
Integration of Handwritten and Generated
Object-Oriented Code

Timo Greifenberg1, Katrin Hölldobler1, Carsten Kolassa1, Markus Look1,
Pedram Mir Seyed Nazari1, Klaus Müller1(B), Antonio Navarro Perez1,
Dimitri Plotnikov1, Dirk Reiss2, Alexander Roth1, Bernhard Rumpe1,

Martin Schindler1, and Andreas Wortmann1

1 Software Engineering, RWTH Aachen University, Aachen, Germany
{greifenberg,hoelldobler,kolassa,look,nazari,mueller,

perez,plotnikov,roth,rumpe,schindler,wortmann}@se-rwth.de
2 Institute for Building Services and Energy Design, TU Braunschweig,

Braunschweig, Germany
reiss@sse-tubs.de

Abstract. In many development projects models are core artifacts used
to generate concrete implementations from them. However, for many
systems it is impossible or not useful to generate the complete soft-
ware system from models alone. Hence, developers need mechanisms for
integrating generated and handwritten code. Applying such mechanisms
without considering their effects can cause issues in projects, where model
and code artifacts are essential. Thus, a sound approach for the integra-
tion of both forms of code is needed.

In this paper, we provide an overview of mechanisms for integrating
handwritten and generated object-oriented code. To compare these mech-
anisms, we define and apply a set of criteria. The results are intended to
help model-driven development (MDD) tool developers in choosing an
appropriate integration mechanism. In this extended version, we addi-
tionally discuss essential integration aspects including the protection of
generated code and elaborate on how to use action languages to extend
generated code.

1 Introduction

The vision to create complex software systems from abstract models by sys-
tematically transforming these into concrete implementations [1] is pursued by
model-driven development (MDD) [2]. The prevailing conjecture, however, is
that deriving a non-trivial, complete implementation from models alone is not
feasible [3]. Thus, current MDD techniques require tool developers to integrate
generated and handwritten code. Various mechanisms can be used to perform
this code integration. However, there is no ultimate integration mechanism that
should always be used. Instead, it depends on the context in which this code inte-
gration has to be carried out and on the concrete requirements which integration
mechanisms are best suited to be applied.

K. Hölldobler is supported by the DFG GK/1298 AlgoSyn.
c© Springer International Publishing Switzerland 2015
P. Desfray et al. (Eds.): MODELSWARD 2015, CCIS 580, pp. 112–132, 2015.
DOI: 10.1007/978-3-319-27869-8_7

mueller@se-rwth.de

[GHK+15a] T. Greifenberg, K. Hölldobler, C. Kolassa, M. Look, P. Mir Seyed Nazari, K. Müller,
A. Navarro Perez, D. Plotnikov, D. Reiß, A. Roth, B. Rumpe, M. Schindler, A. Wortmann:
Integration of Handwritten and Generated Object-Oriented Code.
In: Model-Driven Engineering and Software Development Conference (MODELSWARD’15), CCIS 580,
pp. 112–132. Springer, 2015.
www.se-rwth.de/publications

Integration of Handwritten and Generated Object-Oriented Code 113

We examined existing mechanisms to integrate handwritten and generated
object-oriented code to support MDD tool developers in selecting integration
mechanisms. Additionally, we created a set of criteria focusing on different prop-
erties of code integration mechanisms to assess and compare these mechanisms.
The presented criteria are based on a decade of experiences in object-oriented
software engineering and MDD research [4,5], code generator development and
code integration research [6,7], and experiences with MDD processes within var-
ious domains including automotive [8], cloud computing [9], robotics [10], and
smart buildings [11].

We introduce eight handwritten code integration mechanisms and evaluate
each with respect to our criteria. Their strengths and weaknesses are shown in
the evaluation results. By means of this, we seek to increase the comparability
between the integration mechanisms. In particular, this overview is intended to
be used by MDD tool developers to find a proper integration mechanism on a
case-by-case basis.

The list of integration mechanisms and evaluation criteria presented in this
paper does not claim to be complete. However, if further integration mechanisms
need to be compared or the mechanisms need to be evaluated with respect to
additional evaluation criteria, this paper can be used as a basis easily.

In summary, the contributions of this paper are:

– A list of evaluation criteria for code integration mechanisms.
– A collection of mechanisms to integrate generated and handwritten code.
– An evaluation of the integration mechanisms based on the list of evaluation

criteria.

In previous work, we have already presented different mechanisms to integrate
handwritten and generated code for object-oriented programming languages [12].
This article is an extension of our previous work. It presents action languages
as a further approach to customize generated code in addition to integrating
handwritten code. Additionally, we provide an extended discussion on protecting
generated code from being overridden.

The remainder of this article is structured as follows. We begin by introducing
criteria to assess the code integration mechanisms (Sect. 2). The mechanisms are
separated into mechanisms based on specific concepts in programming languages
(Sect. 3) and mechanisms free of such requirements (Sect. 4). Subsequently, we
summarize and discuss the evaluation results (Sect. 5). After that we elaborate on
related work (Sect. 6) before we briefly present action languages as an alternative
to extend generated code. Finally, we conclude this contribution (Sect. 8).

2 Evaluation Criteria

The following criteria concern different properties of integration mechanisms
and aim at helping developers in selecting a suitable mechanism. These crite-
ria are based on existing literature [13,14], best practices in software develop-
ment [15,16], and our experience [4–11]. This list does not claim to cover all

mueller@se-rwth.de

114 T. Greifenberg et al.

aspects of handwritten code integration. Nonetheless, it can be used as an initial
list of criteria which can be adapted to fit personal needs. The presented crite-
ria are not weighted on purpose since a weighting is highly subjective and also
tailored to an application scenario, which is not intended.

C1: Separation of Generated and Handwritten Code. - Can generated
and handwritten code be separated into different files?

