside an SUD’s component must be

interceptable but also its incoming and outgoing communication to enforce a deterministic

scheduling. However, bus-like communication is undirected in principle and hence, a

software abstraction must be seamlessly integrated into all SUD’s components to intercept

and control all communication.

3.2.4.3 Scheduler for SUD and its System’s Context

As indicated by Figure 3.2 the evaluation of a running SUD inside its predefined system’s

context needs a reliable scheduler. The main task for the scheduler is to control all SUD’s

components and all components which are used for evaluation to ensure a determinis-

tic execution order. Furthermore, the scheduler selects one component which needs to
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be executed and performs one single and constant execution step ∆̄t for the main data

processing part of the selected component.

Moreover, the scheduler must ensure that a component which is selected for execution

does not run forever; therefore, the selected component has a predefined maximum exe-

cution time t̄exec,max. Whenever one component misses this predefined deadline the entire

evaluation is canceled because the scheduler cannot identify the reason for the failing

component. This behavior is a fail-safe behavior because it cancels the evaluation at the

earliest possible time tfail which does not cause further failures or misleading behavior.

Furthermore, it may be possible to deduce the failure reason from any non-reactively cap-

tured data during the evaluation.

The strategy to select a component for execution is inspired by the Round-robin schedul-

ing method which implements a First-In-First-Out (FIFO) queue to select the next avail-

able component. Thus, a constant run-time frequency for each component together with

the aforementioned execution deadline t̄exec,max ensures that all executable components

will be selected in a deterministic order with a maximum execution time.

3.2.5 Structure for the Following Chapters

The resulting methodology consists of three parts: Formal specification of the system’s

context, definition of metrics for evaluating an SUD’s behavior inside its system’s context,

and an appropriate software framework which not only supports the aforementioned both

concepts but also supports the software development itself. Hence, this methodology is

elaborated in the following chapters.

Therefore, a thorough domain analysis which is described in Chapter 4 is carried out for

the system’s context of sensor- and actuator-based systems on the example of autonomous

vehicles. Afterwards, a software framework to support the development of distributed real-

time applications is designed and outlined in greater detail in Chapter 5. This framework

is intended to found the basis for interactive and unattended system simulations by using

a DSL which describes the system’s context as outlined in Chapter 6. The actual SUD’s

evaluation is described in greater detail in Chapter 7. The software solution is applied

exemplarily on an autonomous vehicle whose results are described in Chapter 8.
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4 Modeling the System’s Context

In this chapter, a DSL and its implementation for Java and C++ for modeling the system’s

context mainly for AGVs is outlined. Therefore, the mathematical basis is discussed first.

Afterwards, an analysis of the AGV’s surroundings is carried out to derive a DSL for

modeling stationary and dynamic elements. Finally, the DSL’s implementation and its

drawbacks for Java and C++ are discussed.

4.1 General Considerations and Design Drivers

According to [24], a model is a simplified representation from sometimes complex rela-

tions, actions, or behaviors of a real system and is intended to serve specific and domain-

dependent purposes. The important remark is that the model is an abstraction of the

original system by defining a set of assumptions to satisfy the desired purpose; thus, the

model is only similar and not the same as the original system. Using a model, informa-

tion from the original system should be deduced or predictions should be derived to allow

further inspections for the system.

For modeling in the domain of automotive software development, MATLAB and Simulink

[154] are today’s first choice by many developers. Using these tools for specifying a

system, even stepwise interpretable models at early stages in the software development

process could be defined. However, these models are rather inapplicable for large models

describing elements in the system’s context along with its visual appearance. Furthermore,

for designing stationary and dynamic elements with an associated behavior that could

be event-based itself, MATLAB is rather inappropriate because to its limited concept of

referencing variables for example.

Below, the most important design drivers for a domain specific language for modeling an

AGV’s system’s context are listed:

• Scenario-based modeling. The topmost modeling element is a scenario defining a

concrete setup for the system’s context as well as a goal to be reached by the system

31



Automating Acceptance Tests on the Example of Autonomous Vehicles

itself within the modeled context. For example: “Scenario: Correct handling of 4-

way stops.”

• Separation of modeling. Stationary and dynamic elements of the system’s context

should be modeled separately for allowing flexible reuse.

• Mathematical relations as common base. Scenarios describe complex relations be-

tween different elements from the system’s context like positions and rotations, tim-

ings, and velocities. All these attributes arise from consistent and unique mathemati-

cal relations between element’s attributes from the system’s context. Therefore, for

using models from the system’s context in the software development to generate

input data for example, they must rely on a mathematical base.

Next, mathematical considerations for modeling three-dimensional elements of the reality

are given. Afterwards, a domain specific language to define an AGV’s system’s context

is introduced by analyzing the AGV’s surroundings.

4.2 Mathematical Considerations

Before the surroundings of stationary and dynamic elements can be modeled, their math-

ematical representation and valid manipulations must be defined. In this section, manipu-

lations for rigid bodies which are used in the surroundings’ representation to simplify the

modeling and computation are discussed. Further information for the concepts which are

outlined briefly in the following can be found at [30].

First, every rigid body has a unique representation in the model. Since the model it-

self is derived from the reality, its assumed modeling space is R
3 with Cartesian coor-

dinates from the orthonormal basis as shown in Equation 4.1. A rigid body’s elemen-

tary representation PB in R
3 consists of a translation PBT

relative to the coordinate sys-

tem’s origin and a direction vector PBD
describing its rotation around all three axes:

PB = ( ~PBT
, ~PBD

) = ((xB, yB, zB), (dXB
, dYB

, dZB
)), where PBT

itself denotes a fixed

and immutable point over time in the rigid body itself, for example its center of mass.

R
3 = ( ~eX , ~eY , ~eZ) =











1

0

0




 ,






0

1

0




 ,






0

0

1









 = E. (4.1)

For modifying the body PB without changing the body’s shape, translations, rotations,
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and reflections are the only allowed manipulations respecting PB’s orthonormal basis.

Since manipulations applied to the body PB in modeled surroundings must always be

continuous, it is evident that reflections however are not permitted.

4.2.1 Manipulations in R
3

A translation applied to PB is an addition of an arbitrary translation vector ~tB =

(xtB , ytB , ztB) to
~PBT

. The rotation of PB is defined as an application of a given an-

gle θ ∈ [−2π; 2π] around the X-, Y- or Z-axes from the orthonormal basis specified as

rotation matrices RθX
, RθY

, or RθZ
as shown in Equation 4.2. It can be easily shown that

det(RθX
) = det(RθY

) = det(RθZ
) = 1 holds for any θ. Furthermore, all column vectors

from the rotations RθX
, RθY

, and RθZ
found an orthonormal basis themselves.

RθX
=






1 0 0

0 cos(θX) − sin(θX)

0 sin(θX) cos(θX)




 ,

RθY
=






cos(θY ) 0 − sin(θY )

0 1 0

sin(θY ) 0 cos(θY )




 ,

RθZ
=






cos(θZ) − sin(θZ) 0

sin(θZ) cos(θZ) 0

0 0 1




 . (4.2)

For performing a rotation θ around an arbitrary axis denoted by ~w = (wX , wY , wZ), the

problem can be formulated as a rotation around a known axis X, Y, or Z. In Equation 4.3,

the rotation is reduced to the rotation around the X-axis.
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Rθw
= R−1 ·RθX

·R = Rθ(xw,yw,zw)
, (4.3)

with

R =






~wT

~sT = ( ~w× ~eX

‖~w× ~eX‖
)T

(~s× ~w)T




 ,

Rθ(xw,yw,zw)
=






C + Tx2
w Txwyw − Szw Txwzw + Syw

Txwyw + Szw C + Ty2
w Tywzw − Sxw

Txwzw − Syw Tywzw + Sxw C + Tz2
w




 ,

with

C = cos(θ(xw,yw,zw)),

S = sin(θ(xw,yw,zw)),

T = (1− C).

If ~w and ~eX are parallel, w.l.o.g. ~eY can be used for defining the aforementioned equations.

For simplifying rotations, Eulerian angles can be used separately for X-, Y-, and Z-axes

using rotation matrices RθX
, RθY

, and RθZ
, respectively. All these matrices can simply

be multiplied regarding the order of rotation.

To express a rotation and translation in one single matrix, homogeneous coordinates are

necessary. Transforming the aforementioned matrices and vectors into homogeneous co-

ordinates is trivial as shown in Equation 4.4. Furthermore, mappings like perspective

projections as shown in Equation 4.5 are easily possible.






r(1,1) r(2,1) r(3,1)

r(1,2) r(2,2) r(3,2)

r(1,3) r(2,3) r(3,3)




 and






tx

ty

tz




 7→









r(1,1) r(2,1) r(3,1) tx

r(1,2) r(2,2) r(3,2) ty

r(1,3) r(2,3) r(3,3) tz

0 0 0 1









(4.4)









1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1









︸ ︷︷ ︸

orthogonal projection

·









1 0 0 0

0 1 0 0

0 0 1 0

0 0 1
d

1









︸ ︷︷ ︸

perspective transformation

·









px

py

pz

1









=









1 0 0 0

0 1 0 0
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d
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
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



(4.5)
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Figure 4.1: Three-dimensional coordinate system with rotations around all three axes.

The triangles with the different gray-tones are additionally drawn helping to identify the

rotations.

The Cartesian coordinate system used for modeling is shown in Figure 4.1 based on a

right-hand-coordinate system. It is also the base forHesperia as described in Chapter 5.

4.2.2 Quaternions

As already mentioned before, rotations can be expressed using rotation matrices around

X-, Y-, and Z-axes representing Eulerian angles. However, this representation can be

erroneous when one axis aligns with another during rotating causing the loss of one degree

of freedom as shown in Equation 4.6. In literature, this problem is known as Gimbal lock

[96].

R = RθZ
·RφX

·RψZ
(4.6)

=






cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1




 ·






1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)




 ·






cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1






=
φ=0






cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1




 · E ·






cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1






=






cos(θ + ψ) − sin(θ + ψ) 0

sin(θ + ψ) cos(θ + ψ) 0

0 0 1





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For avoiding the Gimbal lock problem, a quaternion q ∈ H can be used. Quaternions are

so-called hyper-complex numbers q = a + bi + cj + dk with i2 = j2 = k2 = ijk = −1.

They provide the homomorphism (SO(3), ‖ . ‖) by interpreting a quaternion as a rotation

θ around an arbitrary axis as ~w: q = (cos( θ
2
), sin( θ

2
)~w). To compute a rotation in R

3, the

quaternion multiplication as shown in Equation 4.7 is used.

~p ′ = q · ~p · q (4.7)

with

· ≡ quaternion multiplication

q ≡ conjugate of q: q = (cos(
θ

2
),−sin(

θ

2
)~w)

Using quaternions as an alternate representation for rotations, the Gimbal lock problem

cannot arise since rotations around several axes are expressed as concatenated quaternion

multiplications. For expressing a rotation of point ~p around an arbitrary rotation axis ~w by

θ in R
3, the quaternion correspondence as shown in Equation 4.8 applies [73, 96, 108].

Rθ(wx,wy,wz)
· ~p 7→ q(

θ

2
, ~w) · ~p · q(

θ

2
, ~w) (4.8)

= (cos(
θ

2
) + sin(

θ

2
)~w) · ~p(cos(

θ

2
)− sin(

θ

2
)~w)

= (cos(
θ

2
), sin(

θ

2
)wx, sin(

θ

2
)wy, sin(

θ

2
wz) · ~p ·

(cos(
θ

2
),− sin(

θ

2
)wx,− sin(

θ

2
)wy,− sin(

θ

2
)wz)

=






1− 2(y2 + z2) −2vz + 2xy 2vy + 2xz

2vz + 2xy 1− 2(x2 + z2) −2vx+ 2yz

−2vy + 2vz 2vx+ 2yz 1− 2(x2 + y2)




 · ~p = ~p ′

with

v = cos(
θ

2
), x = sin(

θ

2
)wx, y = sin(

θ

2
)wy, z = sin(

θ

2
)wz

4.2.3 The WGS84 Coordinate System

For locating positions on Earth, two-dimensional World Geodetic System 1984 (WGS84)

coordinates are widely used today [109]. Even the well-known GPS service bases on these
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coordinates. This coordinate system considers the Earth’s curvature on its surface. The

aforementioned Cartesian coordinate system however assumes a planar surface without a

curvature on its surface.

Figure 4.2: Cartesian coordinate system based on WGS84 origin. a denotes the the equa-

torial diameter, b denotes the North/South diameter. The triple (R,ϕ, λ) which consists
of the radius and a spherical coordinate in WGS84 denotes a coordinate on the Earth’s

surface pointing to the origin O of a Cartesian coordinate system L. The normal vector

for this coordinate system is described by the aforementioned triple.

In Figure 4.2 the geometric model of the Earth is shown wherein a denotes the equatorial

diameter, b denotes the North/South one, and its ratio a−b
a

describes the Earth’ flattening.

Using the WGS84 model, a = 6, 378, 137m and b = 6, 356, 752.314m apply.

For mapping a Cartesian coordinate system on a curved surface in the spherical coordi-

nate system (R,ϕ, λ), the following model can be assumed. Let O be the perpendicular

point of plane L located orthogonally to R representing the plane’s normal vector. Addi-

tionally, the Cartesian coordinate system itself can be rotated around its Z-axis using θZ .

For getting a correspondence to spherical coordinates, θZ = 0 is mapped to a Cartesian

coordinate system, whose Y-axis directs from South to North.

For mapping spherical coordinates onto the required Cartesian coordinate system using

O = (R,ϕ, λ) as origin, a projection of the Earth’s surface is necessary. The simplest

projection is a cylindrical projection using a cylinder wrapped around the Earth at the

equator. However, the major disadvantage is the increasing imprecision towards the poles.

More precise is the poly-conic projection as shown in Figure 4.3. Hereby, several cones,

which are tangent to Earth at different latitudes, are chosen instead of a cylinder. The

main advantage is the precise mapping of the Earth’s surface area [49].
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Figure 4.3: Poly-conic projection of the Earth (based on [49]).

4.3 Domain Analysis: Surroundings of Autonomous

Ground Vehicles

The surroundings of AGVs depend obviously on the range of applications and vary from

simple driver assistance functions up to autonomous driving. In the following, the use

case for autonomous driving is analyzed.

First, the surroundings can be subdivided into private and public areas. The difference in

classification is the restricted access to the latter, the location of the AGV’s control, and

legal aspects for operating such a vehicle. Second, the surroundings’ elements can be

classified into stationary and dynamic elements.

4.3.1 Traits of Private Areas

Private areas are clearly separated from public access. Furthermore, the area of operation

for AGVs is either entirely known or also restricted from public access. Therefore, risks

for life and health are restricted to the private area’s personnel only who can be instructed

properly to reduce the risk of accidents.

Moreover, the current state of all AGVs is known by a central control center at any time

which might be a real person or an institution as well. Thus, this center is able to track

and stop any AGV in dangerous situations. Harbor facilities or factories are main areas

for the operation of automatically or fully autonomously operating vehicles [76, 149].

Furthermore, rules for operating these AGVs to minimize the risk of accidents are avail-

able by the carrier and restrict the absolute liability to the private area’s personnel and
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material. These rules can be supervised by government to ensure conformance to laws.

Another important property is the possibility to measure the performance of AGVs. There-

fore, it is possible to modify the surroundings or vehicle’s technology to improve their

performance and reliability over time. Moreover, it is possible to upgrade the entire fleet

or parts of the fleet if newer technology is available.

Finally, the surroundings in private areas consists of denumerable elements with a prede-

fined behavior at any time. Thus, the environment can be well modeled using a formal

specification.

4.3.2 Traits of Public Areas

Contrary to private areas are restrictions and unpredictable issues of public areas. The

main and important difference is the access for everyone. This is the reason why the

potential state space for an AGV is unbounded and thus difficult to predict and control.

Furthermore, controlling AGVs is either decentralized by the vehicles themselves or only

centrally supervised by a control station. Moreover, the traffic consisting of vehicles con-

trolled by human drivers and AGVs at the same time is hardly interpretable or predictable

for computer algorithms. The main reason is that AGVs cannot make “eye-contact” with

a human driver to obtain information about the driver’s future intentions. Therefore, a

description of the current state may be incomplete on one hand and may be unpredictable

on the other hand. The complexity of this context cannot be completely modeled using a

formal specification.

4.3.3 Surroundings’ Elements

There are different elements in the surroundings of an AGV to be considered in a descrip-

tion. These elements subdivide into a ground, as well as stationary and dynamic elements

with a corresponding visual representation in the real world. Furthermore, there are el-

ements without a visual representation like the right-of-way rule at intersections. These

elements are described in the following sections.

4.3.3.1 Ground

The surrounding’s ground is an important element because AGVs are ground-based and

change their position and rotation directly depending on the ground’s shape. Furthermore,

the ground may be used by a perception system to compute the vehicle’s current position
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in the real world. Furthermore, the ground’s property influence the vehicle’s movements

due to its adherence. Some algorithms also use the ground’s characteristics to detect the

own road or lane [20, 99].

4.3.3.2 Stationary Elements

The main aspect of stationary elements is their immobility. Moreover, their absolute

position in the real world is known or can be easily determined. Examples for stationary

elements are houses, trees, or traffic signs. Stationary elements are not only necessary to

detect for collision avoidance but may also be used for Simultaneously Localization And

Mapping (SLAM) algorithms [42] to navigate an AGV through unknown areas where

satellite based localization can not be used like in buildings or factories.

4.3.3.3 Dynamic Elements

Dynamic elements are all objects changing their position and rotation over time. These

elements may interact with AGVs to cause a proper reaction. Examples for dynamic

elements are other cars, pedestrians, or bicyclists. Besides, these objects are most com-

plicated to detect since all today’s sensors detect only contours or shapes with a certain

quality. Furthermore, object classifiers to map contours or shapes base either on assump-

tions or rule sets. For example, a contour-based sensor which is pointing in a vehicle’s

driving direction would classify a large and moving contour in front of the own vehicle

as another car or truck. Spots or smaller contours next to a lane could be a pedestrian.

Furthermore, a currently non-moving object on the sidewalk could be classified as a sta-

tionary object like a tree until it starts moving. Today, human experience in a machine

processable representation for improving this classification problem is missing.

4.3.3.4 Logical Elements

Logical elements describe either elements like roads, lanes, or speed limits which are

relevant to the sensor- and actuator-based autonomous system’s context. Furthermore,

they describe relations between other logical elements and may be used to specify traffic

regulations. This information is provided before or during the sensor- and actuator-based

autonomous system’s run-time and may change over time.
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4.4 Modeling the Surroundings of Autonomous Ground

Vehicles

Based on the aforementioned overview of the AGVs’ surroundings, a DSL is developed

in the following. Moreover, as demanded by the design criteria mentioned above, the DSL

is split into one for modeling stationary and one for modeling dynamic elements which

are described separately.

4.4.1 Modeling of Stationary Elements

In this section the DSL which is used to provide and exchange formally consistent data

for the stationary system’s context is described. The overview of this part of the AGV’s

surroundings is depicted in a UML class diagram in Figure 4.4.

Figure 4.4: UML class diagram describing the system’s context’s stationary elements. For

the sake of clarity only multiplicities other than 1 are denoted. The complete DSL which

is derived from this UML class diagram including all attributes can be found in Section

A.

In that figure, the stationary system’s context is shown. The root element is named

Scenario and consists of a header, a ground, and optional one or many layers. The
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Header describes meta data about the concrete model itself like creation date, version,

and its relation to the reality using a WGS84 referenced origin. The origin itself is the log-

ical point (0; 0; 0) creating a three-dimensional Cartesian coordinate system called World

Coordinate System (WCS) for all other modeled elements. Using Cartesian coordinates,

re-modeling of real environments using aerial images is easily possible. Aerial images as

well as height maps describing the elevation of a region is provided by Ground.

The class Ground consists furthermore of a description of the stationary surroundings

called Surroundings. This class contains at least one shape of the type Polygon,

Cylinder, or ComplexModel. While the former both are evident, the latter type al-

lows the reuse of existing complex 3D models created by popular 3D modeling programs

like Blender [127] provided in the well-known Wavefront format. All these elements

are positioned and rotated three-dimensionally in the model relative to the defined origin.

Thus, modeling of realistic environments is possible.

On top of Ground, several Layers may be specified. A layer is a logical element allow-

ing to define an order for Roads and Zones with a predefined height. Thus, a layer itself

contains a height and a name. Moreover, using layers the definition of bridges is possible.

Layers themselves contain Roads and optional Zones.

A road is the container element for one or more Lanes. A Lane is the concrete de-

scription of a drivable path. Thus, several attributes are necessary. The most important

is LaneModel. This class describes the underlying mathematical model for the lane’s

shape. The easiest shape is the definition using absolute points related to the model’s ori-

gin; this model is called PointModel. Besides, Arc can be used to define a circle with

a predefined radius.

A more complex definition are clothoids as shown in Figure 4.5 [111]. Clothoids are

the base for the design of roads for German highways for example. The advantage of

clothoids is the linear change of curvatures for allowing a smooth driving dynamic due

to continuous changes between curves along the path. However, the integrals themselves

cannot be solved directly but must be approximated numerically. Their definition and a

third order approximation which was used in [111] can be seen in Eqs. 4.9 and 4.10.

(

x

y

)

=

∫ x

0

(

cos (t2)

sin (t2)

)

dt. (4.9)

c(x) = dκ(x− x0)
3 + κ(x− x0)

2 + tan(φ)(x− x0) + y0 (4.10)
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x

y

Figure 4.5: Fresnel integral together with an approximation using a 3rd order polyno-

mial with dκ = 0.0215 and κ = 0.215 which are estimated values to approximate the

beginning of the Fresnel integral. For road segments which be shall modeled with a 3rd

order polynomial instead of clothoids, a segment-wise approximation using several 3rd

order polynomials with different lengths and coefficients are necessary. An algorithm for

a segment-wise approximation of the Fresnel integrals is presented in [111].

Besides the lane’s shape, additional information regarding its logical connections to

either other lanes or zones are defined using Connectors. Furthermore, several

TrafficControls can be assigned to a lane. Traffic controls are for example a traffic

light, a stop sign, or speed limits. These controls are valid for the entire lane they are

assigned with.

Additionally, Lanes can be connected to Zones. A zone defines a region without prede-

fined drivable areas like lanes inside roads and is for example a parking-lot, defined by its

Perimeter. Within this zone, several special Spots can be defined.

In a concrete instance of this model for stationary elements, all elements are named and

identifiable using hierarchical identifiers starting at 1. For example, an addressable way-

point of a point-shaped lane that might be identified by 2.3.1.4 can be found on layer 2,

road 3 and lane 1. Using this consistent nomenclature, navigatable routes can be defined

easily by listing consecutive points.

4.4.2 Modeling of Dynamic Elements

After defining the stationary, immutable surroundings, dynamic elements can be added

which is described in this section. Modeling of dynamic elements according to the model

shown in Figure 4.6 can be used to extend the stationary surroundings with dynamic

objects to define a situation. Therefore, a situation is always technically associated with

exact one model of the stationary surroundings using its SituationHeader.
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Figure 4.6: Class diagram describing the system’s context’s dynamic elements. For the

sake of clarity only multiplicities other than 1 are denoted.

As shown in Figure 4.6, the dynamic system’s context consists of at least one Object.

Every object has an associated appearance, which is either based on polygons or modeled

by using ComplexModels. Here, the latter are the same as already mentioned in Section

4.4.1. Furthermore, every object has an initial position and rotation, a name, and a unique

identifier as well.

Besides its shape, a behavior must be assigned to an object to define its role in a con-

crete situation, which can be ExternalDriver or PointIDDriver. The former

indicates that this dynamic object is controlled externally by humans or by a high-level

trajectory planner. The latter behavior instead can be used by the simulator as outlined in

the following.

The PointIDDriver indicates that the associated object is controlled by an algorithm

to generate its position data during a simulation. An object with this behavior simply fol-

lows a predefined list of identifiable way-points from the stationary surroundings using an

associated driving Profile like constant velocity or constant acceleration. Moreover,

StartType and StopType for PointIDDrivers can be defined. The former de-

scribes the event for starting an object. This includes an immediate start at t = 0, a start

when any other object starts moving to model situations at intersections for example, or

a start, when any other object enters a specific polygon and thus triggering an event. The

StopType defines the object’s behavior, when it has reached its final way-point. This

includes no further action or a restart of its associated route.
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4.5 Scenario-based Modeling

For simplifying the creation and exchange of scenario data, the Compressed Scenario

Data Format (SCNX) was designed to define scenarios which combine the stationary and

dynamic elements as described above for modeling different traffic situations. The SCNX

collects all necessary data describing completely a scenario and combining of several

files into one single, compressed file. Furthermore, the Wavefront format for describing

complex objects like houses, trees, or vehicles using three-dimensional models, which

consists itself of several separated files for the shape, its material, and textures, was com-

bined into one single Compressed Object Data Format (OBJX) file, which can be easily

embedded into SCNX files. Using an SCNX file, consistent scenario-based modeling can

be achieved.

After defining meta-models for surroundings’ models, also known as abstract syntax and

referred to as DSL in the following, its realization is discussed in the next sections. First,

its realization for Java using MontiCore [74, 93] is presented. Then, the realization for

C++ to be used for time-critical applications on ECUs is shown.

4.5.1 Scenario-based Modeling Using MontiCore

The framework MontiCore is developed at the Software Engineering Group at RWTH

Aachen University and Technische Universität Braunschweig for supporting the agile de-

sign, evolution, and implementation of DSLs or even GPLs. MontiCore offers traditional

grammar-based as well as today’s meta-modeling concepts for defining the abstract and

concrete syntax for a language in one single representation. Therefore, it provides a lan-

guage similar to the Extended Backus-Naur Form (EBNF) which is used to generate a

suitable lexer based on Another Tool for Language Recognition (ANTLR) [116] and a

parser as well as classes for constructing an Abstract Syntax Graph (ASG) to be used for

processing instances of a concrete grammar using modern object-oriented concepts like

visitors [64]. MontiCore itself is realized using the programming language Java.

MontiCore was chosen to quickly implement and evolve conceptual elements of the mod-

eling language. Furthermore, a graphical editor for the stationary and dynamic AGV’s

surroundings was developed [145] using the Eclipse Rich Client Platform [153] which

also bases on Java. In Listing 4.1, an excerpt from the grammar for modeling stationary

elements is shown. The complete grammar as well as the grammar for dynamic elements

can be found in Section A.

...
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Road = "Road" "RoadID" RoadID:Number ("RoadName" RoadName:←֓

AlphaNum)? Lanes:Lane+ ";";

Lane = "Lane" "LaneID" LaneID:Number

5 LaneModel:LaneModel ";";

LaneModel = LaneAttribute:LaneAttribute

Connectors:Connector*

TrafficControls:TrafficControl*

10 (PointModel | FunctionModel);

...

PointModel = "PointModel" IDVertex2+ ";";

FunctionModel = "FunctionModel" (Clothoid | Arc) ";";

15

Clothoid = FunctionModel:"Clothoid"

"dk" dk:Number

"k" k:Number

"Start" Start:IDVertex2

20 "End" End:IDVertex2

"RotZ" Rotation:Number;

...

Listing 4.1: Excerpt from MontiCore grammar for stationary surroundings.

The grammar shown in Listing 4.1 is abbreviated but shows some core elements for mod-

eling the stationary surroundings. In line 2, the definition of a road is given. Besides its

identifier and optional name, lanes are associated and defined in line 4. The mathematical

basis for these lanes is essential and defined in production rule LaneModel in line 7 et

seqq. Since clothoids are already exemplary introduced in Section 4.4.1, in line 16 et

seqq. its approximation is defined.

From this grammar, nodes for the ASG, reflecting the grammar’s structure and named

according to the production rule, are generated together with a lexer and parser for pro-

cessing instances of this language using Java. These classes are instantiated automatically

during the parsing process and connected to a graph for further usage. Right after the

parsing process, a validation visitor traverses the ASG for checking several semantic con-

straints like indices of the surroundings’ elements must be in a valid interval, whether the

image’s dimensions are positive, or mapping from numerical constants to an enumeration

class.
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4.5.2 Scenario-based Modeling Using C++

After implementing the grammar for modeling the stationary and dynamic surroundings

with MontiCore, its use for C++ is discussed in the following. Since MontiCore generates

a lexer and parser only for Java, an alternate approach must be chosen to directly use the

grammar with C++ for the development of embedded software for ECUs.

For example, Yet Another Compiler-Compiler (YACC) can be used to define the gram-

mar in Backus-Naur Form (BNF) for automatically generating a parser for C. The parser

processes tokens provided by a lexer which itself must be supplied either by the devel-

oper [88] or provided by the lexical analyzer (LEX) [97]. Furthermore, support for ASG

classes is missing at all. Thus, its use in an object-oriented system is rather improper.

For using a language processing framework that is compatible with C++, Spirit was cho-

sen [23]. As part of the Boost project, a peer-reviewed, platform-independent, and widely

used collection of libraries for C++, the parser framework is very suitable.

Like MontiCore, Spirit generates a lexer and parser from an EBNF specification of the

grammar. Hereby, the grammar itself is provided using C++ template concepts [165] and

implemented as a regular class, and thus, the lexer and parser are generated completely at

compile-time using the regular compiler without the need for any other tool. While Spirit

itself relies heavily on template concepts, only modern C++ compilers like GNU’s G++

3.1, Microsoft Visual C++ 7.1, or Intel C++ 7.1 can be used to compile the grammar’s

input files. The main advantage of a compile-time generated lexer and parser is the auto-

matically assured consistency between the grammar, the language processing framework,

and the source code using instances of the given grammar by avoiding additional language

processing steps in the software build process.

...

ROAD = s t r_p("ROAD") >> NEWLINE >>

s t r_p("ROADID") >> TAB >> NUMBER >> NEWLINE >>

!( s t r_p("ROADNAME") >> TAB >> ALPHANUM >> NEWLINE) >>

5 +(LANE >> NEWLINE) >> s t r_p("ENDROAD");

LANE = s t r_p("LANE") >> NEWLINE >>

s t r_p("LANEID") >> TAB >> NUMBER >> NEWLINE >>

LANEMODEL >> NEWLINE >> s t r_p("ENDLANE");

10

LANEMODEL = LANEATTRIBUTE >>

*(CONNECTOR) >>

*(TRAFFICCONTROL) >>
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(POINTMODEL | FUNCTIONMODEL);

15 ...

POINTMODEL = s t r_p("POINTMODEL") >> NEWLINE >>

+(IDVERTEX2 >> NEWLINE) >> s t r_p("ENDPOINTMODEL←֓

");

FUNCTIONMODEL = s t r_p("FUNCTIONMODEL") >> NEWLINE >>

20 (CLOTHOID | ARC) >> NEWLINE >> s t r_p("←֓

ENDFUNCTIONMODEL");

...

CLOTHOID = TYPEFUNCTIONMODEL >> NEWLINE >>

s t r_p("DK") >> TAB >> NUMBER >> NEWLINE >>

s t r_p("K") >> TAB >> NUMBER >> NEWLINE >>

25 s t r_p("START") >> NEWLINE >> IDVERTEX2 >> NEWLINE ←֓

>>

s t r_p("END") >> NEWLINE >> IDVERTEX2 >> NEWLINE >>

s t r_p("ROTZ") >> TAB >> NUMBER;

...

rule <ScannerT, parser_context<>, parser_tag<←֓

SCNGrammarTokenIdentifier::ROAD_ID> > ROAD;

30 rule <ScannerT, parser_context<>, parser_tag<←֓

SCNGrammarTokenIdentifier::LANE_ID> > LANE;

rule <ScannerT, parser_context<>, parser_tag<←֓

SCNGrammarTokenIdentifier::LANEMODEL_ID> > LANEMODEL;

rule <ScannerT, parser_context<>, parser_tag<←֓

SCNGrammarTokenIdentifier::POINTMODEL_ID> > POINTMODEL;

rule <ScannerT, parser_context<>, parser_tag<←֓

SCNGrammarTokenIdentifier::FUNCTIONMODEL_ID> > FUNCTIONMODEL;

rule <ScannerT, parser_context<>, parser_tag<←֓

SCNGrammarTokenIdentifier::TYPEFUNCTIONMODEL_ID> > ←֓

TYPEFUNCTIONMODEL;

35 rule <ScannerT, parser_context<>, parser_tag<←֓

SCNGrammarTokenIdentifier::CLOTHOID_ID> > CLOTHOID;

...

rule <ScannerT, parser_context<>, parser_tag<←֓

SCNGrammarTokenIdentifier::START_ID> > cons t& start() cons t {

re turn START;

}

Listing 4.2: Excerpt from Spirit grammar for stationary surroundings.
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Comparable to Listing 4.1, a similar excerpt from the grammar for modeling stationary

elements realized using Spirit is shown in Listing 4.2. In line 2 et seqq., the definition of a

road is provided which is split into several non-terminals. While MontiCore uses ANTLR

as underlying lexer for processing the grammar’s tokens, keywords like ROAD are parsed

using so-called lexeme parserswhich is indicated by str_p. Furthermore, several tokens

representing an input stream are divided by >>.

Another difference is the definition of quantifiers like * for zero to many occurrences or

+ for one to many occurrences. In MontiCore, quantifiers are defined right behind the ter-

minal or non-terminal. In Spirit, quantifiers are defined in front of the regarding terminal

or non-terminal. Furthermore, the quantifier for none or one occurrence is defined as !

in Spirit as contrary to ? in MontiCore. Moreover, in Spirit every non-terminal must be

marked by the template rule as shown in line 28 for example.

The following lines are analog to the grammar implemented using MontiCore. The gram-

mar itself is implemented as a regular class in C++, every non-terminal and terminal is

represented as a class’ attribute in line 29 et seqq. Finally, in line 37 et seqq., a method

called start() defines the start production rule from the grammar.

For parsing instances from a grammar, the language processing implementation presented

here supports two different concepts. First, an observer-based concept was implemented

calling registered listeners whenever a successful match for a token could be applied to

an input stream of tokens. Furthermore, the internal Abstract Syntax Tree (AST) concept

from Spirit was enhanced for its integration into Hesperia to create an ASG which is as

easy to use as the one generated by MontiCore for processing a grammar’s instance in an

intuitional manner.

A class diagram showing the inheritance for the C++ implementation of the grammar

for modeling the stationary surroundings is depicted by Figure 4.7. The super-class

Grammar is implemented using the facade design pattern to encapsulate the concrete

handling of grammar’s instances which allows to support different versions of the Spirit

framework which are not fully backward compatible.

Furthermore, this class is an observer implementing the aforementioned first concept

for calling registered listeners about successfully matched tokens using the interface

ParserTokenListener. This interface provides the method void nextToken(const

ParserToken&); for notifying the listener about a successfully matched

ParserToken which contains the value of the matched token as well as a caller

supplied data field called ParserTokenExtendedData. For example, this field

can be used to pass further information about the successfully matched token to the

application like a numerical constant identifying the token itself.
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Figure 4.7: Class diagram describing the language processing for the stationary surround-

ings using Spirit. For the sake of clarity, all methods and attributes are omitted. An

implementation-independent interface is realized in the abstract class Grammar. This

class provides an observer for successfully parsed token from the grammar which calls

a user-supplied listener; analogously realized is an observer which reports parsing errors.

These observers are used to construct an AST from a given instance according to the

grammar’s structure. This AST can be easily traversed by user-supplied visitors to query

information from a given instance or to transform the data structure.

Using ParserErrorExtendedData, a similar implementation is provided for

error handling. The interface ParserErrorListener provides the method void

errorToken(ParserError&); for notifying the caller about a failed match us-

ing the class ParserError. This class provides, besides the textual context in which

the match failed, information about the line to ease finding the erroneous input. Like

ParserToken, additional information supplied by the caller can be associated with

ParserError. Internally, the information about line numbers is realized using a

specialized listener ParserNewlineHandler simply counting successfully matched

NEWLINE tokens.

