
Modeling Language Variability with
Reusable Language Components

Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, Andreas Wortmann
Software Engineering, RWTH Aachen University, Aachen, Germany

<lastname>@se-rwth.de

ABSTRACT
Proliferation of modeling languages has produced a great variety of
similar languages whose individual maintenance is challenging and
costly. Reusing the syntax and semantics of modeling languages
and their heterogeneous constituents, however, is rarely systematic.
Current research on modeling language reuse focuses on reusing
abstract syntax in form of metamodel parts. Systematic reuse of
static and dynamic semantics is yet to be achieved. We present
an approach to compose syntax and semantics of independently
developed modeling languages through language product lines and
derive new stand-alone language products. Using the MontiCore
language workbench, we implemented a mechanism to compose
language syntaxes and the realization of their semantics in form of
template-based code generators according to language product line
configurations. Leveraging variability of product lines greatly facil-
itates reusing modeling language and alleviates their proliferation.

CCS CONCEPTS
• Software and its engineering → Model-driven software engi-
neering; Extensible languages; Software product lines;

KEYWORDS
Language Variability, Language Product Lines, Software Language
Engineering
ACM Reference Format:
Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, Andreas
Wortmann. 2018. Modeling Language Variability with Reusable Language
Components. In Proceedings of 22nd International Systems and Software
Product Line Conference, Gothenburg, Sweden, September 10–14, 2018 (SPLC
’18), 11 pages.
https://doi.org/10.1145/3233027.3233037

1 INTRODUCTION
Modeling to understand and shape the world is an essential hu-
man abstraction technique that has already been used in ancient
Greece and Egypt. Scientists model to understand the world and
This research has partly received funding from the German Federal Ministry for
Education and Research under grant no. 01IS16043P. The responsibility for the content
of this publication is with the authors.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’18, September 10–14, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-6464-5/18/09. . . $15.00
https://doi.org/10.1145/3233027.3233037

engineers model to design parts of the world. Whilst humans em-
ployed modeling for ages and in virtually all disciplines, it is recent
that the form of models is made explicit in modeling languages.
Computer science has invented this approach to enable a precise
understanding of what is a well-formed model in the communi-
cation between humans and machines. The general aspiration of
such languages creates a conceptual gap between the problem do-
mains and the solution domains that raises unintended complexi-
ties [11]. Consequently, research in industry produced a large body
of domain-specific languages (DSLs) [37] to match domain-specific
needs. With the ongoing digitization of virtually every domain in
our life, work, and society, the need for even more DSLs raises. This
proliferation raises three questions:

(1) How to create new DSLs that fit specific purposes?
(2) How to engineer DSLs from predefined components?
(3) How to efficiently derive DSLs from other DSLs?

In this paper, we address the second question through reusable
language components arranged as a product line of software lan-
guages. From these, product owners can configure language prod-
ucts, i.e., variants of the product line, for specific purposes (e.g.,
domains, applications) without being forced to understand the in-
tricate details of each participating language. Based on the selected
language features, its grammars, well-formedness rules, and code
generators are composed automatically, such that the result can
be used transparently by the modelers. This extends our previous
work on syntactic language reuse [4] with composition of code
generators. The contributions of this paper, hence, are:

• A concept for syntactic and semantic modeling language
variability based on language product lines over language
components.

• An extension to our modeling technique for language com-
ponents combining grammars and well-formedness rules [4]
with code generators. Resulting language components are
decoupled from a specific language product line and, hence,
can be reused in different contexts as well.

• A composition mechanism for code generators of the partic-
ipating independent languages.

• A realization of our concept with the MontiCore [15] lan-
guage workbench [10].

With this extensible language variability mechanism in place,
new languages can be configured using existing components more
efficiently. Hence, the mechanism reduces the effort in engineering
software languages for specific contexts as well as the proliferation
of modeling languages.