Separation of concerns is an essential design practice in software develop-
ment [15] and has been proposed as a criterion to evaluate integration mech-
anisms for handwritten code by [13,14]. One crucial benefit of separating
generated and handwritten code into different files is that it can be ensured
that the generator does not overwrite handwritten code. In case of mixing gen-
erated and handwritten code in one file, the handwritten code might not always
be preserved.

C2: Support for Overriding Generated Parts. - Can developers add hand-
written parts that are used instead of particular generated parts?

Depending on the developer’s requirements it can be necessary to adapt
particular parts of the generated functionality. This can be done by integrating
handwritten code that refines these parts. A benefit of such handwritten code
refinements is that the code generator does not have to be changed to fit different
requirements.

C3: Extendability of the Generated Interfaces. - Can the generated inter-
faces be extended with handwritten methods?

Hiding implementation details is accepted as common practice in software
development [15,16]. Accordingly, we assume that functionality of the generated
system is provided to developers through dedicated generated interfaces and that
the system’s functionality is only accessed by using these. Obviously, these gen-
erated interfaces are oblivious to handwritten code. Consequently, the generated
interfaces need to be extended to allow access to handwritten functionality.

C4: Independence of Handwritten Code at Generation-time. - Is the
generator independent of the existence of handwritten code at generation-time?

In some handwritten code integration mechanisms the generated code needs
to be adapted if handwritten code is present. In this case the handwritten code
is processed by the generator and the generated code is adapted accordingly. For
instance, the handwritten code is merged into the generated code and one artifact
is produced. If this functionality is not provided by the generator framework, a
generator developer has to extend the generator with such functionality. This
additional effort might not be desired and can be avoided by choosing a generator
framework with support for handling handwritten code. However, then the choice
of an integration mechanism influences the choice of the generator framework.
This is not always feasible.

C5: Independence of Additional OOP Language Constructs. - Can the
integration mechanism be realized using only default OOP language constructs?

Some of the existing handwritten code integration mechanisms are tailored
to a particular type of OOP language that provides specific language constructs.

mueller@se-rwth.de

Integration of Handwritten and Generated Object-Oriented Code 115

Consequently, such integration mechanisms are restricted to generators that gen-
erate code in one of these languages. The benefit of handwritten integration
mechanisms using default OOP language constructs is that no additional tooling
is required and the generator is not tailored to a specific type of language. The
following language constructs are regarded as the default OOP language con-
structs in this work: (abstract) classes, inheritance, interfaces, object creation
facility and message-passing capability. Except for interfaces this understanding
complies with [17]. We are aware that not all OOP languages provide the con-
cept of interfaces but interfaces can be realized using classes with empty method
bodies and inheritance.

3 Integration Mechanisms Based on Language Concepts

In this section, we present a catalog of integration mechanisms that presup-
pose certain concepts in the target language, for instance, inheritance known
from object-oriented programming. Each presented mechanism is described and
evaluated with the following scenario:

Assume the input model for the code generator is an UML class diagram
(CD) containing the class Editor. As CDs do not model class behavior, imple-
mentations of Editor methods can be developed manually and the resulting
handwritten code needs to be integrated with the code generated for Editor.

The same problems arise whenever modeling languages do not support mod-
eling of all aspects of a system and these parts have to be developed manually.
The mechanisms presented in the remainder of this publication are not limited
to CDs and a particular type of code generation. We only use CDs to give an
illustrative example.

3.1 Generation Gap

The generation gap mechanism [13,18,19] assumes that an interface and a default
implementation are generated for each class in the input model. For instance,
the interface Editor and the default implementation EditorBaseImpl are gen-
erated for the class Editor. Manual extensions of specific methods or behavior
different from the default implementation are defined in the handwritten class
EditorImpl. Figure 1 depicts this pattern for the class EditorImpl. Please note,
that here and in the following «gc» denotes generated code and «hc» denotes
handwritten code.

Fig. 1. Generation gap pattern for the Editor example.

mueller@se-rwth.de

116 T. Greifenberg et al.

In this case, EditorImpl is the implementation that will be used by both the
generated code as well as manually written code that uses the interface Editor.

Please note, that the generation gap mechanism requires developers to create
the handwritten class, no matter whether handwritten code is inserted into that
class or not. In projects in which handwritten extensions are rarely needed, this
leads to bloated projects with an unnecessary high number of artifacts.

Evaluation

C1: Separation of Generated and Handwritten Code. Fulfilled. This cri-
terion holds by definition of the pattern, as the handwritten code has to be
stored in separate classes.

C2: Support for Overriding Generated Parts. Fulfilled. The possibility to
override generated methods is a crucial feature of the pattern.

C3: Extendability of the Generated Interfaces. Unfulfilled. This approach
does not provide means to reflect added methods in the generated interface. The
extended generation gap mechanism (see Sect. 3.2) addresses this issue.

C4: Independence of Handwritten Code at Generation-time. Fulfilled.
Whether or what handwritten code exists does not influence the code generation
in any way.

C5: Independence of Additional OOP Language Constructs. Fulfilled.
This mechanism does not require additional OOP language constructs.

3.2 Extended Generation Gap

A mechanism that addresses two disadvantages of the basic generation gap mech-
anism (see Sect. 3.1) - the inability to extend the generated interface and the
necessity to create an implementation class - is the extended generation gap
mechanism, as shown in Fig. 2. Since this mechanism has been developed for our
particular needs, its name is not a well-known term in MDD.

Fig. 2. Extended generation gap pattern with an additional handwritten Interface.

The first disadvantage is addressed by allowing to add a handwritten interface
on top of the generated interface. As the generated interface Editor extends the
handwritten interface EditorBase, all methods added to EditorBase are also
available when accessing Editor. However, developers do not have to add this

mueller@se-rwth.de

Integration of Handwritten and Generated Object-Oriented Code 117

handwritten interface. Instead, the generator checks at generation-time whether
it exists. If it does exist, the generated interface will extend the handwritten
interface. Consequently, the generator needs to be executed again after adding
a handwritten interface to reflect this change in the generated code.