For generating an ASG similar to the one generated by MontiCore for providing an in-

terface to access attributes and associated elements from the grammar in an intuitional

manner, Spirit provides a specialized parser called parse_ast to create an AST. The

access to keywords from the grammar as well as values like the name of a defined road

is realized using an iterator concept. In Spirit, an iterator traverses the internally cre-

ated AST from the input grammar. Therefore, the grammar must contain information

about the structure of the AST to be built namely root nodes or leaves. A root node is

marked as root_node_d, while leaves are simply marked as leaf_node_d. When-

ever the parser successfully matches tokens from the input stream which are enclosed by
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root_node_d, the newly created node becomes the new root node of the current AST

created from the previously successfully matched input.

However, for preserving the readability of the grammar, another concept was used uti-

lizing some predicates from the iterator when using the leaf_node_d directive. The

predicates are listed in the following:

• Keywords. Keywords from the grammar always have the identifier “0” and no fur-

ther children.

• Values. Values from the grammar like a Road’s name have an identifier not equal

to “0” and no further children.

• Hierarchical elements. Elements mapping the grammar’s structure have an identi-

fier not equal to “0” and children as well.

Using these predicates, an intermediate generic AST for generating the desired hierarchi-

cal key/value data structure is constructed automatically after reading a DSL’s instance

using the recursive descent parser as shown in Listing 4.3. The intermediate AST reduces

the dependency to Spirit by using only the lexer and parser from the Spirit framework

and allowing the concrete mapping to the final data structure to be independent from the

underlying language processing framework.

...

void generateASG(cons t iter_t &it, ASGNode *parent) {

ASTNode *child = NULL; string key;

f o r(unsigned i n t j = 0; j < it->children.size(); j++)

5 {

string data((it->children.begin() + j)->value.begin(), (←֓

it->children.begin() + j)->value.end());

i f ( (data != "") &&

((it->children.begin()+j)->value.id().to_long() == 0) &&

((it->children.begin()+j)->children.size() == 0) )

10 { / / Keyword found .

child = new ASTNode(parent);

child->setKey(key = data);

parent->addChild(child);

} e l s e i f ( (data != "") &&

15 ((it->children.begin()+j)->value.id().to_long() > 0) &&

((it->children.begin()+j)->children.size() == 0) )

{ / / Value found .

i f ( (child == NULL) || (child->getValue<string>() != "←֓

") ) {
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child = new ASTNode(parent);

20 parent->addChild(child);

}

child->setKey(key);

child->setValue(data);

} e l s e i f ( ((it->children.begin()+j)->value.id().to_long←֓

() > 0) &&

25 ((it->children.begin() + j)->children.size() > 0) )

{ / / H i e r a r ch i ca l element found .

ASTNode *multipleChildren = new ASTNode(parent);

generateAST(it->children.begin()+j, multipleChildren, ←֓

depth);

multipleChildren->setKey(key);

30 parent->addChild(multipleChildren);

}

}

}

...

Listing 4.3: Generating an intermediate AST using pre-processed data from Spirit.

Using the tree generated by this code, a visitor traverses finally this tree mapping the hier-

archical key/value pairs to an ASG similar to the one generated by MontiCore. Hereby, all

values are transformed to the necessary primitive data types like double or unsigned

int. The same concept was analogously applied for the DSL which represents the sur-

roundings’ dynamic elements.

To summarize the development of a DSL and the processing of its instances, the lexer

and parser framework MontiCore is very applicable to simplify the rapid and agile devel-

opment of languages. However, due to a missing native support for C++, its integration

would not be seamless and cause further processing steps during the software construction

process. Therefore, an alternative concept which directly bases on C++ was necessary and

finally chosen by the framework Spirit which was adapted to be more user-friendly and

thus less error-prone.
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In the following, the framework Hesperia1 is presented. Hesperia is a framework for

processing continuous input streams written entirely and solely in C++ [17]. The DSL

as mentioned in Section 4.4 for modeling the system’s context, a simulation component

which is described separately in Chapter 6, and a non-reactive visualization component

also described separately in Chapter 7 are core elements of this framework. In the fol-

lowing, general considerations and design drivers are discussed first. Next, its software

architecture is outlined and the core libraries as well as selected applications are described

in detail.

5.1 General Considerations and Design Drivers

In this section, the major design drivers for the framework Hesperia are listed. Mainly,

they are based on [64, 123].

• Usability. The main focus during the design of the framework Hesperia was on

usability. Usability includes both application development using Hesperia and de-

velopment inHesperia itself. While the former is related to the design of interfaces

exported to the application developer, the latter applies to the design of all internal

structures ofHesperia. Therefore,Hesperia was designed using an object-oriented

programming language with intense use of mature design patterns where applicable

[129, 130].

• Reliability and robustness. Another important aspect is reliability regarding the

methods exported by interfaces to any caller as well as internal algorithms for data

processing. Whenever an exported method from the Application Programming In-

terface (API) is invoked by a caller, its semantic must be evident and consistent.

1The name “Hesperia” is deduced from a town in California, where the team CarOLO was accommodated

during the 2007 DARPA Urban Challenge [122]. Concepts behind the software framework which was

used in the CarOLO project were extended and significantly improved which led to a complete new

implementation written from scratch: The software frameworkHesperia.
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Furthermore, any exported method must either complete the demanded computa-

tion silently or fail avoiding any side-effects at the earliest point possible with a

reasonable return code or an exception.

• Performance. Due to its application for ECUs on real hardware and in real system’s

surroundings which may require real-time data processing, performance in data

processing and for inter-node communication is an important design consideration

for Hesperia. Thus, efficient memory management for incoming data as well as

concurrent handling of data structures in the processing chain before passing them

to user applications are necessary.

• Platform independence. For allowing the use of Hesperia on different platforms,

independence from a specific Operating System (OS) or hardware platform is also

a main interest. This includes endianess as well as 32-bit and 64-bit systems. Fur-

thermore, an abstraction from specific functions provided by an OS must be chosen,

especially for concurrency including threads, mutexes, and conditions, as well as

data input/output operations and the overall valid system time which is important

for carrying out system simulations as outlined in greater detail in Chapter 6.

• Third party libraries independence. Like the independence from a concrete plat-

form, applications realized with the framework Hesperia should not depend on

specific libraries where possible. This design criterion is important because the

libraries for computationally intense tasks like image or matrix processing using a

hybrid approach based on a Central Processing Unit (CPU) combined with a Graph-

ical Processing Unit (GPU) may change caused by changing design decisions due

to enhancements and bug-fixes. For avoiding a preliminary decision for a specific li-

brary, only interfaces are specified to be fulfilled at least by any library which could

be chosen for a specific task.

• Evolvability and reusability. To support future applications or other system contexts

with new or modified requirements, the software framework should be applied eas-

ily. Furthermore, missing parts should be added easily as well without accidentally

breaking existing concepts or implementations.

In the following, the software architecture of the frameworkHesperia is described.

5.2 Software Architecture

In this section, the software architecture of Hesperia is outlined. Therefore, a high-level

point of view on all components is introduced at first, while, later on, the two main li-
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braries are described explicitly in greater detail in a package diagram.

Figure 5.1: Package structure of the framework Hesperia. The framework consists of

two major libraries: libcore and libhesperia. The former library encapsulates the
interfaces for a specific operating system by providing elaborated programming concepts

for I/O access or threading. Furthermore, this library wraps libraries from third parties

and provides interfaces instead to higher layers. Thus, a third party library can be easily

exchanged if necessary. The latter library, libhesperia provides concepts which allow
a simplified development for distributed data processing applications. Therefore, this

library provides classes which transparently realize data exchange; moreover, this library

contains the DSL which was specified in Section 4.4.

In Figure 5.1, an overview of all components in a system using the framework

Hesperia are depicted. On the lowermost layer, the OS is shown. The framework can be

used both on a Portable Operating System Interface for Unix (POSIX)-compliant platform

[1] or on Microsoft Windows platforms. For getting real-time capabilities,Hesperia relies

on the operating system’s supplied process handling. Therefore, the rt-preempt patch

applied to the Linux kernel 2.6.27-3-rt [107] provided in the Linux distribution Ubuntu

8.10 was used.

The next layer lists all libraries used by Hesperia. Besides the aforementioned POSIX-

compliance, Hesperia can be used on Microsoft Windows platforms using the Boost li-

braries for C++; these libraries can be used on POSIX-compliant platforms as well. For
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example, a transaction- and thread-safe key/value data-store is provided using the Berke-

leyDB. For processing images and matrices, currently the OpenCV library is used [25].

For accessing compressed scenario data files as described in Section 4.5, a portable zip

library is included. Finally, for processing data for visualization as well as simulation,

libraries from OpenGL are used.

On top of the libraries lays the frameworkHesperia. The framework consists of two core

components, namely libcore and libhesperia. While the former library encapsu-

lates access to the OS and all aforementioned libraries, the latter one provides concepts

for all higher layers. Both libraries are described in greater detail in the next sections.

Using these libraries, several applications are provided to support the development of

software for sensor- and actuator-based autonomous systems and especially AGVs which

were also realized with the software frameworkHesperia. These applications are outlined

in the following sections.

Figure 5.2: Packages of the framework Hesperia: The left hand side is realized in

libcore which encapsulates the access to the operating system and to third party li-

braries as already mentioned. The right hand side is realized in libhesperia. Be-

sides high-level concepts for transparent communication for example, basic data struc-

tures which support the development of sensors-based applications which operate in the

R
3 are provided. Furthermore, device-independent visualization concepts which are out-

lined in Section 5.4.5 are integrated.

As shown in Figure 5.2, both libraries consist of several packages. libcore provides

rudimentary services in its packages base, data, io, and exceptions, as well as

all interfaces to necessary libraries in package wrapper. The library libhesperia

however uses libcore for both to integrate the DSL for the stationary and dynamic
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context description and to provide concepts to higher layers. Furthermore, all serializable

and therefore exchangeable data structures between all components are defined in this

library.

5.3 Encapsulating the Operating System and Required

Third Party Libraries: libcore

The library libcore consists of several packages which are described in the follow-

ing. First, the package wrapper is described for ensuring library independence. Next,

rudimentary concepts using the interfaces provided by the package wrapper realized in

the packages base, data, and io building the conceptual base for libhesperia are

described.

5.3.1 Package wrapper

The main goal of package wrapper is to encapsulate any library to be used in higher lev-

els. On the example of CompressionFactory for providing access to zip compressed

data, this package is described.

Figure 5.3: CompressionFactory for providing access to compressed data.

As shown in Figure 5.3, CompressionFactory is realized as an abstract, single-

ton factory exporting one method with the following signature DecompressedData*

getContents(std::istream&);. This method reads as many bytes as available

from the given input stream using the STL allowing input from files, memory, or any in-

put source compliant to STL input streams like wrapped network connections. It creates
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the meta data structure DecompressedData describing the contents of a successfully

decompressed input stream. This data structure provides a list of available entries as well

as a method for getting an STL input stream for every entry of the decompressed zip

archive. For realizing a thread-safe singleton implementation, the access to the method

CompressionFactory& getInstance(); must be mutually excluded using a

Mutex. However, a mutex itself is also library-dependent wrapped. Therefore, the ab-

stract factory for creating the appropriate mutexes must be used.

From this abstract factory, the concrete factory ZipCompressionFactory

providing ZipDecompressedData is derived for wrapping the zip library.

ZipDecompressedData actually decompresses the zip archive by reading the given

input stream using the methods provided by the wrapped zip library. If the given input

stream could not be used for decompressing the data, the list of available entries is simply

empty. Internally, all successfully decompressed entries are stored in memory using

stringstreams to provide the standard interface based on std::iostream for

further data processing.

Both factories, MutexFactoy as well as CompressionFactory or rather their

library-dependent concrete factories also implement the abstract interface Disposable.

This interface does not export any further method but simply declares all deriving

classes to be convertible to this type. Using this interface, a periodically and at

program’s exit running DisposalService removes any instances from the type

Disposable when they are no longer needed to release previously acquired memory.

Using CompressionFactory and DecompressedData, applications on higher

levels do not need to care about a specific library for decompressing data. Instead, they

simply use an interface asserting the availability for the required functionality.

In the following, all factories provided by the package wrapper are described. The

actually selected libraries for wrapping are specified in a header file using a system-wide

consistent enumeration scheme.

• CompressionFactory. This factory was already described.

• ConcurrencyFactory. This factory creates a thread by invoking the method void

run(); from the interface Runnable. Furthermore, a statically available sleep

method for suspending the execution for a given amount of time is exported. This

factory wraps the library Boost and regular POSIX calls as well.

• ConditionFactory. This factory creates a Condition for suspending the concur-

rent execution of several threads until the condition for a waiting thread is met. This

factory wraps the library Boost and regular POSIX calls as well.
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• ImageFactory. Using this factory, images are created either by reading an input

stream, by creating an empty image specifying the format and the image’s dimen-

sions, or by creating the necessary meta information for already existing images in

memory. This factory wraps the library OpenCV.

• KeyValueDatabaseFactory. This factory creates either a wrapped transaction- and

thread-safe BerkeleyDB or simply a wrapped std::map for storing and retrieving

key/value-pairs.

• MatrixFactory. This factory creates an empty NxM matrix by providing the data

structure Matrix. This data structure defines besides the element-wise access to

the matrix’ contents the addition, multiplication, and transpose operations. Further-

more, a template method is provided to get access to the memory representing the

raw matrix for using operators which are missing in the exported interface. Obvi-

ously, this exported method violates the demand for library independence, but any

application relying on this method can safely query the system if the necessary li-

brary is wrapped and throw an exception otherwise. This factory wraps the library

OpenCV as well.

• SharedMemoryFactory. Using this factory, a memory segment between indepen-

dent processes can be created and shared using SharedMemory for achieving fast

inter-process communication. On construction, additional memory at the beginning

of the memory segment is used to create a semaphore to ensure mutual exclusion for

concurrent processes. This factory wraps also the library Boost and regular POSIX

calls.

• TCPFactory. This factory can be used to create either a connection to an exist-

ing server by returning a TCPConnection or to setup a socket accepting con-

nections using a TCPAcceptor for a specific port. Both objects can be used

to transfer data bidirectionally. While the former instance already encapsulates

an established connection which is ready to use, the latter object implements an

observer for incoming connections. Using this object, the caller must register a

TCPAcceptorListener for getting notified about new connections encapsu-

lated in an instance of TCPConnection. For sending data, simply the exported

method void send(const std::string&); can be used. For receiving

data, a StringListener must be registered at a concrete TCPConnection as

explained in the following. This factory wraps the library Boost and regular POSIX

calls as well.

• TimeFactory. This factory creates a Time instance containing the current time.

This factory is necessary for simulation purposes and wraps also the library Boost
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and regular POSIX calls.

• UDPFactory. Like TCPFactory, this factory creates either a sender for data

transfers or a receiver using User Datagram Protocol (UDP). Depending on the

address supplied for the receiver, either a regular UDP socket is created or the

created UDP socket is joined to a UDP multi-cast group. This feature is used in

libhesperia for realizing so-called conferences. The sender and receiver ob-

jects also use std::string for sending and a StringListener for receiving

data. This factory wraps the library Boost and regular POSIX calls as well.

All the factories listed above use the same concept for creating concrete data structures

as already described on the example for CompressionFactory. Furthermore, all

factories implement the interface Disposable as well.

The smallest datum for sending and receiving data is std::string.

Thus, libcore provides a StringObserver exporting the method void

setStringListener(StringListener*); for registering or unregistering

a concrete instance implementing the interface StringListener. Using this in-

terface exporting the method void nextString(const std::string&); a

component can receive new data for further processing. Combining both concepts, a

StringPipeline decouples the receiver and the consumer of newly received data.

This pipeline is used transparently for any application in the UDP receiver to separate

the thread responsible for handling the library-dependent receiving method from the

thread responsible for further processing the received data in higher layers. Therefore, a

simple thread-safe FIFO queue using a Condition to notify the waiting consumer was

implemented.

Another wrapper providing no factory is the package parser producing a lexer and

parser for the DSL which is used to model the system’s context as outlined in Section

4.4. Due to the special handling of a compile-time grammar with the production of an

intermediate AST as described in Section 4.5.2, the grammar’s concrete instantiation is

directly implemented in libhesperia. As already described before, the generic han-

dling of tokens produced by the parser is implemented in libcore. However, the visitor

for generating the data structure itself is implemented in libhesperia.

5.3.2 Basic Concepts

In the following, selected basic concepts provided by libcore are described. Some of

them are elaborated in libhesperia.
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5.3.2.1 Application Template

Besides wrapping libraries, libcore provides several basic concepts being extended in

libhesperia. As described in greater detail in Section 5.4, a running application in the

frameworkHesperia belongs to exactly one group called conference. Several applications

from the same type are distinguished using identifier. Furthermore, every application can

be configured to run at a fixed frequency. All these parameters can be passed to an appli-

cation using command-line arguments. These arguments are processed by the application

skeleton class AbstractCIDModulewhich is part of package base. Furthermore, the

application template provides a method for querying its current running state. Using this

method, the application can be terminated safely by registering a signal handler to catch

signals by the OS to the application like SIGTERM for POSIX-compliant systems. The

application templates are the main entry for system simulations as described in Chapter

6.

5.3.2.2 Reliable Concurrency

Modern operating systems offer the possibility to execute parts of an application in par-

allel. For using this concurrency in higher layers and in user-contributed applications,

the concept Service is provided to encapsulate the entire management of threads. Any

class that needs to be executed concurrently simply derives from Service overriding the

method void run();. This concept is enhanced for real-time computing by the class

RealtimeService. Any service of this type simply derives from this class overrid-

ing void nextTimeSlice();. Internally, RealtimeService is a wrapper class

which encapsulates the technical implementation for a specific operating system. More-

over, any application which uses real-time services must be executed using a privileged

user account to allow the correct setup. Otherwise, an exception is thrown.

5.3.2.3 Thread-Safe Data Storage

Beyond the basic application template and concurrency facilities, basic storage concepts

for data structures are provided, namely FIFO queues, Last In First Out (LIFO) stacks,

and simple key/value data-stores. All these data-stores are both thread-safe and capable

of using conditions to notify changes.

The data structure meant to be used with these data-stores is Container. This class is

an envelope data structure around a pair consisting of a constant and consistent numeri-

cal identifier allowing type definition and an arbitrary object implementing the interface
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SerializableData. A Container itself is serializable to std::ostream and

deserializable from std::istream. Thus, it can be transferred using concepts pro-

vided by the STL. For tracking a datum, the sent and received timestamps are recorded

for a transported Container.

5.3.2.4 Query-able Data Serialization

The actual serialization of instances implementing the interface SerializableData

is inspired by [125]. However, the main disadvantage presented in that work is the dese-

rialization’s dependency on the serialization order which is caused by separate methods

for serializing and deserializing the data. In the Boost library, this problem is avoided

by using the non-standard serialization and deserialization operator &. However, when-

ever a data structure changes due to further development over time, older versions of the

framework might get incompatible.

Figure 5.4: Template-based query-able serialization: The data to be serialized is real-

ized by ObjectData. This class derives from the interface SerializableData
which itself provides serialization and deserialization methods which are called by the

envelope data structure Container. These methods are realized using the support-

ing classes Serializer and Deserializer which encapsulate the handling of

hardware-dependent endianess for example.

For avoiding both problems, a so-called template-based query-able serialization was de-

veloped as shown in Figure 5.4. The main idea behind this concept is the storage of a da-

tum to be serialized together with a per attribute identifier. When an object ObjectData

should be serialized, it uses the SerializationFactory to get an appropriate

Serializer. This instance actually serializes the data into a portable format re-

garding the platform-dependent endianess using type-dependent void write(const

uint32&, T);methods. The first parameter is an identifier for every object’s attribute.
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For avoiding to supply this parameter manually by the caller, it should be computed al-

ready at compile time since the object’s attributes and their order do not change at run-

time.

...

# de f i n e STRINGLITERAL1(a) CharList<a, NullType>

# de f i n e STRINGLITERAL2(a, b) CharList<a, CharList<b, NullType←֓

> >

# de f i n e STRINGLITERAL3(a, b, c) CharList<a, CharList<b, ←֓

CharList<c, NullType> > >

5 ...

namespace core {

namespace base {

cons t uint32_t CRC32POLYNOMIAL = 0x04C11DB7;

10

c l a s s NullType {

pub l i c:

enum { value = -1 };

enum { hasNext = f a l s e };

15 t ypede f NullType tail;

};

t emplate <char x, typename xs>

c l a s s CharList {

20 pub l i c:

enum { value = x };

t ypede f xs tail;

};

25 t emplate <char x>

c l a s s CharList<x, NullType> {

pub l i c:

enum { value = x };

t ypede f NullType tail;

30 };

template <char c, uint32_t result >

c l a s s CRC32_COMPUTING {

pub l i c:
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35 enum { RESULT = result ^ (c ^ CRC32POLYNOMIAL) };

};

t emplate <char c, int32_t res, typename T>

c l a s s CRC32_RECURSIVE {

40 pub l i c:

enum { RES = CRC32_COMPUTING<c, res>::RESULT };

enum { RESULT = RES + CRC32_RECURSIVE<T::value, RES, ←֓

typename T::tail>::RESULT };

};

45 t emplate <char c, int32_t res>

c l a s s CRC32_RECURSIVE<c, res, NullType> {

pub l i c:

enum { RESULT = CRC32_COMPUTING<c, res>::RESULT };

};

50

t emplate <typename T>

c l a s s CRC32 {

pub l i c:

enum { RESULT = CRC32_RECURSIVE<T::value, 0, typename←֓

T::tail>::RESULT };

55 };

}

...

Listing 5.1: Compile-time computation of identifiers for serialization.

This computation is shown in Listing 5.1. The computation itself is invoked us-

ing the serialization s.write(CRC32< STRINGLITERAL3(’v’, ’a’, ’l’)

>::RESULT, m_value);. The first argument to the method uses the compile-

time computation by substituting STRINGLITERAL3(’v’, ’a’, ’l’) by

the nested character list CharList<’v’, CharList<’a’, CharList<’l’,

NullType> > > in the pre-processor stage. The structure of this nested character list

is defined by the classes in lines 11 et seqq., 19 et seqq., and 26 et seqq. The macros

defined at the beginning in line 2 et seqq. are only for convenient use of these structuring

classes. The resulting nested templates are passed as a template parameter to the class

CRC32 in line 52 et seqq. The result of the computation performed at compile-time is

stored in the class’ enum as the constant value CRC32::RESULT.
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The computation itself is delegated to the class in line 39 et seqq. by separating the first

element of the nested character list as first template parameter, the initial result of 0 and

the nested character list without the head element. In that class, the first enum computes

the Cyclic Redundancy Check (CRC) sum using the template class in line 33 et seqq.

For computing this sum, the CRC-32 polynomial is used due to its sensitivity regarding

modifications on the input data and thus defined in line 9. The result is added to the

result from a recursive call to the same template class, using the first element of the tail as

first parameter, the currently computed result, and the tail without its first element. The

computation ends if the NullType is reached and therefore, the template class in line 46

et seqq. is applied to return the CRC-32 sum for the last character. Using these template

classes, the computation of identifiers at compile-time is possible to allow the serialization

of pairs consisting of human readable identifiers and values.

For deserialization, the object ObjectData gets the Deserializer by querying the

SerializationFactory as well. At construction of the Deserializer, the input

stream is parsed to build a simple hash-map containing the previously identifier/value

pairs. Every time, ObjectData wants to deserialize one of its attributes, it simply

queries the Deserializer using the identifier of the attribute computed already at

compile-time.

...

ostream& AClass::operator <<(ostream &out) cons t {

SerializationFactory sf;

Serializer &s = sf.getSerializer(out);

5

s.write(CRC32 < HESPERIA_CORE_STRINGLITERAL5(’d’, ’a’, ’t←֓

’, ’a’,’1’) >::RESULT,

getMyFirstData());

s.write(CRC32 < HESPERIA_CORE_STRINGLITERAL5(’d’, ’a’, ’t←֓

’, ’a’,’2’) >::RESULT,

10 getMySecondData());

re turn out;

}

istream& AClass::operator >>(istream &in) {

15 SerializationFactory sf;

Deserializer &d = sf.getDeserializer(in);

uint32_t mySecondData = 0;
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d.read(CRC32 < HESPERIA_CORE_STRINGLITERAL5(’d’, ’a’, ’t’←֓

, ’a’, ’2’) >::RESULT,

20 mySecondData);

setMySecondData(mySecondData);

uint32_t myFirstData = 0;

d.read(CRC32 < HESPERIA_CORE_STRINGLITERAL5(’d’, ’a’, ’t’←֓

, ’a’, ’1’) >::RESULT,

25 myFirstData);

setMyFirstData(myFirstData);

re turn in;

}

...

Listing 5.2: Compile-time computation of identifiers for serialization.

A sample usage of the SerializationFactory and the compile-time computation

of indices is shown in Listing 5.2. The first method writes two attributes into a given

output data stream. Both attributes have a unique identifier which is computed at compile

time from the given human readable name. The second method queries a given input

stream to retrieve both attributes in an arbitrary order using human readable names again

which are mapped to unique identifiers at compile-time. Thus, a fail-safe usage of data

serialization and deserialization can be provided by the software frameworkHesperia.

5.3.2.5 Generic Directed Graph

For data structures representing nodes connected using directed edges, libcore pro-

vides a wrapper for a generic directed graph around the Boost Graph Library [144]. Alike

the wrapper for the parser classes, this class can be used without a factory as shown in

Figure 5.5.

The main class for creating and operating on a graph is DirectedGraph. This class

constructs a directed graph from any object implementing the interface Vertex as

node and from any object implementing the interface Edge as connection between the

graph’s nodes. The most important methods provided by DirectedGraph are void

updateEdge(const Vertex *v1, const Vertex *v2, const Edge

*e); and vector<const Vertex*> getShortestPath(const Vertex

&v1, const Vertex &v2);. The former method constructs or updates the graph

by either inserting an edge e between the nodes v1 and v2 or updating an existing edge.
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Figure 5.5: Generic directed graph based on the Boost Graph Library [144]. This provided

concept encapsulates the underlying library and provides an integrated interface to the

user-supplied applications on higher layers. Thus, the construction and handling of graphs

and their algorithms are simplified.

The latter method tries to find the shortest path between the given two vertices. Therefore,

DirectedGraph uses an A∗-algorithm provided by the wrapped Boost Graph Library

itself [14] evaluating the edges’ weights. Thus, the complex interfaces provided by the

wrapped library could be reduced to an essential subset of at least necessary objects and

methods. Therefore, they could completely be hidden from high-level applications to

avoid errors due to misuse without restricting the performance of the wrapped library

itself.

5.3.2.6 Convenient Data Exchange

Another basic concept provided by libcore is realized by the package io. This package

simply implements the StringListener concept from package wrapper in the class

ContainerConference. This class uses a UDP receiver for joining a UDP multi-cast

session and registering itself as a StringListener at the UDPReceiver. Using a

UDPmulti-cast session, this class automatically receives any packet sent to this multi-cast

group without creating a technical dependency between communication partners. When-

ever a new std::string is received, this class tries to parse a Container from this

buffer. Since this class implements the interface ContainerObserver, higher lay-

ers can register a ContainerListener to get notified about incoming Containers.

Thus, any application can transparently receive complex data structures without bother-

ing to deserialize the data or to setup a communication. Right after instantiation, the

application starts receiving messages. Furthermore, to filter incoming Containers, a

thread-safe data-structure as already described in Section 5.3.2.3 can be used easily. Thus,
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different filtering concepts like FIFO-, LIFO-, or key/value-data-store can be realized ei-

ther for only one specific type or for all incoming data. Furthermore, the data-stores can be

reused and registered several times to combine several incoming streams of Containers

if necessary.

All these concepts are the base for libhesperia which realizes further concepts allow-

ing the simplified creation of distributed applications using a mature and stable API.

5.4 Providing Extensible and Re-Usable High-Level

Concepts: libhesperia

On top of libcore, the component libhesperia is provided as the core component

for the frameworkHesperia. Its main concepts are described in the following.

5.4.1 Concept: ClientConference

The main concept for communication implemented in libhesperia is realized us-

ing UDP multi-cast and called ClientConference. A client conference is created using

a unique identifier. Every application can simply join an existing ClientConference by

setting the obligatory command-line parameter -cid appropriately.

All data exchanged in a ClientConference is wrapped in Containers as mentioned in

Section 5.3.2.6. For receiving a Container of a special type, the application must

simply decide the manner for getting the data. As described earlier, libcore provides

rudimentary and thread-safe data-stores. An application simply registers a data-store sep-

arately for different Containers or uses the same data-store for all data. As soon as

new data of the desired type is sent within the UDP multi-cast group, it is automatically

received by libcore using a StringPipeline and placed into the registered data-

stores for further processing. Using the StringPipeline, data receiving and process-

ing is decoupled and the processing thread cannot block the receiving thread.

5.4.2 Concept: Dynamic Module Configuration

For configuring the application, a central and thus consistent configuration concept called

Dynamic Module Configuration was implemented. This concept uses a Dynamic Module

Configuration Protocol (DMCP) inspired by the well-known Dynamic Host Configura-

tion Protocol (DHCP) for configuration clients in networks. As soon as an application is
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started, it sends DMCP_DISCOVER messages to a specific port of the desired ClientCon-

ference using UDP multi-cast.

For deploying configurations for a specific ClientConference, a special component called

supercomponent must be running. This component listens for DMCP_DISCOVER

requests and replies using the DMCP_RESPONSE message containing information about

the supercomponent itself. These information contain the IP address as well as a

listening Transmission Control Protocol (TCP) port. Using these parameters the new

application establishes a dedicated connection to the running supercomponent.

The newly created TCP connection is used to provide the application specific configura-

tion using a simple key/value text file, wherein all keys can be hierarchically ordered or

annotated using an application specific identifier. The application-dependent configura-

tion is generated using one single configuration as shown in Listing 5.3.

# GLOBAL CONFIGURATION

#

global.scenario = file://../../Scenarios/CampusNord.scnx

5 # CONFIGURATION FOR PLAYER

#

player.input = file:///dev/stdin

player.autoRewind = 0

player.remoteControl = 0

10 player.sizeOfCache = 1000

player.timeScale = 1.0

# CONFIGURATION FOR PROXY

#

15 proxy:1.irt.insdata.server = 192.168.0.45

proxy:1.irt.insdata.port = 2345

proxy:2.jaus.controller.server = 192.168.0.100

proxy:2.jaus.controller.port = 3794

...

Listing 5.3: Centralized configuration concept.

This configuration is read completely by the supercomponent at start up. Whenever

an application sends a DMCP_DISCOVER message, the application’s name is transferred.

This name is the first part of all keys in the configuration file called section delimiter. It is

followed by an optional numerical identifier for distinguishing several running instances

from the same type. Next, the key which can be hierarchically structured itself is specified
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followed by the actual value. Using the newly created connection together with applica-

tion specific subsets of one single configuration file provided by only one source, different

configurations can be both maintained centrally and deployed for specific applications on

demand.

5.4.3 Concept: Enhanced Data Structures

As already shown in Figure 5.2, libhesperia offers an enhanced object-oriented set

of data structures which are serializable to be exchanged between independent processes

which might be running on different nodes in a network. These data structures will be

explained in the following.

• hesperia::data::can. This package contains a Controller Area Network

(CAN) message. It can be used to encapsulate raw data read from or written to a

CAN bus.

• hesperia::data::dmcp. Inside this package, all messages for joining an

application in a ClientConference using a dedicated supercomponent are pro-

vided. Furthermore, statistical data about all running applications can be collected

by the supercomponent itself as described in Section 5.5.

• hesperia::data::environment. This package consists of all necessary

basic data structures to model elements from the surroundings and to apply ma-

nipulations to them. As already described in Section 4.2, every rigid body in the

modeled environment is represented by a three-dimensional position and orienta-

tion. This representation is realized in Position. The most important derivative

is PointShapedObject enriching the latter data structure by information about

velocity and acceleration. For modeling the own AGV in the surroundings for ex-

ample, this data structure is simply derived to EgoState for convenient purposes

only. For mapping objects detected by sensors, either the PointShapedObject

or an Obstacle enriching the latter one by the detected object’s shape can be

used. Besides these mappings, data structures containing all necessary operations

for Cartesian coordinates, WGS84 coordinates, matrices, and quaternion represen-

tations are provided.

• hesperia::data::image. This package contains all meta information about

an image like dimension or color depth. This data is intended to be used for ex-

changing images between several processes using a shared memory segment.

• hesperia::data::player, hesperia::data::recorder. These
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packages contain command messages to control either the playback or the non-

reactive recording of data from a running system.

• hesperia::data::scenario. This package contains a tree-like data struc-

ture describing the surroundings’ model as described in Section 4.4.1. Combined

with the CompressionFactory realized in libcore, an intuitional and con-

venient access to all attributes of the surroundings’ model is provided.

• hesperia::data::situation. Complementary to the previous package,

this one contains all information about the dynamic system’s context as described

in Section 4.4.1.

• hesperia::data::sensor. In this package, data structures for wrapping sen-

sor’s raw data like laser scanner data [143] or selective messages from the National

Marine Electronics Association (NMEA) 0183 format describing GPS data [110]

like the GPS Recommended Minimum Specific GPS/Transmit Data (GPRMC) are

provided.

Besides these packages, a data description language was designed to simplify the creation

of new data structures. The language is shown in Listing 5.4 and was defined using

MontiCore as well.

grammar DataDescriptionLanguage {

DataDescriptionFile = (DataStructures:DataStructure)+;

5 DataStructure =

FullQualifiedPackageName:FullQualifiedPackageName

Name:IDENT

(":" SuperDataStructure:SuperDataStructure)?

"{" Attributes:Attributes "}";

10

FullQualifiedPackageName = (PackageName "::")*;

SuperDataStructure =

FullQualifiedPackageName:FullQualifiedPackageName

15 Name:IDENT;

PackageName = Name:IDENT;

Attributes = TypeDeclaration*;

20
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TypeDeclaration =

TypeName:IDENT

isList:"*"?

Name:IDENT ";" ;

25 }

Listing 5.4: Data description language.

The main purpose behind this language is to simplify the error-prone and time-consuming

process of correctly creating new data types. Due to the provided concepts for serial-

ization, even a small amount of attributes which should be exchanged between several

applications requires several portions of source code which is similar for any data struc-

ture. Thus, a small application based on MontiCore was realized which allows an easy

definition of new data structure as shown in Listing 5.5.

environment::Point2 {

double x;

double y;

}

5 environment::Point3 : environment::Point2 {

double z;

}

environment::PointSet {

Point3* listOfPoints;

10 }

Listing 5.5: Example for the data description language.

The application which processes these instances of the grammar creates appropriate

header and source files for C++. Furthermore, the required getter- and setter-methods

are generated as well as the serialization and deserialization methods. For lists, methods

to add new items and to retrieve the entire list are generated. Moreover, methods to allow

a copy of the data structure are derived automatically.

5.4.4 Concept: Integration of Modeling DSL

As already mentioned in Section 4.4.1, the DSL for modeling the stationary and dynamic

elements of the surroundings is directly integrated in libhesperia. Thus, it is very

convenient to access modeled elements both in the framework itself and in applications

if desired. In the following, the processing of the language inside libhesperia is

outlined.
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For using the DSL, a lexer and parser for processing instances of the grammar are nec-

essary. As already described in Section 4.5.2, Spirit was enhanced to allow convenient

use by creating the data structure provided by hesperia::data::scenario and

hesperia::data::situation. The main ideas behind the language processing

are outlined on the example of the stationary modeling.

Using the aforementioned CompressionFactory, a data structure called

SCNXArchive created by SCNXFactory encapsulates the handling of SCNX archives.

The data structure exports methods for accessing simply the parsed and mapped grammar

as already described in Section 4.5.2 and allows access to the defined aerial and height

images in the archive using the ImageFactory as outlined before. Furthermore, all

associated complex models using 3D modeling tools are exported to the caller including

their meta data and the content of the OBJX archive as well. Finally, all situations

associated with a stationary model can be retrieved from this data structure.

5.4.5 Concept: Device-Independent Data Visualization

For providing an intuitional understanding of the complex surroundings, a visualization

for the data structures describing attributes and relations between elements of the modeled

stationary and dynamic surroundings is necessary. But instead of enforcing only one type

of visualization, a device-independent data visualization is provided by libhesperia.