In the following, Section 2 motivates the benefits of our approach
and Section 3 presents preliminaries. Afterwards, Section 4 presents

[BEK+18a] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, A. Wortmann:
Modeling Language Variability with Reusable Language Components.
In: International Conference on Systems and Software Product Line (SPLC'18). ACM, Sep. 2018.
www.se-rwth.de/publications/

https://doi.org/10.1145/3233027.3233037
https://doi.org/10.1145/3233027.3233037

Variant

Derivation

Class-

diagram

Statechart
Java

Statements

Java

Expression

OCL

Expression

ClassDiagram

Statechart

G WFR Gen

G WFR Gen

CDWithSC

G WFR Gen

CDWithSC

FD

language product line
language variant

Language

Engineers
Product

Line

Manager

LC

LC

FC LC

[Classdiagram,

Statechart]

feature diagramlanguage component

feature configuration

reads creates

well-formedness rules code generator

grammar

Figure 1: A language product line with a selected variant.

our language variability concept. Section 5 then describes code gen-
erators and our mechanism for their integration and Section 6 lever-
ages these to describe language product lines. Section 7 presents
an in-depth example, before Section 8 discusses observations and
highlights related work. Section 9 concludes.

2 BACKGROUND AND EXAMPLE
Conceptually, there are various techniques to combine two lan-
guages, e.g., through merging into embedded models [6] or inte-
gration of separate models [15]. Moreover, languages are rarely
homogeneous artifacts, but often their definition requires the in-
teraction of multiple meta-languages and programming languages.
Popular combinations of these technological spaces, for instance,
are ECore [28] metamodels to describe a languages’ abstract syntax
with OCL [14] for its well-formedness rules and Xtend [2] for code
generators. Alternatives are different forms of grammars [30, 39]
with GPL well-formedness rules [22] and dedicated languages for
model-to-model transformations [19]. There are almost as many
technological spaces as there are language workbenches [10] and
most support different language composition mechanisms [9].

Consequently, systematic reuse of languages in ameaningful [16]
fashion is nearly as complicated as engineering new languages from
scratch and capturing the dependencies and relations between the
loosely coupled language constituents requires in-depth language
engineering expertise. Leveraging dedicated language components
that capture these relations and structuring reuse through variabil-
ity modeling techniques can greatly facilitate language engineering.

Consider developing a language product line for modeling appli-
cations, in which the application structure is modeled with class
diagrams and there are different options how method bodies are
realized with embedded behavior languages. Explicating the vari-
ability of such a language product line through feature models over
consolidated language components reduces the complexity of iden-
tifying and integrating language constituents. Composition of these
is performed systematically and does not require an in-depth under-
standing of the individual language components. An overview of
a language product line, the employed language components, and
the derived language variant for the example scenario is visualized
in Figure 1. The top depicts the language product line comprising

a feature model, where each feature references a language com-
ponent, i.e., constituents of a language definition with respect to
a specific language workbench [10]. Each language component
contains a grammar (G), well-formedness rules (WFR), and a code
generator (Gen), which together realize the syntax and semantics of
the language. Moreover, a language component can define named
and typed extension points by underspecifying certain parts of its
syntax and semantics. Language components are independent of
each other and can be developed by different software language
engineers individually. The feature model defines combinations of
related language components considered valid by a product line
manager. Product line managers are language engineers who create
language families as feature models that describe possible charac-
teristics of the family’s language products. To this end, they collect
relevant language components, assign these to features, and de-
fine how these realize extension points of language components of
their parent features. The latter is realized by mapping an extension
point of a parent feature to an extension in the child feature. Further,
product line managers ensure that the employed code generators
translate to the same or a compatible target language.

