
Management of Guided and Unguided Code Generator
Customizations by Using a Symbol Table

Pedram Mir Seyed Nazari Alexander Roth Bernhard Rumpe
Software Engineering

RWTH Aachen University, Germany
{nazari,roth,rumpe}@se-rwth.de

Abstract
An essential part of model-driven development to system-
atically generate concrete source code from abstract input
models are code generators. Regardless of their importance,
abstract input models are not always suited to describe the
output in a concise and precise way. Hence, customizations
and adaptations of the code generator and the generated
products are needed. Existing approaches mainly regard the
code generation process as their primary concern and re-
quire the set up of an additional infrastructure in order to
manage the customizations and adaptations. Thus, the goal
of this paper is to propose an extension for template-based
code generators to enable customizations and adaptations
within a code generator that also respects referential integrity
and reuses existing data structures for efficient management.
First, we present a classification of common code generator
customization and adaptation approaches (guided and un-
guided approaches) to identify the main concepts and ele-
ments of the approaches. Then, using the derived informa-
tion relevant to manage guided and unguided approaches,
we reuse the existing data structure (symbol table) to man-
age the customizations and adaptations. We achieve this by
associating all relevant information directly with a template.
This approach enables dynamic management of customiza-
tions and adaptations at run-time of the code generator and
allow for statically checking before code generation. Our
main contribution is an approach to combine guided and un-
guided customization approaches with a symbol table for ef-
ficient management.

Categories and Subject Descriptors D.2.11 [Software En-
gineering]: Software Architectures —Domain-specific ar-
chitectures

Keywords Code Generator Adaptation, Symbol Table,
Template-based Code Generation

1. Introduction
In order to systematically generate source code in a model-
driven development (MDD) environment, code generators
are essential. In general, a generator is a software system
that generates a concrete implementation from an abstract
input model and consists of a front-end and a back-end [12].
While the front-end is concerned with language processing
to create an abstract syntax tree and a symbol table, the back-
end is responsible to systematically generate code from these
abstract representations of the input model.

Even though a code generator is of high importance and
full code generation is a goal of MDD, which should be
achieved by providing multiple abstract models for each
part of the generated system, abstract models are not always
suited to describe the output in a concise and precise way.
For instance, algorithms usually cannot be described in a
more abstract and easier form than the implementation of
those algorithms itself. Hence, it is an intrinsic property of
a good code generator to be able adapt either the code gen-
erator itself or the generated product. An overview of ex-
isting approaches for managing variability and customiza-
tions of code generators [3, 12, 13] shows that their pri-
mary focus is on the whole code generation process. Cus-
tomizations and adaptations are either handled before or af-
ter generation-time (i.e., run-time of the code generator), e.g.
aspect-oriented code generation [8]. Within a code generator
such concerns are barely addressed by e.g. Preprocessors [3]
and aspect-oriented programming [14]. Hence, referential
integrity, i.e., checking if the referenced customization ex-
ists, is not ensured.

Thus, in this paper we propose an approach to manage
customizations and adaptations of code generators explicitly,
statically, and dynamically at generation-time by employing
a symbol table. Note that we explicitly neglect customiza-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

DSM’15, October 27, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3903-2/15/10...$15.00

http://dx.doi.org/10.1145/2846696.2846702

37
[MSNRR15] P. Mir Seyed Nazari, A. Roth, B. Rumpe:
Management of Guided and Unguided Code Generator Customizations by Using a Symbol Table.
In: Domain-Specific Modeling Workshop (DSM’15), pp. 37–42. ACM, 2015.
www.se-rwth.de/publications

tions of the input model and only regard customizations and
adaptations within the code generator, because further re-
search is required to address related challenges, e.g. How
can modular languages be managed in code generators?
How can language customizations be handled by the code
generator?. We first restrict existing guided and unguided
approaches to their basic elements in order provide required
extensions to template languages. Guided customization ap-
proaches are approaches that explicitly define hook points
that can be extended, but they do not allow for further cus-
tomizations except for the hook points. In contrast, unguided
approaches do not restrict customizations and adaptations.
However, with this freedom of customization a high proba-
bility of failure is introduced. Having such an understanding
of customizations, we use the symbol table as a data struc-
ture to explicitly and efficiently manage related informa-
tion. For guided approaches, each hook point is stored in the
symbol table. For unguided approaches, template replace-
ments are stored. During generation-time the code generator
can dynamically access this information. Whenever a hook
point or template changes the changes directly affect the cus-
tomizations. Moreover, after language processing, referen-
tial integrity can be ensured. In other words, the defined and
configured customizations can be statically checked.