When a developer adds a handwritten interface, the handwritten implemen-
tation class (EditorImpl in Fig. 2) has to be provided as well. If no handwritten
interface is present, the generator generates a concrete class EditorBaseImpl by
default and an additional implementation class does not have to be added by
developers. In this way, developers are not forced to integrate their own imple-
mentation class. However, if a developer adds the handwritten class EditorImpl,
which has to extend the generated base class EditorBaseImpl, this class is used
in the generated code and EditorBaseImpl becomes abstract. This integration
of handwritten code requires the generator to be executed again, as it checks at
generation-time whether developers added their own implementation classes.

Other variations of the generation gap mechanism are possible. For instance,
assuming that a handwritten interface always exists. A detailed discussion is
neglected because the variations are very similar and, as shown in the example,
differ in technical details.

Evaluation

C1: Separation of Generated and Handwritten Code. Fulfilled. See
Sect. 3.1.

C2: Support for Overriding Generated Parts. Fulfilled. See Sect. 3.1.

C3: Extendability of the Generated Interfaces. Fulfilled. The API of the
generated class can be extended easily by adding a handwritten interface which
is extended by the generated interface. Thus, method signatures which are added
to the handwritten interface are also available in the generated one. The actual
implementations of these methods have to be added to the handwritten imple-
mentation class.

C4: Independence of Handwritten Code at Generation-time. Unfulfilled.
The generator has to check whether a handwritten interface or implementation
class was introduced, as this influences the structure of the generated code.

C5: Independence of Additional OOP Language Constructs. Fulfilled.
See Sect. 3.1.

3.3 Delegation

Delegation is a pattern of object composition in object-oriented programming. In
essence, the pattern consists of two objects taking the roles of one delegator and
one delegate, respectively. The delegator delegates parts of its functionality to
the delegate by invoking methods of the delegate. To this end, the delegate pro-
vides an interface declaring the method signatures that can be invoked. Figure 3
gives an overview of the objects and relationships involved. Here, Editor is the
delegator and EditorDelegateImpl is the delegate implementing the methods
defined in the EditorDelegate interface.

mueller@se-rwth.de

118 T. Greifenberg et al.

Fig. 3. Delegation pattern requires a delegator for regarding handwritten implemen-
tations.

The delegator is responsible for instantiating the delegate. EditorDelegate-
Impl is the implementation that will be used by both the generated code as well
as manually written code that uses the interface EditorDelegate in this case.

In essence, the purpose of delegation is to outsource functionality to a distinct
object with an explicit interface specific to this functionality. This purpose makes
delegation naturally applicable to the integration of handwritten and generated
code. The roles of the delegators are taken by generated classes while the roles
of the delegates are taken by handwritten classes. All functionality that cannot
be generated is delegated to the handwritten delegates. The delegate interfaces,
thus, are well-defined and distinct interfaces between generated and handwritten
code. It can be generic and handwritten or specific and generated. The choice
depends on whether the delegated functionality depends on the model or not. For
instance, to delegate the implementation of method signatures in class diagrams
to a delegate, it is appropriate to generate the delegate interface based on the
method signatures defined by the CD.

In general, delegation provides a higher degree of encapsulation and cohesion
compared to alternative patterns. Moreover, it avoids inheritance in handwritten
classes since delegates only have to implement an interface. In programming
languages without support for multiple inheritance delegation allows developers
to use inheritance with handwritten classes.

Evaluation

C1: Separation of Generated and Handwritten Code. Fulfilled. The pat-
tern separates generated and handwritten code by putting them into different
classes and interfaces.

C2: Support for Overriding Generated Parts. Unfulfilled. In this mech-
anism, only designated delegators can be implemented to provide handwritten
code. It is not possible to override other generated parts.

C3: Extendability of the Generated Interfaces. Unfulfilled. The generated
interface can be extended by subinterfaces and concrete delegators according for
the extended subinterface. However, the generated delegator is not aware of these
extensions.

C4: Independence of Handwritten Code at Generation-time. Fulfilled.
The existence of handwritten delegate classes does not influence the code
generation.

mueller@se-rwth.de

Integration of Handwritten and Generated Object-Oriented Code 119

C5: Independence of Additional OOP Language Constructs. Fulfilled.
The default OOP language constructs suffice to implement this mechanism.

Alternatives. The cardinalities of the delegation relationship are not necessarily
restricted. Thus, an implementation of the pattern may associate one delegator
with exactly one delegate, or one delegator with many delegates, or many dele-
gators with one delegate. The choice between these variants depends heavily on
whether the delegate is stateful or stateless. Stateless delegates can generally be
shared by many delegators and do not need to be instantiated repeatedly.

3.4 Include Mechanism

Include mechanisms are based on dedicated language constructs which allow to
define that a certain file should be included into another file at a specific point.
This idea can be easily used to integrate generated and handwritten files as
either a generated file includes handwritten files (see Fig. 4) at designated places
or vice versa. In general, the effect of using an include statement is equivalent
to injecting the content of the included file to the corresponding location in the
including file. Specific languages may offer include mechanisms with different
meanings, but this will not be discussed in the following as the focus is on the
general idea of include mechanisms.

By including handwritten files in generated files, the generator can define the
required structure of the files and developers merely need to introduce selected
handwritten files, which are included properly without the developer having to
worry about it. This is advantageous if developers should not be able to deviate
from this generated structure, as they can only provide the handwritten files
which are included. Thus, developers are guided in which files to provide. On
the other hand, if developers need more flexibility and should be able to deviate
from such a generated structure, including generated files in handwritten files
is more appropriate. This variant is, of course, accompanied by the risk that
developers forget to include the proper generated files at the proper places.

Fig. 4. The include mechanism adds include statements to the generated file to consider
handwritten artifacts.

Evaluation

C1: Separation of Generated and Handwritten Code. Fulfilled. No matter
whether generated files include handwritten files or vice versa, generated and
handwritten parts are separated into different files.

mueller@se-rwth.de

120 T. Greifenberg et al.

C2: Support for Overriding Generated Parts. Unfulfilled. It is not pos-
sible to integrate handwritten code which is used instead of generated code as
handwritten code can only be included and, therefore, added.