In this example, every language variant of the product line uses
class diagrams to model the application’s structure. The behavior
of method bodies can be modeled with embedded Statecharts or
statements of the Java/P [7] action language. These Java/P state-
ments rely on expressions, which are either realized as Java expres-
sions, OCL expressions, or both. The bottom left part of Figure 1
depicts the feature configuration CDWithSC defining a language
variant. The feature configuration is selected by a language product
owner, who is an expert in the domain that the language variant
is to be used in. The variant includes the Classdiagram and the
Statechart feature. Given this feature configuration as input, the
variant derivation tool derives a language variant by composing
the language components of all selected features, resulting in a new
language component (depicted at the bottom right). This language
component has a composed grammar, aggregated well-formedness
rules, and a composed code generator. Afterwards, a language work-
bench, given this language component as input, produces tooling
capable of processing models conforming to the language variant.
This typically includes a parser, abstract syntax data structure, a
checking infrastructure for the well-formedness rules, and coor-
dination of code generation. The tailored tooling can be used by
modelers to develop models conforming to the language variant.

3 PRELIMINARIES
This section presents the language workbench MontiCore [15, 27]
and the concept for composition of independent MontiCore gram-
mars as presented in [4].

3.1 MontiCore Language Workbench
Our concept for language variability is realized with the MontiCore
language workbench [15, 27]. MontiCore supports development of
modular modeling languages. It comprises a grammar modeling
language and a tool chain for the efficient engineering of textual
languages and their infrastructure (parsers, analyses, transforma-
tions, code generators). MontiCore employs context-free grammars

Generator

GPL Code

Model

AST

Language Grammar

Templates

Parser

FreeMarker

instantiates

reads reads

uses

creates

Tool

Configuration

Context

Conditions

Symbol

Table

code generation

model processing

Artifacts

conforms CpD

creates

generates

Figure 2: The quintessential components and artifacts of
a MontiCore language: From a grammar, MontiCore gener-
ates a parser, abstract syntax classes aswell as infrastructure
for context condition checking and code generation.

for integrated definition of abstract and concrete syntax. The gram-
mars describe, which models are principally possible and Java well-
formedness rules restrict these. Each grammar contains production
rules, may extend other grammars, and yields a dedicated start
rule. From the grammars, MontiCore generates model processing
infrastructure to parse textual models into abstract syntax trees
(ASTs), which store the content of models, such as their elements
and their relations. MontiCore supports compositional Java context
conditions checking the models’ well-formedness that a language-
specific, generated visitor applies to the ASTs. Template-based code
generators realize the DSMLs’ semantics. To this end, MontiCore
provides an extensible code generation framework based on the
FreeMarker template engine [1]. Figure 2 illustrates the quintessen-
tial components and artifacts of MontiCore and their relations.

MontiCore also supports compositional integration of modeling
languages through inheritance, embedding, and aggregation [15].
Inheritance enables modeling languages to extend and override
production rules of their (possibly multiple) parent languages. From
inheriting DSMLs, MontiCore produces refined AST classes that
inherit from the AST classes of the overridden production rules.
MontiCore also features interface production rules, which enable
underspecification in grammars by prescribing only the required
abstract syntax elements of implementations. We leverage this
through inheritance to integrate new production rules into these
well-defined extension points as depicted in Figure 3.

The grammar CD (top left) is an excerpt of a grammar describ-
ing textual class diagrams. Each of these class diagram comprises
classes that have a name and can contain methods (ll. 2-3). Meth-
ods have a signature and a method body, where the latter is real-
ized as an interface production rule that underspecifies a concrete
production rule body (l. 5). The interface production rule can be
implemented by other production rules, e.g., by the production rule
JavaMethodBody (ll. 6-7). From this grammar, MontiCore generates
six AST classes (depicted top right), out of which IMethodBody is
an interface implemented by the AST class JavaMethodBody. Inter-
face production rules can be used through grammar inheritance.
For instance, the grammar CDembedsSC (Figure 3, bottom) extends

grammar CD {
CD = "cd" Name “{” CDClass* “}”;
CDClass = "class" Name "{" CDMethod* “}";
CDMethod = Signature "{" IMethodBody “}";
interface IMethodBody;
JavaMethodBody implements IMethodBody

= //...
}

01
02
03
04
05
06
07
08

grammar CDembedsSC extends CD {
start CD;
SCDef implements IMethodBody

= “sc" Name "{“
(State | Transition)* "}";

State = "state" Name;
Transition = // ...