Hence, we first provide an understanding of guided and
unguided customization approaches (Sect. 2) in order to ex-
tract their basic elements. Then, we identify static and dy-
namic checking as a major requirement in Sect. 3. After-
wards, we elaborate on how to use the symbol table for ef-
ficient management of guided and unguided customizations
in Sect. 4. Finally, we concluded our paper in Sect. 5.

2. Guided and Unguided Customization of
Code Generators

In a model-driven environment, where code generators gen-
erate source code artifacts, adapting a generated output
means that the changes only affect one single artifact. In-
stead, adaptations of the code generator may affect all gen-
erated artifacts. For template-based code generators, adap-
tations mean changes to the templates. Adding functionality
by template adaptations can, however, be challenging be-
cause the developer requires knowledge of the template, the
languages (target and the generator language), and the archi-
tectures (generator and generated artifact architecture).

We classify customization and adaptation approaches of
a code generator into two categories based on the overview
of common approaches [5]. This classification aims at giving
an understanding of the main characteristics of common cus-
tomization and adaptation approaches. Completeness of cat-
egorizing all available approaches and their characteristics
is not targeted. Guided approaches focus on explicit declara-
tion of spots that can be extended. At the same time guided
approaches explicitly forbid all other ways of customiza-
tions. For instance, variation points [2, 11] are a guided way

that are defined at the design time of a code generator and
later used for customizations. In the remainder of this paper,
we refer to template languages that provide these extensions
as extended template languages.

A major disadvantage is that during the evolution of a
code generator variation points may change. As a conse-
quence, the overall code generator needs to be adapted. This
challenge can be seen as a variant of to the “fragile base class
problem” [9]. In contrast, unguided approaches are less re-
strictive but are more error prone, as they allow to change ev-
ery piece of the code generator and the generated code with-
out explicitly denoting the elements that can be customized.

Subsequently, we elaborate on each type of customiza-
tions and present an abstract description of their realization.

2.1 Guided Customization
To avoid the complex and tedious task of adapting templates
directly, hook points can be defined in templates. A hook
point provides an approach to extend a template at a prede-
fined spot. It is a place in a template that is planned for adap-
tation. Typically, such hook points are set during design time
of a code generator and may be changed during the evolution
of the code generator. Existing template languages provide
such concepts, e.g. Xpand [4].

The basic elements of guided approaches are a way to de-
fine a hook point, and a way to bind values to a hook point.
For template-based code generators each template may de-
fine multiple hook points, which are identified by a unique
qualified name that consists of the path to the template, i.e.,
package name, the template name, and the hook point name.
During configuration of the code generator hook points are
bound to either one or multiple values. Each value can either
be a simple string or another template. The values - in the
case of a template it is the result of evaluating the template -
are inserted at the spot the hook point is defined.

The major benefits of this approach are the guided way of
customization, which shrinks the probability of errors, and
the need to only regard a hook point not the overall code
generator architecture. However, the lack of customizability
is its main disadvantage, because each hook point needs to
be carefully preplanned. Moreover, the result of a hook point
may be syntactically invalid, since each template typically
produces a string that conforms to a non-terminal of the
target language.

2.2 Unguided Customization
Unguided approaches provide more freedom in adapting a
code generator. The simplest approach is to directly adapt
a code generator by e.g. adapting a template. Since tem-
plates build a complex structure, modifying them is hard.
It requires a solid understanding of the template architecture
and the template itself. This may also be challenging since
the template sources may not be at hand.