The main principle is shown in Figure 5.6 on the example for the stationary surroundings.

Instead of mapping the existing data structures to a data structure dedicated for representa-

tion only by producing redundant data, the existing tree generated by the DSL processing

framework can simply be reused. Therefore, the generated tree is traversed using the in-

terface ScenarioVisitor. This interface is implemented by ScenarioRenderer,

the device-independent and data-dependent renderer. This class implements the void

visit(ScenarioNode&); method and delegates every call to type-dependent meth-

ods like void visit(Polygon&); using type conversion at run-time.

Furthermore, ScenarioRenderer has an associated Renderer providing a set

of pure virtual methods to be meant for primitive drawing operations like void

setPointWidth(const float&); or void drawLine(const Point3&,

const Point3&);. These methods are called by the type-dependent visiting meth-

ods during tree traversal. From this abstract class, Renderer2D and Renderer3D are

derived. The former one is also an abstract class mapping all three-dimensional drawing

operations into two-dimensional ones, while the concrete drawing methods are still left

unimplemented. The latter one is an implementation of drawing primitives using OpenGL
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Figure 5.6: Device-independent data visualization: Any data which should be visualized

uses the interface Renderer which provides rudimentary drawing primitives for draw-

ing points or lines in R
3 for example. This interface is implemented by a concrete imple-

mentation for the OpenGL context which is also provided by libhesperia. For gen-
erating a 2D view on a given data, some methods from the interface Renderer are com-
bined by flattening the z coordinates which is realized in the abstract class Renderer2D.

Thus, a concrete realization which uses this class simply implements the reduced set of

drawing primitives which is outlined in Section 7.2.

as a platform-independent industrial standard; this renderer is used both for visualization

as outlined in Chapter 7 and for simulation purposes as described in Section 6.4.

Since Renderer2D is still an abstract class which misses its concrete device-dependent

implementation, the use of both is described in detail in Chapter 7 for a non-reactive

monitoring application. This application is meant to visualize the stationary surroundings

with their dynamic elements.

Using the concept described here, a concrete visualization using a device-independent

data representation can be realized. Furthermore, the existing tree-like data structures for

the surroundings’ scenario and situations can be simply reused. Thus, no additional data

structure for visual representation depending on a special scene graph library like [114] is

necessary.
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5.5 Applications’ Life Cycle Management:

supercomponent

The special support application supercomponent is responsible for managing a con-

crete ClientConference. A running system which uses a ClientConference for commu-

nication consists of several user-contributed applications or tools which are part of the

software frameworkHesperia. All these applications must connect at their start-up to the

supervising supercomponent which manages a centrally provided system configura-

tion. An application-dependent subset of this configuration data is deployed automatically

to a connecting client application using the newly established TCP connection initiated

by the client.

Furthermore, this component receives periodically sent RuntimeStatistics from ev-

ery client application participating in a ClientConference. This data structure contains

information about the time consumed for computation relative to the defined client’s indi-

vidual frequency. The supercomponent assembles all RuntimeStatistics into a

periodically sent ModuleStatistics. These information can be used to evaluate the

system’s performance for example.

Furthermore, supercomponent is notified whenever any client application leaves the

ClientConference either regularly by a return code sent by the leaving client at exit or

technically, when a client application exits unexpectedly through the invalid TCP connec-

tion to the lost client application. These information can be used to track any problems in

a running system consisting of several independent applications for example.

5.6 Supporting Components

Besides the application supercomponent, several small other tools are part of the

frameworkHesperia. These are outlined briefly in the following.

5.6.1 Component: proxy

This component must be used to translate data structures between systems provided by

different independent suppliers. Therefore, it joins a ClientConference to broadcast data

received by a system provided by a third party or it sends data to a system received from

the ClientConference. Due to the concept ClientConference, every application running

on top of the framework Hesperia automatically and transparently communicates with a
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third party system. This application is used in the case study to communicate with the

AGV as described in Chapter 8.

5.6.2 Component: recorder

As expected, this component non-reactively records every Container broadcasted in a

running ClientConference to a file. Therefore, it simply registers itself as FIFO-receiver

for every broadcasted Container and uses an in-memory cache running concurrently

for decoupling disk I/O operations. The resulting file contains all received Containers

serialized in chronological order. For writing the file, std::fstream can easily be

used with the framework Hesperia. Moreover, this tool can be controlled remotely to

suspend or resume a running recording session using RecorderCommand sent to the

ContainerConference.

5.6.3 Component: player

As counterpart to recorder, player replays previously recorded ClientConferences

by using a given recorded file or simply by reading from stdin. Furthermore, player

can be configured to scale the time between two broadcasted Containers to perform a

faster or slower playback either infinitely or only once. Just like recorder, player

can be controlled remotely to suspend, to resume, to rewind, or to play stepwisely

recorded data using PlayerCommand. Moreover, the input data is cached before re-

played to provide a continuous playback stream of Containers to avoid interfering the

delay between two records when accessing data on the disk.

5.6.4 Component: rec2video

Like player, rec2video simply reads a previously recorded ClientConference. But

contrary to the former, this component uses the three-dimensional data representation

to compute single images to be rendered afterwards into a video file for demonstration

purposes. Therefore, it adjusts the playback of previously recorded Containers to 25

frames/second using a simulated clock to control the rendering for the next frame of the

current system’s state.
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6 Simulation of the System’s Context

In this chapter, Hesperia’s use for the simulation of the system’s context is described.

First, general considerations and design drivers are outlined to be regarded for the simula-

tion of the system’s context for sensor- and actuator-based autonomous systems. Next,

an overview of the component for the simulation of the system’s context realized in

libcontext in the framework Hesperia is described. In the following, several major

aspects of the simulation of system’s context’s are presented including the computation

of the position, rotation, velocity, and acceleration of the AGV as well as of dynamic

elements from the surroundings. Furthermore, the generation of sensor specific low-level

data like cameras and laser scanners as well as high-level data abstracting the surround-

ings is presented.

6.1 General Considerations and Design Drivers

As shown in Figure 6.1, the main design principle for sensor- and actuator-based au-

tonomous systems as well as an AGV is a data flow-oriented design realizing the well-

known pipes and filters design pattern reacting on stimuli from the system’s context. Thus,

incoming data is processed in an encapsulated manner for extracting relevant features and

producing a set of enriched or modified information for the next stages.

Considering this data flow, the component which realizes the production of synthetic data

based on environmental information by using the DSL for stationary and dynamic ele-

ments is called simulation of the system’s context which is indicated as the Virtualization

Layer in Figure 6.1. This layer is responsible for the simulation of a running SUD which

is processing continuously incoming data by a discretization for the valid overall system

time. Hence, this layer must control and increment the system clock and manage all

involved applications of the SUD to use the controlled time at their specific schedule.

Therefore, the adaption of the virtualization layer for autonomous vehicles consists of the

generic time controlling and SUD management which is realized in libcontext and

the context-dependent models like the computation of the position, rotation, acceleration,
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Figure 6.1: Integration of the system simulation within the framework Hesperia: Using

concepts and algorithms from Hesperia, the application which realizes the sensor- and

actuator-based system is on top of Hesperia. For closing the loop between the action

layer and the perception layer to enable interactive and unattended simulations, the vir-

tualization layer with libcontext and libvehiclecontext is used. While the

former is necessary to realize the run-time discretization for the SUD by providing time

control and scheduling, the latter provides models like the bicycle model for the specific

use for autonomous vehicles for example. Thus, the framework Hesperia provides an

application-independent virtualization layer to realize system simulations.

and velocity for the AGV for the next time slice based on a given model. This is realized in

libvehiclecontext and is therefore a specific customization for the virtualization

layer. Moreover, not only the AGV must be simulated but also components from its

system’s context which serve as the surroundings’ model to generate specific input data.

Furthermore, the simulation of system’s context must use an interface from the system

to provide all environmental information depending on the input stage for the pipes and

filters processing chain where the synthetic data enters the system. While on higher layers

like the decision layer abstract objects with discrete information are identifiable at every

time slice, on lower layers like the perception layer input data is gathered from sensors

detecting the surroundings. To avoid modifications of the SUD for providing the required

input data, the simulation of the system’s context must compute synthetic input data from

the current system’s context’s situation and feed it to the pipes and filters chain in the
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same format like a real sensor would do.

Regarding these information and the aforementioned major design principle of sensor-

and actuator-based autonomous systems, the following list contains some general consid-

erations and design drivers for the simulation of the system’s context.

• Decoupling from the real time. To provide both interactive as well as unattended

simulations of the system’s context, which can be suspended or resumed using all

available computing power, the simulation of the system’s context must decouple

the system time which is valid for the system and the system’s context from the

real time. Therefore, not only the simulation of the system’s context but also the

components being used together with the simulation of the system’s context must

use the virtual time base. On a real system, the virtual time base is equal to the real

time. Thus, the simulated system would run as fast as possible depending on the

calculated largest time step which fulfills each required frequency from all SUD’s

applications.

• No visualization. Often, simulations are equalized with intuitional visualizations.

In the following, the terms simulation and visualization describe different things

and are not used interchangeably. The simulation is responsible for controlling the

system time, the scheduling, and the computation of the reactions of the system’s

context. Contrary to the simulation, the visualization completes a simulation by

visualizing the enormous data in an intuitional manner. Thus, the visualization is

a front-end from a simulation application but independent from the simulation and

can be reused in further contexts as described in Chapter 7.

• Providing stage dependent data. As already outlined before, the type and amount

of synthetic input data depends on the layer of the pipes and filters data process-

ing chain where it enters the system. Therefore, highly detailed raw data must be

provided at the lowest level which is the perception layer as shown in Figure 6.1,

while only selected information from the system’s context in an abstract represen-

tation may already be sufficient on higher layers like the decision layer to generate

desired actions in the system.

• Extensibility. As shown in Figure 6.1 as well, the actually required simulation con-

text like vehicle models for AGVs is independent from the generic system simu-

lation. While the latter is responsible for the time control and overall scheduling,

the former provides models which describe relations and aspects for the system or

its contexts. Thus, the system simulation shall be independent from the actually

required models for parts of the SUD or its context and must instead realize only

the required concepts for carrying out system simulations.
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Before selected parts from the simulation of the system’s context are presented which

realize the aforementioned design considerations using the framework Hesperia , further

considerations related to the management of an SUD and its system’s context are outlined.

Furthermore, the control of the system-widely used time is discussed.

6.2 Controlling an SUD and the Time

According to [178], systems can be in general classified into Discrete Event System

Specification, Discrete Time Specification, and Differential Equation System Specification

which also defines the required simulation technique to be used. Characteristics of these

systems are outlined in the following:

• Discrete event system specification (DEVS) Starting at an initial system state, these

systems are specified by a set of ordered timed events which activate a transition

to the next valid system state. The required simulator is an event-based processor

which supervises the event processing and the state transitions [115].

• Discrete time system specification (DTSS) These systems have a discrete time base

and thus, subsequent system states can be calculated from the results of the previous

time step. The necessary simulator for this class is a recursive simulator to calculate

the difference equations. Its mathematical model is s(t+ 1) = a ∗ s(t) + b ∗ x(t).

• Differential equation system specification (DESS) Contrary to the aforementioned

systems, these ones have a not only continuous time but also continuous states.

Therefore in general, the required simulator is a numerical integrator for calculating

the differential equations whose mathematical model is defined as q′ = a∗ q+ b∗x.

To complete the aforementioned list there are some other simulation types to mention. For

example, Monte Carlo Simulations [105] which are static simulations or System Dynamics

[55] which is mainly used to describe and to analyze complex systems like economic

relations.

Considering the methodology for automating the acceptance tests for sensor- and actuator-

based systems as outlined in Chapter 3, the entire SUD must be controlled to supervise its

control flow and communication during an acceptance test. Therefore, the independently

operating applications must be executed in a deterministic order according to their specific

execution frequency.

When the frequency for each application is constant for the entire run-time and known a

priori, a deterministic execution order can be calculated. In the case of equal frequencies,
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a manually specified execution order is defined to preserve the deterministic execution

order. Furthermore, the maximum allowed time step for fulfilling the required execution

order of all SUD’s applications can be derived as well. Thus, a DTSS is described.

Using these preconditions, the simulation consists mainly of two major parts: An SUD’s

scheduling, communication, and time control simulation environment which is defined

as Ssched and the system’s context simulation applications called Senv which is domain

specific for the SUD. For an AGV, an exemplary application from Senv might be a synthetic

sensor’s raw data provider as outlined in Section 6.4.6. In Listing 6.1, the scheduling

algorithm is defined.

f unc t i on getMaximumDeltaT(list SUDsApplications, list ←֓

SystemContextApplications)

deltaT := 1000/SUDsApplication.head().getFrequency()

f o r each app in SUDsApplications:

5 deltaT := greatestCommonDivisor(deltaT, 1000/app.←֓

getFrequency())

f o r each scapp in SystemContextApplications:

deltaT := greatestCommonDivisor(deltaT, 1000/scapp.←֓

getFrequency())

return deltaT

10

f unc t i on needsExecution(T, app)

return ((T \% (1000/app.getFrequency())) == 0)

procedure Scheduler(list SUDsApplications, list ←֓

SystemContextApplications)

15 T := 0

deltaT := getMaximumDeltaT(SUDsApplications, ←֓

SystemContextApplications)

i f t > 0 then

whi l e t rue

20 f o r each app in SUDsApplications:

i f needsExecution(T, app) then app.step((1.0/app.←֓

getFrequency()))

f o r each scapp in SystemContextApplications:
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i f needsExecution(T, scapp) then scapp.step((1.0/app.←֓

getFrequency()))

25

T := T + deltaT

Listing 6.1: Pseudo-code for the general scheduling simulation.

As shown in Listing 6.1, the overall valid system time T is incremented step-wisely in line

26 using the maximum possible constant time step∆T which is computed in milliseconds

in line 16. This constant time step is derived from the joined set of all applications from

the SUD and the applications from the system’s context (Senv) using the function specified

in line 1 et seqq. Thus, a fixed step-continuous clock is provided to the SUD and all

applications from the system’s context. This clock is independent from the real system

time and therefore can be incremented as fast as possible. The function assumes that no

frequencies are provided which are zero; moreover, the resulting constant minimal time

step is at least 1 if no common greatest divisor greater than 1 can be calculated for the

SUD and all applications from the system’s context.

Following, the currently valid system time T is used to determine all applications from

the SUD which must be executed with the constant time step which is shown in line 20 et

seqq. Therefore, its required frequency is used to calculate whether it must be executed

at the currently valid system time using the function which is specified in line 11 et seqq.;

if an execution is required the application performs a step forward using its individual

time step. Thus, a predefined deterministic execution order for the SUD’s applications is

preserved. The same algorithm is applied analogously for the applications of the system’s

context.

Thus, the outlined scheduler Ssched realizes a simulator for the aforementioned DTSS

which is used for controlling the SUD and the applications of its system’s context. Due

to the architectural encapsulation of the scheduler Ssched which only manages the system

time and the overall scheduling, and the system’s context Senv, different simulation algo-

rithms can be realized to provide the required data from the system’s context. Thus, a

simulation which uses a numerical integrator can be regularly triggered from Ssched for

example.

In the following, the implementation withinHesperia for the outlined concept of Ssched is

presented in greater detail.
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6.3 Controlling Applications: libcontext

In this section, libcontext for realizing simulations of the system’s context is outlined.

This library provides a system’s context-independent simulation for any application real-

ized with the framework Hesperia without the necessity of modifying the application

itself according to the general scheduling and controlling algorithm as outlined in Section

6.2. The general algorithm for the simulation provided by libcontext and realized

with the frameworkHesperia is outlined in the following:

1. Initialize system’s context. First, the entire communication in the system as well as

the time must be replaced by a controllable instance respectively.

2. Setup supervision for the control flow of the system under test. For supervising the

control flow of the application as well as to validate its computation, the system

under test must be controllable as well.

3. Initialize virtualized clock. Setup the desired system’s time. Furthermore, compute

the maximum possible time increment fulfilling all requested frequencies by all

systems under test as well as all system’s parts.

4. Do step for the system’s parts. Compute the next values in the system’s parts like a

virtualized sensor’s raw data provider or any high-level data provider according to

their required frequencies.

5. Do step for the systems under test. Step forward for all systems under test regard-

ing to the required frequencies. Moreover, enable communication for the currently

activated system under test until it completes one computing cycle.

6. Evaluate. If required, validate the computed and sent data from the systems under

test.

7. Increment virtualized system’s time. Increment the clock by the computed maxi-

mum possible time step and start over.

In the following, the architecture which realizes this algorithm is described in detail.

6.3.1 Interface for Controlling Time and Communication

As shown in Figure 6.2, the general inheritance for any application realized with the frame-

work Hesperia is depicted on the left hand side. The super-class for every application

is AbstractModule, which is further specialized into InterruptibleModule.

This abstract class realizes a concept for controlling the application’s control flow which

is described later. Besides a parser for arguments passed to an application using the
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Figure 6.2: Control of time and communication: On the left hand side, the SUD is shown

which is realized in ApplicationModule by the user. For controlling the overall

system time and communication, the class RuntimeControl overrides the regular

implementation of ContainerConferenceFactory by providing a pure software

solution which manages the sending and receiving of Containers between several ap-

plications. The same concept is applied to the TimeFactory which is intercepted by a

specialized variant which allows the controlled incrementation of the system-wide time.

command line, AbstractCIDModule provides information about the desired multi-

cast group for realizing a ContainerConference. The ClientModule, which derives

from the latter class, implements the concept for realizing a DMCP client to retrieve

configuration data from a supercomponent. Finally, this class is further special-

ized into ConferenceClientModule to join a ContainerConference using

the ContainerConferenceFactory. The actual application itself derives from the

latter class and implements the necessary methods void setUp();, void body();,

and void tearDown(); resulting in the regular application’s state machine.

Also deriving from AbstractModule, RuntimeControl is the core class for

realizing simulations of the system’s context. This class shall substituting the con-

text for all implemented components, thus, it consists furthermore of a selected im-
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plementation of a supercomponent for providing configuration data to any appli-

cation which is executed under supervision of RuntimeControl. Moreover, this

class has access to ControlledContainerConferenceFactory as well as

ControlledTimeFactory which are both used to replace the regular ones.

For replacing the ContainerConference which represents a UDP multi-cast group,

ContainerConferenceFactory is derived to ControlledContainerCon-

ferenceFactory which returns a specialized ContainerConference for con-

trolling the communication to the requesting component as well as the communication

initiated by that component. The use of the ControlledContainerConference-

ForSystemUnderTest is described later; an instance of this class is returned to a

component upon request.

Comparable to ControlledContainerConferenceFactory, the Con-

trolledTimeFactory is derived from TimeFactory and is used to control

the current valid time system-widely by returning the controlled time upon request.

Since a component uses the enhanced class TimeStamp for realizing time compu-

tations, it transparently uses the substituted factory because TimeStamp itself uses

TimeFactory.

6.3.2 Supervising an Application’s Control Flow and Communication

With both factories, the software architecture for substituting the interfaces for realizing

communication or to request the current time is defined. Their usage is shown in Figure

6.3.

Starting at RuntimeControl, a RuntimeEnvironment is passed to this class de-

scribing the ConferenceClientModules to be executed for the system under test

and all SystemContextComponents describing either unavailable parts of the sys-

tem, for example an application realizing a sensor data fusion or even an application

computing sensor’s raw data. At least one element of both types must be provided to start

a simulation of the system’s context. Both the abstract class AbstractCIDModule and

the interface SystemContextComponent derive from the interface Periodic pro-

viding the method float getFrequency() const;. Thus, for every application

as well as for any system’s part, different but constant run time frequencies can be de-

fined. By default, 1Hz is used for applications if nothing is defined. Depending on these

frequencies, RuntimeEnvironment computes the greatest possible time step to use

for correctly fulfilling every requested frequency. This time step is used to continuously

increment the virtualized system time.
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Figure 6.3: Run-time control for the SUD: On the left hand side, the SUD is shown which

implements automatically the interface InterruptibleModule and Periodic.

While the former is required to register a special object called Breakpoint to in-

tercept regularly the running application, the latter is necessary to calculate and re-

alize a system-wide scheduling which is implemented by RuntimeEnvironment.

This class controls and schedules the required components’ frequencies; further-

more, it supervises the sending and receiving of Containers by using the class

ControlledContainerConferenceFactory.

The method void step(const core::wrapper::Time&); provided by the

interface Runner is used to actually perform a step either in the simulation of

the system’s context or in the system under test realized by a class derived from

ConferenceClientModule. The call to this method implemented by the system

under test as well as all system’s parts is initiated by RuntimeControl providing the

absolute current valid virtualized system’s time. Thus, every class implementing the inter-

face Runner is called with its desired frequency for a constant time step by simply com-

puting the difference using the time from the previous call and the current time at method’s

call. For scheduling all systems under test and all SystemContextComponents,

RuntimeControl realizes a time-triggered, completing computation-scheduler, con-
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sidering the desired frequencies. Thus, whenever either an application from the system

under test or a SystemContextComponent must be executed for a given time t,

RuntimeControl executes the instance exclusively until it completes its computation.

The scheduling is outlined in detail in Section 6.3.2.3.

6.3.2.1 Supervising an Application’s Control Flow

To supervise an application’s control flow which derives from ConferenceClient-

Module, the concept Breakpoint is used. Since every ConferenceClientModule

derives also from InterruptibleModule, the method void setBreakpoint-

(Breakpoint*); is available. The method takes an instance of an ob-

ject implementing the interface Breakpoint and thus providing the method

void reached();. This method is called whenever the application calls

ModuleState::MODULE_STATE getModuleState();. Since every data pro-

cessing application is intended to run infinitely depending on the return value of the

latter method which is called periodically in the main loop’s condition, the application

is interrupted either before or right after one loop’s iteration. Whether the application

is interrupted before or after completing one loop’s cycle depends on the type of main

loop: If a head controlled loop is used, the interruption is occurring right before a loop’s

iteration, while a foot controlled loop causes an interruption right after completing a

loop’s iteration.

The interface Breakpoint is realized by the class RunModuleBreakpoint, which

blocks the callee’s thread to this method until a condition in this object is turn-

ing true caused by another thread. Thus, an application’s main loop can be held

until the next time step for this system under test is available. The instance of

RunModuleBreakpoint belongs to exactly one ConferenceClientModule and

thus is part of ConferenceClientModuleRunner.

The object ConferenceClientModuleRunner implements the inter-

face Runner and realizes a stepwise execution using the aforementioned

RunModuleBreakpoint. Thus, RuntimeControl can easily call the

method void step(core::wrapper::Time&); for an instance of

ConferenceClientModuleRunner wrapping the real object of the system under

test while waiting for the next call to the method void reached();. For separating

the RuntimeControl’s thread from the a system under test’s thread, the wrapped

application is run concurrently using Service. Thus, even in a case of an unforeseen

thrown exception in the system under thread, RuntimeControl can safely catch the

exception and generate proper reports.
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6.3.2.2 Supervising an Application’s Communication

For controlling the communication to a system under test or initiated by such a compo-

nent, several aspects must be considered. Since ContainerConferenceFactory

creates a suitable ContainerConference for encapsulating a UDP multi-cast group

for exchanging Containers and thus, no direct connections to any other specific appli-

cation must be opened by the application which avoids direct dependencies between all

running applications. However, a Container sent to a ContainerConference is

available for any joined application in that UDP multi-cast group. Moreover, to supervise

not only a system under test’s control flow as described before but also its specific com-

munication, the application is only allowed to send data when it is scheduled to compute

its main loop for the next time step. For realizing this behavior, all communication is

routed by the ControlledContainerConferenceFactory to send data to any

system under test or to distribute sent Containers to other systems under tests as well

as SystemContextComponents.

Since the ContainerConferenceFactory expects an application’s specific data

for joining a UDP multi-cast group, which is provided by AbstractCIDModule,

the application’s specific ContainerConference is directly created in the con-

structor of ConferenceClientModule within libhesperia. Therefore, only

one instance of a class implementing the interface ContainerConference is cre-

ated for an application. The wrapper ConferenceClientModuleRunner takes

advantage of this application’s property by requesting the application’s specific in-

stance of ContainerConference inside its constructor. This instance is cast

into ControlledContainerConferenceForSystemUnderTest containing

further information to supervise the wrapped application correctly. If the cast fails,

the user implementing a simulation for the system’s context did not call the method

void setup(const enum RuntimeControl::RUNTIME_CONTROL&);

prior to the actual RuntimeControl’s void run(RuntimeEnvironment&,

const uint32_t &timeOut); method to enforce RuntimeControl to re-

place any existing ContainerConferenceFactory with ControlledCon-

tainerConferenceFactory. Moreover, this misuse is checked by

RuntimeControl as well.

The class ControlledContainerConferenceForSystemUnderTest consists

of an instance of BlockableContainerReceiver as well as an instance of

ContainerDeliverer realizing the communication from and to the system under

test, respectively. The former is necessary to send a Container from the system under

test to other systems under test as well as to all SystemContextComponents, while
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the latter is responsible for distributing a Container to the system under test.

As already mentioned in Section 5.3.2.6, a system under test receives the data using a

FIFO-, a LIFO-, or a key/value-data-store. This is realized by registering the current in-

stance of ConferenceClientModule as a ContainerListener at the instance

of ContainerConference. Thus, running an application as a system under test su-

pervised by RuntimeControl, no changes to the application are necessary at all to use

a ControlledContainerConference for receiving Containers.

Since the ContainerConferenceFactory does not have any con-

trol over a ContainerConference’s life cycle because the applica-

tion can simply destroy the instance, the communication controlled by

ControlledContainerConferenceFactory must be decoupled from any

returned instance to a system under test. Hence, every ControlledContainer-

ConferenceForSystemUnderTest consists of an own instance of

ContainerDelivererwhich itself implements the interface ContainerObserver.

This instance is used by the ControlledContainerConferenceFactory to dis-

tribute a Container to a system under test. Therefore, the system under test’s specific

instance of ControlledContainerConferenceForSystemUnderTest which

inherits from ContainerConference, registers itself as ContainerListener

at the ContainerDeliverer. Hence, as soon as any Container is sent to the

system under test using the ControlledContainerConferenceFactory, it

gets delivered to any datastore registered for filtering by the application since the

ContainerConference delivers the Container to the ContainerListener

which was registered at itself. Since that ContainerListener is directly regis-

tered in the constructor of ConferenceClientModule which registers itself as

ContainerListener, any Container is finally delivered to the application itself

according to its filter setup using a FIFO-, LIFO-, or key/value-data-store.

Whenever the application destroys its instance of ContainerConference and

thus the ControlledContainerConferenceForSystemUnderTest, ei-

ther regularly or by throwing an exception, the instance deregisters itself as

ContainerListener at ContainerDeliverer in its destructor. The

ContainerDeliverer now simply discards any Container sent to this sys-

tem under test. Hence, problems caused by an unexpected thrown exception do

not affect the ControlledContainerConferenceFactory and moreover no

other supervised application or SystemContextComponent. Thus, the concept of

ContainerDeliverer ensures that a Container sent at time t is delivered in the

same time step synchronously without any delay. Furthermore, due to the thread-safe
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implementation of the FIFO-, LIFO-, and key/value-data-store, the delivering thread

cannot be blocked.

For implementing sending facilities for a system under test, it is necessary

to restrict their communication to the time step when it gets activated by

RuntimeControl. As mentioned before, every system under test has ex-

actly one ContainerConference which is used to send data. Since

ControlledContainerConferenceForSystemUnderTest derives directly

from ContainerConference, this feature can be controlled by that instance.

For blocking an application from sending containers when it is not activated, an

application-dependent instance of BlockableContainerReceiver is used.

This class implements the interface ContainerListener to provide the method

void nextContainer(Container&); to the system under test, which calls

it implicitly whenever the method void send(Container&) const; from

ContainerConference is called.

Furthermore, BlockableContainerReceiver has an instance of an object im-

plementing the interface ContainerListener as well. This instance is the

ControlledContainerConferenceFactory, which finally distributes the

Containers sent from the system under test to all systems under test registered at

RuntimeEnvironment and to all SystemContextComponents.

For restricting an application to send its data only when it gets activated, the aforemen-

tioned concept of Breakpoint is simply reused. Whenever an application calls the

method void reached(); of the implementing class RunModuleBreakpoint,

the instance BlockableContainerReceiver is locked to avoid sending data. Thus,

every thread spawned by the system under test which tries to send data using the single in-

stance of ContainerConference is blocked from returning until sending is allowed.

For releasing all blocked threads and thus allowing sending again, right before returning

the callee’s thread to void reached(); of the interface Breakpoint, the lock is

removed from BlockableContainerReceiver and the system under test can send

Containers until the break-point is reached again.

The decoupling of accepting Containers sent by an application and distribut-

ing the Containers realized by BlockableContainerReceiver, blocking the

ControlledContainerConferenceFactory in processing Containers sent

by systems under test due to malfunctions in their implementation can be simply

avoided. Even in the case of an unexpected thrown exception by the system under

test, the ControlledContainerConferenceFactory is still unaffected since

the life-cycle of every BlockableContainerReceiver’s instance is controlled
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entirely by ControlledContainerConferenceFactory and the system under

test simply calls the method void nextContainer(Container&); of the inter-

face ContainerListener implemented by BlockableContainerReceiver.

If the application gets destroyed, the instance of the class BlockableContainer-

Receiver is not affected.

6.3.2.3 Scheduling Applications and SystemContextComponents

A sequence chart as an example for controlling a system under test is shown in Figure

6.4. On the topmost row of that figure, the minimum amount of necessary applications

to run a simulation of the system’s context are shown. For the sake of clarity, commu-

nication related instances like ControlledContainerConferenceFactory or

ContainerDeliverer are left apart.

The first instance, denoted by its super-class SystemContextComponent real-

izes a specific part of the system context’s simulation. Next to that instance,

the overall valid system’s clock is shown. The third component is the actual

RuntimeControl which controls all other components, performs a step in the sys-

tem’s context using SystemContextComponents or the actual system under test

using ConferenceClientModuleRunners respectively, and increments the time.

This instance communicates only indirectly with the ConferenceClientModule us-

ing an instance of ConferenceClientModuleRunner, which is shown as fourth

object. Followed by the instance of RunModuleBreakpoint, this object is actu-

ally controlling the ConferenceClientModule’s control flow as already described

above. An instance of BlockableContainerReceiver is responsible from block-

ing or releasing the communication of the system under test. Finally, the instance of

ConferenceClientModule realizing the system under test is shown.

In that figure, a snapshot of a currently running simulation of the system under test

and the system’s context is shown. Therefore, all initialization calls are left apart.

Starting at the system under test on the rightmost side of that figure, this instance

is calling void reached(); inside its call to ModuleState::MODULE_STATE

getModuleState(); indicating the completion of one computing cycle. The return-

ing of this call is blocked by RunModuleBreakpoint to interrupt the system under

test and to execute other tasks. Instead, the control flow returns to RuntimeControl

which increments the Clock using the computed maximum possible time step.

Afterwards, the simulation of the system’s context and the system under test

starts its next cycle for the new time. Thus, RuntimeControl checks if the
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Figure 6.4: Sequence chart showing the messages sent between controlling and controlled

objects: The controlled system time is encapsulated in the instance of the class Clock
while the lifelines of the UML sequence chart represent the actually consumed real time

which is required for managing the scheduling of the SUD, its communication, and the

system time.
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SystemContextComponent needs to be executed and actually executes it

when necessary. Since all calls to any SystemContextComponent are syn-

chronous, the control flow returns right after completing the computation of the

SystemContextComponent.

Following the SystemContextComponents, RuntimeControl checks if the

ConferenceClientModule wrapped into ConferenceClientModuleRun-

ner needs to be executed. When the system under test must be executed for the cur-

rent time as shown in the example, RuntimeControl calls void step(const

core::wrapper::Time&); providing the current valid system’s time to

ConferenceClientModuleRunner.

Before returning the call void continueExecution(); passed to

RunModuleBreakpoint, the latter instance releases the blocked communication

letting any blocked void send(Container&); calls finish the requested sending

operation using the actual system’s time and return to their callees as shown in the figure.

Furthermore, the blocked call to void reached(); is released again to continue the

computation in ConferenceClientModule. Moreover, the system under test can

send further Containers without being blocked.

ConferenceClientModuleRunner is waiting for the next call to void

reached(); by checking periodically the state of RunModuleBreakpoint.

If the system under test should not return within the required time out,

ConferenceClientModuleRunner throws an exception which is caught by

RuntimeControl. Thus notifying RuntimeControl of a malfunctioning sys-

tem under test, this class can safely release all blocked threads and communications to

end its execution and to report this error to its outer scope.

Otherwise, RunModuleBreakpoint gets notified about the next completed comput-

ing cycle by a call to void reached(); initiated by ConferenceClientModule.

Followed by a call to void setNextContainerAllowed(false); to

BlockableReceiver, the further sending of Containers is delayed to the next

computing cycle and the periodic checking of ConferenceClientModuleRunner

returns the control flow to RuntimeControl. This instance in turn increments the

Clock and starts over the next cycle in the simulation for the system’s context and

system under test.
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6.3.3 Remarks

The virtualized system time is constant for one complete cycle both in a system un-

der test as well as in any SystemContextComponents, because the overall system

time is incremented right after a step in the system’s context followed by a step in all

system’s under test. Thus, the communication happens actually in no time, i.e. any

Container sent from a system under test to a ContainerConference or from

a SystemContextComponent to all systems under test consume no time between

sending and receiving when abstracting away from currently blocked concurrently send-

ing threads in the system under test. On one hand, the order of sent data is deterministic for

a running system simulation of single-threaded applications; this is an advantage because

the evaluation of such a system is reliable and repeatable. On the other hand, an evaluation

of the SUD’s reactions on an increasing system load [146] is not possible. However, since

all communication is routed using ControlledContainerConferenceFactory,

that class could artificially delay any distributed Container according to an identified

latency model like evaluated in Section 8.1.2.2 as well as implement load- and payload-

dependent behavior for a UDP multi-cast conference by dropping or reordering some

Containers and thus realizing a noise model for the communication.

Additionally, RuntimeControl can evaluate whether an application can fulfill the re-

quired frequency. Thus, it simply measures the time required for completing one cycle

between releasing the application’s thread from the Breakpoint until it reaches it again.

Extrapolating the consumed time regarding the desired frequency, an estimation about the

required computing power can be made which is obviously machine-dependent.

Following, the actually needed simulation time which is consumed during one step in

the ConferenceClientModule is equal to the real consumed system time. This

means that a controlled ConferenceClientModule actually delays its current avail-

able time slice by using a call like void sleep(const uint32_t&);. However,

RuntimeControlwill cancel the current execution due to missing the predefined maxi-

mum execution time. Thus, any ConferenceClientModule which needs to actively

delay its execution should rather map the desired waiting time to several sequential calls

to its main loop considering its defined frequency.
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6.4 Providing an SUD-dependent System Context:

libvehiclecontext

In this section, algorithms are outlined for providing a system’s context which depends

on an SUD and its actions and reactions. These algorithms can be used to generate in-

put data which is fed into the data processing chain of a sensor- and actuator-based au-

tonomous system. The main purpose for the algorithms is to support the development and

the unattended system simulations for AGVs; however, some of the algorithms which are

discussed in the following are not limited to AGVs only but may be applied within other

contexts as well.

The algorithms are implemented in the library libvehiclecontext. On one hand,

this library can be used to realize unattended system simulation by reusing components

from libcontext as already outlined in Figure 6.1; on the other hand, the same library

and thus the same components can be used unmodified to provide interactive simulations

which can be used by a developer during the software development.