}

01
02
03
04
05
06
07
08

CD

CDMethod

MCG

AST-CD

«interface»

IMethodBody

Signature

String name

CDClass

String name

Java

MethodBody

SCDef

String name

Transition

State

String name

MCG

Figure 3: Grammar inheritance in MontiCore.

the grammar CD (l. 1) and provides further implementation of the in-
terface IMethodBody, which in addition to the Java method bodies,
features Statecharts as method bodies (ll. 3-5). Accordingly, Monti-
Core generates new AST classes for newly introduced production
rules and reuses all modeling elements of CD. The start produc-
tion of a grammar determines the root of the generated AST and,
thereby, also the return type of a parser. MontiCore uses the first
production rule of a grammar as start production by default. With
the keyword start (cf. l. 2), MontiCore can be set to use a different
production rule than the one of a grammar as start production. In
this example, MontiCore is set to use the start production CD of the
grammar CD for the grammar CDembedsSC.

3.2 Composing Grammars and Context
Conditions

The composition of grammars for achieving language embedding
as explained in the last section requires that the embedded gram-
mar has a dependency to the embedding grammar. As one of our
concerns is independent development of language components, this
mechanism is not feasible. Composition of independent grammars
relies on syntactic extension points (interface production rules) of a
base grammar and a binding indicating, which production rules of
the implementing grammar connect to which extension point [4].
To achieve the composition of two grammars, we employ a specific
variant of language embedding [15], which combines the syntaxes
of the two languages through multiple-inheritance in a generated,
third grammar. This new grammar leverages MontiCore’s produc-
tion rule extension and production rule implementation mecha-
nisms to implement extension points of the base grammar with pro-
duction rules of the embedded grammar. This mechanism especially
enables to integrate arbitrary production rules of the embedded
grammar into the base grammar and does not require any language
developers being aware of this possible interaction. Extending the
embedded production rule causes the generated abstract syntax
classes of the extending production rules to become subclasses
of the classes generated from the extended production rule. Con-
sequently, all model analyses and transformations implemented
against the original abstract syntax class can be reused without
additional effort.

Embedding, for instance, Statecharts into class diagrams as de-
picted in Figure 4 requires that the CD grammar provides an interface

grammar CDWithSC extends CD, SC {

start CDCompilationUnit;

CDWithSCSCDef extends SCDef

implements IMethodBody

= "Statechart" "{"

State* Transition*

"}";

}

MCG

reuses SCDef
of grammar SC

right-hand side of
rule SCDef

implements extension
point IMethodBody of

grammar CD

Figure 4: The composition of two independent grammars.

production rule as extension point (here IMethodBody) and a bind-
ing from a Statechart production rule (here SCDef) to the interface
production rule extension point. In the example of CDWithSC, the
binding realizes the integration between method bodies and the
definition of Statecharts. This composition enables using the syntax
of Statecharts in method bodies of class diagrams to describe their
behavior. The grammar generated from this composition extends
both the base grammar CD and the embedded grammar SC. The
grammar CD is as depicted in Figure 3 and the grammar SC is sim-
ilar to the grammar CDembedsSC depicted in the same figure. In
contrast to CDembedsSC, SC does not require to extend the CD gram-
mar as it is independent of this. Further, it has no reference to the
start production of CD and SCDef does not implement the interface
IMethodBody. By generating a new, composed grammar extending
both individual grammars, all production rules from these become
available in the new grammar. Our grammar composition does not
prohibit dependencies between the base grammar and embedded
grammar per se [4]. However, embedding production rules of a
grammar into a base grammar on which the embedded grammar
depends may break the composition, which MontiCore detects.

The integration of well-formedness rules (context conditions) is
less complicated. These are realized as Java classes implementing an
interface specific to the AST class of the production rule they oper-
ate on. As the synthesized production rules extend from production
rules of the embedded grammar, the context conditions generally
are applicable to these as well. Our integration hence collects the
context conditions from both language components and registers
these to a generated visitor that applies these accordingly. Through
integration of handcrafted code, MontiCore also supports adding
inter-language context conditions specific to the integration of both
languages that cannot be defined for one language alone [13].