C3: Extendability of the Generated Interfaces. Conditionally fulfilled. To
fulfill this criterion, a programming language has to allow include statements
inside of interfaces to extend the signature. Even though we are not aware of a
language that supports this, the concept itself does not forbid it. Therefore this
criterion might be fulfilled, depending on the specific target language.

C4: Independence of Handwritten Code at Generation-time. Fulfilled.
The generation of the include functionality does not depend on the existence of
handwritten code.

C5: Independence of Additional OOP Language Constructs. Unfulfilled.
The mechanism requires include constructs which do not belong to the default
OOP language constructs.

3.5 Partial Classes

Partial classes facilitate splitting class implementations into several source code
files. These parts are merged in a pre-compilation phase. The result contains
the union of all methods, fields and super types of all its partial definitions.
In contrast to aspect-oriented programming (see Sect. 3.6), partial classes are
concerned with only one class rather than multiple. In Fig. 5 this approach is
illustrated.

The partial classes mechanism suits well for integrating handwritten and gen-
erated code. Each generated partial class can be extended by adding handwritten
code in its own partial class in a separate source file. The resulting generated
and handwritten code is integrated automatically by merging them. This merg-
ing can either be done by applying naming conventions, i.e., partial classes with
the same name are merged, or by explicit notations. How and which partial
classes are merged is defined by the used language.

The CD in Fig. 5 illustrates the partial class mechanism. In this case, the gen-
erated code is stored in the partial class EditorBaseImpl and the handwritten
code is stored in a separate partial class EditorBaseImpl.

Evaluation

C1: Separation of Generated and Handwritten Code. Fulfilled. The hand-
written and generated partial classes can be located in different source code files.

C2: Support for Overriding Generated Parts. Conditionally fulfilled. In
general, the partial classes mechanism does not forbid to override methods’
implementations. However, depending on the used programming language that
supports partial classes, this criterion may not be fulfilled.

C3: Extendability of the Generated Interfaces. Conditionally fulfilled.
The concept of the partial classes mechanism can be applied to interfaces, too.

mueller@se-rwth.de

Integration of Handwritten and Generated Object-Oriented Code 121

Fig. 5. Partial classes mechanism merges the handwritten and the generated imple-
mentation to one single artifact.

Thus, the additional method signatures can be added to the handwritten partial
interface which is merged with the generated partial interface. However, if a
realization of the partial class mechanism supports partial classes but not partial
interfaces, this criterion is not fulfilled.

C4: Independence of Handwritten Code at Generation-time. Fulfilled.
Handwritten code does not have to exist at generation-time, because its existence
does not influence the code generation process. Handwritten code only has to be
available when the pre-compiler merges the generated and handwritten code.

C5: Independence of Additional OOP Language Constructs. Unfulfilled.
This mechanism requires support for partial classes which is not regarded as a
default OOP language construct in this work.

3.6 Aspect-Oriented Programming

Aspect-oriented programming (AOP) [20] addresses crosscutting concerns - func-
tionality or features scattered across several classes causing duplication - by
encapsulating duplicated code in one place. Although integrating handwritten
code with generated code does not necessarily deal with crosscutting concerns,
AOP can be used for this integration [7]. One advantage in this context is that
the generated code does not need to offer a specific architecture to be extend-
able by handwritten code. Instead, the handwritten code is added by so called
aspects, as shown in Fig. 6.

An aspect reacts to a predefined event (pointcut) during the program exe-
cution. Such a predefined event can be, for instance, a method call of a specific
method in a specific class. The action that is executed when a pointcut is reached
is implemented in an advice. Such an advice can be executed before, after or
instead of the according event.

mueller@se-rwth.de

122 T. Greifenberg et al.

Fig. 6. Overview of an AOP integration mechanism for a part of a generated software
system.

The integration of handwritten code can be performed by implementing an
advice that is executed instead of, before or after a specific generated method.
All these cases, of course, require the generator to create at least a dummy
implementation of the corresponding method so that the handwritten advice
can be executed instead of that generated method.

Figure 6 illustrates the idea underlying the integration of handwritten code
using AOP. In this case, handwritten code is added to an advice in an aspect.
An aspect weaver then takes the instructions given in the aspect and produces
a combined artifact (e.g. a source code file) in which the advice implementation
is woven into the code of the generated classes. This means that the advice
instructions are introduced into the proper locations in the generated classes.
In the example given in Fig. 6, the implementation of a generated method in
EditorBaseImpl would be replaced by the advice implementation, if the aspect
contains one advice for one method.

Besides the additional overhead of weaving the aspects into the source code,
a major drawback of AOP is that it is more difficult to understand the program
flow as it is influenced by aspects. Moreover, refactorings in the source code may
lead to invalid aspects, known as the fragile pointcut problem [21].

Evaluation

C1: Separation of Generated and Handwritten Code. Fulfilled. AOP
offers a clear separation of the handwritten and the generated code. The gener-
ated code is not aware of the aspects, which contain the handwritten code and
which are stored in separate files.

C2: Support for Overriding Generated Parts. Fulfilled. As described
above, an advice can be implemented such that it is called instead of a par-
ticular event in the generated class. By means of this, the execution of a gener-
ated method can be prevented and instead the handwritten implementation is
executed.

C3: Extendability of the Generated Interfaces. Fulfilled. Concepts in AOP
allow to extend interfaces and classes. Consequently, the API can be extended.

mueller@se-rwth.de

Integration of Handwritten and Generated Object-Oriented Code 123

C4: Independence of Handwritten Code at Generation-time. Fulfilled.
The generator and the generated code is not aware of handwritten code at all.

C5: Independence of Additional OOP Language Constructs. Unfulfilled.
In order to be able to use this mechanism, the generated code needs to conform to
a programming language that supports AOP or contains aspect-oriented exten-
sions. This is not provided by OOP languages by default.