Based on the knowledge of only the architecture, the ba-
sic concept of the approaches are the overriding of elements

38

of the architecture. In the case of a template-based code gen-
erator, these elements are templates. The overridden tem-
plate will not be used in the entire generation process any-
more. A similar approach is provided by object-oriented pro-
gramming languages in the form of overriding classes in
generated code. An extension to template overriding is to
add a new template before or after an existing template. This
is similar to aspect-oriented programming [6]. Each time the
existing template is executed, the added templates are either
executed before or after.

Another extension that can be found for template-based
code generators are global variables. Once a global variable
is defined, it can be accessed from any template of the code
generator. Such a value is a string and is used to exchange
information between templates, e.g. names.

Certainly guided and unguided approaches do have com-
monalities. For instance, extending a template at the begin-
ning of its execution can be seen as a generic hook point at
each template start. The same holds true for extensions at the
end of a template execution. Overriding a template is similar
to point at the call of a template. It can also mimic extension
by defining a new template, add an explicit hook point at the
beginning and the end, and call the original template.

The flexibility introduced by this approach is dangerous
as no type check ensures correctness of the resulting code.
Only compilers will detect syntax errors. Clearly, code gen-
erators cannot prevent or detect such errors, but such cus-
tomizations increase the potential of syntax errors drasti-
cally, as every adaptation is possible. Additionally, when
overriding templates, a template may be in use elsewhere.
This may cause side effects.

3. Requirements for a Data Structure to
Manage Customizations and Challenges

Even though guided and unguided customization approaches
for template-based code generators introduce adaptability,
they also come with several challenges, which we subse-
quently explain in greater detail with the help of an example.

T1

T2 T3

T4

calls template
inserts a value
to a spot in T3

T5

T3 is replaced by T5

Figure 1. Example of a template architecture with template
replacements and hook points.

Assuming the template architecture as shown in Fig. 1
to be given. When a code generator realizing this template
architecture is started, the root template T1 is called. This
template then calls two other templates (T2 and T3). Finally,

T2 calls T4, which then calls T3 again. Furthermore, we
assume that T2 adds some content to a hook point defined
in T3 but T3 is replaced by T5 at generation-time, i.e., run-
time of the code generator. In this situation two challenges
are present.

The first challenge when realizing guided and unguided
customizations in template-based code generators is static
checking. For example, when a hook point is defined within
a template and a value is bound, the hook point’s name may
change. In order to prevent resulting compilation errors of
the generated code and make this error visible as soon as
possible static checking of hook points and template replace-
ments needs to be addressed. With existing mechanisms of
current template languages, this is not feasible. To realize
static checking an additional infrastructure is required.

The second challenge is to manage the template replace-
ments and hook points dynamically at generation-time. In
particular, while this information is defined statically, the
values are accessed dynamically and may change during ex-
ecution of the code generator. As most template languages
provide global variables, they can be used to realize such be-
havior. A major disadvantage of this approach is that global
variables are managed locally by one data structure and,
thus, the information is not stored where it belongs to, i.e.,
at the template. Consequently, a mapping of template to dy-
namic information (template replacement and hook point
values) is required.

In the remainder of this section, we identify further re-
quirements for a data structure to efficiently manage cus-
tomizations.

3.1 Data Structure Requirements
In order to efficiently manage and manipulate information
related to customizations, an adequate structure is needed.
In the following, we specify the requirements for a such a
structure by the example of two simplified templates.

1 ${defineHP ("HP1")}
2 ${defineHP ("HP2")}
3 ${setGV("aGV", "aVal")}
4 ...

Listing 1. Template p.T1 contains two hook point
definitions and a global variable.

1 ${defineHP ("HP1")}
2 ${bindHPString ("p.T1.HP1", "value of hp"}
3 ${replace ("q.T3", "p.T1")}
4 ...

Listing 2. Template k.T2 defines a hook point, binds a
string value, and replaces a template.

Requirements
Lst. 1 and Lst. 2 demonstrate some syntactical usages of the
concepts introduced in Sect. 2. The first two statements of

39

template T1 in Lst. 1 define the hook points HP1 and HP2.
These two hook points are related to T1, but are bound by
other templates. Thus, the first requirement is to manage
template specific information that is defined within that
template and make it accessible (from outside) (RQ1).