4 A CONCEPT FOR CODE GENERATOR
VARIABILITY

Creating a language product line begins with language engineers
developing the modeling languages that the language product line
combines. We assume the languages are defined in terms of gram-
mars, well-formedness rules, and code generators. Consequently,
development begins with the grammars, which prescribe the lan-
guages AS and CS, as well as its possible extension points using,
e.g., underspecification, in the grammar description mechanism [4].
Afterwards, the language engineers create well-formedness rules to
enable rejection of models not considered well-formed. This usually
is necessary as the meta-languages used with common grammar-
based language engineering methods lack sufficient mechanisms
to describe well-formedness without additional rules. We assume

Class Diagram

Generator

Statechart

Generator

Provided

Main Class

Artifact Interface

Provided

Main Class

Artifact Interface

Behavior

Extension Point

Required

Behavior

Artifact Interface

Provided

Generator Interface

Provided

Generator Interface

Required

Behavior

Generator Interface

Class Diagram

Generator Developer

Statechart

Generator Developer

requires adaptation to resolve
generator composition conflict

requires adaptation to resolve
artifact composition conflict

enables embedding
this generator into
other generators
again

Figure 5: Conceptual representation of composable genera-
tors with required and provided interfaces on the example
of class diagrams that embed Statecharts.

that the dynamic semantics of a language are realized through
code generators that translate models into executable GPL artifacts.
Variability of language components consisting of grammar-based
languages using Java well-formedness-rules is presented in [4] and
briefly recapitulated in Section 3.2.

To extend this notion to code generators, we include a reference
to a code generator class into language component models. Based
on selected features, we compose the related generators by em-
bedding these into another. However, if the language components’
generators were not developed for usage in a language product
line, the product line manager’s feature model raises two kinds of
conflicts between features and their immediate parent features:

• Generator composition conflict: The code generator of a fea-
ture implements an interface not expected for embedding
with the generator of the parent feature.

• Artifact composition conflict: The code generator of a feature
produces artifacts of a type the embedding generator of the
parent feature is unaware of.

The language variability infrastructure presented in this pa-
per synthesizes adapters together with a lookup and instantiation
framework for both kinds of conflicts based on the feature model
and their language components’ generator properties. However, the
specific adaptation generally is inaccessible to automation as the
interfaces on both levels are completely unknown at design time
and, hence, may differ significantly. Consequently, the infrastruc-
ture generates a framework expecting handcrafted implementation
of generator adaptation and artifact adaptation by the product line
manager. Adding these two implementations per pair of composed
generators enables automated execution of code generation and
ensures structural compatibility of generated code by construction.

To resolve the generator composition conflict, generators for
grammars with extension points, i.e., underspecified elements, must
support similar extension points for responsible code generators.
For instance, a code generator for a class diagram grammar sup-
porting embedding various behavior languages for method body
implementations must yield an extension point for generators re-
sponsible for translating behavior models. As the class diagram

generator generally is unaware of any concrete behavior genera-
tor it prescribes a code generator interface for compatible behavior
generators. One possible realization of behavior models could be
Statecharts. Statechart generators, however, are generally unaware
of the generator interfaces prescribed by the class diagram genera-
tor. To compose both generators nonetheless, we also require that
each code generator implements a dedicated code generator inter-
face itself. Making both, the required and the provided interfaces,
explicit enables automated construction of code generator adapters.
As the specific adaptation cannot be derived, the implementations
of the generated adapters must be handcrafted and extend the gen-
erated abstract adapter base classes. Our framework then uses these
for actual adaptation. Through this, e.g., the class diagram generator
can delegate generation of embedded Statechart models to the Stat-
echart generator. This includes to translate available information
into parameters that the Statechart generator requires.