Alternatives. If the target language does not support aspect-orientation, hook
points can be created in the generated code. Every hook point is called at the
beginning and end of a method execution. By using inheritance, these hook
points can be used to add behavior before or after the actual method execution.
The behavior can be changed completely by overriding the method representing
the hook point (see generation gap in Sect. 3.1). To some extent, this mechanism
simulates aspects in AOP but it is not able to extend the API.

4 General Integration Mechanisms

Besides integration mechanisms that rely on language concepts, integration
approaches free of this restriction are presented in this section. In compliance
with Sect. 3, these approaches are evaluated with respect to the criteria described
in Sect. 2.

4.1 PartMerger Mechanism

A PartMerger is a component that is capable of merging multiple files of a
specific type, e.g., Java files, into one file. Obviously, this idea fits well to integrate
handwritten and generated parts, as these parts can be separated into different
files and later be merged by the PartMerger as shown in Fig. 7.

Fig. 7. The PartMerger mechanism merges source code artifacts (e.g. Java source code)
to one artifact.

The PartMerger mechanism is a generalization of the partial classes mech-
anism (see Sect. 3.5). In contrast to partial classes, the PartMerger can also

mueller@se-rwth.de

124 T. Greifenberg et al.

deal with non-source code artifacts. For instance, the DSL tool bench Monti-
Core [22,23] uses this mechanism to merge generated and handwritten Eclipse
plugin.xml files and Eclipse manifest files.

Without any restriction on how to merge files, the PartMerger mechanism
is very flexible. To consider handwritten code, a PartMerger can give higher
priorities to handwritten extensions when merging two files. Furthermore, there
are different strategies for invoking the PartMerger and for defining the files to
be merged. A simple strategy is to invoke the PartMerger automatically for files
conforming to a specific naming convention on the artifact level, e.g., files with
the same file name in specific folders or files with a common pre- or postfix.
Another strategy is to let the developers configure which files should be merged.

A drawback of the PartMerger mechanism is the lack of tool support when
integrating handwritten code. Common functionalities such as code completion
are not directly available to access parts of the generated code due to the strict
separation of the generated and the handwritten source code files. Instead, devel-
opers need to implement such tooling on their own. This is an advantage of
applying partial classes (see Sect. 3.5). The according tooling does not have to
be implemented by the developer but it is already provided.

The PartMerger mechanism is very similar to the partial classes mechanism.
The main difference is rooted in the language support for partial classes. In other
words, a language that supports partial classes provides concepts to define what
language parts are merged. The compiler takes care of the merging. In contrast,
the PartMerger approach is based on a dedicated configurable tool that merges
different artifacts, e.g. Java source code artifacts. Consequently, the PartMerger
mechanism is not tailored to a particular language. However, the realization of
the PartMerger might be tailored to particular languages.

Evaluation

C1: Separation of Generated and Handwritten Code. Fulfilled. The sep-
aration of artifacts is a precondition for this approach.

C2: Support for Overriding Generated Parts. Fulfilled. A PartMerger
component can be implemented in such a way that it assigns a higher priority to
handwritten parts so that certain generated parts are substituted by handwritten
parts in the merged artifact. In this way, the handwritten code will be executed
instead of the generated code.

C3: Extendability of the Generated Interfaces. Fulfilled. Extending the
API of a generated interface is easily possible. To accomplish this, a handwritten
interface needs to be merged with the generated interface.

C4: Independence of Handwritten Code at Generation-time. Fulfilled.
Handwritten artifacts do not have to exist at generation-time, because they do
not influence the generation-process. Instead, handwritten artifacts only have
to be available when the PartMerger merges the generated and handwritten
artifacts. This takes place after the code generator has finished.

mueller@se-rwth.de

Integration of Handwritten and Generated Object-Oriented Code 125

C5: Independence of Additional OOP Language Constructs. Fulfilled.
This mechanism does not require any kind of OOP language construct at all.

4.2 Protected Regions

Protected regions are designated regions located in generated code that allow to
add handwritten code (see Fig. 8). A common use case for applying protected
regions is to generate method signatures from input models and to insert pro-
tected regions into the corresponding method bodies.

Each protected region is typically surrounded by comments comprising a
unique identification string. In this way, it can be differentiated between different
protected regions. Before (re)generating code, the generator identifies protected
regions in the generated code and manages the code contained in these regions
based on the identification strings. While generating code, it reinserts the code
previously contained in a particular protected region. As a consequence, the
identification string associated with a protected region is crucial to be able to
preserve the handwritten code in subsequent generator executions.

Fig. 8. The protected regions mechanism requires predefined regions that contain hand-
written code.

Different model-to-text transformation languages provide built-in support for
declaring protected regions, including XPand [24], Acceleo [25], Epsilon Genera-
tion Language [26], JET [27] and MOFScript [28]. Some of these languages have
different names for the protected region mechanism, e.g., protected area [13], user
code block in Acceleo, user region in JET, and unprotected block in MOFScript.

A major drawback of protected regions is that it cannot be guaranteed that
the generator preserves handwritten implementations. The reason for this is that
handwritten code is mixed with generated code. In addition, to support this
mechanism, a guarantee has to be given that the identification string is unique
and stable. Otherwise, handwritten code may get lost in some situations.

Evaluation

C1: Separation of Generated and Handwritten Code. Unfulfilled. The
handwritten and generated parts are mixed within the same files, therefore there
is no separation according to our criterion.

C2: Support for Overriding Generated Parts. Unfulfilled. It is not possible
to override generated code. Only explicitly designated parts can be extended.

mueller@se-rwth.de

126 T. Greifenberg et al.

C3: Extendability of the Generated Interfaces. Fulfilled. An extension of
the API can be achieved by generating in such a way that protected regions are
introduced into the generated interfaces. Then, methods can be added to that
protected region.