Furthermore, information specific to a certain template
can also be defined within other templates. The replace

statement in Lst. 2 (l. 3), for example, replaces the template
q.T3 (not shown here) by p.T1. Although, syntactically
contained in k.T2, it is important to associate this informa-
tion with q.T3 instead of k.T2. The reason is that a template
that uses (e.g., includes) q.T3 might not know about k.T2.
Hence, it must obtain the information from q.T3. Following
from this, the second requirement is to manage template
specific information that is defined outside that template
and make it accessible (RQ2).

The last statement in Lst. 1 defines the global variable
aGV with the string value "aVal". This variable can be ac-
cessed and manipulated by any template. Other than the
previous cases, it is not associated with a specific tem-
plate. Hence, the third requirement is to manage global
values, i.e., template unspecific information, that can be
defined from within any template and make them acces-
sible (RQ3).

The requirements RQ1, RQ2, and RQ3 concern the def-
inition of information, i.e., definition of hook points, re-
placements, and global variables. However, these informa-
tion must also be retrieved. The bindHPString statement
in Lst. 2 (l. 2), for instance, refers to the hook point HP1
that is defined in p.T1. Analogously, the replace state-
ment (l. 2) refers to the templates q.T3 and q.T1 in order
to define a new replacement. From this, the fourth require-
ment follows: given a reference, the corresponding defi-
nition must be obtained in order to access its associated
information (RQ4). The definition can be in the same (intra-
model) or in another template (inter-model) as the referenc-
ing template (RQ4.1).

4. Symbol Table for Templates
A natural choice to tackle the challenges and requirements
described in Sect. 3 is a symbol table which is a data struc-
ture that maps names to essential model elements [1]. A
symbol table entry is called symbol (resp. symbol definition),
which contains all essential information about a model (el-
ement) and has a specific kind depending on the model (el-
ement) it denotes. The symbol table is built up during the
analysis phases [1].

In the extended template language as described in Sect. 2,
essential model elements are, among others, templates and
hook points. Hence, the symbol table can store correspond-
ing template and hook point symbols including their associ-
ated information (fulfills RQ1 and RQ2). A symbol table can
also manage built-in types that are accessible by all elements
[10]. This concept can be used for global variables described

in Sect. 2.2 (fulfills RQ3). Furthermore, given a name and
a (symbol) kind, the symbol table’s resolving mechanism
finds the corresponding symbol definition with all its associ-
ated information (fulfills RQ4). The resolving begins within
the referencing model and—if not found—it continues with
other models (fulfills RQ4.1). Furthermore, symbol tables
usually provide some more concepts, such as visibility and
import mechanisms [7].

TemplateST

*

TemplateSymbolGVSymbol

ReplacementSymbolHPSymbol

*

0..1*

CD

1

*

Value

0..1

StringValue TemplateValue

boundTo

replacedBy

1

value

Figure 2. Symbol table structure for templates.

Fig. 2 demonstrates a symbol table infrastructure for the
extended template language. TemplateST is the root of the
symbol table and, thus, contains directly or indirectly all
other elements (resp. symbols). A template is represented
by TemplateSymbol. Essential elements of a template
are hook points and replacements. Consequently, dedicated
symbols for each of them exist, namely HPSymbol and Re-

placementSymbol, which are stored in the TemplateSym-
bol. A HPSymbol can be bound to a Value, which is either
a plain string (represented by StringValue) or a template
(represented by TemplateValue). Note Value and its sub-
classes are no symbols themselves, but data associated with
HPSymbols and GVSymbols. A TemplateSymbol T option-
ally has a ReplacementSymbol stating by which other tem-
plate T is replaced. GVSymbols represent global variables.
Since template-unspecific, they are directly stored in the
TemplateST instead of in a TemplateSymbol. A global
variable has a StringValue.