This, however, does not resolve the artifact composition conflict,
i.e., that the jointly generated code is structurally compatible. The
target language of code generation is typically a general purpose
language, e.g., an object-oriented programming language. These
generally are not expressive enough to define contracts on arbi-
trary statements, expressions, or blocks. Therefore, we must rely
on structural compatibility between classes through contracts, e.g.,
through abstract base classes, implementation of interfaces, etc. En-
abling class-wise compatibility between code produced by different
generators requires that

• each embedded generator produces a dedicated main class
(which may interact with other classes produced by the same
generator);

• embedding generators specify the contract required by pos-
sible implementations (e.g., behavior implementations); and

• embedded generators specify the contract provided by the
generated main class as its artifact interface.

Explicating these provided and required contracts enables generat-
ing abstract artifact adapters between, e.g., the interface expected
for behavior implementations by the class diagram generator and
the interface provided by Statechart behavior implementations by
the Statechart generator. Similar to the generator interfaces, the
actual adaptation requires specific handcrafted implementations to
extend the generated adapter base classes, which then are incor-
porated by the framework automatically. Figure 5 illustrates the
generators and interface related to embedding Statecharts into class
diagrams. Our method to black-box composition of code generators
therefore raises the following requirements:
RQ1 Each participating code generator implements a dedicated

provided generator interface that describes its usage.
RQ2 Code generators for grammars with extension points sup-

port registration of other code generators responsible for
translating implementations of these extension points. For
each extension point, they describe the required generator
interface and the required artifact interface related to the
generated code.

RQ3 Each code generator produces a single main class and speci-
fies its provided artifact interface.

With this in place, the interfaces of generator adapters and of
artifact adapters (one of each per generator pair to be composed) can

language ClassDiagram {

grammar CD;

root CDCompilationUnit;

cocos {

CDDiagramNameUpperCase,

CDClassNameUnique

}

generator CD2JavaGen;

}

01

02

03

04

05

06

07

08

09

LC

selected
context
conditions

selected
grammar

code generator
for root syntax
element

start rule
of reused
language part

language Statechart {

grammar SC;

root SCDef;

cocos {

UniqueStateNames,

// ...

}

generator SCJavaGen;

}

01

02

03

04

05

06

07

08

09

LC

Figure 6: Two language component aggregating class dia-
gram and Statechart language constituents, respectively.

be derived automatically. Provided handcrafted implementations
are integrated into the composed generators automatically. We lift
this composition to language product lines by applying it to all
embedding (i.e., in a parent feature) and embedded (from its child
feature) code generators automatically. Hence, the product line
manager must implement twice the number of participating code
generators as adapters only.

The next section presents the realization of this variability con-
cept that addresses both generator composition conflicts. The sub-
sequent section explains how the product line manager leverages
this to create language product lines.

5 COMPOSING INDEPENDENT CODE
GENERATORS

The quintessential building blocks for language integration are lan-
guage components. These aggregate the syntax and the realization
of the semantics of a MontiCore language in terms of a grammar
(concrete and abstract syntax), Java context conditions (static se-
mantics), and a code generator (realizing dynamic semantics). For
instance, Figure 6 illustrates a language component for class di-
agrams, which references its grammar (l. 2), its well-formedness
rules (ll. 4-7), and its generator (l. 8). Optionally, a root production
(l. 3) of the grammar can be selected. This enables to reuse only
a subtree of the related grammar’s abstract syntax (e.g., to reuse
only Java expressions of a grammar describing the syntax of Java
classes). If no root production is specified, the default start produc-
tion of the grammar is used. Each interface rule of the grammar
becomes an extension point of the language component, where the
name of the extension point is the name of the respective inter-
face rule. Interfaces in the grammars therefore are used for typing
extension points. Deriving a variant of the language product line
entails composing the language components of all selected features.
The different language’s constituents require different composi-
tion mechanisms. The composition mechanisms for grammars and
context conditions have been explained in Section 3, this section
presents the realization of the black-box composition mechanism
for code generators.