C4: Independence of Handwritten Code at Generation-time. Unful-
filled. The generator has to analyze the previously generated code to extract
handwritten code from protected regions. Otherwise the generator would not be
able to inject that code from the protected regions back into the generated code.

C5: Independence of Additional OOP Language Constructs. Fulfilled.
This mechanism does not require any kind of OOP language construct at all.

Alternatives. The Eclipse Modeling Framework (EMF) [29] applies a mechanism
to integrate handwritten code which is different to protected regions described so
far, but conceptually comparable. In EMF, every class, method etc. that is gener-
ated, includes a Javadoc comment that contains a generated tag [30]. By remov-
ing the generated tag the generated implementation can be changed. Hence,
removing the generated tag corresponds to introducing a protected region.

5 Discussion

In this section, we summarize and discuss the evaluation results shown in Table 1.
A plus sign in a table cell indicates that the approach fulfills the corresponding
criterion, whereas a minus sign expresses that the criterion was not satisfied.
Parentheses denote that the criterion is fulfilled under certain conditions.

All approaches, except for protected regions, separate generated and hand-
written code on the basis of files. Thus, it is ensured that the handwritten code
is not overwritten because only the generated files are overwritten. However, the
protected regions approach combines generated and handwritten code. Conse-
quently, this approach does not protect handwritten code from being overwritten.

Table 1 also shows that the extended generation gap approach, the AOP app-
roach and the PartMerger approach provide the most flexibility when overriding
generated parts and extending the generated interfaces. For partial classes, it
depends on the actual programming language being used whether it is possible
to override generated parts or not. Moreover, it also depends on the program-
ming language, if besides partial classes also partial interfaces are supported.
The situation is different for include mechanisms. Here, we are not aware of
any language allowing for includes in interfaces to extend the generated inter-
faces. However, the concept itself does not forbid such behavior. Therefore, its
applicability also depends on the used language.

All approaches but the extended generation gap mechanism and protected
regions do not need to check for the existence of handwritten code at generation-
time. The extended generation gap approach demands the generator to check for
the existence of a handwritten interface or implementation class. In case of pro-
tected regions, the generator has to extract the handwritten code from the gener-
ated code before (re)generating to be able to reinsert it into the generated code.

mueller@se-rwth.de

Integration of Handwritten and Generated Object-Oriented Code 127

Table 1. Overview of integration mechanisms and results of analysis with respect to
the criteria.

G
en

er
at

io
n

G
ap E
xt

en
de

d
G

en
. G

ap

D
el

eg
at

io
n

In
cl

ud
e

M
ec

ha
ni

sm
Pa

rt
ia

l
C

la
ss

es

A
O

P

Pa
rt

M
er

ge
r

Pr
ot

ec
te

d
R

eg
io

ns

C1:Separation of Generated
+ + + + + + + -

and Handwritten Code
C2: Support for Overriding

+ + - - (+) + + -
Generated Parts
C3: Extendability of the

- + - (+) (+) + + +
Generated Interfaces
C4: Independence of Hand-

+ - + + + + + -written Code at
Generation-time
C5: Independence of Addi-

+ + + - - - + +tional OOP Language
Constructs

Moreover, Table 1 illustrates that only the following approaches can be used
without requiring other language constructs than the default OOP language
constructs: generation gap, extended generation gap, delegation, PartMerger
and protected regions. All other mechanisms depend on additional language
constructs which are not provided by default by OOP languages, e.g., include
functionality or partial classes.

A topic that should be discussed when allowing to add handwritten code is
the support for restricting what parts of the generated code can be overridden. If
it needs to be ensured that specific generated code is executed in the software sys-
tem, it should not be possible to override such parts. This is mostly true for parts
of the software system that define a static and fix behavior without any chance
of adaptation. Approaches that do not support overriding generated parts such
as delegation, include mechanisms and protected regions ensure this property by
construction. This means that handwritten code can only be introduced in des-
ignated regions. For generation gap and the extended generation gap, generated
methods have to be generated using specific modifiers (e.g. private modifier) of
the underlying OOP language to prevent that these methods can be overridden.
For the PartMerger approach, it has to be ensured that the PartMerger can be
configured in a way to not override generated code. This protected code may be
marked in a specific way. When applying AOP, it depends on the programming
language used whether it can be restricted that handwritten code is executed
instead of specific other generated code. Finally, the partial classes mechanism is
generally not designed in a way that parts of the generated code are protected,
because the different parts are merged. However, it depends on the compiler and
programming language, which may support such a mechanism.

mueller@se-rwth.de

128 T. Greifenberg et al.

6 Related Work

To the best of our knowledge, no other publication exists which gives a com-
parable overview and evaluation of different integration mechanisms. However,
as most of the presented mechanisms have been described by other authors, we
give an overview of existing work in this section.

Pietrek et al. [14] list guidelines on how to integrate generated and hand-
written artifacts including generation gap, protected regions, as well as include
mechanisms. These mechanisms are also covered in [31].

Similarly, Stahl et al. [13] describe the adaptation of different design pat-
terns - in particular delegation - to integrate handwritten and generated code.
These mechanisms are also discussed in [32,33]. The latter covers aspect-oriented
methods as well. This concept is also employed in [34–36]. Additionally, a brief
overview of integration mechanisms is given in [19]. It includes different varia-
tions of the generation gap, partial classes and protected regions mechanisms.

Approaches that specifically target .NET as the target platform and thus
allow special language features including partial classes are covered in [37,38].
Both also cover protected regions, as well as generation gap and delegation.

The mechanisms supported in MetaEdit+ [39] are protected regions, func-
tionality externalized in files (similar to the include approach in our paper) as
well as the direct inclusion of handwritten code in model files and are described
in [40]. Direct inclusion of handwritten code in model files has been left out,
because we put the focus on integrating handwritten code in generated code.

The different approaches that affect the implementation of model-driven
architecture are presented in [41]. They range from the unidirectional code inclu-
sion to complete round-trip engineering, where code portions of handwritten code
are traced and reflected back into the model.