4.1 Example
Fig. 3 shows an instance of the symbol table for the tem-
plates specified in Lst. 1 and Lst. 2. The root element of the
symbol table is an instance of TemplateST. T1:Template
Symbol represents the p.T1 template (see Lst. 1). The
two hook points HP1 and HP2 (ll. 1-2) are represented
by instances of HPSymbol. Since defined within p.T1,
T1:TemplateSymbol contains these two. The global vari-
able aGV is defined in p.T1, but directly stored in :Tem-

plateST, to be visible for every symbol.
Similarly, for the template k.T2 (see Lst. 2) a correspond-

ing TemplateSymbol exists and is stored in :TemplateST.
Also, HP1:HPSymbol is defined in T2:TemplateSymbol

40

:TemplateST

T1:TemplateSymbol

OD

replacedBy

HP1:HPSymbol

:StringValue

value = ʺvalue of hpʺ

boundTo

HP2:HPSymbol

T2:TemplateSymbol

HP1:HPSymbol

T3:TemplateSymbol

:ReplacementSymbol

aGV:GVSymbol

:StringValue

value = ʺaValʺ

value

Figure 3. Symbol table instance for Lst. 1 and Lst. 2.

(l. 1). In line 2 of Lst. 2, the HP1 hook point of T1 is bound to
the string "value of hp". This information concerns HP1,
hence, the corresponding symbol in T1:TemplateSymbol

stores this information, highlighted by a StringValue in-
stance linked with HP1:HPSymbol. That way, HP1:HPSymbol
manages an information that is associated with it, but de-
fined outside its own template. Similarly, the replacement in
line 3 is associated with the template q.T3, and thus, a Re-

placementSymbol is stored in the T3:TemplateSymbol,
not in T2:TemplateSymbol. Additionally, the replacement
symbol has a reference to T1:TemplateSymbol to indicate
that q.T3 is replaced by p.T1. The link is resolved by the
symbol table’s resolving mechanism.

4.2 Static vs. Dynamic Information in the Symbol
Table

The symbol table in Fig. 3 contains two different types of
information: static and dynamic information. Static informa-
tion can be obtained without executing the templates, e.g.,
during design-time, whereas dynamic information can only
be determined at generation-time. Hence, the static informa-
tion is extended during the runtime. In Fig. 2 and Fig. 3 dy-
namic elements are highlighted with dashed lines.

Static Information The templates as a whole are stored in
corresponding files. From this files the name of the tem-
plate can be obtained, e.g., the template p.T1 is stored
in p/T1.tmpl. Furthermore, all template-specific informa-
tion defined within that template are static. This applies to
hook points. Consequently, by solely analyzing the tem-
plate files, we can build up a symbol table containing all
TemplateSymbols and their HPSymbols. This enables con-
ducting static validations in order to check the referential in-
tegrity of the templates. Template k.T2, for example, refers
to the hook point p.T1.HP1 (l. 2, Lst. 2) and the templates
q.T3 and p.T1 (l. 3). The static information in the symbol
table enables to check whether the hook point and the two
templates exist. If, for instance, q.T3 does not exist, it will
be detected before code generation.

Dynamic Information A global variable, is considered to
be a dynamic information. The reason is that the template it
is defined in might not be processed during runtime. Hence,
storing the global variable in the symbol table during design-
time might be wrong. For example, p.T1 defines the global
variable aGV (l. 3, Lst. 1). However, this has no affect if p.T1
is not executed itself. Also, aGV’s value can be changed from
within any template. Similarly, the boundTo information of
a hook point can be set from any template. In Lst. 2 (l. 2),
the template k.T2 binds the hook point HP1 of p.T1 to the
string value "value of hp" and overwrites the previous
binding, if one existed. Finally, the replacement information
can be (re-)set from within any template, and therefore, is a
dynamic information, too.

5. Conclusion
While code generators are an integral part of model-driven
development, customization approaches for the code gen-
erator itself that allow for dynamic and static checking for
template-based code generators are currently lacking.