Composing code generators is an ongoing challenge that raises
the questions of syntactic and semantic conformance. Our approach
to code generator composition enables syntactic integration of code
generators and generated code, which, by construction, ensures
that generators and generated code interact syntactically. Whether
behavior of generators or generated code generally is meaning-
ful [16] is as complex as the halting problem [29] and not part of
our composition.

Our general approach is to employ adaptation between the ex-
plicit interfaces of code generators to enable their interaction at
generation time. Through the language components, it is clear
which generators must be combined and the grammars of their
language components prescribe the generators’ extension points
(e.g., the generator for CDmust be able to invoke generators respon-
sible for translating IMethodBody instances. Through architectural
constraints (such as implementing a single execution interface per
generator), abstract adapter classes for the composition of two
language components’ generators can be generated. Using the gen-
eration gap pattern [33], the developer composing two language
components with their code generators must provide a proper im-
plementation of the interface imposed by the generated adapter.
By construction, the generator of the base language then can call
the generators of the embedded languages, pass model parts to
these and invoke code generation. Leveraging the assumption that
each generator produces at least a main GPL artifact (e.g., a Java
class) responsible for interacting with the generated code, the base
language generator can produce code instantiating this and using
it as intended.

For the integration of generated code artifacts, the embedding
generator prescribes for each extension point what it expects from
the code produced by generators registered for this extension point
within a required artifact interface. For instance, the generator
translating CD instances could prescribe that code produced for
realizations of IMethodBody must implement a specific GPL inter-
face. As language components can be developed independent of
each other, this expectation, however, rarely is fulfilled. Hence, we
impose that all generators also explicate the interface of the main
GPL artifact they generated. Generators are mapped transitively to
language component extension points for which the generator of
the embedding language component prescribes a specific interface.
The code produced by the embedded generator provides a mapping
between expected GPL artifact interface and GPL artifact interface.
Thus, we also can leverage adaptation between these interfaces and
generate abstract adapters accordingly. For these, usually one per
pair of generators, also a proper implementation must be provided.
This also is integrated through the generation gap pattern [33].

For adaptations to work, all generators must be implemented in
the same GPL and produce code of the same GPL. The GPLs for
code generator implementation and for generated code may differ.
Future work on cross-GPL code generator invocation and platform-
independent artifact interfaces can mitigate this. Consequently,
we make the following assumptions for a realizing the generator
composition:

(1) All code generators are implemented in the same GPL and
all artifacts are implemented in the same GPL.

(2) Each code generator produces at least one main GPL arti-
fact for which it explicates its GPL interface. The generator
ensures that all generated main artifacts comply to this in-
terface.

(3) All extension points of generators have to be explicated at
design time of the generator. Generator extension points
are typed with the main abstract syntax element they trans-
late (e.g., IMethodBody) and the interface expected from a
generator registered to translate instances of this element.

(4) Operation of code generators may not rely on assumptions
regarding code generated by other generators that are not
made explicit through their interfaces.

We assume that each code generator constitutes a generator class
(e.g., CD2JavaGen and SC2JavaGen in Figure 7) realizing the actual
code generation. This class performs the code generation, e.g., by
invoking a template engine. Each generator class implements an
interface describing types of the input and output of the generator
(e.g., ICDGenerator and ISCGen in Figure 7) as presented in [1].
Further, each generator references the type of an interface typing
the main artifact of the generated code (e.g., IJavaClassArtifact
and IStatechart in Figure 7). For each extension point that is fore-
seen in the generated code of a generator, an additional class (cf.
ExtensionPointInfo) describes the type of the main artifact in the
code that is generated by a generator (e.g., IBehaviorArtifact).
Further, the additional class describes the interface of the gener-
ator producing the main artifact of the generator implementing
the extension point (e.g., IBehaviorJavaGen). Additionally, an ex-
tension point info has a reference to the abstract syntax type (e.g.,
IMethodBody) that is being translated. To this effect, extending an
extension point is realized by adapting an extension point interface
of the generator defining the extension point to an interface of a
generator realizing the extension.