The code generator LLBLGen Pro [42] supports different target infrastruc-
tures and allows the integration of handwritten code through protected regions,
user-specific templates that are included during the generation process, as well
as language-specific features such as partial classes.

The approach described in [43] supports the concept of partial classes for
generated object-oriented code and protected regions for code that does not
support this mechanism. Additionally, Brückmann et al. [44] advocate patterns
such as delegation to incorporate manually written code in generated parts.

7 Extend Generated Code with Action Languages

The integration of handwritten code into generated code is mainly done by using
mechanisms provided by the target language. A different approach to extend
generated code is to embed an action language into the used modeling language.

An action language can be a (restricted) expression language (e.g., a boolean
expression language), a DSL for behavior description (e.g., statecharts), or even a
general-purpose language such as Java. For instance, UML provides a designated
action language [45]. The main idea is to describe the implementation of specific

mueller@se-rwth.de

Integration of Handwritten and Generated Object-Oriented Code 129

model parts within the model by using the action language [40]. A code generator
is finally responsible for merging this embedded code into the generated code.
For instance, the body of a method in a UML class diagram could be described
in Java and the generator can merge this Java code into the method body part
of the generated code.

The major drawback of this approach is that the models are polluted with
technical implementation details. In addition to that, the tool support to imple-
ment code within models is typically less sophisticated than the tool support for
implementing code in a typical IDE. Mainly, the difference to the integration
mechanisms described so far is that the code to be integrated is embedded in
the model and not implemented separately in an external source code file. More-
over, the action language may require a code generator to map it to a concrete
implementation. Nevertheless, additional code can be added to the generated
code quite easily.

There are three variants of applying action languages that are not based
on a direct embedding in a modeling language. Figure 9 shows all three vari-
ants. The first approach is to embed references to the action language code into
the model instead of embedding the complete action language code directly into
the model [40]. Even though this decreases the level of pollution of the mod-
els, the models are still polluted with technical details. Another variant is that
the action language code references the modeling language element where it is
to be used. Finally, a configuration can be used to link action language code
and the modeling language element. The commonality of all variants is that an
infrastructure is required to merge the action language code and the generated
code.

Fig. 9. Three variants of applying action languages.

8 Conclusion

Current model-driven development (MDD) techniques require tool developers to
integrate generated and handwritten code to create a complete software system.
In this journal paper, we presented eight integration mechanisms useful for OOP
languages: generation gap, extended generation gap, delegation, include mech-
anisms, partial classes, AOP, PartMerger, and protected regions. These mech-
anisms are compared with respect to a set of five evaluation criteria that aim
to address essential aspects of handwritten and generated code integration. For

mueller@se-rwth.de

130 T. Greifenberg et al.

instance, if generated and handwritten code can be separated or if it is possible
to override generated parts. Our evaluation results are summarized in Table 1
and show that no mechanism is the best solution.

Essentially, choosing a suitable mechanism for integrating handwritten and
generated code depends on the concrete use case and the associated require-
ments. The catalog of integration mechanisms and evaluation criteria presented
in this paper provides an overview for MDD tool developers that can be used to
find an appropriate integration approach on a case-by-case basis. In this exten-
sion of our previous work, we present action languages as another approach to
integrate handwritten and generated code and discussed issues related to restrict-
ing parts that can be overridden to emphasize concerns that have to be regarded
when choosing the right mechanism.

The proposed evaluation criteria are not complete and may not be suffi-
cient to choose an appropriate mechanism in special cases. Nevertheless, the
approaches and criteria shown in this paper can be used as a foundation that
can be adapted and extended to fit specific requirements.

References

1. France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: Future of Software Engineering, ICSE 2007, pp. 37–54. IEEE Com-
puter Society (2007)

2. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

3. Wile, D.S.: Lessons learned from real DSL experiments. In: Proceedings of the
36th Annual Hawaii International Conference on System Sciences, HICSS 2003,
pp. 265–290. IEEE Computer Society (2003)

4. Rumpe, B.: Modellierung mit UML, 2nd edn. Springer, Heidelberg (2011)
5. Rumpe, B.: Agile Modellierung mit UML: Codegenerierung, Testfälle, Refactoring.

Springer, Heidelberg (2012)
6. Rumpe, B., Schindler, M., Völkel, S., Weisemöller, I.: Generative software devel-

opment. In: Proceedings of the 32nd International Conference on Software Engi-
neering, ICSE 2010, pp. 473–474. ACM (2010)

7. Schindler, M.: Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P.
Ph.D. thesis, RWTH Aachen University (2012)

8. Grönniger, H., Hartmann, J., Krahn, H., Kriebel, S., Rothhardt, L., Rumpe, B.:
Modelling automotive function nets with views for features, variants, and modes.
In: Proceedings of Embedded Real Time Software and Systems, ERTS 2008 (2008)

9. Navarro Pérez, A., Rumpe, B.: Modeling cloud architectures as interactive systems.
In: 2nd International Workshop on Model-Driven Engineering for High Perfor-
mance and CLoud computing, MDHPCL 2013, Miami, Florida, CEUR Workshop
Proceedings, pp. 15–24 (2013)

10. Ringert, J.O., Rumpe, B., Wortmann, A.: From software architecture structure
and behavior modeling to implementations of cyber-physical systems. In: Software
Engineering 2013 Workshopband, GI, pp. 155–170. Köllen Druck+Verlag GmbH,
Bonn (2013)

mueller@se-rwth.de

Integration of Handwritten and Generated Object-Oriented Code 131

11. Kurpick, T., Pinkernell, C., Look, M., Rumpe, B.: Modeling cyber-physical sys-
tems: model-driven specification of energy efficient buildings. In: Proceedings of
the Modelling of the Physical World Workshop, MOTPW 2012, pp. 2:1–2:6. ACM
(2012)