6.4.1 Unattended System Simulations using libvehiclecontext

As mentioned before, libvehiclecontext bundles all SUD-related algorithms. For

AGVs, these algorithms include a model for a position provider to imitate the system’s

behavior of an IMU which is described in greater detail in in Section 6.4.3. Besides the

position, velocity, or acceleration for the AGV, further detailed information of its sur-

roundings for example other vehicles or obstacles are required. As already outlined in

Section 2.3 for example, several different sensors which perceive the AGV’s surround-

ings are necessary. Therefore, libvehiclecontext provides sensor models for a

color monocular camera which is described in Section 6.4.4. Furthermore, a model of an

actively scanning sensor on the example of a single layer laser scanner is included. This

model is described in Section 6.4.6. Both models provide so-called low-level input data

because all data gathered from the sensors is raw data which must be processed to get

information from the AGV’s system’s context. To provide a more high-level data produc-

ing model instead, a simple sensor data fusion which produces contours to abstract from

perceived objects is included. This model is described in Section 6.4.7.

All aforementioned algorithms are scheduled as SystemFeedbackComponents from

libcontext. Thus, they can easily be used in an arbitrary combination in unat-

tended system simulations. However, these system simulations abstract from the real

time as outlined in Section 3.2.4; moreover, due to the intention to be executed with-
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out being supervised by developers to realize unattended system simulations, they can-

not be directly used in an interactive manner. Therefore, an extension to the concept of

libvehiclecontext is necessary which is described in Section 6.4.2.

6.4.2 Interactive System Simulations using libvehiclecontext

As mentioned before, libvehiclecontext is intended to be used together with

libcontext to carry out unattended system simulations. However, during the actual

software development, interactive simulations to evaluate an algorithm’s behavior directly

by the developer is often necessary. Therefore, an extension to this library must be pro-

vided.

Besides the aforementioned algorithms to model various aspects of an AGV, a wrapping

application called vehiclecontext is included which allows direct and interactive

execution during the development. To realize this interactive execution, the purely vir-

tualized system time, which is necessary for unattended system simulations which are

executed under the supervision and control of libcontext as outlined in Section 6.3,

must be mapped to the real system time. This is necessary to allow the combined usage of

libvehiclecontext which depends on libcontext and other applications which

are not under the control of libcontext. To achieve this mapping for the simulation

time onto the real time, the consumed time tconsumed for carrying out one step in the config-

ured system’s context by calling its SystemContextComponents must be subtracted

from the calculated nominal constant duration of one time slice which bases on all defined

frequencies as outlined in Section 6.2. Thus, libvehiclecontext can easily be used

alongside with other independently running application.

Furthermore, vehiclecontext can be executed several times for one specific

ClientConference. Thus, different instances of libvehiclecontext wrapped by

vehiclecontext can be executed in parallel each with different configurations.

Hence, interactive system simulations can be distributed using several independent com-

puting nodes to spread the overall computation load.

6.4.3 Position Provider: Bicycle Model

In the following, the model used for modeling and simulating a vehicle is provided. First,

its geometrical relations are explained, followed by its limitations.

In Figure 6.5, the so-called bicycle model and its geometrical relations are shown. Its

name bases on the assumption that the wheels on the front axle and the wheels on the rear
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Figure 6.5: Geometry of the bicycle model (based on [126]).

axle are united comparable to a bicycle. Furthermore, the following assumptions are met

[78, 104, 124]:

• The bicycle model is a two-dimensional representation of driving dynamics.

• The vehicle’s center of mass is located on ground level. Therefore, vehicle rolling

and pitching are not considered causing dynamic wheel loads.

• The wheels are united per axle in the vehicle’s centered longitudinal axis.

• Furthermore, no longitudinal acceleration and thus a constant velocity is applied at

the moment of observation.

• The cornering forces to the wheels are linearized.

• Wheel’s casters and righting moments are not considered.

• Also, the wheel’s tangential forces are not considered.

After defining the assumptions met about the bicycle model to get a linearized geometrical

model, all symbols and relations for the vehicle’s dynamic are described in the following.

They are based on the principle of linear momentum and the principle of angular momen-

tum.
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Cm describes the center of mass assumed to be located at ground

level.

CFA, CRA are the centers of the front and rear axles, respectively.

l is the total distance between CFA and CRA.

lFA, lRA are l’s partial distances between Cm and CFA or CRA, respec-

tively.

XV , YV describe the vehicle’s own coordinate system according to

[40].

ψ is the vehicle’s rotation related to the world’s coordinate sys-

tem.

δ is the steering angle at front wheel.

β describes the vehicle’s attitude angle.

αFA, αRA are the slip angles of the front and rear wheels, respectively.

v is the vehicle’s velocity.

vFA, vRA are the velocities for the front and rear wheels, respectively.

F(y)FA, F(y)RA are the cornering forces for the front and rear wheels, respec-

tively.

CA is the ideal velocity pole for a slip angle free drive.

CV P is the velocity pole considering a slip angle during a drive.

The following symbols are not shown in Figure 6.5.

m describes the vehicle’s mass.

JZ is the vehicle’s moment of inertia.

ψ̇ is the yaw rate.

c(αFA)FW is the front wheel’s skew stiffness for αFA.

c(αRA)RW is the rear wheel’s skew stiffness for αRA.

In the following, geometrical relations between the identified values are defined.
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αFA = δ − arctan(
lFAψ̇ − v sin(β)

v cos(β)
) (6.1)

≈
αFA≪4◦

δ − β − lFA
ψ̇

v
.

αRA = − arctan(
v sin(β)− lRAψ̇

v cos(β)
) (6.2)

≈
αRA≪4◦

−β + lRA
ψ̇

v
.

β = ψ − arctan(
ẏ

ẋ
). (6.3)

The next equations describe the dynamic relations as a state space representation.

ẋ = A · x+ b · u (6.4)

y = cT · x+ d · u.

In Equation 6.4, the state space model which describes the dynamic driving behavior

according to [136] is shown. A describes the system’s state matrix, b denotes the system’s

input matrix and c describes the system’s output matrix. d is used to describe the feed

forward matrix. The vector x describes the system’s current state vector and u the system’s

input which reflects the steering angle in this case.

x =

(

β

ψ̇

)

(6.5)

ẋ =

(

−
c(αFA)+c(αRA)

mv

c(αRA)lRA−c(αFA)lFA

mv2
− 1

c(αRA)lRA−c(αFA)lFA

JZ
−
c(αRA)l

2
RA+c(αFA)l

2
FA

JZv

)

· x ·

(
c(αFA)

mv
c(αFA)lFA

JZ

)

· u.

In Equation 6.5, the input vector for the system and the state space representation for the

aforementioned geometrical relation for the driving dynamics are shown. As already men-

tioned, β describes the vehicle’s attitude angle and ψ̇ describes the yaw rate. Using the

aforementioned model and equations, the vehicle’s state can be numerically approximated
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according to [136] which is shown in Equation 6.6.

x(t(k+1)) = Φ(∆t) · x(tk) + Γ(∆t) · u(tk) (6.6)

y(tk) = cT · x(tk) + d · u(tk)

⇔

x(t(k+1)) =
∞∑

k=0

(A∆t)k

k!
· x(tk)

∞∑

k=0

(
Ak(∆t)k

(k + 1)!
· (∆t)B) · u(tk)

y(tk) = cT · x(tk) + d · u(tk).

The accuracy of the numerical approximation depends obviously on the number of chosen

summands for the individual sums. Regarding the initially met assumptions, the resulting

matrices from these sums are constant because they depend only on the constant time step

∆t, the chosen accuracy which defines the upper limit K for the sum’s index k and the

current values of the state and input matrix. Thus, these numerical approximated matrices

must be updated whenever the velocity v changes.

However, due to the simplifications which are met by these assumptions, the bicycle

model for describing a vehicle’s driving dynamic is only valid for lateral accelerations

less than 0.4m
s2

[104]. For getting more precise results especially in limit ranges for the

vehicle dynamics, the linearized bicycle model must be modified using non-linear equa-

tions describing the forces which are applied to the wheels on the front and rear axles [6].

Due to the intended application as outlined in Chapter 8, this more accurate model is not

regarded but the described bicycle model for the position provider is chosen to show the

applicability of the concepts described in this thesis.

ẋpos =

(

v cos(ψ − β)

v sin(ψ − β)

)

. (6.7)

To update the position data for the simulation, the changing of the vehicle’s position is

calculated as shown in Equation 6.7. Using a given initial position x0 this changing can

be integrated to provide absolute position information.
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6.4.4 Monocular Camera Provider

The first raw data provider realized in the simulation of the system’s context is a monocu-

lar camera provider. Its software architecture is shown in Figure 6.6.

Figure 6.6: Software architecture for the monocular camera provider. This provider imple-

ments a simple monocular camera sensor model by using the specified system’s context

which is described by Scenario to render an OpenGL context. From this context, an

image dump is provided for user-supplied image processing algorithms using a shared

memory segment.

The realization of the monocular camera provider is quite easy reusing some concepts

provided by libcore and libhesperia. Its main principle is to use the current state

of the system’s context for rendering into a predefined field of view for the virtual monoc-

ular camera. Since the Scenario3DRenderer can simply be used for generating an

OpenGL render-able scene, the State3DRenderer renders dynamic elements from the

system’s context like the position and orientation of the AGV itself. These information

are necessary because the virtual monocular camera is “mounted” on the AGV itself for

example. Therefore, OpenGL’s scene view camera is placed where the AGV is currently

located and is translated to its virtual mounting position.

The OpenGL’s scene view camera is used to grab the actual view of the scene into a

SharedMemory segment. This shared memory is used to share the image’s data be-

tween independent processes without serializing and sending the data using sockets for

examples. However, shared memory can only be used among processes on the same

computer. Regarding the pipes and filters data processing chain mentioned above, it is
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assumed that basic feature detection is implemented on the computer to which the camera

is attached to.

For informing other processes about the shared memory segment, the data structure

SharedImage is used. This datum contains information about the image’s dimensions

and color depth as well as the name of the shared memory to which other process should

attach to read the image. This data structure containing an image’s meta-information is

simply sent to the ClientConference.

Since the virtual monocular camera would grab the images as fast as possible, the mutual

exclusion concept of shared memory segment can simply be used by the feature detection

process to control the image acquisition. Therefore, the feature detecting process simply

locks the shared memory and thus prevents the virtual monocular camera to grab new

images while detecting features in the current frame is still incomplete.

6.4.5 Stereo Camera Provider

Based on the aforementioned monocular camera provider, a simple stereo camera provider

can by realized easily. Therefore, two virtual monocular cameras are set up to operate

as a combined stereo camera system. Thus, the rendering algorithm for the OpenGL

scene is split up into two independent rendering cycles. For the example of an AGV,

the first pass reads the current position and orientation of the vehicle to determine its

absolute position in its system’s context. Afterwards, the first monocular camera of the

stereo camera pair is positioned according to its specified mounting position relative to

the AGV’s current position and the scene is rendered into a SharedMemory segment

which is twice the size of the size of one single monocular camera image. Followed by

the second pass, the second monocular camera is positioned alike and its current view

into the OpenGL scene is rendered into the second half of the SharedMemory segment.

Finally, the two combined images are broadcasted using a SharedImage in an analog

manner comparable to the monocular camera provider.

6.4.6 Single Layer Laser Scanner Provider

In the following, the raw data generation for a single layer laser scanner using a GPU

is described. Due to the use of a GPU and as shown in Figure 6.7, a concept using

the three-dimensional representation for the scenario to be rendered with OpenGL like

the aforementioned camera provider is necessary to produce data for a single layer laser

scanner as described in the following.
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Figure 6.7: Software architecture for the single layer laser scanner provider. Comparable

to the aforementioned sensor model for a camera, this provider also bases on the specified

system’s context described by Scenario for rendering an OpenGL context. However,

contrary the aforementioned camera provider, this context is modified by a special shader

program which is executed on a GPU which generates distance information. In a pre-

processing stage, this context is evaluated by an image analyzing algorithm to retrieve

these distances to providing them to user-supplied applications on higher layers.

6.4.6.1 GPU-based Generation of Synthetic Data

The main idea behind the raw data generation for a single layer laser scanner is the use of

projective textures on a modern GPU. The principle behind projective textures is depicted

in Figure 6.8. In the figure on the left hand side, a red line is shown in the upper half of

a cube, while the picture on the right hand side shows the same line in the lower half of

the cube after moving it down; both lines are projected into the scene. The projector is

indicated by the dark lines.

Their basis are projectors for projecting a predefined texture into the rendered scene. The

texture is placed right in front of the projector using the transformation T as shown in

Equation 6.8. Pp is the projection matrix and Vp describes the view matrix; V −1
e describes

the inverse of the camera matrix to get back into the world’s coordinate system to get

finally the texture coordinates for projection.
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(a) Projector shining in the upper half of the

cube.

(b) Projector shining in the lower half of the

cube.

Figure 6.8: Principle of projective textures using a projector (based on [18, 50]): A special

texture is defined used as a foil which is placed directly in front of the camera’s position

from which the scene should be rendered. Using the equation specified in Equation 6.8,

the content of this texture is projected into the scene. For simulating a single layer laser

scanner, this texture contains a single line as shown in this figure which is projected into

the scene.

T =









1
2

0 0 1
2

0 1
2

0 1
2

0 0 1
2

1
2

0 0 0 1









· Pp · Vp · V
−1
e (6.8)

Using this transformation, several independent projectors can be defined in the scene.

After defining the principles behind projective textures, the algorithm for computing dis-

tances from a projected texture is outlined in Figure 6.9 which consists of an image synthe-

sis followed by an image analysis problem. The former is marked with dark gray, while

the latter is marked with light gray.

6.4.6.2 Algorithm for Computing Synthetic Raw Data

First, the shader programs are loaded into the GPU. These programs are used to implement

the actual projection for a texture on one hand, and to determine the distances of the

scene’s vertices to the viewing position on the other hand. The program is split into one

associated with the Vertex Processor and one associated with the Fragment Processor. An
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Figure 6.9: Outline for algorithm to compute distances using projected textures.

overview of the OpenGL processing pipeline can be found at [90].

The former program encodes a vertex’ depth value into a provided texture. The latter

program reads the actual pixel’s color representing its distance to the viewing position,

computes the z-buffer value using the actual valid near- and far-clipping-planes, and sets

the pixel in the resulting image according to the z-buffer value as the pixel’s R-channel,

the real distance’s integral value as the pixel’s B-channel, and the fractional value as the

pixel’s G-channel after texture projection.

After initializing the GPU with the vertex- and pixel-shaders, two variables of the frag-

ment shader containing the current values for the near- and far-clipping-planes are con-

nected to the CPU program. Next, the texture to be projected must be defined. As already

shown in Figure 6.8, this texture contains the scan line to be projected into the scene since

the fragment shader modifies the resulting image only if a scan line was found marked by

the texture pixel’s value in the R-channel which is set to 255.

Next, the repeatedly executed distance computation loop is started. The first step is to up-

date the current OpenGL scene by manipulating its elements according to the current state

of the system’s context. Following, the current valid values for the near- and far-clipping-

planes are transferred to the fragment shader using the previously connected variables and

the shader program is activated on the GPU for the current rendering cycle. The phase for

the image syntheses is completed by positioning the camera using quaternions to the cur-

rent position and rotation retrieved from the recently received EgoState for rendering

the actual scene’s elements.

After the rendering is completed, the image analysis phase starts with reading the com-

105



Automating Acceptance Tests on the Example of Autonomous Vehicles

puted image from the GPU. The resulting image produced by the GPU is shown in Figure

6.10a, where in the upper half all surroundings’ elements which are not irradiated by the

projector are simply colored in blue. In the center of the image are the resulting pixels

computed by the shader program. For the sake of clarity, the resulting pixels are magnified

below the image.

(a) Resulting image read from GPU after apply-

ing the shader program: In the image above,

the resulting scene which is read back from

the GPU is shown; the lower part magni-

fies the relevant part from the image which

contains the distances encoded by the shader

program.

(b) Viewing angles and distances:

Due to the discretization, only the

rays rλ and rµ can be calculated;

however, the nominal ray nθ is re-

quired which must be calculated.

Figure 6.10: Visualization for the output of the sensor model for a single layer laser

scanner. This sensor model is realized in an application which uses a shader program on

the GPU for calculating the distances.

For illustration, sensor’s raw data for producing distances for a single layer laser scanner

with a FOV of π
2

containing 91 rays from−π
4

to π
4
, whose mathematical model is depicted

in Figure 6.10b should be realized. The mounting position S of the scanner is located in

the center of the image. The arbitrary line C denotes distances to the viewing position for

the surroundings irradiated by the scanner. Therefore, this line contains all intersection

points from the single layer scanning plane with the surroundings.

Due to the discretization in the resulting image, only the distances dλ and dµ to the view-

ing plane denoted by the X-axis could be computed for the imaginary rays rλ and rµ for

example. However, the nominal ray nθ reflecting one of the scanner’s rays must be com-

puted. The distances returned to the viewing plane denoted by dλ and dµ are encoded

in the resulting image’s pixels. The pixel’s R-channel containing the depth value for a
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scene’s vertex is used to compute the world coordinates for the given x- and y-position in

the image coordinate system using Equation 6.9.

C = (P ·M)−1 ·









2(x−x̂)
w

− 1
2(y−ŷ)

h
− 1

2z − 1

1









(6.9)

The product of P ·M denotes the projection in world coordinates and the triple (x, y, z)

contains the image’s x- and y-position and also the computed depth value as z. The

quadruple (x̂, ŷ, w, h) contains information about the image’s width and height as well as

the offset of the image’s logical origin (0, 0) regarding to the screen’s origin. Using this

equation, the positions pλ and pµ can be computed directly.

However, since pθ could not be measured directly, an interpolation for the desired nom-

inal ray nθ is necessary. Therefore, all angles along the viewing plane using the points’

distance to the viewing plane and its lateral distance to the sensor’s mounting position S

are computed using φ(x) = arctan (
d(x)

Sx−x
). All computed angles φ(x) are stored with their

corresponding distance d(x) in a map. Due to the dependency on the depth value from the

near- and far-clipping-planes used for computing the world coordinates causing aliasing

effects, the vertex’s real distance is encoded in the pixel’s B- and G-channel. This value

is finally used to optimize the computed and interpolated distance for the nominal ray nθ

as shown in Figure 6.11.

To compute the correct distances for the nominal rays, the map is used the find the both

best matching rays denoted by rλ and rµ around the nominal ray nθ minimizing the dif-

ference between the angles (θ, λ) and (θ, µ). The computed difference for both pairs

is furthermore used to weight the interpolated distance dθ using dλ and dµ as shown in

Equation 6.10.

dθ =
‖ θ − λ ‖

‖ λ− µ ‖
dλ +

‖ θ − µ ‖

‖ λ− µ ‖
dµ (6.10)
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(a) Computed distances using the z-buffer depth

value scaled regarding to near- and far-plane.

(b) Optimized distances using the actual dis-

tances from w-buffer.

Figure 6.11: Aliasing effect when solely using the z-buffer demonstrated at a curved

target: On the left hand side, the rays from the laser scanner are hitting the target with only

discrete distances which provides inaccurate distances. This is caused by the decreasing

accuracy for increasing distances to the ray-emitting source [32]. On the right hand side,

the z-buffer combined with the w-buffer is used to optimize the calculated distances which

reduces the aliasing effect.

6.4.6.3 Example

In Figure 6.12a, a situation in the modeled surroundings is shown. On the right hand side

in Figure 6.12b, the results for a single layer laser scanner with a FOV of π
2

mounted

1.55m above the ground on the center of the vehicle’s roof looking at 8m in front of the

vehicle are shown. The computed distances with correct angles are plotted in blue with an

X on its graph. In red with a + on its graph, the interpolated distances to match the sensor’s

nominal angles are plotted. In the plot, the elevation of the road can be seen easily between

φ = −0.65rad and φ = −0.1rad. Furthermore, the red graph describing interpolated

distances matches well the blue graph containing computed distances and angles. Even

at the wall of the house, the interpolation for nominal rays produces reasonable results

between the actually computed distances.

6.4.7 Sensor-fusion Provider

For providing pre-processed data like output from a sensor-fusion, a mid-level data

provider for generating Obstacles is described in the following. It is called mid-level

data provider because it does not produce raw data for sensors of a specific type but

can be used for results of a sensor-fusion fusing several raw data producing sensors. The
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(a) Situation with activated single layer laser scanner.
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(b) Plot of interpolated distances for nominal angles and computed angles for

measured distances: The graph marked with + shows the computed angles

while the graph marked with x depicts the reconstructed nominal angles.

Figure 6.12: Visualization of computed distances.

Obstacle data structure derives directly from PointShapedObject and can be used

to describe arbitrarily shaped objects from the system’s context detected by different sen-

sors like radar or laser scanners. This datum consists of a position, rotation if applicable,

acceleration, and velocity and moreover, a polygon used for describing its outer shape.
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6.4.7.1 Generation of Synthetic Data

Mostly, the outer shape is only a contour because sensors normally cannot detect the rear

side from objects. Since later processing stages could assume the contour is part of an

arbitrarily shaped polygon and simply connect the open vertices at the beginning and end

of the contour, the polygon as a subset of contours is used.

Figure 6.13: Software architecture for the sensor-fusion provider. Comparable to both

aforementioned sensor providers, this one also bases on the Scenario specification. For

generating an abstract representation from the SUD’s surroundings, a visitor is defined

which traverses the scenario’s AST to gather information from polygons. These polygons

are used to calculate intersections with a specified viewing area which represents an ideal

sensor.

Like all previously described providers, the production of pre-processed data is operating

on the Scenario using a PolygonVisitor for extracting all polygonal shaped ob-

jects as shown in Figure 6.13. Furthermore, it uses the EgoState for localization in the

world.

6.4.7.2 Algorithm for Computing Synthetic Raw Data

The purpose of the following algorithm is to generate contours for the Obstacle data

structure. First, the sensor’s FOV is defined by specifying several coordinates in the

vehicle’s coordinate system. Next, for every update on the EgoState, the local FOV

is translated to the current position and rotation in the world using the data provided by

EgoState.

For every polygon pj in the list extracted by the PolygonVisitor, the overlapping

areas with the FOV polygon are computed. Therefore, for every edge eiFOV
of the FOV’s
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polygon the intersection point Ieij
with every edge of pj is computed. Since these inter-

section points are on the outer line of the FOV, these points belong to the overlapping

polygon by definition and are added to the polygon list P ′j for the polygon pj . Next, all

vertices vj are tested if they lie inside the FOV. If they are inside the FOV, they are also

added to P ′j .

Figure 6.14: Overlapping polygons with visibility lines resulting in a contour line between

i1 and v2: The dark gray triangle i1, v2, i2 shows the invisible area within the sensor’s FOV

from point S for the polygon v1, v2, v3, v4, v5. Because the line Si2 crosses this invisible

area, the point i2 is not part of the outer contour.

Now, the overlapping polygon described by the vertices P ′j was found. Next, the vertices

must be reduced by the vertices which cannot be seen by the sensor’s mounting position S.

Therefore, for every vertex vj from the polygon P ′j , the line Svj describing the visibility

line from S to vj is tested for intersection points with any other edge from P ′j . If no

intersection point could be found, the vertex vj can be seen directly from the sensor’s

mounting position; otherwise, this vertex is removed from P ′j . Finally, all vertices in

P ′j are sorted with ascending viewing angles regarding the sensor’s mounting position to

ensure the correct detection order. In Figure 6.14, the previously outlined algorithm is

depicted.

6.4.7.3 Example

In Figure 6.15a, results of the algorithm are shown for a FOV of 60°. As shown in Figure

6.15b while hiding the surroundings, only the measured object’s contour line is shown.

111



Automating Acceptance Tests on the Example of Autonomous Vehicles

(a) Visualization of polygonal obstacles. (b) Visualization of polygonal obstacles with

hidden surroundings.

Figure 6.15: Visualization for the output of the sensor-fusion provider.

6.4.8 Dynamic Context Provider

As outlined in Section 4.4, the stationary system context is augmented by dynamic ob-

jects as defined in a situation which also uses a DSL. On the example of AGVs, this

dynamic context can be used to model different traffic situations e.g. with other vehicles

on intersections.

In Figure 6.16, the general architecture for the dynamic context provider is shown. Com-

parable to the aforementioned providers, this one also uses the Scenario data structure

which can have one or more situations defined in Situation. In the latter data structure,

the type, shape, and behavior of a dynamic object according to the DSL as outlined in Sec-

tion 4.4.2 are defined. To control a dynamic object, the PointIDDriver is used which

realizes the dynamic object’s driving on an a priori defined route consisting of several

consecutive way-points provided by Scenario.

Every instance of a PointIDDriver is managed by DynamicContextProvider

which supervises depending other objects, updates the position data, and distributes the

system state of dynamic objects. On one hand, the system state can be directly used in

user-contributed applications; on the other hand, it can be “detected” by one of the afore-

mentioned providers like the camera or the single layer laser scanner provider. Therefore,

the abstract data structure for a dynamic object is rendered using the concepts outlined in

Section 5.4.5. Thus, information from the SUD’s system’s context can be provided either

on low-level using sensors’ raw data or on high-level directly using the dynamic object’s

data structure.
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Figure 6.16: Software architecture for the dynamic context provider. Comparable to the

already presented providers, this provider bases on the Scenario specification as well.

Moreover, it uses a Situation to get the specification of the dynamic context. To

create the necessary models for the dynamic context, a concrete instance of the DSL

is evaluated and the required objects with their associated behavior PointIDDriver
are set up. The data provider computes continuously updated information using the

OtherVehicleState data structure. These objects can either be used directly in high-

level user-contributed applications by evaluating their attributes for example or they can

be rendered into an existing OpenGL scene. In the latter case comparable to the stationary

surroundings, the dynamic objects can be “detected” using the aforementioned providers.
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7 Monitoring and Unattended

Reporting

In this chapter, a non-reactive visualization environment allowing interactive inspections

of a running sensor- and actuator-based autonomous system as well as unattended re-

porting using the framework Hesperia are presented. First, some general considerations

and design drivers are discussed. Following, some realization aspects for an interactive in-

spection application called Monitor are outlined. Finally, unattended inspections allowing

automated test runs which are used in the next chapter are presented.

7.1 General Considerations and Design Drivers

Next, selected design drivers for a running system’s inspection are outlined.

• Non-reactive inspection. Any monitoring or reporting application must not interact

with a running system to avoid interferences. This implies that no running applica-

tion takes note of a monitoring or reporting application’s existence. Furthermore,

no application must send additional data explicitly to such an application.

• Intuitional interface. Obviously, a monitoring application which is intended to be

used by humans must provide an intuitional interface. Moreover, for the unattended

usage described in Section 7.3, interfaces to be used by a test engineer must be

unambiguous.

• Transparent usage. Any monitoring or reporting application should be used both

with the real running sensor- and actuator-based autonomous system as well as with

previously recorded data and with data generated by a system simulation.

Due to the design and architecture of the frameworkHesperia, at least the first and the last

requirement can be realized with ease. Since the entire communication between applica-

tions implemented using the frameworkHesperia is realized using the concept ClientCon-

ference as outlined in Section 5.4.1, any monitoring or reporting application can simply
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join the same communication group. Thus, every message exchanged in a ClientConfer-

ence is automatically received by a monitoring or reporting application.

Moreover, the concept ClientConference can not only be used on live systems but also

for replaying previously recorded data using the tools already mentioned in Section 5.6.

Additionally, the real system can be transparently substituted by a virtualized model as

described in Chapter 6 and Chapter 8. Thus, a monitoring or reporting application realized

with the frameworkHesperia can be used to inspect and analyze a running system.

7.2 Interactive Monitoring

As already mentioned in Section 5.4.5, the framework Hesperia provides a device-

independent visualization. Thus, both two-dimensional representation and three-

dimensional visual feedback can be easily realized using the concepts provided by the

framework. In this section, the visualization for the stationary surroundings is outlined.

7.2.1 Monitoring Component monitor

In Figure 7.1 the architecture of the non-reactive interactive inspection component called

Monitor is shown. Since it is realized using the concepts provided by the framework

Hesperia, all requirements discussed at the beginning could simply be realized.

The component itself derives from ConferenceClientModule and implements the

interface DataStoreManager. Using this interface, different data-stores as already

outlined in Section 5.3.2.3 can be registered at a running ClientConference. The appli-

cation monitor uses the PlugInProvider to query existing plug-ins to be used for

system inspection. The PlugInProvider returns a list of available PlugIns as well

as one special plug-in called MasterPlugIn if desired by the user.

The MasterPlugIn can be used to substitute the standard handler called

FIFOMultiplexer for handling incoming Containers. By default, every in-

coming container is simply distributed to all running plug-ins using their implemented

interface ContainerListener. By activating the MasterPlugIn, a buffered mul-

tiplexer allowing suspend, resume, replay, step forward, step backward, and save to disk

can by applied to a running system.

In Figure 7.2, the application itself is shown. It is realized as a Multi Document Inter-

face (MDI)-application using the GUI framework Qt [22]. In the window, all available
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Figure 7.1: Architecture of component “Monitor”. The application consists of several

independent plug-ins which are fed with incoming Containers automatically. Thus,

they can realize arbitrary visualization tasks; furthermore, due to the plug-in concept, this

application can be extended easily.

plug-ins reported by the PlugInProvider can be selected. Every plug-in can be ex-

ecuted several times if necessary. In the bottom window in area “6”, the control plug-

in for the BufferedFIFOMultiplexer is shown allowing the user to interrupt the

Container’s distribution to all running plug-ins while further filling the available buffer

in background. Furthermore, the replay of available Containers in the buffer can be

controlled using self-explanatory buttons. Moreover, the current content of the buffer can

be selectively saved to disk in the same format as the component recorder would save

the data. Thus, captured interesting situations during the inspection of the running system

can simply be stored for further analysis or playback using player.

In the center window in part “1”, all currently running plug-ins are shown. In the up-

per left corner in area “2”, a PacketLogViewer showing a chronologically ordered,

textual representation of all received Containers is activated. On the upper right cor-

ner in area “3”, a surroundings’ visualization component which is described in detail in

the following is running. On the bottom left corner in area “4”, a viewer for currently

available SharedImages which are exchanged between independent processes using

shared memory is shown; these synthetic images are created by the Camera Provider as

described in Section 6.4.4. On the bottom right corner in part “5”, statistical data of the

consumption of their assigned run-time frequency of all running applications is shown.
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Figure 7.2: Non-reactive system inspection using component “Monitor”: On the left hand

side in area “1”, a list of all available plug-ins is shown. In the upper left hand side in

part “2”, a trace of all received Containers is shown while on the upper right hand

side marked with “3”, a freely navigatable 3D visualization of the current scenario is

rendered. On the lower left hand side in area “4”, the visualization of the camera provider

producing synthetic images is shown. The lower right hand side in part “5” finally plots

statistical information about the applications’ life-cycles. In area “6”, a control bar for

controlling the buffer which stores all captured Containers is available which can be

used to suspend or replay the current buffer.

7.2.2 Visualization of Stationary Surroundings

In the following, the use of the aforementioned concept for device-independent data visu-

alization is outlined for drawing the stationary surroundings. In Figure 7.3 its architectural

implementation is shown using also the GUI framework Qt.

The main data structure to visualize is Scenario consisting of several

ScenarioNodes and thus representing an ASG from a parsed SCNX file. For travers-

ing this ASG, any object of a class implementing the interface ScenarioVisitor can

be used. This interface is implemented by ScenarioRenderer which traverses all

visualizable elements of the ASG by performing a type conversion for each node visited

during traversal to call type-dependent visiting methods.

Inside these type-dependent visiting methods, commands for drawing the current node’s

visualization using the interface Renderer is used. This interface provides primitive
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Figure 7.3: Device-independent data visualization for stationary surroundings: A given

scenario is traversed for mapping the render-able information from the surroundings’ el-

ements to the drawing primitives provided by the interface Renderer as already men-

tioned in Section 5.4.5. The 2D visualization is implemented using a drawing context

from Qt which is also used to develop the “monitor” application itself.

drawing instructions like drawPoint, drawLine, or drawPolyLine. Every method

accepts a point or a set of points from R
3. Depending on the concrete implementation of

Renderer, these input values are visualized using a two-dimensional view called bird’s

eye view using Renderer2D or a freely visitable three-dimensional representation using

Renderer3D. The latter one simply maps these calls to primitive drawing operations

using OpenGL which itself is embedded either using the OpenGL Utility Toolkit (GLUT)

providing rudimentary operations for creating a GUI or by more enhanced windowing

tool-kits like Qt.

The former one which maps the primitive drawing operations to get a two-dimensional

representation is still an abstract class which omits the real drawing methods. As shown in

Figure 7.3, this class is derived to SurroundingsViewerRenderer2D implement-

ing these pure virtual methods using QGraphicsItem provided by Qt. The representa-

tion using this alternative simply omits the z-coordinate when getting called in the regular

repainting method of the windowing toolkit.

As already mentioned before, an SCNX file can also contain complex models provided by

3D modeling software. Currently, the Wavefront format is supported as mentioned before

as compressed OBJX files containing files for describing faces consisting of triangles

and its normals, material information, and images for the model’s textures. For getting

these files into a device-independent representation, the class TriangleSet is used to

119



Automating Acceptance Tests on the Example of Autonomous Vehicles

describe a set of triangles and their associated materials. Thus, a complete model consists

of a list of several sets of triangles. These list of triangle sets is passed to Renderer

which simply implements the appropriate methods in one of its subclasses.

(a) Simplified two-dimensional visualization

(“bird’s eye view”).

(b) Three-dimensional visualization.

Figure 7.4: Resulting representation using the concept of device-independent visualiza-

tion. The camera on the right hand side is located in the lower left corner of the two-

dimensional image pointing to its upper right corner.

Results for a two-dimensional and a three-dimensional representation are shown in Figure

7.4. In the figure on the left hand side, the mapping of a three-dimensional representation

of a complex model describing a three-dimensional surroundings is shown. Therefore,

SurroundingsViewerRenderer2D simply flattens the triangles of the model to

the ground layer. The figure on the right hand side shows the visualization using the same

ASG as input data structure but the Renderer3D as visualization engine. Thus, a freely

visitable representation is realized.

Obviously, a bird’s eye view could by achieved by either letting the camera pointing along

the z-axis or by computing a perspective projection using a 3D visualization. However,

both solutions require technically a three-dimensional context for visualization. With the

concept presented before, a pure two-dimensional representation using the same unmodi-

fied input data can be realized.

7.2.3 Visualization of Dynamic Elements

To visualize dynamic elements like the own vehicle, sensor’s raw data, or virtual objects

for illustrating algorithm’s intermediate steps, an analog concept as already outlined be-

fore is realized. Its architectural concept is presented in Figure 7.5.
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Figure 7.5: Device-independent data visualization for dynamic elements: Comparable

to the stationary visualization, the scenario data is used to retrieve information about

complex model provided by 3D modeling programs. Furthermore, all sent Containers

can simply be visualized by a centralized mapping to the drawing primitives of interface

Renderer which is carried out in the class DataRenderer.

Comparable to the concept already mentioned before, a device-independent data visu-

alization is implemented. Therefore, the interface Renderer encapsulating primitive

drawing operations is simply reused. The data to be visualized is retrieved from a running

ClientConference by broadcasting Containers containing serialized objects. Thus, a

DataRenderer is provided which simply uses a concrete 2D or 3D renderer implement-

ing the interface Renderer for mapping a Container into a visual representation.

For an intuitional representation of some surroundings’ elements like the own ve-

hicle, models produced by a 3D modeling program can be used. Therefore, the

DataRenderer has access to these models using an SCNX archive and maps the model

into a device-independent list of triangle sets.

Combining both concepts, stationary surroundings enriched by dynamic elements can be

simply realized by applying the ScenarioRenderer first. Afterwards, the current

state of dynamic elements is drawn using the DataRenderer. Furthermore, the strict

separation between drawing primitives realized by a concrete visualization application

and the concrete representation of an object provided by the frameworkHesperia, further

data structures can be easily visualized without the need for modifying the visualization

application by simply adding the necessary mapping to primitive drawing operations.
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7.3 Unattended and Automatic Monitoring of an SUD for

Acceptance Tests

Besides interactive monitoring for directly supporting developers, reporting of the sys-

tem’s quality is necessary to evaluate its maturity. For realizing automated acceptance

tests as outlined in Chapter 3 an interface is required to evaluate repeatedly and unat-

tendedly the system’s behavior over time. Moreover, this interface shall allow a similar

usage like unit tests for being combined with continuous integration systems. In the fol-

lowing, the software architecture for evaluating a system under test which completes the

simulations of the system and the system’s context as already outlined in Section 6.3 is

presented.