Hence, in this paper we extracted the basic elements of
existing customization approaches and provide a classifica-
tion and the basic elements of guided and unguided cus-
tomization approaches. For guided approaches hook point
definition and binding a value to a hook point are essen-
tial. For unguided approaches template replacements are
the basic concepts. With this understanding, we derive re-
quirements that have to be fulfilled for a data structure that
should manage the customizations. A data structure that nat-
urally fulfills these requirements is the symbol table. We
have employed the symbol table to manage guided and un-
guided customization. The approach shows that static and
dynamic checking of customizations become feasible. In
consequence, errors can be detected before execution of the
code generation rather than afterwards.

References
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, & Tools. Addison-Wesley series in
computer science. Pearson Addison-Wesley, 2007.

41

[2] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley Longman Publishing Co.,
Inc., February 2012. ISBN 0-201-70332-7.

[3] K. Czarnecki and U. W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley,
2000.

[4] Eclipse. Xpand / xtend reference, 2012. URL https://

eclipse.org/modeling/m2t/?project=xpand.

[5] T. Greifenberg, K. Hölldobler, C. Kolassa, M. Look, P. Mir
Seyed Nazari, K. Müller, A. Navarro Perez, D. Plotnikov,
D. Reiss, A. Roth, B. Rumpe, M. Schindler, and A. Wort-
mann. A Comparison of Mechanisms for Integrating Hand-
written and Generated Code for Object-Oriented Program-
ming Languages. In S. Hammoudi, L. F. Pires, P. Desfray,
and J. F. Filipe, editors, Proceedings of the 3rd International
Conference on Model-Driven Engineering and Software De-
velopment, pages 74–85, Angers, Loire Valley, France, Febru-
ary 2015. INSTICC and ESEO, SciTePress.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In M. Akit and S. Matsuoka, editors, ECOOP’97 Object-
Oriented Programming, volume 1241 of Lecture Notes in
Computer Science, pages 220–242. Springer Berlin Heidel-
berg, 1997. ISBN 978-3-540-63089-0.

[7] H. Krahn, B. Rumpe, and S. Völkel. MontiCore: a Frame-
work for Compositional Development of Domain Specific
Languages. Software Tools for Technology Transfer (STTT),
2010.

[8] A. Mehmood and D. N. A. Jawawi. Aspect-oriented model-
driven code generation: A systematic mapping study. Inf.
Softw. Technol., 55(2):395–411, 2013. ISSN 0950-5849.

[9] L. Mikhajlov and E. Sekerinski. A study of the fragile base
class problem. In Proceedings of the 12th European Confer-
ence on Object-Oriented Programming, ECCOP ’98, pages
355–382, London, UK, UK, 1998. Springer-Verlag. ISBN 3-
540-64737-6. URL http://dl.acm.org/citation.cfm?

id=646155.679700.

[10] T. Parr. Language Implementation Patterns: Create Your
Own Domain-specific and General Programming Languages.
Pragmatic Bookshelf Series. Pragmatic Bookshelf, 2010.

[11] K. Pohl, G. Böckle, and F. J. v. d. L. Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag New York, Inc., 2005. ISBN 3540243720.

[12] A. Roth and B. Rumpe. Towards Product Lining Model-
Driven Development Code Generators. In MODELSWARD
2015: Proceedings of the 3rd International Conference
on Model-Driven Engineering and Software Development,
Angers, France, 9-11 February 2015. SciTePress.

[13] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander,
L. C. L. Kats, E. Visser, and G. Wachsmuth. DSL Engineering
- Designing, Implementing and Using Domain-Specific Lan-
guages. dslbook.org, 2013.

[14] M. Völter. OpenArchitectureWare 4.1 Using AOP in tem-
plates. http://www.openarchitectureware.org/ pub/documen-
tation/4.1/35 templateAOP.pdf, 2006.

42

https://eclipse.org/modeling/m2t/?project=xpand
https://eclipse.org/modeling/m2t/?project=xpand
http://dl.acm.org/citation.cfm?id=646155.679700
http://dl.acm.org/citation.cfm?id=646155.679700

	Introduction
	Guided and Unguided Customization of Code Generators
	Guided Customization
	Unguided Customization

	Requirements for a Data Structure to Manage Customizations and Challenges
	Data Structure Requirements

	Symbol Table for Templates
	Example
	Static vs. Dynamic Information in the Symbol Table

	Conclusion