12. Greifenberg, T., Hölldobler, K., Kolassa, C., Look, M., Mir Seyed Nazari, P.,
Müller, K., Navarro Perez, A., Plotnikov, D., Reiss, D., Roth, A., Rumpe, B.,
Schindler, M., Wortmann, A.: A comparison of mechanisms for integrating hand-
written and generated code for object-oriented programming languages. In: Pro-
ceedings of the 3rd International Conference on Model-Driven Engineering and
Software Development, Angers, France, pp. 74–85. Scitepress (2015)

13. Stahl, T., Völter, M.: Model-Driven Software Development: Technology, Engineer-
ing, Management. Wiley, UK (2006)

14. Pietrek, G., Trompeter, J., Niehues, B., Kamann, T., Holzer, B., Kloss, M., Thoms,
K., Beltran, J.C.F., Mork, S.: Modellgetriebene Softwareentwicklung. MDA und
MDSD in der Praxis. Entwickler.Press (2007)

15. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15(12), 1053–1058 (1972)

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Boston (1995)

17. Eliens, A.: Principles of Object-Oriented Software Development. Addison-Wesley
Longman Publishing Co., Inc., Boston (1994)

18. Vlissides, J.: Pattern Hatching: Design Patterns Applied. Addison-Wesley, UK
(1998)

19. Fowler, M.: Domain Specific Languages. Addison-Wesley, Boston (2010)
20. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,

Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

21. Kellens, A., Mens, K., Brichau, J., Gybels, K.: Managing the evolution of aspect-
oriented software with model-based pointcuts. In: Thomas, D. (ed.) ECOOP 2006.
LNCS, vol. 4067, pp. 501–525. Springer, Heidelberg (2006)

22. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: MontiCore: a
framework for the development of textual domain specific languages. In: 30th
International Conference on Software Engineering, ICSE 2008, pp. 925–926. ACM
(2008)

23. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a framework for compositional devel-
opment of domain specific languages. Int. J. Softw. Tools Technol. Transf. 12,
353–372 (2010)

24. XPand website, May 2014. http://www.eclipse.org/modeling/m2t/?
project=xpand#xpand. Accessed on 13 May 2015

25. Acceleo website, May 2014. http://www.eclipse.org/acceleo/. Accessed on 13 May
2015

26. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: The epsilon generation
language. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol.
5095, pp. 1–16. Springer, Heidelberg (2008)

27. JET website, May 2014. http://www.eclipse.org/modeling/m2t/?project=jet#jet.
Accessed on 13 May 2015

28. Oldevik, J., Neple, T., Grønmo, R., Aagedal, J.Ø., Berre, A.-J.: Toward standard-
ised model to text transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-
FA 2005. LNCS, vol. 3748, pp. 239–253. Springer, Heidelberg (2005)

29. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Boston (2008)

mueller@se-rwth.de

http://www.eclipse.org/modeling/m2t/?project=xpand#xpand
http://www.eclipse.org/modeling/m2t/?project=xpand#xpand
http://www.eclipse.org/acceleo/
http://www.eclipse.org/modeling/m2t/?project=jet#jet

132 T. Greifenberg et al.

30. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley, Boston (2009)

31. Petrasch, R., Meimberg, O.: Model-Driven Architecture: Eine praxisorientierte Ein-
führung in die MDA. Dpunkt Verlag, Heidelberg (2006)

32. Völter, M.: A Catalog of Patterns for Program Generation, Version 1.6, April
2003. http://www.voelter.de/data/pub/ProgramGeneration.pdf. Accessed on 13
May 2015

33. Völter, M., Bettin, J.: Patterns for Model-Driven Software-Development, Version
1.4, May 2004. http://www.voelter.de/data/pub/MDDPatterns.pdf. Accessed on
13 May 2015

34. Groher, I., Voelter, M.: Aspect-oriented model-driven software product line engi-
neering. In: Katz, S., Ossher, H., France, R., Jézéquel, J.-M. (eds.) Transactions
on Aspect-Oriented Software Development VI. LNCS, vol. 5560, pp. 111–152.
Springer, Heidelberg (2009)

35. Völter, M., Groher, I.: Handling variability in model transformations and genera-
tors. In: Proceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling,
DSM 2007. ACM (2007)

36. Kang, K.C., Sugumaran, V., Park, S.: Applied Software Product Line Engineering.
Auerbach Publications, Boston (2009)

37. Dollard, K.: Code Generation in Microsoft .NET. Apress, Berkley (2004)
38. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Appli-

cations with Patterns, Models, Frameworks, and Tools. Wiley, New York (2004)
39. Tolvanen, J.P., Kelly, S.: MetaEdit+: defining and using integrated domain-specific

modeling languages. In: Proceeding of the 24th ACM SIGPLAN Conference Com-
panion on Object Oriented Programming Systems Languages and Applications,
OOPSLA 2009, pp. 819–820. ACM (2009)

40. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley, New York (2008)

41. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Comput-
ing. Wiley, New York (2003)

42. LLBLGen Pro website, May 2014. http://www.llblgen.com/. Accessed on 13 May
2015

43. Warmer, J., Kleppe, A.: Building a flexible software factory using partial domain
specific models. In: Proceedings of the 6th OOPSLA Workshop on Domain-Specific
Modeling, DSM 2006, pp. 15–22. ACM (2006)

44. Brückmann, T., Gruhn, V.: An architectural blueprint for model driven develop-
ment and maintenance of business logic for information systems. In: Babar, M.A.,
Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285, pp. 53–69. Springer, Heidelberg
(2010)

45. Object Management Group website: Concrete Syntax for a UML Action Language:
Action Language for Foundational UML (ALF) Version 1.0.1 (2013–09-01), May
2014. http://www.omg.org/spec/ALF/1.0.1/PDF/

mueller@se-rwth.de

http://www.voelter.de/data/pub/ProgramGeneration.pdf
http://www.voelter.de/data/pub/MDDPatterns.pdf
http://www.llblgen.com/
http://www.omg.org/spec/ALF/1.0.1/PDF/