7.3.1 Architecture for the Reporting Interface

In Figure 7.6, the general software architecture for evaluating running systems un-

der test is shown, which completes Figure 6.3 from Section 6.3.2. Compara-

ble to the class SystemFeedbackComponent which is used to compute val-

ues for the system’s context to feed back information to the system under test,

SystemReportingComponent derives from SystemContextComponent.

However, SystemReportingComponent does not have an association to an in-

stance of SendContainerToSystemUnderTest preventing them to send any

data to the system under test. Thus, any instance of a subclass implementing the

method void report(const core::wrapper::Time&); gets automatically

all Containers sent between any applications from the system under test as well as

all data sent from the SystemFeedbackComponents to the system under test. But

contrary to the aforementioned class, an instance of SystemReportingInterface

can only evaluate the incoming data without interfering with the rest of the running simu-

lation of the system under test and all SystemFeedbackComponents.

Thus, regarding separation of concerns, SystemFeedbackComponents compute

necessary information to operate the system under test with the desired level of

details, while SystemReportingComponents can evaluate the system under

test by inspecting all sent Containers. Therefore, not only the required sub-

classes of SystemReportingComponent can be easily composed and added to

a RuntimeEnvironment, but these subclasses can also be applied after an exe-

cuted simulation during a post-processing stage without changing their code. Hereby,

any necessary SystemReportingComponent can be applied to the captured and
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Figure 7.6: Software architecture for reporting components which evaluate the sys-

tem’s context. All reporting components derive from SystemReportingComponent
which allows a specified frequent scheduling by RuntimeControl. Furthermore, these

components are automatically receiving all sent Containers for evaluation.

recorded data during the previous simulation run because it simply evaluates a given

stream of Containers. Thus, even after a complex system simulation, additional or

time-consuming evaluations are simply possible.

7.3.2 Usage of Reporting Interface

In the following, various scenarios for using the outlined reporting interface

SystemReportingComponent are described. Therefore, subclasses are derived

from this class which implement aspects that can be evaluated independently during a

running system simulation for acceptance tests for example.
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7.3.2.1 Evaluating the System: Destination Reached Report

In the following, an exemplary usage of the reporting interface is shown. The

goal for the implemented subclass of SystemReportingComponent called

DestinationReachedReport is to monitor continuously the current position

of the vehicle and to report finally whether it has reached a predefined goal. This reporter

can also be added simply several times to monitor the passing of a sequence of given

destinations.

Figure 7.7: Software architecture for reporting whether a given destination was suc-

cessfully reached. The DestinationReachedReporter implements the interface

SystemReportingComponent to receive automatically all send Containers. Fur-

thermore, it uses the formally specified scenario for getting information about available

way-points which can be used as destinations for an AGV.

As shown in Figure 7.7, the DestinationReachedReport derives from

SystemContextComponent to get all data sent between any application from

the system under test and SystemFeedbackComponents. Furthermore, this

class uses the DSL for getting information about the digital map consisting of iden-

tifiable way-points describing absolute Cartesian coordinates. Using a way-point’s

identifier passed to DestinationReachedReport at construction, the visitor

FindNodeByPointIDVisitor traverses the ASG constructed from the given in-

stance of the DSL describing the stationary surroundings to find the identifier of the

desired destination. Using this identifier, the associated position is retrieved from the

ASG and stored for further usage.

124



Automating Acceptance Tests on the Example of Autonomous Vehicles

During a system simulation run, the instance of DestinationReachedReport is

continuously called. Upon activation, the instance iterates through its buffer containing

all sent data and inspects all Containers containing information about the current vehi-

cle’s state, e.g. its position, orientation, and velocity. The current vehicle’s position is used

to compute the distance to the desired destination. As soon as the computed distance is

less than a given threshold, the instance of the class DestinationReachedReport

returns true after finishing the system simulation.

Thus, besides the software framework Hesperia no further tooling is required to evaluate

an SUD unattendedly and in an automated manner. Therefore, these reporters which

realize the metrics based on the customer’s acceptance criteria can simply be specified as

unit tests as shown in Listing 7.1. These unit tests themselves can be executed regularly

using a continuous integration system like CruiseControl [38].

# inc lude "cxxtest/TestSuite.h"

c l a s s SimpleTestSuite : pub l i c CxxTest::TestSuite {

pub l i c:

5

void testReachingDestination() {

/ / 0 . Setup system ’ s con f i gu r a t i o n .

stringstream config;

config << "global.scenario = file://Scenarios/←֓

RichmondFieldStation.scnx" << endl;

10

/ / 1 . Setup runt ime con t r o l .

DirectInterface di("225.0.0.100", 100, ←֓

sstrConfiguration.str());

VehicleRuntimeControl vrc(di);

vrc.setup(RuntimeControl::TAKE_CONTROL);

15

/ / 2 . Setup app l i c a t i o n .

cons t string START_WAYPOINT = "1.4.2.4";

cons t string DESTINATION_WAYPOINT = "1.5.1.6";

20 / / Def ine the ac tua l SUD.

SimpleDriver mySimpleDriver(START_WAYPOINT, ←֓

DESTINATION_WAYPOINT);

/ / 3 . Def ine the SUD ’ s system ’ s contex t .
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cons t f l o a t FREQ = 5;

25 SimplifiedBicycleModel bicycleControl(FREQ, config.str←֓

());

/ / 4 . System ’ s r epo r t i ng component .

cons t f l o a t THRESHOLD_DESTINATION = 1; / / 1m th resho ld .

DestinationReachedReport destinationReached(config.str←֓

(), DESTINATION_WAYPOINT, THRESHOLD_DESTINATION);

30

RecordingContainer recorder(FREQ, "simpleTestSuite.rec"←֓

);

/ / 5 . Compose the s imu la t i on .

RuntimeEnvironment rte;

35 rte.add(mySimpleDriver);

rte.add(bicycleControl);

rte.add(destinationReached);

rte.add(recorder);

40 / / 6 . Run app l i c a t i o n under superv i s ion o f ←֓

RuntimeControl f o r maximum 180s .

TS_ASSERT(vrc.run(rte, 180) == RuntimeControl::←֓

APPLICATIONS_FINISHED);

/ / 7 . Check i f the des t i na t i on was f i n a l l y reached .

TS_ASSERT(destinationReached.←֓

hasReachedDestinationWaypoint());

45

/ / And f i n a l l y c lean up .

vrc.tearDown();

}

};

Listing 7.1: Integration of customer’s acceptance criteria using reporters in unit tests.

On the example of a unit test realized with CxxTest[156], a simple executable test specifi-

cation was created which evaluates whether the SUD fulfills the customer’s requirements

by using the customer’s acceptance criteria as the continuously applied metric. In this

case, the SUD is an autonomously driving vehicle and the metric evaluates if the vehicle

has finally reached its destination.
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First, in line 8 et seqq. the currently valid system configuration is specified. Afterwards,

in line 12 et seqq. the scheduler for the system simulation is set up. In this case, the

application is directly under control of the RuntimeControl; another implementation

provides a command-line interface which allows an interactive evaluation of the SUD if

desired. In line 21, the actual SUD is set up while in the following lines its system’s

context is specified which consists of the simplified bicycle model as specified in Section

6.4.3. In line 28 et seqq. a metric which reflects the customer’s acceptance criteria is set

up. This criterion is continuously applied to the running SUD for gathering information.

In line 34 et seqq. the RuntimeEnvironment is composed for defining which compo-

nents must be scheduled. In this example, the RuntimeEnvironment consists of the

SUD, its system’s context, and the DestinationReachedReport which evaluates a

customer’s acceptance criterion.

The system simulation itself is started in line 41 for a maximum duration of 180s. Thus,

this method call blocks for a maximum duration of 180s. If this hard deadline is missed,

the call returns with a return code which is not equal to APPLICATIONS_FINISHED

and thus, it describes the reason for the failure; this method call also returns immediately

if an exception occurs. The return code of this method call is only fulfilled when the

system simulation could successfully be executed within the specified time limit.

In line 44, the fulfillment of the specified metric is checked. Afterwards, the test

case is cleaned up in line 47. The last call is not mandatory because the instance of

VehicleRuntimeControl is automatically cleaned up when it gets destroyed when

leaving the current scope.

For further inspections for example in case of a failed test case, in line 31 a recording

component which is included in libcontext is created. This component is also added

to the RuntimeEnvironment. Thus, it automatically receives all sent data during an

unattended system simulation and all received Containers are stored in a data file. This

data file can be read later on using the application Monitor as mentioned in Section 7.2

for a manual step-by-step in-depth analysis.

7.3.2.2 Evaluating the System: Distance to Route Report

Besides the aforementioned implementation for validating if the vehicle has reached its

intended destination, its distance to a given or the optimal route can be monitored. There-

fore, the SystemReportingComponent named DistanceToRouteReport is

implemented which extends the reporting component mentioned before.
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Figure 7.8: Software architecture for a SystemReportingComponent to eval-

uate whether the vehicle’s distance to an optimal route is continuously less than

a given threshold. Therefore, comparable to the aforementioned component,

DistanceToRouteReport automatically receives all distributed Containers and

evaluates the current vehicle’s position and orientation to a pre-calculated given or to the

optimal route using a LaneVisitor which traverses the road network.

In Figure 7.8, the software architecture of the DistanceToRouteReport is

shown. Comparable to the aforementioned reporting component, it also derives from

SystemContextReport to receive automatically all distributed data. Moreover, it

relies on the DSL to calculate the optimal route between two given points from the road

network. Therefore, it uses a LaneVisitor which traverses the road network to find

an optimal route between the given points during the initialization phase of this reporting

component. Alternatively, it can use a user-contributed route to evaluate the vehicle’s

distance to the poly-line of that given sequence of way-points.

During a running system simulation, the DistanceToRouteReport continuously

evaluates the currently incoming vehicle’s position and orientation to calculate the vehi-

cle’s distance to the regarded route’s segment. As long as this distance is less than a given

threshold, the DistanceToRouteReport reports true after finishing the current sys-

tem simulation; however, when the vehicle’s distance is greater than the specified thresh-

old for the first time, this reporter not only returns false but also provides information
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about the vehicle’s position and orientation whenever it violates the specified boundary.

7.3.2.3 Evaluating the System in its Context: Distance to Objects Report

The both aforementioned reporting components evaluate the system’s behavior with-

out regarding its system’s context. Therefore, a further reporting component named

DistanceToObjectsReport supports the acceptance tests by evaluating the sys-

tem’s distance to any existing object in the system’s context.

Figure 7.9: The class diagram depicts the software architecture for a component which

continuously evaluates the system’s behavior within its system’s context. Therefore, the

DistanceToObjectsReport evaluates the data from the system’s context namely

Obstacle and OtherVehicleState. For both, the Euclidean distance is calculated;

moreover, for the former the polygonal shape is also evaluated to compute the distance

which is compared to a user-specified distance. The distributed data is received automati-

cally as mentioned in Section 7.3.

Alike the both already described reporting components, DistanceToObjectsRe-

port also derives from SystemReportingComponent as shown in Figure 7.9.
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Therefore, it receives automatically all distributed Containers. This data contains

all necessary information for calculating the distances which are compared with the

user-specified threshold. The first information is distributed by OtherVehicleState

which is used to describe positions of other vehicles as outlined in Section 6.4.8. Further

information is provided by Obstacle which additionally contains a polygonal descrip-

tion of the object’s shape. For all points of both objects, the Euclidean distance is calcu-

lated and compared to the user-specified threshold. Moreover, for the polygonal shape of

Obstacle the perpendicular points are computed and compared as well to consider the

distances towards any side of the object as well.

Using this reporter, the system’s behavior with stationary and dynamic elements from

its system’s context can be simply evaluated. Moreover, the quality of a sensor data

fusion module producing an abstract representation based on sensor’s raw data like a

laser scanner or a monocular camera as described in Section 6.4.6 and Section 6.4.4 can

be evaluated as well.

In the case study presented in Section 8.2.5, some of the aforementioned reporting com-

ponents are used to evaluate and ensure the quality of a software component on a example

of a real autonomous vehicle.
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8 Case Study and Evaluation

In this chapter, an example for practical use of the tools and framework described in

the previous chapters is presented. First, a benchmark for the framework Hesperia is

presented. Following, its application for an AGV is described.

8.1 Benchmark forHesperia

In the following, some benchmarks for outlining the performance of the framework

Hesperia are shown. Its real-time capabilities and communication features are of sub-

stantial interest due to the intended application in the area of real-time data processing

applications.

8.1.1 Performance of the Timing

First, the schedulability and timing in the framework Hesperia is discussed to illustrate

its real-time capabilities. As already outlined in Chapter 5, the real-time implementation

depends directly from the OS which is chosen for using Hesperia. For carrying out the

following tests, a regular Linux 2.6.27-14-generic kernel without real-time extension for

the non-real-time tests was chosen whereas a Linux 2.6.27-3-rt kernel which includes the

preempt-rt patch set [107] was chosen which allows soft-real-time capabilities [63]. In

Figure 8.1, the timing on the former Linux kernel without a real-time extension is shown.

In Figure 8.1a, a process with a specified frequency of 100Hz shall be scheduled every

10ms. Furthermore, there is no other system load. For 200 cycles, it can be seen that the

process is scheduled for about every 9.971ms with a standard deviation of 0.065ms. In

the worst case, the process is scheduled after 10.24ms violating the specified timing.

On the right hand side in Figure 8.1b, the same process is shown with the same frequency.

However, at this time the process spawns as many other threads as CPUs available causing

100% system load. Now, the scheduler of the operating system prefers this process over

others due to its required computation time. Thus, the average scheduling time is at
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Figure 8.1: Benchmark for the timing of the framework Hesperia for the Linux kernel

2.6.27-14-generic.
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Figure 8.2: Benchmark for the timing of the framework Hesperia for the Linux kernel

2.6.27-3-rt.

9.997ms with a standard deviation of 0.00498ms. Now, the worst cast schedule time is at

10.0ms.
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In Figure 8.2, the same process is executed on the same computer system now running

the Linux 2.6.27-3-rt kernel with preemption patches. These patches are available for all

major Linux distributions.

On the left hand side in Figure 8.2a, the process is running without spawning other threads;

thus, the system load is nearly at 0%. The process is scheduled every 9.9988ms on aver-

age with a standard deviation of 0.00358ms. The worst case scheduled execution was at

10.01ms.

In Figure 8.2b, the process is spawning other threads causing a system load of 100%. Now,

the scheduler prefers this process and the average scheduled execution time is at 9.9998ms.

The standard deviation is about 0.00329ms and the worst case scheduled execution was

at 10.01ms.

As a result, it can be seen that the Linux kernel with preemption patches is a good choice if

no commercial real-time operating system is available. Moreover, when using the frame-

work Hesperia, a convenient way to realize real-time applications by simply specifying

the required frequency and implementing a specified abstract method is provided; any-

thing else is handled transparently for the user-contributed application by the software

framework. However, it is obvious to obey design patterns like avoiding expensive mem-

ory allocations or locking for critical sections between different threads when developing

real-time applications [43].

8.1.2 Performance of the Communication

After discussing the schedulability and timing, the communication in the framework

Hesperia is evaluated to show that broadcasted UDP packets which are used for a Client-

Conference can be used to realize a fast and convenient way for several communicating

applications. As already mentioned in Section 5.4.1, a ClientConference is realized as a

UDP multi-cast transferring the atomic type string which itself contains the serialized

data structure Container.

8.1.2.1 Local Communication on One Computer

In the following, the atomic type string of the fixed size of 256 bytes is sent between

different applications and the duration is measured. For these tests, the communication

performance of the frameworkHesperia on a local computer is evaluated.

First, as shown in Figure 8.3, a packet of 256 bytes is sent with 1Hz from one sender

to one receiver. On the left hand side in Figure 8.3a, the executed processes are running
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(a) Benchmark for one sender sending data at

1Hz and one receiver running as user pro-

cesses on the same computer: Some packets

are delayed up to 0.6ms.
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(b) Benchmark for one sender sending data at

1Hz and one receiver running as privileged

processes on the same computer: When the

same test is carried out using a privileged

user the average duration is approximately at

0.0936ms without the aforementioned peaks.

Figure 8.3: Benchmark for one sender sending data at 1Hz and one receiver running on

one computer.

as non-privileged processes. It can be seen, that the average duration is approximately

0.11ms with some peaks at nearly 0.6ms. However, when both processes are executed as

privileged processes, these peaks seem to disappear and the average duration is around

0.0936ms. In both cases, no packets are lost.
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(a) Benchmark for one sender sending data at

100Hz and one receiver running as user pro-

cesses on the same computer.
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(b) Benchmark for one sender sending data at

100Hz and one receiver running as privileged

processes on the same computer.

Figure 8.4: Benchmark for one sender sending data at 100Hz and one receiver running on

one computer: On average the transmission duration is approximately at 0.07ms with no

significant differences at all.

The same setup is shown in Figure 8.4. On the left hand side in Figure 8.4a, the sender is
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sending at 100Hz constantly 256 bytes to one receiver. There, the average duration was

about 0.0715ms with a peak at 0.427ms. On the right hand side, both processes are run as

privileged processes. Now, the average transmission duration is at 0.075ms with a peak at

0.472ms. Thus, no significant difference can be remarked. In both cases, no packets are

lost as well.
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(a) Benchmark for two senders sending data at

1Hz and one receiver running as user pro-

cesses on the same computer: The average

duration is around 0.126ms with a worst case

duration at approximately 0.438ms.

 0

 100

 200

 300

 400

 500

 600

 700

 0  20  40  60  80  100  120

T
im

e 
[1

e-
6
s]

# Packet

Duration

(b) Benchmark for two senders sending data

at 1Hz and one receiver running as privi-

leged processes on the same computer: In this

case, the average duration is at approximately

0.076ms.

Figure 8.5: Benchmark for two senders sending data at 1Hz and one receiver running on

one computer.

In Figure 8.5, the same test using two senders which are sending at 1Hz and one receiver

is shown. On the left hand side in Figure 8.5a, two sending processes and one receiving

process running as non-privileged process are shown. On average, a UDP packet needs

nearly 0.126ms for transmission, in the worst case up to 0.438ms. On the right hand side

in Figure 8.5b, when all three process are running as privileged processes, the average

duration for transmitting a UDP packet of 256 bytes payload is for about 0.0756ms while

the maximum duration is 0.13ms. In every case, no packet got lost.

The same setup is shown in Figure 8.6 where also two sending and one receiving process

are measured. On the left hand side in Figure 8.6a, two senders which are sending at

100Hz running as non-privileged processes are shown. On average, the duration is nearly

at 0.0874ms, while the worst case duration is slightly over 0.5ms. On the right hand side,

all three processes are run as privileged processes. The performance is nearly the same

as in the previous case: The average duration for transmitting a string is 0.0788ms,

while the worst case duration is also slightly greater than 0.5ms. Like in all other cases,

no packets were lost as well.
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(a) Benchmark for two sender sending data at

100Hz and one receiver running as user pro-

cesses on the same computer.
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(b) Benchmark for two sender sending data at

100Hz and one receiver running as privileged

processes on the same computer.

Figure 8.6: Benchmark for two senders sending data at 100Hz and one receiver running

on one computer: On higher network traffic on the local network device, no significant

difference between privileged and non-privileged processes can be deduced.

Altogether, the overall results show that the use of UDP for data transmission is a reason-

able choice even at higher network loads because no packets were lost at any benchmark.

Furthermore, even on an increasing network bandwidth’s consumption, the worst case

transmission duration is around 0.5ms for only a small amount of packets. Furthermore,

the transmission duration is reduced when the processes are executed using a privileged

user account.

8.1.2.2 Communication on Two Computers

In the following, the performance of the framework Hesperia for the communication

between two computers is analyzed. Therefore, both computers were synchronized using

either Network Time Protocol (NTP) [103] or Precision Time Protocol (PTP) [84]. The

results for each protocol, which obviously depend on further running processes which

also use the network for communication, are shown below.

In Figure 8.7, two sending processes running on one computer and one receiving process

running on another computer are shown. Each process is executed as a non-privileged

process. On the left hand side in Figure 8.7a, both senders are sending at 1Hz. The

average transmission duration is approximately 0.591ms, while the worst case duration

is at 0.768ms. On the right hand side in Figure 8.7b, both senders are running at 100Hz.

In this case, the average transmission duration increases to 0.778ms, while the worst case

duration is at 4.3ms. In both cases, no packets were lost.

136



Automating Acceptance Tests on the Example of Autonomous Vehicles

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  20  40  60  80  100  120

T
im

e 
[1

e-
6
s]

# Packet

Duration

(a) Benchmark for two senders sending data at

1Hz and one receiver running as user pro-

cesses on two computers synchronized using

NTP: The average transmission duration is at

approximately 0.591ms while the worst case

transmission duration is around 0.768ms.
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(b) Benchmark for two senders sending data at

100Hz and one receiver running as privileged

processes on two computers synchronized us-

ing NTP: On a higher network bandwidth’s

consumption the average transmission dura-

tion is increasing to 0.778ms while the worst

case transmission duration is at nearly 4.3ms.

Figure 8.7: Benchmark for two senders sending data at 1Hz and 100Hz and one receiver

running on two computers.
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(a) Benchmark for two senders sending data at

1Hz and one receiver running as user pro-

cesses on two computers synchronized using

PTP: The average transmission duration is at

approximately 0.209ms while the worst case

transmission duration is at 0.429ms.
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(b) Benchmark for two senders sending data

at 100Hz and one receiver running as priv-

ileged processes on two computers synchro-

nized using PTP: On higher bandwidth’s con-

sumption the average transmission duration is

at approximately 0.112ms and the worst case

transmission duration is around 2.5ms.

Figure 8.8: Benchmark for two senders sending data at 1Hz and 100Hz and one receiver

running on two computers.

In Figure 8.8, a setup using one sender and one receiver each running on a separate com-

puter is shown. On the left hand side in Figure 8.8a, the sender is sending with 1Hz and

running as a regular non-privileged process. Here, the average transmission duration is
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for about 0.209ms, while the maximum duration is at 0.429ms. On the right hand side in

Figure 8.8b, the same setup with the sender running at 100Hz is shown. In this case, the

average duration is nearly 0.112ms, while the worst case is slightly less than 2.5ms.
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(a) Benchmark for two senders sending data at

1Hz and one receiver running as user pro-

cesses on two computers synchronized using

NTP.
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(b) Benchmark for two senders sending data at

1Hz and one receiver running as user pro-

cesses on two computers synchronized using

PTP.

Figure 8.9: Comparison between NTP and PTP: The plot on the left hand side is translated

to the bottom to allow a more intuitional comparison because the measured durations on

the left hand side have an additional offset. However, this inaccuracy is within the NTP’s

specification which is under ideal conditions at least a multiple of 1×10−6s according to

[103].

Another important remark about NTP and PTP is shown in Figure 8.9. On the left hand

side in Figure 8.9a, the communication between two computers using UDP for transporta-

tion of 256 bytes payload, which are synchronized using NTP is shown. It is very obvious

that the synchronized time is drifting and the transmission duration is increasing. In this

case for 120s the transmission duration increases from about 0.43ms to 0.51ms. On the

right hand side in Figure 8.9b, the same setup is shown using PTP is shown. In this case,

no drift is remarkable and the transmission duration is nearly constant.

Altogether, the results show that even for the communication between several computers

the UDP is a reasonable choice. However, depending on the desired use case, the time

synchronization between all participating computers is important and in time-critical en-

vironments which are limited to local networks, the PTP is a reasonable choice to ensure

only a very low drift in the independent clocks.
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8.2 Application forHesperia on an Autonomous Ground

Vehicle

The framework Hesperia was tested on an AGV at University of California, Berkeley in

summer 2009. The description of this test is presented in the following. First, the vehicle

and its model are presented in detail. Following, the test site and its modeling is described.

Finally, the development and deployment of a simple algorithm for controlling the vehicle

to locate itself on a digital map and navigate safely a route computed from this digital map

is shown.

8.2.1 Ford Escape Hybrid – ByWire XGV

The vehicle used for testing the concepts implemented in the framework Hesperia is a

2008 Ford Escape Hybrid Sports Utility Vehicle (SUV) as shown in Figure 8.10a. For

getting access to the steering wheel, acceleration, and brake system, the vehicle was mod-

ified into a so-called drive-by-wire system which allows open-loop control [157]. The

same platform was also used by team VictorTango in the 2007 DARPA Urban Challenge

and proved reliability [5].

As shown in Figure 8.10a, a stereo vision camera system and a single layer laser scanner

are mounted on the AGV’s roof. Furthermore, besides a Wireless-Local Area Network

(W-LAN) antenna, a NovAtel GPS antenna for localization is also mounted on the highest

position to avoid shadowing. In Figure 8.10b, the AGV’s trunk is shown. In the trunk,

two racks are mounted in a shock-proof manner to carry all vehicle’s computers and power

systems. The rack on the left hand side carries the TORC PowerHub system providing

6,000 watt, followed by a waveform generator for providing a synchronization signal

for the stereo camera system. Finally, the NovAtel Synchronized Position & Attitude

Navigation (SPAN) IMU HG-1700 is mounted on top the waveform generator for highly

precise localization.

The rack on the right hand side contains five computers for data processing. Four com-

puters mounted in half-2U cases and pair-wisely grouped provide an Intel Core 2 Quad

CPU each along with 4GB RAM and 160GB SATA HDD for logging purposes. A Com-

pact Flash (CF) card containing the operating system and the actual processes are used

to avoid malfunctions due to heavy movements and accelerations. The 2U server on the

rightmost side is a dual Intel Core 2 Quad with 8GB RAM and an 80GB SSD. This server

is responsible for data acquisition from the IMU like position data, vehicle’s orientation,

and velocity, and for generating the steering and acceleration commands using a given tra-
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(a) Ford Escape Hybrid – ByWire XGV’s sen-

sors: On the roof there is a stereo vision

system alongside with a single layer laser

scanner mounted for perceiving the vehi-

cle’s surroundings in front of the car.

(b) Ford Escape Hybrid – ByWire XGV’s trunk:

The incoming data is processed on several com-

puters which are mounted in the rack on the

right hand side of the trunk. On the left hand

side, an IMU for providing highly precise po-

sition data is mounted as well as a waveform

generator to provide a synchronization signal

to trigger the independent cameras of the stereo

vision system.

Figure 8.10: Overview of the Ford Escape Hybrid – ByWire XGV’s sensors and trunk.

jectory. Furthermore, this computer runs the non-reactive visualization application to be

shown both on the Liquid Crystal Display (LCD) mounted under the roof for passengers

on the vehicle’s back seats and on the small display of the car radio for the driver and the

fellow passenger.

Based on the general system architecture for sensor- and actuator-based autonomous sys-

tems as already shown in Section 2.2, Figure 8.11 depicts the specific system architec-

ture implemented in the 2008 Ford Escape Hybrid – ByWire XGV. The input message

Vehicle State is a so-called heartbeat pulse message sent by the ByWire Real Time

Controller indicating that it is operating properly. The AGV localizes itself using the

aforementioned NovAtel SPAN system providing highly precise position data with an

accuracy of ∼ ±1.8m and orientation data with an accuracy of ∼ ±0.02rad using the

message Position. Both data is sent over UDP while the former is encapsulated using

the JAUS message HEARTBEAT_PULSE [89] and broadcasted into the vehicle’s sub-net,

the latter is sent using a proprietary data structure using UDP. For avoiding additional

message routing caused by the NodeManager as required in the JAUS specification, the

XGV directly communicates with the required component bypassing the JAUS standard.

Thus, freely available implementations like the OpenJAUS package [113] cannot be used
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Figure 8.11: System architecture implemented in the 2008 Ford Escape Hybrid – By-

Wire XGV. JAUS indicates data which is encapsulated into the JAUS protocol, UDP
indicates data which is sent using a proprietary protocol, and C indicates data wrapped

into a Container data structure; therefore, the application proxy from the framework

Hesperia is used. Furthermore, the components Planner and SimpleDriver are realized as

one combined application using the framework Hesperia as well. The applications from

the support layer are described in Section 5.5, 5.6, and 7.2 and base also on the framework

Hesperia.

with the vehicle without modifications.

Beyond, a stereo vision system along with a single layer laser scanner system are used for

perceiving the vehicle’s surroundings. For the demonstration shown in this chapter, these

systems are not used for the vehicle control. Therefore, in Figure 8.11 these connections

are depicted dashed. However, the vehicle model presented in Section 8.2.3 provides all

sensor’s raw data for the developers.

Following the perception layer, the decision layer processes all acquired data from the

vehicle. Since the data itself is available in different data formats, the proxy application

receives the data and translates it to the Container data format used inHesperia. In Fig-

ure 8.11, the Container format is indicated by C. After translating the data, the planner

checks if the vehicles has reached the next available way-point from the initially planned

route. If no more way-points are available, the vehicle is stopped. The SimpleDriver

which actually contains the planning algorithm uses the current position and orientation

data to compute the next necessary steering commands to be sent to the car as described

in Section 8.2.4. Since the vehicle can only be controlled using the aforementioned JAUS
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messages, the proxy application translates the computed steering commands into JAUS-

compliant messages again.

On both layers, all received and sent messages from and to the system can simply

and non-reactively be visualized using the monitor as described earlier, since all

communication is wrapped into Containers. Furthermore, all data sent within a

ContainerConference can simply be stored for further analysis using recorder.

8.2.2 Test Site “Richmond Field Station”

The Ford Escape Hybrid – ByWire XGV was tested on the “Richmond Field Station”, a

research and testing facility located about 6mi northwest of the University of California,

Berkeley. For providing a digital map to the planning algorithm of the AGV on one hand,

and to model the system’s context on the other hand, the previously defined DSL was

used.

Figure 8.12: Model of the system’s context for Richmond Field Station projected on an

aerial image; image credit: University of California, Berkeley.

In Figure 8.12, an aerial image of the Richmond Field Station with roads of the digital

map is shown. For creating a digital map with an intuitional representation for the user,

a clearly identifiable land mark from the northbound oriented image was chosen and set

as WGS84 origin coordinate for the underlying coordinate system. For the Richmond

Field Station, the coordinate (37°54’56.16”N, 122°20’5.14”W) was chosen. Using this

reference point, 76 way-points marked as red in Figure 8.12 were recorded using a highly

142



Automating Acceptance Tests on the Example of Autonomous Vehicles

precise GPS system. These coordinates where projected into a Cartesian coordinate sys-

tem as already described in Section 4.2.3.

Grouping the recorded way-points to skeleton points of lanes, two-lanes roads forming

a loop containing an intersection were created. Furthermore, these lanes where enriched

with virtual lane markings indicating a yellow lane marking in the middle of the road

forming a double yellow lane marking. The lane marking on the road’s sides are simply

defined as white.

8.2.3 Modeling the Ford Escape Hybrid XGV

In the following, general considerations for the modeling of the AGV Ford Escape Hybrid

XGV are given to provide a reasonable model for the software development. Therefore,

both a model of the vehicle’s position and of the sensors to perceive the surroundings are

presented.

8.2.3.1 Model of the Vehicle’s Position

As already mentioned in Section 8.2.1, the vehicle’s position, orientation, velocities, and

accelerations are provided by a NovAtel GPS receiver combined with a NovAtel HG-

1700 IMU. To derive an appropriate model to simulate this data for matching the reality

by reducing its perfectly computed quality by artificial noise, the vehicle was placed on a

parking spot with a good satellite’s visibility to record the position provided by the IMU

over a long period of nearly one hour while the vehicle was not moved at all.
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(a) Absolute position reported by the IMU.
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Figure 8.13: AGV’s absolute position provided by the IMU over time and its variance.
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In Figure 8.13a, the absolute vehicle’s position is plotted. It can be easily seen that the

absolute position varies between 47.25m and 51.75m in the East direction and between

-48.00m and -42.50m in the North direction. Furthermore, the position’s variance is be-

tween 0.01m up to 1.65m for an interval of 1s.
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Figure 8.14: Clustered variances for the IMU provided positions.

After determining the IMU’s variances for the position data, this data can be clustered to

determine the frequency of every occurring variance. These clustered variances are shown

in Figure 8.14. Nearly 24% of the position data varies about 0.01m during 1s; further 24%

of the data varies up to 0.04m during 1s. Altogether, 70% is scattered up to 0.1m and 29%

of the position varies between 0.1m and 0.5m. Only two outliers greater then 1m at 1.03m

and 1.66m were recorded.

Using the data gathered from the IMU, the computed positions for the AGV in the simula-

tion can be modified using the noise described above. Thus, the data gets a better relation

to the reality. Further analysis might be carried out to model correlations between these

variances but this modeling is out of scope for this example.

8.2.3.2 Model of the Vehicle’s Sensors to Perceive its System’s Context

Although the algorithm which is described in the following in Section 8.2.4 does not rely

on information from the AGV’s system’s context except for GPS data, the model for its

sensors to perceive its surroundings as shown in Figure 8.10 is outlined. As already men-

tioned, the XGV uses a stereo vision system combined with a single layer laser scanner

to gather information from its system’s context.

To simulate these sensors, the framework Hesperia provides models in

libvehiclecontext as described in Section 6.4.5 and in Section 6.4.6. Thus,

besides the position data, sensors’ raw data for the stereo vision system as well as the
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Figure 8.15: Non-reactive visualization of the Ford Escape Hybrid – ByWire XGV’s

sensors’ model: In the upper area both raw images from the stereo vision system are

shown. Below these images, the chasing camera for the AGV which is indicated by the

white vehicle is shown. This camera is continuously following the vehicle’s movements

and thus, from this perspective, the scan line for the single layer laser scanner can be seen

in front the car.

single layer laser scanner can be computed automatically to support both the interactive

development as well as the unattended system simulation of perception algorithms. The

non-reactive visualization of the sensors for perceiving the AGV’s surroundings is shown

in Figure 8.15 using the application monitor.

8.2.3.3 Performance of the Vehicle’s Models for System Simulations

The performance of the selected AGV’s models including the position provider but even

for the providers which perceive the AGV’s surroundings depends on various factors.

First, the performance depends on the chosen number of sensors for a specific sensor

type and the internal sensor model’s complexity. For example, the computation of consec-

utive vehicle’s position data is less complex compared to the simulation of a single layer

laser scanner.

Following, the performance is limited by the complexity of the system’s context. Using

the position provider again the system context for computing the next vehicle’s position

depends only on the previous vehicle’s state if a planar surface is assumed. When us-
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ing a non-planar surface the computation is getting more and more complex apparently.

However, the sensor model for vision-based sensors including the single layer laser scan-

ner algorithm depends from the number and complexity of elements which are used in the

OpenGL 3D scene. For example, this complexity depends on the number of triangles used

to model a specific object in the scene. All these triangles including possible textures and

lighting conditions must be rendered for one computation cycle before the specific model

of the sensor can be calculated.

Furthermore, the performance also depends on the current computing platform on which

all models are calculated. As mentioned in Section 6.4.6, some computing-intense algo-

rithms are using not only the CPU but also the GPU to distribute the computation load.

Moreover, the system simulation itself can be decomposed and distributed over several

independent computing nodes as outlined in Section 6.4.2.

All aforementioned considerations must be regarded if the system simulation should be

run interactively during the development. This is due to the independently running user-

contributed application which is not under the control of the system simulation. Contrary

to these interactively running system simulations, the aforementioned considerations does

not need to be regarded in unattended system simulations for evaluating an SUD because

not only the system’s context but also the user-contributed applications are executed under

the control and supervision of the system simulation as outlined in Section 6.3. Thus, the

SUD and its system’s context are independent for the real time and work entirely on the

virtual system time. Therefore, the necessary computation time to perform one single

step ∆tsim for even computing-intense algorithms may take a long time which means

∆tsim > ∆treal. But also the opposite case when the required models for the system and

its system’s context are less complex which is expressed by ∆tsim < ∆treal can be realized

resulting in a system simulation which is running faster than in real time.

8.2.4 Velocity and Steering Control Algorithm

In the following, a simple control algorithm implemented for evaluation purposes using

the framework Hesperia is presented which was inspired by [155] but significantly mod-

ified to be used for urban environments containing sharp curves. First, some general

consideration are discussed to outline the main idea behind the velocity and steering con-

trol algorithm. Following, variants and their effects of different interpolation techniques

applied to a given set of way-points to be followed by the AGV are discussed. Finally,

results of the velocity and steering control algorithm are presented gathered from test runs

in the simulation using theHesperia framework and from test runs performed by the real
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AGV itself.

8.2.4.1 General Considerations and Design Criteria

The realized velocity and steering control algorithm is inspired by human driving. Em-

pirically observed, humans drive by trying to minimize the lateral distance of a virtual

but fixed point in front of the vehicle. This point is on the elongated vehicle’s driving

direction and thus, it is called draw-bar. This principle is the base for the steering control

algorithm.

The velocity control algorithm bases on the same model but relies on the inverted effect:

A decreasing distance for the fixed point in front of the vehicle results in an increasing ac-

celeration because the vehicle’s orientation is similar to the orientation of current route’s

segment and, thus, the vehicle can drive with a higher velocity. However, when the dis-

tance of this fixed point related to the current route’s segment is increasing, the vehicle’s

velocity must be reduced because its orientation is getting more and more dissimilar to

the segment’s orientation. This controller has the following effects: When the vehicle is

approaching a curve, it reduces its velocity and when it is leaving the curve it increases

its velocity again after passing the curve’s apex. In Figure 8.16, geometrical relations for

both control algorithms are depicted.

As shown in Figure 8.16, the vehicle is simplified to a linear bicycle model with infinite

tire stiffness [69]. In that figure, the path which the vehicle should follow is denoted by P .

The vehicle’s rotation in the world is denoted by ψ and the desired steering angle for the

front wheels is named δ. The first draw-bar is named lS and second one is named lV . Both

draw-bars has not necessarily the same length. Since it is desired that the AGV should

reduce its velocity before it enters a curve, the latter should be longer than the first draw-

bar lS as shown in the figure. Both lengths are parameters which can be parametrized and

are constant for the run-time.

As already mentioned, the idea behind the first draw-bar lS is to determine the distance

between the perpendicular point PS on the path and DS . This metric is used by the

controller to compute the necessary steering angle δ as described in Equation 8.1.

υ tan(µ) = xS ⇔
υ>0

tan(δ − (λ− ψ)) =
xS

υ

⇔ δ = (λ− ψ) + arctan(
xS

υ
). (8.1)
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Figure 8.16: Geometrical relations for the control algorithm: The control algorithm based

on two independent draw-bars. The first draw-bar called ls is used for computing the

distance xs to the planned path P , while the latter has a greater distance to the vehicle

and is called lv for computing the distance xv. The distance xs is used to steer the vehicle

depending on the distance, while the distance xv is used to adjust the vehicle’s velocity

by reciprocally proportionally evaluating its value.

The angle ψ denotes the vehicle’s rotation around the Z-axis and υ describes the vehicle’s

velocity, while λ denotes the orientation of the current path’ segment containing the per-

pendicular point relative to the world. Its difference µ describes the relative delta between

the vehicle’s orientation and the current path’ segment. To get the necessary steering an-

gle to steer the vehicle towards the path, the angle µ can be used computing its tangent

using the current draw-bar’s distance to the path. Its final implementation is shown in

Equation 8.2 where k describes the controller’s gain.

δ = (λ− ψ) + arctan(k
xS

υ
), with υ > 0. (8.2)
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While the draw-bar point DS should be minimized by the controller to steer the vehicle

towards the path P , the distance of the draw-bar point DV to its perpendicular point

PV on the path is used to control the vehicle’s velocity. Therefore, the resulting velocity

simply reciprocally proportionally depends to its distance: The greater the distance ofDV

relative to PV , the lower is the vehicle’s speed. This is evident since an increasing distance

describes an increasing curvature of the path. Thus, the vehicle lowers its velocity while

entering a curve and increases the velocity again while leaving the curve after passing

its apex. For reducing the vehicle’s velocity right before a curve, the draw-bar’s length

lV is greater than the draw-bar’s length ls for computing the steering angle. The final

implementation is shown in Equation 8.3.

v =







vmax,
vmax

‖DSPS‖
> vmax

vmin,
vmax

‖DSPS‖
< vmin

vmax

‖DSPS‖
, otherwise.

(8.3)

8.2.4.2 Computing and Optimizing a Route

The route is planned using an A∗ search in a directed graph providing Euclidean dis-

tances as edges’ weights which guarantees a resulting optimal route regarding the edges’

weights if a route exists. The directed graph is built from the stationary surroundings data

structure using a LaneVisitor. Thus, this visitor traverses the ASG and examines the

current ScenarioNode whenever it encounters a Lane. Depending on the associated

LaneModel, either the start and end point of an Arc or Clothoid are added as ver-

tices to the graph connected by a directed edge containing the Euclidean distance between

both coordinates. Moreover, if the visitor encounters a Connector, both semantically

connected nodes are either added to the graph or an additional edge is inserted into the

graph.

The graph itself is implemented using the Boost Graph Library wrapped and pro-

vided by the Hesperia framework. For generating the directed and weighted graph,

only one single method void updateEdge(const VertexData &v1, const

VertexData &v2, const EdgeData &e); is provided. Its implementation han-

dles the insert of missing nodes or the update of existing edges as already mentioned in

Section 5.3.2.5.

The resulting route consists of a list of vertices describing absolute positions in the world.

This route can be further optimized which influences directly the controller’s behavior

which is discussed in Section 8.2.4.3. The different types of optimization are related to
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the interpolation of the path segments between two points of the route. The effects of

different types of interpolations are shown in Figure 8.17.
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Figure 8.17: Effects for linear, cubic splines, and Bézier curves: While cubic splines pass

all provided nodes, Bézier curves do not due to its definition.

In that figure, six arbitrary chosen way-points are connected using linear, cubic splines,

and Bézier curves respectively which are described in detail in [8]. Obviously, linear

interpolation is the simplest possibility to connect two points pairwisely using a straight

line. Thus, actually no optimization is applied to the route.

f
(1)
i−1(1) = f

(1)
i (0) ∧ f

(2)
i−1(1) = f

(2)
i (0). (8.4)

The next applicable optimization are cubic splines drawn as a red line in the figure. Cubic

splines use a third order polynomial pairwisely applied to two knots. Cubic splines are

C1- and C2-continuous as shown in Equation 8.4.

Thus, a cubic spline shows continuous behavior in its knots. Furthermore, the cubic spline

intersects all given knots by definition as shown in Figure 8.17. Thus, the AGV would

oscillatingly drive on the path optimized using cubic splines.
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For avoiding this oscillating behavior, the route is optimized using Bézier curves instead.

Bézier curves lay inside the knots’ convex hull and thus do not necessarily continue

through more than the first and the last knot. As shown in Figure 8.17, the Bézier curve

only intersects the first and the last given way-point.

8.2.4.3 Performance in Simulation

In the following, results of the velocity and steering control algorithm for simulated test

runs running at 20Hz non-real-time are discussed. For all experiments, the velocity draw-

bar had a length of 15m while the draw-bar for controlling the steering angle had a length

of 5m. The position, orientation, velocity, and distance to the planned route for the steer-

ing draw-bar are plotted. The experiments were carried out for different velocities namely

v ≈ 1.6m
s

, v ≈ 2.3m
s

, and v ≈ 3.0m
s

.

The following Figures 8.18, 8.19, and 8.20 show the results for different given velocities.

All figures named (a) show the planned route with the red line which started in the north-

ern part of the Richmond Field Station and followed counterclockwisely the outer lane

for one round.

The solid blue line shows the driven path using linear interpolation with the distance to

the planned route plotted in the Z-axis, while the dashed gray line shows the results for

the route optimized using Bézier curves. All figures named (b) plot the distance to the

planned or optimized route for the linear interpolation and the Bézier curve respectively.
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Figure 8.18: Performance of the draw-bar controller in the simulation for a velocity of

approximately 1.6m/s.
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Figure 8.19: Performance of the draw-bar controller in the simulation for a velocity of

approximately 2.3m/s.
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Figure 8.20: Performance of the draw-bar controller in the simulation for a velocity of

approximately 3m/s.
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First of all, the proposed velocity and steering control algorithm follows the planned route

both for the linear interpolated case and the Bézier curve optimized route as well. More-

over, it can be easily seen, that the draw-bar steering control algorithm tends to minimize

the distance DSPS as expected. However, with increasing velocities, the maximum er-

ror provoked by using non-optimized routes increases from −1.86m to −2.73m. Using

Bézier curves, the maximum error increases from −0.92m to −1.01m only and thus is

significantly lower.

In Figure 8.21, the results for the velocity control algorithm are shown. The figure on

the left hand side shows the velocity profile plotted over the driven way. For the linear

interpolated route, the corrections commanded by the velocity control algorithm due to

changing distances in DV PV are nearly constant in the straight segments of the course.

This is caused by the steering control algorithm which reduces the error in DSPS towards

a straight line. Only in the curves of the track, the velocity is reduced significantly until the

velocity draw-bar passes the apex; then, the velocity is increased again, which is shown in

the plot on the right hand side showing the vehicle’s velocity relative to the planned route

shown as red line.
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Figure 8.21: Performance of the draw-bar velocity controller in the simulation: The ve-

locity of the vehicle is adjusted often due to a continuously changing distance xv for the

velocity draw-bar.
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Contrary, for the Bézier curve optimized route, the steering control algorithm is continu-

ously correcting the draw-bar’s distanceDSPS due to the curved course. The same applies

for the velocity control algorithm which is continuously correcting the velocity depending

on the distance PVDV of its draw-bar. However, the average velocity for the Bézier curve

optimized route is vBézieravg
= 2.542m

s
, while for the linear interpolated route, the average

velocity is only vlinearavg
= 2.328m

s
. The minimum velocities neglecting the initial ones

representing the first acceleration are vBéziermin
= 1.684m

s
and vlinearmin

= 1.702m
s

, respec-

tively; the maximum velocities are vBéziermax
= 3.614m

s
and vlinearmax

= 2.67m
s

. Thus,

with the proposed algorithm and the Bézier optimization, an approximately 9% higher

average velocity results for the AGV; moreover, the maximum velocity is also nearly 35%

higher than in the non-optimized variant.

Altogether, the aforementioned plots were derived interactively using the software frame-

workHesperia. Thus, the quality of the integrated velocity and steering control algorithm

could be evaluated interactively to support its development and for optimization. In the

following, this algorithm was applied to the real vehicle.

8.2.4.4 Performance in Reality

The aforementioned velocity and steering control algorithm was evaluated on the AGV

Ford Escape Hybrid XGV with a slightly higher velocity at v = 4.1m
s

, with a length of 7m

for the steering draw-bar and a velocity’s draw-bar’s length of 15m as in the simulation.

Its performance running at 20Hz non-real-time is shown in Figure 8.22.
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Figure 8.22: Performance of the velocity and steering control algorithm in reality.
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In the figure on the left hand side, the red line shows the way-points of the planned route

connected by straight lines, while the black line shows the optimized route using a Bézier

curve. The dashed blue line shows the position of the AGV itself relative to the planned

and optimized route which follows the initially planned and optimized route.

As shown in Figure 8.22b, it can be seen that the AGV follows the optimized route with

a minimum error of −0.001m, an average error of 0.3m, but with a maximum error of

1.31m to the left hand side and a maximum error of −3.27m to the right hand side of

the route optimized using Bézier curves. Despite the maximum errors seem to be that

high, the AGV follows pretty well the initially planned route as shown in Figure 8.22b by

the blue curve. Altogether, the algorithm itself could be applied successfully to the real

vehicle using the software framework Hesperia. It can be further optimized by adjusting

the vehicle’s model which is used in the simulation to get a more precise behavior for the

vehicle in the simulation compared to the reality; however, these optimizations are not in

the scope for this thesis whereas the actual unattended system simulation and evaluation

are of substantial interest. Therefore, for preserving the algorithm’s quality without test-

ing it over and over again its evaluation shall be automated as already outlined in Section

7.3. This final step is described in the following.

8.2.5 Automating Test Runs

For assuring the algorithm’s quality, the concept of an automatic and unattended test drive

shall be applied. Therefore, several reporters are necessary to define which are running

unattendedly, continuously, and automatic during a system simulation for continuously

evaluating the SUD. For the example, the SUD is the aforementioned steering and velocity

control algorithm and its system’s context is represented by the simplified bicycle model

as mentioned in Section 6.4.3.

The first reporter is DestinationReachedReport. The main goal of the

class is to evaluate whether the vehicle has reached an arbitrarily defined destina-

tion point. Therefore, this class uses the visitor FindNodeByPointIDVisitor

to traverse the ASG describing the stationary surroundings to retrieve the node

containing all data about the given destination identifier. Using this node,

its coordinates are used to compute its distance to the current EgoState

provided by ControlledContainerConferenceFactory using the

SystemContextComponent’s ContainerListener. If the computed dis-

tance is less than a given and constant threshold specified at construction of the

DestinationReachedReport’s instance, this reporter returns finally true when
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its method bool hasReachedDestinationWaypoint() const; is called;

otherwise, false will be returned.

The next reporter is used to evaluate if simpledriver not only chooses but also drives

along the shortest route to given destination point from a given start point. Therefore, an

instance of the class ChoosingShortestRouteReport uses the ASG to retrieve all

Layers, Roads, Lanes, and LaneModels to construct a graph representing a digital

map. Using this map and the start and destination way-points, the shortest route is deter-

mined using the A*-algorithm resulting in a list of coordinates retrieved from the digital

map. Comparable to the previous reporter, an instance of this class continuously compares

the current valid EgoState with the list of coordinates representing the order in which

the route must be driven. Every time the coordinate at the head of the list is successfully

passed by computing a distance which is less than a given and constant threshold, it is re-

moved from the list and its successor is used for further evaluations. Finally, this reporter

would return true if all coordinates were passed in the correct order with a distance less

than the specified threshold.

Following, the next reporter called DistanceToRouteReport is used to determine

continuously the distance of the vehicle to the chosen route. Therefore, comparable to the

previous reporter, this reporter computes the route between a given start and destination

way-point. Furthermore, it uses two consecutive coordinates from which the second one

must be in front of the vehicle to compute a straight line. Using the current position

provided by EgoState which derives from Position describing any point-shaped

object with a position, orientation, velocity, and acceleration, its perpendicular to this

straight line is computed. As long as the distance between the vehicle’s position and its

perpendicular with respect to the route is less than a given and constant threshold, the

reporter would finally return true indicating that the vehicle’s distance was alright at any

time during the simulation of the system’s context.

As already mentioned in Section 6.3, these reporters are simply registered at the

RuntimeEnvironment which contains all instances to be scheduled and executed dur-

ing a simulation run. Since all reporters return a Boolean result in their simplest case, the

concept of RuntimeControl and RuntimeEnvironment enabling unattended sim-

ulation runs combined with the concept of the aforementioned reporters can be easily used

with the well-known unit test environments like CxxTest [156]. Moreover, these unit tests

and the entire software build process were set up for an automated software build using

a continuous integration system like CruiseControl [38]. Therefore, every modification

made to the software, and especially to the source of simpledriver, was evaluated to

the test cases specifying virtualized test runs.

160



Automating Acceptance Tests on the Example of Autonomous Vehicles

8.2.5.1 Conclusion

According to proposed methodology in Chapter 3, an algorithm which processes continu-

ous input data for a sensor- and actuator-based autonomous system was specified, devel-

oped, and applied to its real hardware environment. Furthermore, for preserving its quality

for further modifications, extensions, or optimizations the algorithm was embedded into

automated system simulations without any modifications by using the concepts provided

by the frameworkHesperia. Because these system simulations are conceptually similar to

unit tests, they could be automated using recent continuous integration systems. However,

due to the fact that the evaluated algorithm requires complex and especially continuous

input data from a complex system’s context which are generated from the specified DSL

as outlined in Section 4.4.

However, considering instable position information provided by the IMU as well as for

velocities which are higher than the evaluated v ≈ 4.1m
s

, more information from the

surroundings like lane markings or road boundaries like curbs should be used to safely

realize velocities necessary for urban environments. Though, this is out of scope for this

thesis.

8.3 Further Applications of the FrameworkHesperia

In the following, the applicability of the framework Hesperia as well as some tools re-

alized using the framework are outlined for the development of systems consisting of

sensors and actuators.

8.3.1 Sensor Data Collection

One of the most commonly used tasks during the development of systems using sensors

for perceiving their surroundings is sensor data collection using all mounted sensors. This

task can be supported easily by defining a data structure which can be serialized using a

Container and which describes the sensor data. Additionally, a component must be

provided which is continuously reading the sensor’s raw data and filling the data structure.

Depending on the amount and frequency of the sensor’s raw data, the data can be written

directly to disk or broadcasted into a ClientConference to be recorded by recorder.

For later analysis, this data can be replayed easily using monitor to inspect the data

visually or for further processing using player. For the former, a device-independent

data visualization as described in Section 5.4.5 must be provided which can be done
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easily since most sensors either provide points or contour data as raw data; for cameras,

SharedImages can be directly used. Using the tools mentioned in Section 5.6, the data

can be replayed either continuously or stepwisely.

Since synchronous data is inherently important for this task, all used computers must be

synchronized before recording the data to get correct timestamps for the captured data.

Since the framework Hesperia serves only as communication framework for this task

using the internal computer’s clock for time stamping the data, time synchronization must

be setup before collecting data. For synchronizing computers using software solutions,

NTP or PTP as already mentioned in Section 8.1.2.2 are available for example.

8.3.2 Virtual Sensor Data Collection

Comparable to the sensor data collection, the system consisting of different sensors and

actuators can be virtualized as described in Section 8.2.3. Providing the customer’s scenar-

ios formally specified using the DSL described in Section 4.4.1, a virtual system context

can be generated wherein the system to be developed can be freely placed. Using com-

ponents from the system simulation as outlined in Chapter 6 for generating the required

sensor’s raw data, the same tools as mentioned before can be used to record and replay

the captured data for further inspection or processing.

Depending on the use case, time synchronization can be necessary. If the virtual sensor

data collection is made interactively or while using several independent computers, all

computers involved must be synchronized to use the same valid system time as already

mentioned in Section 8.1.2.2. Otherwise, if the data collection is purely virtually made

using unattended test runs for example, the communication as well as the time for the

running system is controlled entirely by libcontext. Thus, the data collection itself is

independent from the real time.

8.3.3 Application-Dependent Additive Sensor Data Generation

Having previously captured system’s data, this data can be easily enriched by additional

sensor’s raw data to generate a set of different data collections providing different subsets

of available sensors. Therefore, the previously recorded data is replayed using player

while additional sensor’s raw data is generated using e.g. a virtual camera or a single

layer laser scanner. The resulting data is recorded again using recorder for producing

an enriched data collection. For example, this feature is relevant for evaluating different

sensor’s mounting positions or sensor variants while using the same test drive.
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8.3.4 Evaluation Runs

In the following, the applicability of the framework Hesperia and the techniques devel-

oped and described before for different use cases of evaluations for the case of automotive

software engineering are shown.

8.3.4.1 Situational Evaluations

The most obvious use case are situational evaluations. Using the framework Hesperia,

different situational evaluations for the traffic can be evaluated. The evaluation can be

made on one hand purely virtual in the simulation for the system’s context at different

levels of details providing both low-level sensor’s raw data and high-level data structures

using an abstract description of the surroundings. Moreover, on the other hand, the eval-

uation can be made risklessly while saving valuable resources using virtual sensor’s raw

data while running applications realized with the framework Hesperia on the real sensor-

and actuator-based autonomous system in reality. Thus, complex or even system context’s

risky situations can be evaluated repeatedly with identical conditions.

8.3.4.2 Alternate Sensor Configurations

Comparable to the aforementioned evaluation, identically repeatable situations can be

evaluated for different mounting positions for one or several sensors. Furthermore, dif-

ferent types or amounts of sensors can be evaluated to explore the best sensor setup for

fulfilling the customer’s requirements for the SUD’s behavior in its intended system’s

context.

8.3.4.3 Sensor- and Actuator-based Autonomous System in the Loop

Completing these evaluation runs regarding different but identically repeatable system

context situations, planning or control algorithms can be evaluated safely on a real vehicle

at different stages. On one hand, real sensor data can be used for deriving decisions to be

realized by the system’s actuators. But instead of using the real actuators, the system is

modified accordingly by an operator. On the other hand, virtual sensor’s raw data can be

provided for the algorithms for evaluating the system’s real actuators.
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8.3.5 Illustrating a Sensor- and Actuator-based Autonomous

System’s Performance

Another non unusual task is to illustrate the autonomous system’s performance for doc-

umentation or presentation tasks. This task can be easily supported by the framework

Hesperia using the concept of device-independent data visualization. Since the same con-

cept is also used for realizing the non-reactive data visualization as described in Section

7.2, it is simply reused by rec2video to implement a tool for rendering a sequence of

images from a given autonomous system’s recorded data. These images can be rendered

into a video file with a desired quality.
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9 Related Work

In this chapter, related work for this thesis with a focus on currently available frameworks

for developing distributed component-based embedded software is presented. Then, de-

velopment and test environments especially for automotive software are outlined. For

both aspects, the supplied documentation for a specific solution was mainly used.

9.1 Frameworks for Distributed Component-Based

Embedded Automotive Software

In the following section, a brief selection of available programming frameworks for dis-

tributed component-based embedded software is presented. The frameworks are evaluated

regarding the following aspects:

• Compliance to standards. Each framework should rely on standards for use on

different hardware or different operating systems.

• Provision of usage patterns. Each framework should provide so-called “best-

practice” usage patterns to enforce a similar component design on source code level.

Furthermore, running applications should be decoupled or only loosely coupled to

avoid a priori knowledge about communication dependencies.

• Support for non-reactive communication inspection. Each framework should of-

fer possibilities to inspect component communication for on-line monitoring of the

running system or offline playback for previously recorded data to support the de-

veloper’s work and to realize system evaluations.

9.1.1 Elektrobit Automotive GmbH: Automotive Data and Time

Triggered Framework

Elektrobit Automotive GmbH provides the Automotive Data and Time Triggered Frame-

work (ADTF). This framework can be used to create applications consisting of software
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components which act as filters which operate on incoming time-stamped data streams to

produce output streams. Hereby, every filter defines a set of typed input- and output pins.

Every input pin can read data from one specific data type called IMediaSample iden-

tified by a defined MediaType and its MediaSubType. For example, let the former

describe a video type, then the subtype denotes whether it contains compressed or uncom-

pressed data. For transmitting data, a filter creates the filter-specific subclass derived from

IMediaSample and serializes the data.

For convenience, a Graphical User Interface (GUI) supports the configuration of all de-

sired filter components. Connected input- and output-pins from several filter components

represent a directed graph called filtergraph. All filters can be loaded at run-time using

a plug-in concept realized by the ADTF run-time kernel. The run-time kernel itself is

responsible for the actual execution and the scheduling of a given filtergraph. Therefore,

it manages the filter’s state machine consisting of Init, Start for starting the stream

processing, Stop for stopping the data processing, and Shutdown. The entire design of

the ADTF is similar to Microsoft Component Object Model (COM), and its filter chain

concept is inspired by Microsoft DirectShow.

The ADTF itself can be run on x86 hardware and can be used with Microsoft Win-

dows, Ubuntu 7.04, and openSUSE 10.3. The framework provides access to different

data sources: CAN, Flexray, Media Oriented Systems Transport (MOST), and Local In-

terconnect Network (LIN) using hardware provided by third party suppliers, TCP, UDP,

cameras using either Microsoft DirectShow, BlueFox, or Video4Linux, and audio streams

[46, 47, 132].

The main communication concept of the ADTF bases on unformatted data transfer for se-

rialized data structures between components of a filtergraph. Thus, the IMediaSample

is the generic type which is used to realize data exchange between components of the fil-

tergraph. Besides, the ADTF provides meta-information for input data which is read from

the supported hardware like CAN or cameras. However, no further data structures which

support for example the description of the system’s context on an abstract level which is

necessary for intelligent algorithms to evaluate an SUD’s system’s context are provided.

Obviously, this is not the intended scope of the ADTF because it provides an application-

independent approach and therefore, a generic data exchange is provided which must be

adapted for a specific use case.

Due to the explicit definition of synchronized streaming connections between several soft-

ware components using the specified input- and output-pins, a non-reactive communica-

tion inspection is not possible because the inspecting component itself is directly part of

the resulting application. Furthermore, the inspected preceding components take directly
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notice from the inspecting component. Non-reactive monitoring about the exchanged

data is only provided for gathering statistical information about the throughput of sent

IMediaSample for example.

9.1.2 AUTOSAR

The AUTOSAR specification is intended to define a standard for software and system ar-

chitecture for vehicles covering not only technical implementations but also the software

and system development process in general to tackle the increasing number of software-

intense ECUs. AUTOSAR consists of a multi-layer architecture, whose lowermost layer

abstracts from the micro-controllers, whereas the second layer abstracts an entire ECU.

On top of the ECU abstraction layer, a services layer provides state management for

the ECU itself. Finally, the Run-time-Environment (RTE) integrates all aforementioned

layers and provides rudimentary communication. Therefore, AUTOSAR supports syn-

chronous and thus blocking 1:1 client/server communication as well as anonymous and

asynchronous 1:n sender-receiver communication.

Furthermore, it realizes a so-called Virtual Functional Bus (VFB) concept abstracting all

communication interconnections between running software components using the RTE.

The main goal is to allow software and system development for automotive software com-

ponents regardless to the final implementation [3, 51, 91].

Since the main focus of AUTOSAR is on the software and system development process

for ECUs in general, it does not provide special support for sensor- and actuator-based au-

tonomous systems at all or for their development. Thus, AUTOSAR could be used as rudi-

mentary communication and abstraction layer, however, experiences using AUTOSAR for

systems based on sensors which produce large amounts of raw data are missing.

9.1.3 OpenJAUS

OpenJAUS is an open source implementation of the Joint Architecture for Unmanned

Systems (JAUS) specification initiated by Defense Advanced Research Projects Agency

(DARPA) [89]. The main goal behind JAUS is to create autonomous systems for air,

ground, water, and subsurface consisting of components which themselves are provided

by different third party suppliers. Thus, this goal is comparable to the one of AUTOSAR.

A system designed and realized following the JAUS specification consists of sev-

eral independent subsystems called nodes and controlled by a NodeManager. The
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NodeManager is responsible for managing a node, providing information about avail-

able services on a specific node and for routing messages between different subsystems.

Every node can run several different components which either acquire data from sensors,

control actuators, or process data. From a specific component, several instances can be

available at run time. Therefore, every instance must have a system-wide unique JAUS

software address consisting of the subsystem identifier, the node identifier, the component

identifier, and finally the instance identifier.

The JAUS software addresses are used by the NodeManager to route incoming and

outgoing JAUSMessages between running instances. Messages are sent either upon

an instance’s specific request or periodically which is called a service connection. The

JAUS specification itself does not specify the media to be used for communication. Thus,

OpenJAUS currently uses UDP for its communication. Furthermore, the JAUS specifica-

tion defines a set of messages both to query information about a running system based

on JAUS and to control autonomous systems in general. In its most recent version, JAUS

provides more than 150 messages ranging from information about the current velocity of

an autonomous system to steering commands for controlling a running system.

Besides the OpenJAUS library, the JAUS Toolkit can be used as an extension for Na-

tional Instruments LabVIEW [158]. This extension allows design and development of

JAUS-compliant applications by easily dragging and dropping graphical elements wrap-

ping JAUS messages. Thus, the entrance in the development of JAUS-compliant applica-

tions is simplified.

Despite its proven applicability in the 2007 DARPA Urban Challenge [5] and its standard-

ization by Society of Automotive Engineers (SAE), the main problem of JAUS is its main

goal at the same time. Enforcing compatibility with several independent third party sup-

pliers means to rely on a formally defined and fixed message set. Extensions to this set

are only possible by defining new messages with new identifiers duplicating the message

to be refined or to define new messages unknown to other JAUS-compliant systems per

definition. However, compared to the approach presented in Section 5.4.3 which provides

a DSL to describe and maintain data structures in the software framework Hesperia, the

messages used by JAUS must be maintained and extended manually.

Furthermore, due to its goal providing a library to be used with C and C++, the implemen-

tation provided by OpenJAUS does not use modern object-oriented concepts but realizes

all messages using only C-style structs repeating identical code for every message. This

limitation can be avoided using an alternative implementation of the JAUS specification

provided by [163]. However, the concept of messages which are centrally routed by a

NodeManager per node requires that messages which should be sent to instances run-

168



Automating Acceptance Tests on the Example of Autonomous Vehicles

ning on another node must be sent to the local running NodeManager first which sends

the message to the remote NodeManager. The remotely running NodeManager fi-

nally delivers the message to the required component’s instance. Thus, additional latency

is caused using this concept.

9.1.4 Orca/Hydro

Orca/Hydro is an open source framework for realizing component-based software devel-

opment for robotics supporting C++ and Java which provides some algorithms for de-

veloping experimental robotics platforms. Orca itself relies on Internet Communications

Engine (ICE), a framework for distributed communication for today’s major program-

ming languages [80]. ICE realizes optionally compressible communication using TCP

and UDP and provides Specification Language ICE (SLICE) to specify component’s in-

terfaces. Furthermore, Orca uses ICE’s IceGrid Registry to share service names

among independent processes, IceBox for realizing the component’s state machine, and

IceStorm to broadcast published messages between several subscribers.

Orca provides a simplified API to its underlying ICE communication framework. This

wrapper API allows the deployment of a user developed component either as a stand-

alone application or as part of the aforementioned IceBox. Orca can be used with Linux,

experimentally with Microsoft Windows, and with QNX.

Hydro offers drivers for reading data from a camera using OpenCV [25], a Global Po-

sitioning System (GPS) device or a single layer laser scanner. Furthermore, some al-

gorithms for deriving disparity maps from stereo vision images as well as simple path

planning algorithms are provided. Furthermore, a simple interface to the experimental

robotics development suite Player/Stage/Gazebo as described in Section 9.2.7 is provided.

Orca/Hydro was experimentally applied to an autonomous vehicle by a team in the 2007

DARPA Urban Challenge [100].

As directly stated by its design goals, Orca itself does not provide any architectural usage

patterns besides the ones wrapped from ICE itself. Thus, along with Hydro, a similar

technical approach to the filtergraph from the ADTF is provided combining components

from both packages. However, ICE causes a similar additional latency for routing at run-

time like the NodeManager used by OpenJAUS.
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9.1.5 Evaluation of the Frameworks for Distributed

Component-Based Embedded Automotive Software

In Figure 9.1, a qualitative evaluation of the aforementioned frameworks is provided. In

this table the last three columns reflect one of the criteria mentioned above: Compliance

to standards, Provision of usage patterns, and Support for non-reactive communication

inspection. Every framework was qualitatively evaluated using the scale high, medium,

and low which is denoted by the corresponding amount of black squares.

Framework Compliance to

standards

Provision of usage

patterns

Support for non-

reactive communi-

cation inspection

Automotive Data

and Time Trig-

gered Framework

��� ��� ��

AUTOSAR ��� �� �

OpenJAUS �� �� �

Orca/Hydro � �� �

Figure 9.1: Qualitative evaluation of the frameworks for distributed component-based

embedded automotive software: Automotive Data and Time Triggered Framework, AU-

TOSAR, OpenJAUS, and Orca/Hydro.

A classification as high reflects that the considered framework fulfills to a large extent

the given requirement; medium describes that only some aspects of a given criterion are

fulfilled, while low means that the framework does not fulfill or only limitedly fulfills a

requirement. Further information about every framework is provided within the respective

section.

9.1.6 Other Robotics and Communication Frameworks

Besides the previously described frameworks which focus either directly on automotive

software engineering or which have been applied to autonomous vehicles, several other

tool-kits and frameworks addressing different aspects on robotics are available. Some of

them are outlined briefly in the following.

A framework for realizing real-time communication using different communication pat-

terns is Middleware for Robotic and Process Control Applications (MiRPA). The main

focus of MiRPA is on real-time communication for distributed embedded software. Thus,

it provides synchronous and asynchronous client/server communication as well as syn-

chronous publisher/subscriber communication [53].
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Another framework is Carnegie Mellon Robot Navigation Toolkit (CARMEN) written in

C with Java support. This toolkit is intended to support the development of experimental

robotics platforms running under Linux and consisting of GPS, sonar devices, infrared

devices, and single layer laser scanner devices [34]. It is similar to Player/Stage/Gazebo

as described in Section 9.2.7.

Aiming to provide a meta-operating system for any robotics platform, Willow Garage

provides Robot Operating System (ROS) [176]. In general, ROS provides communica-

tion facilities, message sets, and data storage for graph-like, distributed processing nodes

comparable to the ADTF for experimental robotics platforms. For supporting a wide

range of robotics platforms, its strength is the abstraction from concrete sensors and actu-

ators. This enables the reuse of algorithms for perceiving the robot’s surroundings or for

planning and motion control.

In [95], a communication framework is presented which implements a modified subset

of the JAUS specification. The main focus is on optimizing the communication within

a node using Inter-Process Communication (IPC), while the inter-node communication

is realized using TCP. Thus, on one hand the communication inside a node could be

improved and monitored using a watchdog supervising running processes. On the other

hand however, this communication framework is neither compatible to OpenJAUS nor to

the JAUS specification.

Common Object Requesting Broker Architecture (CORBA) is a specification for devel-

oping distributed heterogeneous applications. Using its Interface Definition Language

(IDL) for specifying formally data structures and method signatures and an Object Re-

quest Broker (ORB), general purpose programming languages like C++ or Java can use

the generated interface definitions to call remotely available objects. An open source real-

time-capable implementation of CORBA is available by The ACE ORB [133]. Limited to

Microsoft Windows only, Microsoft COM is comparable to CORBA [121].

Another approach for communication between distributed components is provided by

[101]. This library, realized in C, can be used to generate concrete transmittable data

structures using UDP multi-cast for C, Java, and Python using a data definition language.

Although, this library originates from the team MIT’s contribution to the 2007 DARPA

Urban Challenge and thus proved its applicability for automotive software, no ready-to-

use data structures for the context of autonomous ground vehicles are provided; contrary

to the data definition language provided with Hesperia as described in Section 5.4.3, the

data definition language of that library cannot be used to describe inheritable data. Fur-

thermore, this framework transmits data using named channels wrapped around UDP

multi-cast for one specific data type instead of typed messages. Thus, the sender and re-
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ceiver must ensure to send only data from one specific type over one named channel to

avoid malfunctions at the receiver.

In [48], some rudimentary data structures for easing inter-component communication are

provided instead of a communication framework. Amongst others, data structures for

describing the time, position, and orientation are provided. Furthermore, basic operations

on these data structures like rotations or coordinate conversions are available.

Compared to the data description language as presented in Section 5.4.3, some similar

frameworks are available. Google is using their own implementation called Protocol

Buffers [72]. This toolkit provides a high-level language to describe serializable data.

However, to avoid problems caused by evolving data structures, the developer must not

change the so-called tag numbers for an attribute or add further required fields. The ap-

proach presented in this thesis provides a transparent concept to the user to avoid any

misuse. Another similar approach is provided by bdec [13]. This tool requires a user-

supplied XML specification from which a specific decoder for binary data is generated

automatically. Contrary to the approach outlined here, that tool cannot generate encoders;

moreover, using XML for language specification results in a less compact description.

Additionally, the data description language as outlined in this thesis is not only applica-

ble and usable with the software framework Hesperia. Instead, due to the concept of

modular decorators which traverse the ASG to generate desired language-dependent data

structures, these decorators can simply be extended to use this language in other contexts.

9.2 Software Development and System Testing

In the following section, a selection of currently available development environments for

automotive software systems is presented. These systems are evaluated for the following

aspects:

• Supporting a virtual development process. For reducing dependencies on real hard-

ware on one hand and to provide identical development environments for all devel-

opers on the other hand, the development environment should virtualize the system

to be developed including all of its necessary components like sensors and actuators.

Additionally, the context of the system must be available for every developer to test

the system’s reactions on stimuli from the system’s context.

• Supporting the integrated development of low-level and high-level algorithms. Due

to increasing complexity in embedded systems caused by integrated low-level al-

gorithms for control and high-level algorithms for perceiving and assessing the
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system’s context which use complex data structures, the development environment

should support the realization of both kinds of algorithms.

• Integration of the development and testing environment. Supporting the aforemen-

tioned integrated development of low-level and high-level algorithms in a homo-

geneous manner, the testing and development environment should be integrated

allowing both tests of single parts of the system under development and tests of the

entire system without the need for different tools with different interfaces.

9.2.1 Driving Simulator at Deutsches Zentrum für Luft und

Raumfahrt (DLR)

The Deutsches Zentrum für Luft und Raumfahrt (DLR) operates a hexapod driving simu-

lator allowing to test driver assistance systems and their impact on the driver. Therefore,

a real car can be mounted inside a cabin which itself generates the movements and ac-

celerations depending on the driver’s input. The vehicle’s surroundings is projected 270°

in front of the car allowing a realistic presentation. Thus, this driving simulator can be

classified as Driver-in-the-Loop (DiL) simulation.

Contrary to the approach presented in this thesis, the system’s focus is on preparing real

vehicle test drives for driver assistance system in late stages of the development process.

Therefore, it is rather inapplicable for early stages in a system development process de-

manding a virtualized interactive and unattended test environment.

9.2.2 Framework for Simulation of Surrounding Vehicles in Driving

Simulators

In [112], a framework for generating realistic traffic on rural roads and highways is pre-

sented. The framework itself consists of a microscopic simulation for all objects around

the own vehicle where a precise simulation is necessary, and a so-called mesoscopic sim-

ulation for vehicles in a greater distance to the own vehicle. Thus, a realistic behavior of

vehicles around the own one can be achieved including following another car, changing

lanes, or overtaking slowly moving vehicles.

The main focus of the framework is on realistic generation of traffic flows to be integrated

in existing driving simulators. Compared to the approach described in this thesis, that

framework itself is not applicable for the virtual development of sensor-based algorithms

for sensor- and actuator-based autonomous systems.
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9.2.3 The Iowa Driving Simulator

A similar system like the hexapod driving simulator at DLR is the Iowa Driving Simulator

(IDS). The IDS is a scenario-based driving simulator for ground-based vehicles developed

at the Center for Computer Aided Design at University of Iowa [37, 148]. Its focus is the

simulation of urban and suburban environments as well as highway scenarios. Further-

more, for supporting military research, battlefield simulation is provided. The main focus

of the IDS are different, complex, and potentially dangerous traffic situations and their

impact on drivers. Thus, the IDS can be classified as DiL- and HiL-simulation as well.

The IDS consists of a three layer architecture. The first layer provides visual, auditive,

and haptic feedback for the current traffic situation for the driver using a hydraulic motion

platform. Using this platform, different passenger cabins can be mounted. The surround-

ings are visualized using a four channel projection system covering a 190° field of view

in front of the vehicle, and a 60° field of view in the rear of the vehicle. Realistic sounds

as well as haptic feedback in the steering wheel and the braking system are generated to

suggest a realistic appearance to the driver.

The second layer computes realistic driving behavior of the own vehicle using non-linear

differential equations for a composite rigid body model. Thus, a realistic motion of the

own car can be achieved. The third layer updates the environment based on the own

vehicle’s motions. Besides stationary elements like roads including curbs and traffic signs,

the user can specify up to 40 dynamic objects like other vehicles or bicyclists which follow

the specified traffic rules autonomously.

Technically, IDS uses several independent databases providing a specific subset of the

entire simulation, which are connected using a real-time capable communication. All

databases reflect the layer they provide data for: One database contains only visual objects

for representation, another database provides precise information about the road network.

The last database provides information about the scenario itself.

To define behaviors for dynamic elements, IDS uses Hierarchical Concurrent State Ma-

chines (HCSM) for providing modular behavioral elements to be combined for realizing

a complex behavior like passing an object. HCSMs enable parallel execution of indepen-

dent processes like observing distances and steering the vehicle for a passing maneuver.

Furthermore, for creating realistic situations, several virtual elements like directors, bea-

cons, and triggers, which can be associated to surroundings’ elements to invoke special

behaviors or to control other objects like a traffic light are available [36].

Contrary to the approach outlined in this thesis, the main focus of IDS is to support the

research of the driver itself by ensuring repeatable traffic situations. Therefore, a sophisti-
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cated visualization environment combined with actuators realizing a haptic perception for

the test persons was developed. For supporting the development of autonomous ground

vehicles, the IDS is rather inapplicable due to missing interfaces for providing traffic-

dependent sensor raw data. Furthermore, a combination with an unattended continuous

integration build system seems to be inappropriate. Moreover, the use as a dedicated in-

teractive simulation tool which supports the developer’s daily work is impossible on the

other hand.

9.2.4 IPG Automotive GmbH: CarMaker

The software suite IPG CarMaker from IPG Automotive GmbH is a simulation environ-

ment based on MATLAB/Simulink for supporting the development of control systems

for automotive applications ranging from control loops using simple vehicle models up

to the limit ranges of driving dynamics. Due to the possibility to use real automotive

components integrated in the simulation during development besides the aforementioned

software controllers, this suite can be classified as HiL- and SiL-system [86].

The simulation suite IPG CarMaker consists of two components, namely “Virtual Vehi-

cle Environment” and the simulation control application. The former component consists

of the parts IPGCar describing the virtual car, IPGRoad describing a three-dimensional

model of the road, IPGDriver which realizes different driver profiles, and IPGTraffic for

simulating surroundings’ dynamic elements. The latter component can be used to setup

and control the simulation process itself by setting parameters for all models. Further-

more, the execution of simulation runs can be automated and exported as video files for

further analysis.

Comparable to the IDS, IPGCar uses a three-dimensional, non-linear, composite rigid

body system to compute the data for driving dynamics of a vehicle allowing the mapping

of a real vehicle into the simulation. IPGDriver can be used to model the driver itself pro-

ducing input values for control algorithms. Hereby, different situation-dependent driving

profiles realizing defensive or aggressive driving can be realized.

The component IPGTraffic provides different elements for designing traffic situations in-

cluding stationary elements like traffic signs or parked vehicles, or dynamic elements like

cars or pedestrians. Using a graphical tool, these elements can be composed for a sce-

nario setting desired parameters like velocities, timings, or event-based maneuvers. Com-

parable to the aforementioned trigger concept for IDS, IPGTraffic realizes event-based

maneuvers for dynamic elements to ensure reproducibility.

IPG CarMaker seems to support the development of embedded control algorithms and
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also driver assistance systems well by providing a tight coupling to MATLAB/Simulink,

however, contrary to the approach presented in this thesis, the combined development

of high-level algorithms for deriving driving decisions using complex and event-based

data structures, and low-level algorithms implementing feature detection on sensor’s raw

data is less possible. Furthermore, for generating sensor’s raw data, every surroundings’

element must be modeled in MATLAB/Simulink or proprietary available in the IPG Car-

Maker environment. Furthermore, properties like reflectivity or its bounding shape for

any detectable object in the scene must specified explicitly. Thus, freely positionable

stationary or dynamic elements created by popular 3D modeling tools to setup complex

situations seems to be less supported only [85].

9.2.5 Microsoft Corporation: Robotics Developer Studio

The Robotics Developer Studio provided by Microsoft is a development environment

to support the development of experimental robotics platforms. The product features a

Visual Programming Language (VPL), Visual Simulation Environment (VSE) based on

NVidia PhysX to provide realistic motion, and realizes the developed components in the

sense of software services. Furthermore, a scenario editor is provided to ease the creation

of robotics environments [87].

Despite the contribution to the 2007 DARPA Urban Challenge from the Princeton Uni-

versity which was realized using the Microsoft Robotics Developer Studio, their simula-

tion component was self-implemented without using the VSE [92]. Thus, the Microsoft

Robotics Developer Studio seems to be inapplicable for virtualizing the development

process for developing automotive software systems for sensor- and actuator-based au-

tonomous systems in general and it seems to be rather applicable for selected areas.

9.2.6 PELOPS

The software suite “Programm zur Entwicklung längsdynamischer, mikroskopischer

Prozesse in systemrelevanter Umgebung”, program for developing longitudinally dy-

namic, microscopic processes in system-relevant environment (PELOPS) provided by

Forschungsgesellschaft Kraftfahrwesen mbH Aachen is a simulation environment for traf-

fic flows comparable to the framework mentioned in Section 9.2.2. Beyond, the program

can be directly fed by actuating variables computed by control algorithms developed in

MATLAB/Simulink or using real hardware components. Thus, the system can be classi-

fied as SiL- and HiL-simulation [35].
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The vehicle’s surroundings consist of different roads modeled using mathematical models,

traffic signs, and other vehicles. Furthermore, radar-like raw data can be generated using

the current vehicle’s surroundings. In contrast to the approach presented in this thesis,

three-dimensional models for surroundings’ stationary or dynamic elements cannot be

used. Furthermore, generating sensor’s raw data for laser-based range detectors is not

possible.

9.2.7 Player/Stage/Gazebo

The Player/Stage/Gazebo project is an open source project aiming to support the devel-

opment of various different robotics platforms comparable to the Microsoft Robotics De-

veloper studio. The component player is the network interface to robot devices, while

Stage is a two-dimensional simulation component supporting populations of several inde-

pendent robots. Gazebo extends the two-dimensional simulation provided by stage into

the third dimension for outdoor applications. The main goal of this project is to simplify

the development of control algorithms for robots perceiving their surroundings using dif-

ferent kinds of sensors. Currently, the component stage provides information about the

surroundings simulating sonar sensors and laser-based range detectors [67].

This framework is rather suitable because its focus is on experimental robotics platforms

offering actuators which are very different from those provided by a vehicle because many

experimental robots can turn around their z-axis while not moving at all. Contrary to the

approach presented in this thesis, modeling of the vehicle’s surroundings is unsupported.

9.2.8 TESIS Gesellschaft für Technische Simulation und Software:

DYNAware

Comparable to the aforementioned suite provided by IPG, TESIS provides the simulation

suite called DYNAware [152]. Their components DYNA4 and veDYNA are meant to sup-

port both the HiL- and SiL-development processes for embedded control algorithms and

to provide a driving dynamics simulation. Like Player/Stage/Gazebo, veDYNA uses so-

phisticated models realized in MATLAB/Simulink to compute continuously the model’s

state. The vehicle model itself is realized using a composite rigid body model.

For providing environmental data, either a standard single-lane road or a double-lane road

can be used. The lane itself can consist of a maximum of 1,000 elements. Furthermore,

16 dynamic and 64 stationary elements can be added to a traffic situation. To detect sur-
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roundings’ elements, up to eight sensors can be defined providing distances and relative

velocities to stationary and dynamic elements.

To evaluate simulation results, DYNAanimation can be used to render a video file. For us-

ing realistic models in the animation, objects modeled with the Virtual Reality Modeling

Language (VRML) can be used. However, these models are applied in the post-processing

stage for visualization purposes only and are not used in the on-line simulation.

Contrary to the approach presented here, DYNAware provides only rudimentary support

for modeling the vehicle’s surroundings especially due the limited number of stationary

and dynamic elements. Furthermore, only a limited sensor model providing distances and

relative velocities can be applied without generating data provided by a camera sensor.

Thus, this suite is rather inapplicable for the development of combined low-level and

high-level algorithms in sensor- and actuator-based autonomous systems.

9.2.9 IAV GmbH: Test Environment for Synthetic Environment Data

A test environment for generating synthetic environmental data is provided by IAV GmbH

[135]. This system aims at generating synthetic data for any kind of active sensors like

radar- or laser-based range detectors by specifying the surroundings and the sensor’s field

of view in a two-dimensional manner. Furthermore, the sensor specific noise can be

provided to lower the sensor’s raw data’s quality.

In contrast to the approach described here, only open-loop test runs can be provided like

traditional measuring test drives using the real vehicle including all mounted sensors

avoiding potentially dangerous traffic situations using this approach. However, on-line

data generation in closed-loop test runs necessary for evaluating an algorithm’s behavior

depending on its interactions with the surroundings is impossible.

9.2.10 TNO PreScan

The software TNO PRE-crash SCenario ANalyzer (PreScan) provided by TNO Auto-

motive is meant to support the development of sensor-based driver assistance systems.

Therefore, this suite is also based on MATLAB/Simulink and can be integrated in HiL

environments.

Using a graphical scenario editor, stationary elements like roads, trees, and buildings,

and dynamic elements like cars, trucks, or pedestrians for the vehicle’s surroundings can

be freely positioned in a scene. Additionally, behaviors can be associated with dynamic
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objects to define routes to be driven. Moreover, sensors providing information about

the perceived surroundings in either sensor’s raw data for radar-based range detectors

or cameras, distances for laser-based range detectors using the pre-defined positions and

orientations of the scene’s elements, or in abstracted high-level data can be associated

with the own vehicle.

Besides the virtual environment supporting the development of pre-collision systems, a

mobile robotics platform was developed to realize Vehicle-Hardware-in-the-Loop (VeHiL)

simulations for evaluating simulation’s results in the reality. Therefore, the real vehicle

is fixed in a test stand in which the vehicle can safely accelerate and brake. Thus, the

vehicle defines the logical origin for the simulation. In front of the vehicle, several mobile

robotics platforms simulating surroundings’ vehicles are moved regarding to the measured

vehicle’s motions to evaluate the simulation’s results of an algorithms as well as to test

real sensor hardware [68].

The main focus of PreScan and VeHiL is to support the development of pre-collision

systems. Due to the integration in the MATLAB/Simulink environment as well as the

missing support of generating sensor’s raw data for laser-based range sensors including

not explicitly modeled elements of the surroundings, this suite is only limitedly applicable

for the development of sensor- and actuator-based autonomous systems.

9.2.11 VIRES Simulationstechnologie GmbH: Virtual Test Drive

The software Virtual Test Drive provided by VIRES Simulationstechnologie GmbH

[166] aims to support SiL-, HiL-, ViL-, and DiL-simulations by providing application-

dependent input data from a test drive within a virtual scenario. These scenarios base on

OpenDRIVE [44] for the description of road networks and environments [168]. The sys-

tem can be combined with a mock-up cockpit from a vehicle to integrate a human driver.

Furthermore, the system provides a script language which allows repeatable situations

within a given scenario.

The software was successfully applied for pre-adjusting an algorithm for lane detection

[169]. Therefore, a scenario was defined for producing vision data consisting of a se-

quence of frames which were used as input data for the lane detecting algorithm. Fur-

thermore, the model for the surroundings provided by the specified scenario was used

to get the perfect data from the current situation which was stored for the off-line post-

processing stage. Afterwards, an evaluation for the detected features from the lane detect-

ing algorithm was carried out off-line which used the stored perfect data for comparison.
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As shown by the aforementioned setup, Virtual Test Drive is applicable for the devel-

opment of combined low-level and high-level algorithms in general. Sensor models for

generating input data for sensors-based algorithms base on the ideal model of the sur-

roundings as specified in a scenario; their input data is generated by the specified a range

and viewing angle.

The approach presented in this thesis also includes an algorithm for generating synthetic

raw data for a laser scanner based on an arbitrary complex 3D scene. Furthermore, an

on-line evaluation of an SUD is possible to support the automation of acceptance tests.

9.2.12 Evaluation of Approaches for Software Development and

System Testing

In Figure 9.2, a qualitative comparison of the approaches mentioned before is shown. In

this table the last three columns reflect one of the aforementioned requirements: Support-

ing a virtual development process, Supporting the integrated development of low-level

and high-level algorithms, and Integration of the development and testing environment.

Every approach was qualitatively evaluated using the scale high, medium, and low which

is denoted by the corresponding amount of black squares.

A classification as high describes that the regarded approach fulfills to a large extent the

criterion; medium reflects that only a portion of a considered requirement is fulfilled, and

low describes that the approach does not fulfill or only limitedly fulfills a criteria. Further

information about the approaches is available within the respective section.
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Approach Supporting a vir-

tual development

process

Supporting the in-

tegrated develop-

ment of low-level

and high-level al-

gorithms

Integration of the

development and

testing environ-

ment

Driving Simulator

at DLR

� �� �

Framework for

Simulation of

Surrounding Ve-

hicles in Driving

Simulators

� � �

IDS �� �� �

CarMaker ��� �� ��

Robotics Devel-

oper Studio

�� �� �

PELOPS ��� �� ��

DYNAware �� � �

Test Environment

for Synthetic Envi-

ronment Data

�� � �

PreScan �� �� ��

Virtual Test Drive ��� �� ��

Figure 9.2: Qualitative evaluation of the approaches for software development and system

testing: Driving simulator at DLR, Framework for Simulation of Surrounding Vehicles in

Driving Simulators, IDS, CarMaker, Robotics Developer Studio, PELOPS, DYNAware,

Test Environment for Synthetic Environment Data, PreScan, and Virtual Test Drive. The

approach Player/Stage/Gazebo is not regarded due to its specific application scope as

mentioned in Section 9.2.7.
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10 Conclusion And Future Work

For evaluating the quality of systems which rely on sensors and actuators to process in-

coming data for interacting with their context, an appropriate tooling and methods are

necessary. However, due to the dependency on the actual sensors’ setup already at early

stages during the development of the system, which can only be reduced by interfaces or

architectural design decisions in a limited manner, an approach for the software engineer-

ing is required which supports not only the software development but which also assists

activities for evaluating the quality.

In this thesis, a methodology for the software engineering is outlined which supports the

creation, evaluation, and automation of acceptance tests for the entire data processing

chain of sensor- and actuator-based autonomous systems. The methodology relies on a

formal specification of the system’s context which is deduced from the customer’s require-

ments. For carrying out an evaluation of the system’s behavior in its intended context, the

customer’s acceptance criteria are used to derive various metrics which are continuously

applied during the run-time of the system for evaluation purposes. To enable an automa-

tion of the these evaluations, a virtualization of the system and its context is necessary to

break the dependency on a real hardware environment for the entire data processing chain.

The overall methodology and its application for the V-model is described in Chapter 3.

As mentioned before, the methodology relies on a formal and consistent specification

of the system’s context. Therefore, on the example of autonomous ground vehicles the

surroundings are analyzed to identify stationary and dynamic elements and their relations

and behavior. To rely on a consistent representation, mathematical relations are identified

which are used to derive a DSL for the stationary and dynamic surroundings. Using this

language, consistent and repeatable situations for the SUD can be specified in so-called

scenarios. The mathematical relations and the domain analysis of the surroundings of

autonomous ground vehicles which are used to derive the DSL for the specification of the

system’s context are outlined in Chapter 4.

To use these scenarios as artifacts in the software development process as well as to pro-

vide the appropriate tooling which supports the aforementioned methodology, a software

framework was designed and implemented with the main focus on distributed and commu-
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nicating real-time applications. The software framework is designed in an object-oriented

manner to be highly portable and is realized using pure ANSI-C++; it was successfully

tested on Microsoft Windows XP, Windows Vista, Windows 7, Ubuntu 8.10, openSUSE

11.2, Debian 5.0, NetBSD 5.0.1, and FreeBSD 7.2 and may be used with nearly any

POSIX-compatible operating system. Moreover, the framework Hesperia contains sev-

eral tools to support the developer’s regular tasks during the development of a sensor-

and actuator-based system. For example, a non-reactive data-capturing tool, a comple-

mentary playback component, a non-reactive visualization environment, and an applica-

tion for tracking the life-cycle of all running applications which also deploys consistent,

application-dependent, and centrally maintained configuration data. The main design de-

cisions and concepts of the frameworkHesperia are outlined in Chapter 5.

As outlined in the methodology, the formally specified system’s context combined with

the evaluation metrics which are derived from the customer’s acceptance criteria are used

to realize evaluation runs for the SUD. Therefore, a deterministic scheduling environment

was designed to evaluate a sensor- and actuator-based autonomous system by decoupling

the currently running system from the real system’s time; moreover, the scheduling envi-

ronment also supervises and controls the entire communication. Additionally, for decou-

pling the software engineering’s dependency on the real hardware environment, different

algorithms were designed to provide the necessary input data at all layers of the data

processing chain during the system simulations. The scheduling environment for system

simulations as well as algorithms for virtualizing hardware sensors like monocular color

cameras, stereo vision systems, or single layer laser scanners are described in Chapter 6.

For interactively and non-reactively supervising a set of running applications, a monitor-

ing environment was designed as part of the framework Hesperia. This application can

be used to visualize, inspect, suspend, and replay even step-wisely the entire communi-

cation. The application can be easily extended by plug-ins and bases on the concept of a

so-called device-independent visualization for 2D- and 3D-representations which allows

the visualization of user-contributed data structures without modifying the monitoring en-

vironment at all. For evaluating the SUD as outlined in the aforementioned methodology,

system simulations which can be unattendedly executed and evaluated by continuous in-

tegration systems can be realized with the framework Hesperia. Therefore, a concept

similar to unit testing was developed; but contrary to unit tests which are mainly used

for testing discrete algorithms, the formally specified system’s context combined with the

aforementioned system simulations is used to provide continuous input data to evaluate

continuously the running SUD. Both concepts, the interactive monitoring as well as the

unattended evaluations are described in Chapter 7.
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The concepts developed in this thesis were finally applied to an autonomous vehicle at

University of California, Berkeley. The goal was to develop the required software system

to navigate the vehicle safely on a given digital map purely virtually before deploying

the resulting artifacts on the vehicle itself. Therefore, a digital map based on consecutive,

highly precise GPS-points was created reflecting a simple course on the test site Rich-

mond Field Station. Using an enhanced draw-bar control algorithm both for steering and

for accelerating and decelerating the vehicle, the software system was developed interac-

tively first. Therefore, the customer’s requirements for this algorithm led to the modeling

of the system’s context of the SUD which included the stationary context of the Rich-

mond Field Station. This context was used to calculate the required position data from a

virtualized IMU system for which a model was derived from the real IMU system.

Following, the software environment was deployed on the vehicle to perform real vehicle

tests and to validate the results from the interactive simulations. Afterwards, these previ-

ously carried out interactive system evaluations were implemented using the unattended

system tests as mentioned before to create an executable specification of a vehicle test us-

ing the system’s context and the required accuracy. These system tests were automated to

be executed and validated automatically whenever any changes to the source code were

made. Thus, any errors which might negatively influence the software’s quality can be

identified easily by evaluating the automatically generated reports for any unattended test

runs to locate the modifications which yield to the unexpected behavior of the system.

These reports also include the entire communication which is automatically captured dur-

ing the unattended system evaluations. The case study is presented in Chapter 8.

Thus, not only unit tests for partly ensuring a software’s quality can be used for sensor-

and actuator-based CPS. Instead, entire sub-systems or systems may be tested virtually

to validate the system’s quality on the topmost level of the V-model to cover the com-

plete data processing chain for getting a report about the system’s quality right before

delivery or if the source code was finally optimized for example. Moreover, even in-

terferences with other user-contributed applications introduced by modifications to one

application can be identified easily with unattended system simulations; on the example

of autonomous ground vehicle, an optimization to a control algorithm which yields in

a more sharp steering in curves might influence negatively a possible lane detection al-

gorithm. This interference could be identified automatically if appropriate tests for unat-

tended system simulations were defined. However, the methodology outlined in this thesis

is intended to complete and not to substitute real system tests because the reported quality

of a system depends directly on the a priori met assumptions about sensors, the system’s

surroundings, and the like.
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To continue the outlined work in this thesis, the separated usage of the two grammars–the

MontiCore for Java and the Spirit for C++–could be integrated to derive one from the

other to remove the redundancy; another possibility would be to provide a C++ variant

of MontiCore to support the DSL-driven development for embedded systems in a native

manner. Furthermore, due to the template-based realization in header files of the Spirit

grammar, the compile-time takes a long time. Here, a file-based encapsulation of the

required Spirit input data would reduce this required compilation time.

Moreover, as already indicated for the system simulations, noise and latency models for

the data transmission to artificially reorder, delay, or drop any sent data can be added

to the system simulation. Thus, bandwidth limitations depending on the communication

or system load can be simulated for a running system simulation. But artificial noise or

quality reducing algorithms cannot only be applied at this lower level. Noise models for

all sensors which are provided by the framework Hesperia may be derived and specified

to reduce the quality of the simulated sensors’ raw data for example.

Additionally, the run-time control for the system simulation could be extended to allow

variable time steps together with the current fixed time step implementation. Furthermore,

a graphical user interface could be integrated into the monitoring environment to interac-

tively supervise and interrupt a currently running unattended system simulation. More-

over, the current implementation of the system simulation could be extended to support

distributed simulations which are running on several independent computing nodes; thus,

even simulations which contain complex elements or which are executed very often by

a continuous integration system due to frequent modifications to the software repository

could be realized to scale better with an increasing demand of unattended system simula-

tions. Therefore, the virtualized system clock must be distributed to all remotely running

system simulations and all communication must also be routed to all these instances.

For supporting the developers’ work, an analysis of several test runs of the SUD for the

same situation could be realized which combines several recorded data files. Therefore,

an appropriate visualization using a transparent overlay technique for example which vi-

sualizes all test runs at once would assist the developers to inspect the SUD’s algorithm’s

improvements over time. This technique could also be used to visualize differences be-

tween two versions from the software’s version history.

Furthermore, the DSL outlined in this thesis for describing the stationary surroundings

of an autonomous ground vehicle could be fused with the existing language provided

by OpenDRIVE. Alternatively, an Extensible Style-sheet Language (XSL) transformation

could be applied to instances of OpenDRIVE to transform them for using the data within

Hesperia.
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Besides these technical aspects, both the methodology and the framework could be in-

tegrated with AUTOSAR to provide an integrated environment for testing any modeled

functionality purely virtually before deploying it onto ECUs. Therefore, any function

which is provided as a software component for AUTOSAR resulting as an artifact of an

existing tool chain can be wrapped to be used with Hesperia. Therefore, the function is

embedded into a wrapping instance of ConferenceClientModule which provides

the required input- and output-interfaces to the system’s context. Thus, the function can

also be evaluated with the unattended system simulations as outlined in the methodology.

To complete the formal and consistent specification of the SUD’s surroundings, a DSL for

describing the required test cases for different layers of the V-model or parts of the system

might be created. Moreover, this test case-DSL could be used to derive appropriate test

cases automatically for interactive or unattended system tests.

Another aspect is the automatic training of a priori unknown input data for intelligent

algorithms for example. Instead of defining lots of real test drives to collect the required

input data, a set of virtual test situations may be defined with only slight differences in the

initial parameters to provide the required input data. This would significantly reduce the

necessary time for gathering this training data compared to manual setup or even more

compared to real test drives.
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abstract class Grammar. This class provides an observer for success-

fully parsed token from the grammar which calls a user-supplied listener;

analogously realized is an observer which reports parsing errors. These

observers are used to construct an AST from a given instance according

to the grammar’s structure. This AST can be easily traversed by user-

supplied visitors to query information from a given instance or to trans-

form the data structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Package structure of the framework Hesperia. The framework consists

of two major libraries: libcore and libhesperia. The former li-

brary encapsulates the interfaces for a specific operating system by pro-

viding elaborated programming concepts for I/O access or threading. Fur-

thermore, this library wraps libraries from third parties and provides in-

terfaces instead to higher layers. Thus, a third party library can be eas-

ily exchanged if necessary. The latter library, libhesperia provides

concepts which allow a simplified development for distributed data pro-

cessing applications. Therefore, this library provides classes which trans-

parently realize data exchange; moreover, this library contains the DSL

which was specified in Section 4.4. . . . . . . . . . . . . . . . . . . . . . 55

5.2 Packages of the framework Hesperia: The left hand side is realized in

libcore which encapsulates the access to the operating system and to

third party libraries as already mentioned. The right hand side is realized

in libhesperia. Besides high-level concepts for transparent commu-

nication for example, basic data structures which support the development

of sensors-based applications which operate in the R
3 are provided. Fur-

thermore, device-independent visualization concepts which are outlined

in Section 5.4.5 are integrated. . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 CompressionFactory for providing access to compressed data. . . . . . . 57
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5.4 Template-based query-able serialization: The data to be serialized is

realized by ObjectData. This class derives from the interface

SerializableData which itself provides serialization and dese-

rialization methods which are called by the envelope data structure

Container. These methods are realized using the supporting classes

Serializer and Deserializer which encapsulate the handling of

hardware-dependent endianess for example. . . . . . . . . . . . . . . . . 62

5.5 Generic directed graph based on the Boost Graph Library [144]. This

provided concept encapsulates the underlying library and provides an in-

tegrated interface to the user-supplied applications on higher layers. Thus,

the construction and handling of graphs and their algorithms are simplified. 67

5.6 Device-independent data visualization: Any data which should be visual-

ized uses the interface Renderer which provides rudimentary drawing

primitives for drawing points or lines in R
3 for example. This interface

is implemented by a concrete implementation for the OpenGL context

which is also provided by libhesperia. For generating a 2D view

on a given data, some methods from the interface Renderer are com-

bined by flattening the z coordinates which is realized in the abstract class

Renderer2D. Thus, a concrete realization which uses this class simply

implements the reduced set of drawing primitives which is outlined in

Section 7.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 Integration of the system simulation within the framework Hesperia: Us-

ing concepts and algorithms from Hesperia, the application which real-

izes the sensor- and actuator-based system is on top of Hesperia. For

closing the loop between the action layer and the perception layer to en-

able interactive and unattended simulations, the virtualization layer with

libcontext and libvehiclecontext is used. While the former is

necessary to realize the run-time discretization for the SUD by providing

time control and scheduling, the latter provides models like the bicycle

model for the specific use for autonomous vehicles for example. Thus,

the framework Hesperia provides an application-independent virtualiza-

tion layer to realize system simulations. . . . . . . . . . . . . . . . . . . 78
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6.2 Control of time and communication: On the left hand side, the

SUD is shown which is realized in ApplicationModule by the

user. For controlling the overall system time and communication,

the class RuntimeControl overrides the regular implementation of

ContainerConferenceFactory by providing a pure software solu-

tion which manages the sending and receiving of Containers between

several applications. The same concept is applied to the TimeFactory

which is intercepted by a specialized variant which allows the controlled

incrementation of the system-wide time. . . . . . . . . . . . . . . . . . . 84

6.3 Run-time control for the SUD: On the left hand side, the

SUD is shown which implements automatically the interface

InterruptibleModule and Periodic. While the former

is required to register a special object called Breakpoint to in-

tercept regularly the running application, the latter is necessary

to calculate and realize a system-wide scheduling which is imple-

mented by RuntimeEnvironment. This class controls and sched-

ules the required components’ frequencies; furthermore, it super-

vises the sending and receiving of Containers by using the class

ControlledContainerConferenceFactory. . . . . . . . . . . 86

6.4 Sequence chart showing the messages sent between controlling and con-

trolled objects: The controlled system time is encapsulated in the instance

of the class Clock while the lifelines of the UML sequence chart repre-

sent the actually consumed real time which is required for managing the

scheduling of the SUD, its communication, and the system time. . . . . . 92

6.5 Geometry of the bicycle model (based on [126]). . . . . . . . . . . . . . 97

6.6 Software architecture for the monocular camera provider. This provider

implements a simple monocular camera sensor model by using the spec-

ified system’s context which is described by Scenario to render an

OpenGL context. From this context, an image dump is provided for user-

supplied image processing algorithms using a shared memory segment. . 101
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6.7 Software architecture for the single layer laser scanner provider. Com-

parable to the aforementioned sensor model for a camera, this provider

also bases on the specified system’s context described by Scenario for

rendering an OpenGL context. However, contrary the aforementioned

camera provider, this context is modified by a special shader program

which is executed on a GPU which generates distance information. In

a pre-processing stage, this context is evaluated by an image analyzing

algorithm to retrieve these distances to providing them to user-supplied

applications on higher layers. . . . . . . . . . . . . . . . . . . . . . . . . 103

6.8 Principle of projective textures using a projector (based on [18, 50]): A

special texture is defined used as a foil which is placed directly in front of

the camera’s position from which the scene should be rendered. Using the

equation specified in Equation 6.8, the content of this texture is projected

into the scene. For simulating a single layer laser scanner, this texture

contains a single line as shown in this figure which is projected into the

scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.9 Outline for algorithm to compute distances using projected textures. . . . 105

6.10 Visualization for the output of the sensor model for a single layer laser

scanner. This sensor model is realized in an application which uses a

shader program on the GPU for calculating the distances. . . . . . . . . . 106

6.11 Aliasing effect when solely using the z-buffer demonstrated at a curved

target: On the left hand side, the rays from the laser scanner are hitting the

target with only discrete distances which provides inaccurate distances.

This is caused by the decreasing accuracy for increasing distances to the

ray-emitting source [32]. On the right hand side, the z-buffer combined

with the w-buffer is used to optimize the calculated distances which re-

duces the aliasing effect. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.12 Visualization of computed distances. . . . . . . . . . . . . . . . . . . . . 109

6.13 Software architecture for the sensor-fusion provider. Comparable to both

aforementioned sensor providers, this one also bases on the Scenario

specification. For generating an abstract representation from the SUD’s

surroundings, a visitor is defined which traverses the scenario’s AST to

gather information from polygons. These polygons are used to calculate

intersections with a specified viewing area which represents an ideal sensor.110
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6.14 Overlapping polygons with visibility lines resulting in a contour line be-

tween i1 and v2: The dark gray triangle i1, v2, i2 shows the invisible area

within the sensor’s FOV from point S for the polygon v1, v2, v3, v4, v5.

Because the line Si2 crosses this invisible area, the point i2 is not part of

the outer contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.15 Visualization for the output of the sensor-fusion provider. . . . . . . . . . 112

6.16 Software architecture for the dynamic context provider. Comparable to

the already presented providers, this provider bases on the Scenario

specification as well. Moreover, it uses a Situation to get the speci-

fication of the dynamic context. To create the necessary models for the

dynamic context, a concrete instance of the DSL is evaluated and the

required objects with their associated behavior PointIDDriver are

set up. The data provider computes continuously updated information

using the OtherVehicleState data structure. These objects can ei-

ther be used directly in high-level user-contributed applications by evalu-

ating their attributes for example or they can be rendered into an existing

OpenGL scene. In the latter case comparable to the stationary surround-

ings, the dynamic objects can be “detected” using the aforementioned

providers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1 Architecture of component “Monitor”. The application consists of sev-

eral independent plug-ins which are fed with incoming Containers

automatically. Thus, they can realize arbitrary visualization tasks; fur-

thermore, due to the plug-in concept, this application can be extended

easily. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Non-reactive system inspection using component “Monitor”: On the left

hand side in area “1”, a list of all available plug-ins is shown. In the

upper left hand side in part “2”, a trace of all received Containers

is shown while on the upper right hand side marked with “3”, a freely

navigatable 3D visualization of the current scenario is rendered. On the

lower left hand side in area “4”, the visualization of the camera provider

producing synthetic images is shown. The lower right hand side in part “5”

finally plots statistical information about the applications’ life-cycles. In

area “6”, a control bar for controlling the buffer which stores all captured

Containers is available which can be used to suspend or replay the

current buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
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7.3 Device-independent data visualization for stationary surroundings: A

given scenario is traversed for mapping the render-able information from

the surroundings’ elements to the drawing primitives provided by the in-

terface Renderer as already mentioned in Section 5.4.5. The 2D visu-

alization is implemented using a drawing context from Qt which is also

used to develop the “monitor” application itself. . . . . . . . . . . . . . . 119

7.4 Resulting representation using the concept of device-independent visual-

ization. The camera on the right hand side is located in the lower left

corner of the two-dimensional image pointing to its upper right corner. . . 120

7.5 Device-independent data visualization for dynamic elements: Compara-

ble to the stationary visualization, the scenario data is used to retrieve

information about complex model provided by 3D modeling programs.

Furthermore, all sent Containers can simply be visualized by a central-

ized mapping to the drawing primitives of interface Renderer which is

carried out in the class DataRenderer. . . . . . . . . . . . . . . . . . 121

7.6 Software architecture for reporting components which evaluate

the system’s context. All reporting components derive from

SystemReportingComponent which allows a specified frequent

scheduling by RuntimeControl. Furthermore, these components are

automatically receiving all sent Containers for evaluation. . . . . . . . 123

7.7 Software architecture for reporting whether a given destination was suc-

cessfully reached. The DestinationReachedReporter imple-

ments the interface SystemReportingComponent to receive auto-

matically all send Containers. Furthermore, it uses the formally spec-

ified scenario for getting information about available way-points which

can be used as destinations for an AGV. . . . . . . . . . . . . . . . . . . 124

7.8 Software architecture for a SystemReportingComponent to evalu-

ate whether the vehicle’s distance to an optimal route is continuously less

than a given threshold. Therefore, comparable to the aforementioned com-

ponent, DistanceToRouteReport automatically receives all dis-

tributed Containers and evaluates the current vehicle’s position and

orientation to a pre-calculated given or to the optimal route using a

LaneVisitor which traverses the road network. . . . . . . . . . . . . 128
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7.9 The class diagram depicts the software architecture for a component

which continuously evaluates the system’s behavior within its sys-

tem’s context. Therefore, the DistanceToObjectsReport eval-

uates the data from the system’s context namely Obstacle and

OtherVehicleState. For both, the Euclidean distance is calculated;

moreover, for the former the polygonal shape is also evaluated to com-

pute the distance which is compared to a user-specified distance. The

distributed data is received automatically as mentioned in Section 7.3. . . 129

8.1 Benchmark for the timing of the frameworkHesperia for the Linux kernel

2.6.27-14-generic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.2 Benchmark for the timing of the frameworkHesperia for the Linux kernel

2.6.27-3-rt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.3 Benchmark for one sender sending data at 1Hz and one receiver running

on one computer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.4 Benchmark for one sender sending data at 100Hz and one receiver run-

ning on one computer: On average the transmission duration is approxi-

mately at 0.07ms with no significant differences at all. . . . . . . . . . . . 134

8.5 Benchmark for two senders sending data at 1Hz and one receiver running

on one computer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.6 Benchmark for two senders sending data at 100Hz and one receiver run-

ning on one computer: On higher network traffic on the local network

device, no significant difference between privileged and non-privileged

processes can be deduced. . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.7 Benchmark for two senders sending data at 1Hz and 100Hz and one re-

ceiver running on two computers. . . . . . . . . . . . . . . . . . . . . . . 137

8.8 Benchmark for two senders sending data at 1Hz and 100Hz and one re-

ceiver running on two computers. . . . . . . . . . . . . . . . . . . . . . . 137

8.9 Comparison between NTP and PTP: The plot on the left hand side is

translated to the bottom to allow a more intuitional comparison because

the measured durations on the left hand side have an additional offset.

However, this inaccuracy is within the NTP’s specification which is under

ideal conditions at least a multiple of 1×10−6s according to [103]. . . . . 138

8.10 Overview of the Ford Escape Hybrid – ByWire XGV’s sensors and trunk. 140
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8.11 System architecture implemented in the 2008 Ford Escape Hybrid – By-

Wire XGV. JAUS indicates data which is encapsulated into the JAUS pro-

tocol, UDP indicates data which is sent using a proprietary protocol, and C

indicates data wrapped into a Container data structure; therefore, the

application proxy from the framework Hesperia is used. Furthermore,

the components Planner and SimpleDriver are realized as one combined

application using the frameworkHesperia as well. The applications from

the support layer are described in Section 5.5, 5.6, and 7.2 and base also

on the frameworkHesperia. . . . . . . . . . . . . . . . . . . . . . . . . 141

8.12 Model of the system’s context for Richmond Field Station projected on

an aerial image; image credit: University of California, Berkeley. . . . . . 142

8.13 AGV’s absolute position provided by the IMU over time and its variance. 143

8.14 Clustered variances for the IMU provided positions. . . . . . . . . . . . . 144

8.15 Non-reactive visualization of the Ford Escape Hybrid – ByWire XGV’s

sensors’ model: In the upper area both raw images from the stereo vision

system are shown. Below these images, the chasing camera for the AGV

which is indicated by the white vehicle is shown. This camera is continu-

ously following the vehicle’s movements and thus, from this perspective,

the scan line for the single layer laser scanner can be seen in front the car. 145

8.16 Geometrical relations for the control algorithm: The control algorithm

based on two independent draw-bars. The first draw-bar called ls is used

for computing the distance xs to the planned path P , while the latter has

a greater distance to the vehicle and is called lv for computing the dis-

tance xv. The distance xs is used to steer the vehicle depending on the

distance, while the distance xv is used to adjust the vehicle’s velocity by

reciprocally proportionally evaluating its value. . . . . . . . . . . . . . . 148

8.17 Effects for linear, cubic splines, and Bézier curves: While cubic splines

pass all provided nodes, Bézier curves do not due to its definition. . . . . 150

8.18 Performance of the draw-bar controller in the simulation for a velocity of

approximately 1.6m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.19 Performance of the draw-bar controller in the simulation for a velocity of

approximately 2.3m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.20 Performance of the draw-bar controller in the simulation for a velocity of

approximately 3m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.21 Performance of the draw-bar velocity controller in the simulation: The

velocity of the vehicle is adjusted often due to a continuously changing

distance xv for the velocity draw-bar. . . . . . . . . . . . . . . . . . . . . 156

212



Automating Acceptance Tests on the Example of Autonomous Vehicles

8.22 Performance of the velocity and steering control algorithm in reality. . . . 158

9.1 Qualitative evaluation of the frameworks for distributed component-based

embedded automotive software: Automotive Data and Time Triggered

Framework, AUTOSAR, OpenJAUS, and Orca/Hydro. . . . . . . . . . . . 170

9.2 Qualitative evaluation of the approaches for software development and

system testing: Driving simulator at DLR, Framework for Simulation of

Surrounding Vehicles in Driving Simulators, IDS, CarMaker, Robotics

Developer Studio, PELOPS, DYNAware, Test Environment for Synthetic

Environment Data, PreScan, and Virtual Test Drive. The approach Play-

er/Stage/Gazebo is not regarded due to its specific application scope as

mentioned in Section 9.2.7. . . . . . . . . . . . . . . . . . . . . . . . . . 181

213





List of Equations

Equation 4.1 Orthonormal basis for R
3. . . . . . . . . . . . . . . . . . . . . . 32

Equation 4.2 Rotations in R
3. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Equation 4.4 Rotations in R
3. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Equation 4.5 Rotations and translations represented by homogeneous coordi-

nates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Equation 4.7 The Gimbal lock problem. . . . . . . . . . . . . . . . . . . . . . 35

Equation 4.8 Quaternion multiplication. . . . . . . . . . . . . . . . . . . . . . 36

Equation 4.9 Arbitrary rotations using quaternions. . . . . . . . . . . . . . . . 36

Equation 4.10 Fresnel integrals and third order approximation. . . . . . . . . 42

Equation 6.3 Geometrical relations in the bicycle model. . . . . . . . . . . . . 99

Equation 6.5 Formulation as a state space representation. . . . . . . . . . . . 99

Equation 6.6 The system’s current state vector and the state space representa-

tion with the aforementioned geometrical relations. . . . . . . . . . . . . 99

Equation 6.7 Numerical approximation of the state space model based on

power series. For further details are elaborated in [136]. . . . . . . . . . . 100

Equation 6.7 Calculate the position changing. . . . . . . . . . . . . . . . . . . 100

Equation 6.8 Transforming a texture for projection. . . . . . . . . . . . . . . 104

Equation 6.9 Transforming image coordinates to world coordinates using a

given depth value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Equation 6.10 Interpolation of the distance for nominal ray nθ. . . . . . . . . 107

Equation 8.1 Geometrical relations for the steering angle δ. . . . . . . . . . . 147

Equation 8.2 Geometrical relations for the steering angle δ. . . . . . . . . . . 148

Equation 8.3 Geometrical relations for the steering angle δ. . . . . . . . . . . 149

215



Automating Acceptance Tests on the Example of Autonomous Vehicles

Equation 8.4 C1- and C2-continuity. . . . . . . . . . . . . . . . . . . . . . . 150

216



List of Listings

4.1 Excerpt from MontiCore grammar for stationary surroundings. . . . . . . 45

4.2 Excerpt from Spirit grammar for stationary surroundings. . . . . . . . . . 47

4.3 Generating an intermediate AST using pre-processed data from Spirit. . . 51

5.1 Compile-time computation of identifiers for serialization. . . . . . . . . . 63

5.2 Compile-time computation of identifiers for serialization. . . . . . . . . . 65

5.3 Centralized configuration concept. . . . . . . . . . . . . . . . . . . . . . 69

5.4 Data description language. . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Example for the data description language. . . . . . . . . . . . . . . . . . 72

6.1 Pseudo-code for the general scheduling simulation. . . . . . . . . . . . . 81

7.1 Integration of customer’s acceptance criteria using reporters in unit tests. . 125

A.1 MontiCore grammar for stationary surroundings. . . . . . . . . . . . . . 221

A.2 MontiCore grammar for dynamic surroundings. . . . . . . . . . . . . . . 227

217





Appendices

219





A Grammar for Defining the System’s

Context

A.1 MontiCore Grammar for the Stationary

Surroundings

grammar Scenario {

ident AlphaNum "(’A’..’Z’|’a’..’z’)(’A’..’Z’|’a’..’z’|’_←֓

’|’-’|’.’|’/’|’0’..’9’)*";

ident Number "(’+’|’-’)?( ((’1’..’9’)(’0’..’9’)*) | ’0’ )←֓

(’.’(’0’..’9’)*)?";

ident FQID "’(’((’1’..’9’)(’0’..’9’)*)’.’(((’1’..’9’)←֓

(’0’..’9’)*)|’0’)’.’(((’1’..’9’)(’0’..’9’)*)|’0’)←֓

’.’((’1’..’9’)(’0’..’9’)*)’)’";

5

ScenarioFile =

ScenarioHeader // File header.

Ground // Ground layer.

Layer+ ";"; // Data layers containing roads and other ←֓

stuff.

10

ScenarioHeader =

"Scenario" ScenarioName:AlphaNum // Scenario’s name.

"Version" Version:AlphaNum // Version of the scenario ←֓

grammar.

"Date" Date:AlphaNum // Creation date of the file.

15 "OriginCoordinateSystem"

CoordinateSystem:CoordinateSystem; // String type of ←֓

relative coordinate system.

CoordinateSystem =
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WGS84CoordinateSystem

20 "Rotation" Rotation:Number; // The scenario’s rotation ←֓

around the coordinate’s origin in RAD (3am is 0).

WGS84CoordinateSystem =

Type:"WGS84" // WGS84 type.

"Origin" Origin:Vertex2; // Logical (0, 0) is at (OriginX←֓

, OriginY) in the chosen coordinates.

25

Ground =

"Ground" GroundName:AlphaNum // Begin of the ground layer←֓

.

AerialImage:AerialImage?// Aerial image for the ground.

HeightImage:HeightImage? // Image for the height data.

30 Surrounding? ";"; // Surroundings like houses or trees.

AerialImage =

"AerialImage" Image:Image;// Data for the aerial image.

35 HeightImage =

"HeightImage" Image:Image// Data for the height image.

"GroundHeight" GroundHeight:Number // Which color is used←֓

for ground level (0 m)?

"MinHeight" MinHeight:Number // Which height level in ←֓

m is meant by color 0?

"MaxHeight" MaxHeight:Number; // Which height level in←֓

m is meant by color 255?

40

Image =

"Image" ImageFile:AlphaNum // File name of the image.

"OriginX" OriginX:Number // Origin of X in image ←֓

coordinates (relative to upper/left corner).

"OriginY" OriginY:Number // Origin of Y in image ←֓

coordinates (relative to upper/left corner).

45 "MPPX" MeterPerPixelX:Number // Image’s resolution per←֓

m in X direction.

"MPPY" MeterPerPixelY:Number // Image’s resolution per←֓

m in Y direction.

"RotZ" Rotation:Number; // Counterclockwise rotation ←֓

around Z-axis in RAD (3am is 0).
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Surrounding =

50 "Surrounding" // Begin of surroundings.

Shapes:Shape+; // List of shapes.

Shape =

"ShapeName" ShapeName:AlphaNum // Name of the shape.

55 (Polygon | Cylinder | ComplexModel); // Type of the shape←֓

.

Polygon =

ShapeType:"Polygon" // Either polygon (i.e. rectangular ←֓

boxes, complex polygons)...

"Height" Height:Number // Height of the polygon > 0.

60 "Color" Color:Vertex3 // RGB color.

Vertex2 // A minimum of two vertices is necessary.

Vertex2+;

Cylinder =

65 ShapeType:"Cylinder" // ...or cylinders...

Vertex2 // Center of the cylinder.

"Radius" Radius:Number // Radius of the cylinder > 0.

"Height" Height:Number // Height of the cylinder > 0.

"Color" Color:Vertex3; // RGB color.

70

ComplexModel =

ShapeType:"ComplexModel" // ...or complex model to be ←֓

loaded from file.

"ModelFile" ModelFile:AlphaNum // File name of the model.

"Position" Position:Vertex3 // Position of the complex ←֓

model (center of mass).

75 "Rotation" Rotation:Vertex3 // Counterclockwise rotation←֓

of the complex model in RAD (3am is 0).

"BoundingBox" // The bounding box defines a rectangular ←֓

outline around the complex model.

Vertex2 // First: upper/left.

Vertex2 // Second: upper/right.

Vertex2 // Third: lower/right.

80 Vertex2; // Fourth: lower/left.
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Vertex2 =

"Vertex2"

"X" X:Number // X coordinate.

85 "Y" Y:Number; // Y coordinate.

Vertex3 =

"Vertex3"

"X" X:Number // X coordinate.

90 "Y" Y:Number // Y coordinate.

"Z" Z:Number; // Z coordinate.

IDVertex2 =

"ID" ID:Number // Integer number greater than 0.

95 Vertex2; // Ordinary vertex2.

Layer =

"Layer" LayerName:AlphaNum // Begin of layer "LayerName←֓

". Layers contain roads and are stacked to allow bridges.

"LayerID" LayerID:Number // Integer identifier of this ←֓

layer greater than 0.

100 "Height" Height:Number // Height of this layer.

Roads:Road+ // Roads.

Zones:Zone* ";"; // Zones.

Road =

105 "Road" // Begin of a road.

"RoadID" RoadID:Number // Integer identifier of this road←֓

greater than 0.

("RoadName" RoadName:AlphaNum)? // Name of the road.

Lanes:Lane+ ";"; // Each road contains at least one lane.

110 Lane =

"Lane"

"LaneID" LaneID:Number // Integer identifier of this ←֓

lane greater than 0.

LaneModel:LaneModel ";";// Which lane model to be used.

115 LaneModel =

LaneAttribute:LaneAttribute // Lane’s width as well as ←֓

lane markings.
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Connectors:Connector* // Connectors describe how lanes ←֓

are interconnected.

TrafficControls:TrafficControl* // Traffic lights, ←֓

traffic signs...

(PointModel | FunctionModel); // Either point- or ←֓

functionmodel.

120

TrafficControl =

(TrafficLight | TrafficSign) // Either traffic light or ←֓

traffic sign.

"Name" Name:AlphaNum // Name of the traffic control.

IDVertex2 // Identifier and position inside the layer.

125 Shape; // Shape of the traffic control.

TrafficLight =

TrafficControlType:"TrafficLight"; // Either traffic ←֓

light...

130 TrafficSign =

TrafficControlType:"TrafficSign" // ...or traffic sign.

"Value" Value:TrafficSignType;

TrafficSignType =

135 SignType:"stopline";

LaneAttribute =

("LaneWidth" LaneWidth:Number)? // Lane’s width.

("LeftLaneMarking"

140 LeftLaneMarking:BoundaryStyle)? // Lane’s left boundary ←֓

style.

("RightLaneMarking"

RightLaneMarking:BoundaryStyle)?; // Lane’s right ←֓

boundary style.

BoundaryStyle =

145 Style:"double_yellow" | // Lane markings.

Style:"solid_yellow" |

Style:"solid_white" |

Style:"broken_white" |

Style:"crosswalk";
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150

Connector =

Source:PointID "->" Target:PointID; // Directed ←֓

connection between two lane IDs.

PointID =

155 PointID:FQID; // Layer-ID . Road-ID . Lane-ID . {Point|←֓

Function}-ID.

PointModel =

"PointModel" // The pointmodel consists of many

IDVertex2+ ";" // points that are identifiable.

160

FunctionModel =

"FunctionModel"

(StraightLine | Clothoid | Arc) ";" // Either straight ←֓

line, clothoid or arc.

165 StraightLine =

FunctionModel:"StraightLine" // A straight line.

"Start" Start:IDVertex2 // The start point.

"End" End:IDVertex2; // The end point.

170 Clothoid =

FunctionModel:"Clothoid" // A clothoid.

"dk" dk:Number // Curvature change.

"k" k:Number // Curvature.

"Start" Start:IDVertex2 // The start point.

175 "End" End:IDVertex2 // The end point.

"RotZ" Rotation:Number; // Rotation around Z axis.

Arc =

FunctionModel:"Arc" // An arc in polar coordinates using ←֓

r and phi (= x).

180 "Radius" r:Number // Radius.

"[" LeftBoundary:Number // The definition interval.

RightBoundary:Number "]"

"Start" Start:IDVertex2 // The start point.

"End" End:IDVertex2 // The end point.

185 "RotZ" Rotation:Number; // Rotation around Z axis.
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Zone =

"Zone" // Begin of a zone.

"ZoneID" ZoneID:Number // Integer identifier of this ←֓

zone greater than 0.

190 ("ZoneName" ZoneName:AlphaNum)? // Name of the zone.

Connectors:Connector* // Connectors describe how lanes ←֓

are interconnected.

Perimeter:Perimeter // Description of the bounding ←֓

polygon.

Spots:Spot* ";"; // List of special spots in this zone.

195 Perimeter =

"Perimeter" // Begin of a perimeter.

IDVertex2

IDVertex2

IDVertex2+ ";"; // At least three vertices describe a ←֓

perimeter.

200

Spot =

"Spot"

"SpotID" SpotID:Number // Integer identifier of this zone←֓

greater than 0.

Vertex2 // Two vertices determine orientation.

205 Vertex2 ";";

}

Listing A.1: MontiCore grammar for stationary surroundings.

A.2 MontiCore Grammar for the Dynamic Surroundings

grammar Situation {

ident AlphaNum "(’A’..’Z’|’a’..’z’)(’A’..’Z’|’a’..’z’|’_←֓

’|’-’|’.’|’/’|’0’..’9’)*";

ident Number "(’+’|’-’)?( ((’1’..’9’)(’0’..’9’)*) | ’0’ )←֓

(’.’(’0’..’9’)*)?";

ident FQID "’(’((’1’..’9’)(’0’..’9’)*)’.’(((’1’..’9’)←֓

(’0’..’9’)*)|’0’)’.’(((’1’..’9’)(’0’..’9’)*)|’0’)←֓

’.’((’1’..’9’)(’0’..’9’)*)’)’";
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5

SituationFile =

SituationHeader // File header.

Object+ ";"; // At least one object.

10 SituationHeader =

"Situation" SituationName:AlphaNum // Name of the ←֓

behavior.

"Version" Version:AlphaNum // Version of the behavior ←֓

grammar.

"Date" Date:AlphaNum // Creation date of the file.

"Scenario" Scenario:AlphaNum; // Associated scenario for←֓

this behavior.

15

Object =

"Object" ObjectName:AlphaNum // Begin of object "←֓

ObjectName".

"ObjectID" ObjectID:Number // Integer identifier of this←֓

layer greater or equal than 0.

Shape:Shape // Shape of this object.

20 "RotZ" Rotation:Number // Rotation around Z axis ←֓

which defines the front.

Behavior:Behavior ";"; // The behavior of this object.

Shape =

"ShapeName" ShapeName:AlphaNum // Name of the shape.

25 (Rectangle | Polygon | ComplexModel); // Type of the ←֓

shape.

Rectangle =

ShapeType:"Rectangle" // Either rectangles...

"Height" Height:Number // Height of the cylinder > 0.

30 "Color" Color:Vertex3 // RGB color.

Front:Vertex2 // Front of the rectangle.

"Length" Length:Number // Length.

"Width" Width:Number; // Width.

// The construction of a rectangle is defined as:

35 //

// ---------Length------------

// | |
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// W |

// i | \

40 // d X-------+

// t | /

// h |

// | |

// ---------Length------------

45 //

// X = Front, + = ROTZ.

Polygon =

ShapeType:"Polygon" // ...or polygons...

50 "Height" Height:Number // Height of the polygon > 0.

"Color" Color:Vertex3 // RGB color.

Front:Vertex2 // Front of the polygon.

Vertex2+; // A minimum of two vertices is necessary.

55 ComplexModel =

ShapeType:"ComplexModel" // ...or complex model to be ←֓

loaded from file.

"ModelFile" ModelFile:AlphaNum // File name of the model.

Front:Vertex2 // Front of the complex model.

"Position" Position:Vertex3 // Position of the complex ←֓

model (center of mass).

60 "Rotation" Rotation:Vertex3 // Counterclockwise rotation←֓

of the complex model in RAD (3am is 0).

"BoundingBox" // The bounding box defines a rectangular ←֓

outline around the complex model.

Vertex2 // First: upper/left.

Vertex2 // Second: upper/right.

Vertex2 // Third: lower/right.

65 Vertex2; // Fourth: lower/left.

Vertex2 =

"Vertex2"

"X" X:Number // X coordinate.

70 "Y" Y:Number; // Y coordinate.

Vertex3 =

"Vertex3"
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"X" X:Number // X coordinate.

75 "Y" Y:Number // Y coordinate.

"Z" Z:Number; // Z coordinate.

Behavior =

"Behavior"

80 (ExternalDriver | PointIDDriver);

ExternalDriver =

BehaviorType:"ExternalDriver"; // External driver ←֓

behavior is realized by an external system instead of the←֓

simulation.

85 PointIDDriver =

BehaviorType:"PointIDDriver" // PointID driver.

StartType:StartType // When should this object get ←֓

started?

StopType:StopType // What happens when this object ←֓

reaches the last point?

Profile:Profile // Driving profile.

90 PointIDs:PointID*; // List of points to be reached.

Profile =

(ConstantVelocity | ConstantAcceleration); // Either a ←֓

constant velocity or a constant acceleration.

95 ConstantVelocity =

"ConstantVelocity"

"V" V:Number; // Velocity in m/s.

ConstantAcceleration =

100 "ConstantAcceleration"

"A" A:Number; // Acceleration in m/s^2.

StartType =

"StartType"

105 (Immediately | OnMoving | OnEnteringPolygon);

StopType =

"StopType"
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(Stop | ReturnToStart | WarpToStart);

110

Immediately =

"Immediately"; // Start immediately.

OnMoving =

115 "OnMoving"

"ObjectID" ObjectID:Number; // Start when object ID ←֓

starts moving.

OnEnteringPolygon =

"OnEnteringPolygon"

120 "ObjectID" ObjectID:Number // Start when object ID ←֓

enters the polygon defined by at least four vertices.

Vertex2

Vertex2

Vertex2

Vertex2+;

125

Stop = "Stop"; // Stop immediately.

ReturnToStart = "ReturnToStart"; // Find a route to the ←֓

start point and return.

130 WarpToStart = "WarpToStart";// "Warp" to the start point.

PointID = PointID:FQID; // Layer-ID . Road-ID . Lane-ID . ←֓

{Point|Function}-ID.

}

Listing A.2: MontiCore grammar for dynamic surroundings.
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Agile Model Based Software Engineering
Agility and modeling in the same project? This question was raised in [Rum04]: “Using an executable, yet
abstract and multi-view modeling language for modeling, designing and programming still allows to use
an agile development process.” Modeling will be used in development projects much more, if the benefits
become evident early, e.g with executable UML [Rum02] and tests [Rum03]. In [GKRS06], for example,
we concentrate on the integration of models and ordinary programming code. In [Rum12] and [Rum11],
the UML/P, a variant of the UML especially designed for programming, refactoring and evolution, is
defined. The language workbench MontiCore [GKR+06] is used to realize the UML/P [Sch12]. Links
to further research, e.g., include a general discussion of how to manage and evolve models [LRSS10], a
precise definition for model composition as well as model languages [HKR+09] and refactoring in various
modeling and programming languages [PR03]. In [FHR08] we describe a set of general requirements for
model quality. Finally [KRV06] discusses the additional roles and activities necessary in a DSL-based
software development project.

Generative Software Engineering
The UML/P language family [Rum12, Rum11] is a simplified and semantically sound derivate of the
UML designed for product and test code generation. [Sch12] describes a flexible generator for the UML/P
based on the MontiCore language workbench [KRV10, GKR+06]. In [KRV06], we discuss additional
roles necessary in a model-based software development project. In [GKRS06] we discuss mechanisms
to keep generated and handwritten code separated. In [Wei12] we show how this looks like and how
to systematically derive a transformation language in concrete syntax. To understand the implications
of executability for UML, we discuss needs and advantages of executable modeling with UML in agile
projects in [Rum04], how to apply UML for testing in [Rum03] and the advantages and perils of using
modeling languages for programming in [Rum02].

Unified Modeling Language (UML)
Many of our contributions build on UML/P described in the two books [Rum11] and [Rum12] are im-
plemented in [Sch12]. Semantic variation points of the UML are discussed in [GR11]. We discuss formal
semantics for UML [BHP+98] and describe UML semantics using the “System Model” [BCGR09a],
[BCGR09b], [BCR07b] and [BCR07a]. Semantic variation points have, e.g., been applied to define class
diagram semantics [CGR08]. A precisely defined semantics for variations is applied, when checking va-
riants of class diagrams [MRR11c] and objects diagrams [MRR11d] or the consistency of both kinds of
diagrams [MRR11e]. We also apply these concepts to activity diagrams (ADs) [MRR11b] which allows
us to check for semantic differences of activity diagrams [MRR11a]. We also discuss how to ensure and
identify model quality [FHR08], how models, views and the system under development correlate to each
other [BGH+98] and how to use modeling in agile development projects [Rum04], [Rum02] The question
how to adapt and extend the UML in discussed in [PFR02] on product line annotations for UML and to
more general discussions and insights on how to use meta-modeling for defining and adapting the UML
[EFLR99], [SRVK10].

Domain Specific Languages (DSLs)
Computer science is about languages. Domain Specific Languages (DSLs) are better to use, but need
appropriate tooling. The MontiCore language workbench [GKR+06], [KRV10], [Kra10] describes an in-
tegrated abstract and concrete syntax format [KRV07b] for easy development. New languages and tools
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can be defined in modular forms [KRV08, Völ11] and can, thus, easily be reused. [Wei12] presents a tool
that allows to create transformation rules tailored to an underlying DSL. Variability in DSL definitions
has been examined in [GR11]. A successful application has been carried out in the Air Traffic Manage-
ment domain [ZPK+11]. Based on the concepts described above, meta modeling, model analyses and
model evolution have been examined in [LRSS10] and [SRVK10]. DSL quality [FHR08], instructions
for defining views [GHK+07], guidelines to define DSLs [KKP+09] and Eclipse-based tooling for DSLs
[KRV07a] complete the collection.

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals, streams of
telephone or video data, method invocation, or data structures passed between software services. We use
streams, statemachines and components [BR07] as well as expressive forms of composition and refi-
nement [PR99] for semantics. Furthermore, we built a concrete tooling infrastructure called MontiArc
[HRR12] for architecture design and extensions for states [RRW13]. MontiArc was extended to des-
cribe variability [HRR+11] using deltas [HRRS11] and evolution on deltas [HRRS12]. [GHK+07] and
[GHK+08] close the gap between the requirements and the logical architecture and [GKPR08] extends
it to model variants. Co-evolution of architecture is discussed in [MMR10] and a modeling technique to
describe dynamic architectures is shown in [HRR98].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling. The me-
chanisms for distributed systems are shown in [BR07] and algebraically underpinned in [HKR+07]. Se-
mantic and methodical aspects of model composition [KRV08] led to the language workbench MontiCore
[KRV10] that can even develop modeling tools in a compositional form. A set of DSL design guidelines
incorporates reuse through this form of composition [KKP+09]. [Völ11] examines the composition of
context conditions respectively the underlying infrastructure of the symbol table. Modular editor genera-
tion is discussed in [KRV07a].

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and detailedness
is discussed in [HR04]. We defined a semantic domain called “System Model” by using mathematical
theory. [RKB95, BHP+98] and [GKR96, KRB96]. An extended version especially suited for the UML
is given in [BCGR09b] and in [BCGR09a] its rationale is discussed. [BCR07a, BCR07b] contain detai-
led versions that are applied on class diagrams in [CGR08]. [MRR11a, MRR11b] encode a part of the
semantics to handle semantic differences of activity diagrams and [MRR11e] compares class and object
diagrams with regard to their semantics. In [BR07], a simplified mathematical model for distributed sys-
tems based on black-box behaviors of components is defined. Meta-modeling semantics is discussed in
[EFLR99]. [BGH+97] discusses potential modeling languages for the description of an exemplary object
interaction, today called sequence diagram. [BGH+98] discusses the relationships between a system, a
view and a complete model in the context of the UML. [GR11] and [CGR09] discuss general require-
ments for a framework to describe semantic and syntactic variations of a modeling language. We apply
these on class and object diagrams in [MRR11e] as well as activity diagrams in [GRR10]. [Rum12] em-
bodies the semantics in a variety of code and test case generation, refactoring and evolution techniques.
[LRSS10] discusses evolution and related issues in greater detail.
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Evolution & Transformation of Models
Models are the central artifact in model driven development, but as code they are not initially correct
and need to be changed, evolved and maintained over time. Model transformation is therefore essential
to effectively deal with models. Many concrete model transformation problems are discussed: evolution
[LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], refactoring [Rum12, PR03], translating
models from one language into another [MRR11c, Rum12] and systematic model transformation langua-
ge development [Wei12]. [Rum04] describes how comprehensible sets of such transformations support
software development, maintenance and [LRSS10] technologies for evolving models within a language
and across languages and linking architecture descriptions to their implementation [MMR10]. Automaton
refinement is discussed in [PR94, KPR97], refining pipe-and-filter architectures is explained in [PR99].
Refactorings of models are important for model driven engineering as discussed in [PR03, Rum12].
Translation between languages, e.g., from class diagrams into Alloy [MRR11c] allows for comparing
class diagrams on a semantic level.

Variability & Software Product Lines (SPL)
Many products exist in various variants, for example cars or mobile phones, where one manufacturer
develops several products with many similarities but also many variations. Variants are managed in a
Software Product Line (SPL) that captures the commonalities as well as the differences. Feature dia-
grams describe variability in a top down fashion, e.g., in the automotive domain [GHK+08] using 150%
models. Reducing overhead and associated costs is discussed in [GRJA12]. Delta modeling is a bottom
up technique starting with a small, but complete base variant. Features are added (that sometimes also
modify the core). A set of applicable deltas configures a system variant. We discuss the application of
this technique to Delta-MontiArc [HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can
not only describe spacial variability but also temporal variability which allows for using them for soft-
ware product line evolution [HRRS12]. [HHK+13] describes an approach to systematically derive delta
languages. We also apply variability to modeling languages in order to describe syntactic and semantic
variation points, e.g., in UML for frameworks [PFR02]. And we specified a systematic way to define va-
riants of modeling languages [CGR09] and applied this as a semantic language refinement on Statecharts
in [GR11].

Cyber-Physical Systems (CPS)
Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physical en-
tities. Contributions for individual aspects range from requirements [GRJA12], complete product lines
[HRRW12], the improvement of engineering for distributed automotive systems [HRR12] and autono-
mous driving [BR12a] to processes and tools to improve the development as well as the product itself
[BBR07]. In the aviation domain, a modeling language for uncertainty and safety events was develo-
ped, which is of interest for the European airspace [ZPK+11]. A component and connector architecture
description language suitable for the specific challenges in robotics is discussed in [RRW13]. Monito-
ring for smart and energy efficient buildings is developed as Energy Navigator toolset [KPR12, FPPR12,
KLPR12].

State Based Modeling (Automata)
Today, many computer science theories are based on state machines in various forms including Petri nets
or temporal logics. Software engineering is particularly interested in using state machines for modeling
systems. Our contributions to state based modeling can currently be split into three parts: (1) under-
standing how to model object-oriented and distributed software using statemachines resp. Statecharts
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[GKR96, BCR07b, BCGR09b, BCGR09a], (2) understanding the refinement [PR94, RK96, Rum96] and
composition [GR95] of statemachines, and (3) applying statemachines for modeling systems. In [Rum96]
constructive transformation rules for refining automata behavior are given and proven correct. This theory
is applied to features in [KPR97]. Statemachines are embedded in the composition and behavioral speci-
fications concepts of Focus [BR07]. We apply these techniques, e.g., in MontiArcAutomaton [THR+13]
as well as in building management systems [FLP+11].

Robotics

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an inher-
ent heterogeneity of involved domains, relevant platforms, and challenges. The engineering of robotics
applications requires composition and interaction of diverse distributed software modules. This usual-
ly leads to complex monolithic software solutions hardly reusable, maintainable, and comprehensible,
which hampers broad propagation of robotics applications. The MontiArcAutomaton language [RRW12]
extends ADL MontiArc and integrates various implemented behavior modeling languages using Monti-
Core [RRW13] that perfectly fits Robotic architectural modelling. The LightRocks [THR+13] framework
allows robotics experts and laymen to model robotic assembly tasks.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication systems
as well as advanced active and passive safety-systems result in complex embedded systems. As these
feature-driven subsystems may be arbitrarily combined by the customer, a huge amount of distinct va-
riants needs to be managed, developed and tested. A consistent requirements management that connects
requirements with features in all phases of the development for the automotive domain is described
in [GRJA12]. The conceptual gap between requirements and the logical architecture of a car is clo-
sed in [GHK+07, GHK+08]. [HKM+13] describes a tool for delta modeling for Simulink [HKM+13].
[HRRW12] discusses means to extract a well-defined Software Product Line from a set of copy and
paste variants. Quality assurance, especially of safety-related functions, is a highly important task. In
the Carolo project [BR12a, BR12b], we developed a rigorous test infrastructure for intelligent, sensor-
based functions through fully-automatic simulation [BBR07]. This technique allows a dramatic speedup
in development and evolution of autonomous car functionality, and thus, enables us to develop software
in an agile way [BR12a]. [MMR10] gives an overview of the current state-of-the-art in development and
evolution on a more general level by considering any kind of critical system that relies on architectural de-
scriptions. As tooling infrastructure, the SSElab storage, versioning and management services [HKR12]
are essential for many projects.

Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2 emissions is
an important challenge. Thus, energy management in buildings as well as in neighbourhoods becomes
equally important to efficiently use the generated energy. Within several research projects, we developed
methodologies and solutions for integrating heterogeneous systems at different scales. During the design
phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12, KPR12] is used for tech-
nical specification of building services already. We adapted the well-known concept of statemachines to
be able to describe different states of a facility and to validate it against the monitored values [FLP+11].
We show how our data model, the constraint rules and the evaluation approach to compare sensor data
can be applied [KLPR12].
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Cloud Computing & Enterprise Information Systems
The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-based
application and service architectures with high complexity, criticality and new application domains. It
promises to enable new business models, to lower the barrier for web-based innovations and to incre-
ase the efficiency and cost-effectiveness of web development. Application classes like Cyber-Physical
Systems [KRS12], Big Data, App and Service Ecosystems bring attention to aspects like responsiveness,
privacy and open platforms. Regardless of the application domain, developers of such systems are in need
for robust methods and efficient, easy-to-use languages and tools. We tackle these challenges by perusing
a model-based, generative approach [PR13]. The core of this approach are different modeling languages
that describe different aspects of a cloud-based system in a concise and technology-agnostic way. Soft-
ware architecture and infrastructure models describe the system and its physical distribution on a large
scale. We apply cloud technology for the services we develop, e.g., the SSELab [HKR12] and the Energy
Navigator [FPPR12, KPR12] but also for our tool demonstrators and our own development platforms.
New services, e.g.,c collecting data from temperature, cars etc. are easily developed.
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