These adapters are necessary to enable decoupled development
of the involved code generators. While the interface of the adapter
can be generated, it is impossible to automatically generate the
implementation of the adapter as it requires in-depth understand-
ing of the behavior and meaning of the generated code. The same
mechanism is applied at artifact interface level, where the expected
artifact interface of an extension point is adapted to the provided ar-
tifact interface of the embedded generator. We combine the classical
adapter pattern [12] with a mechanism to integrate a handwritten
implementation of the concrete adapter (the TOP mechanism [27]).
Each generated adapter is an abstract class that has a target (or
adaptee) that it implements, which is the (artifact or generator)
interface required by the extension point. Further, each generated
adapter yields an attribute delegate of the (artifact or generator) in-
terface provided by the embedded generator. The class realizing the
adapter has to be handcrafted and extends the generated abstract
adapter class. The name of the generated adapter, therefore, is fix
and can be derived automatically by the embedding generator to in-
teract with (a) the registered, embedded generators, and (b) artifacts
produced by these generators. The names of handcrafted adapters
are also fix, as these have to be identical to the generated adapter
names without the suffix TOP. This property simplifies instantiation
of the correct adapters, which is explained in Section 7. The above
mechanism is applied to all combinations of extension point and
extension that are possible within the generators of a language
product line to relieve product owners from being language engi-
neers. The developer combining two language components, hence,
is responsible for registering the generator of the embedded lan-
guage component with the generator of the embedding language
component. Also, the developer of the embedding generator must
be aware of the general existence of adapters.

Considering the example of embedding SC into CD, a class dia-
gram describes the architecture of an application and Statecharts

LCClassDiagram

grammar CD {

CD = "cd" CDElement*;

interface CDElement;

Class implements CDElement

= "class" Name "{" Method* "}";

Method = Signature "{" IMethodBody "}";

interface IMethodBody;

// abstract classes, enumerations,…

}

01

02

03

04

05

06

07

08

09

MCG

CD2JavaGenerator

CD2JavaGen

«interface»

IJavaClassArtifact

Class-

diagram

Java

Statements
Statechart

«interface»

IBehaviorArtifact

«interface»

IBehaviorJavaGen

Extension

PointInfo

«interface»

ICDGenerator

LCStatechart

grammar SC {

SCDef = "Statechart" "{"

State* Transition*

"}";

State = "state" Name;

Transition = // ...

}

01

02

03

04

05

06

07

08

MCG

SC2JavaGenerator

«interface»

IStatechart

«interface»

ISCGen

SC2JavaGen

FD

✔

✔

«abstract»

ISCGen2IBehaviorJava

GenAdapterTOP

«abstract»

IStatechart2IBehavior

ArtifactAdapterTOP

IStatechart2IBehavior

ArtifactAdapter

ISCGen2IBehaviorJava

GenAdapter

IMethodBody

-> SCDef

binding

handcrafted

generated

handcrafted

generated

generator
interface

artifact
interface

'

Context Conditions

'

Context Conditions

Figure 7: Constituents for a composition of two language components ClassDiagram and Statechart: The left depicts grammar,
context conditions, and a code generator for class diagrams and the right respective constituents for Statecharts. The middle
depicts the connection between these independent language components: The top visualizes the featuremodel and the binding
between extension point and extension. The bottom presents the generated adapters and their handcrafted implementations.

can be employed to describe the behavior of methods modeled
within the class diagram’s classes. Figure 7 depicts the constituents
of the individual generators of the class diagram language compo-
nent and the Statechart language component whose functionality
has been explained above. The generator for class diagrams has to
be aware of the existence of adapters adapting any (generator or
artifact) interface to the required (generator or artifact) interface of
each extension point. From the mapping within the language prod-
uct line, the code generator receives a map from the type of each
extension point (e.g., IMethodBody) to the concrete type of the ex-
tension (e.g., SCDef). This information is used to invoke the correct
generator. For instance, parsing a class diagram model containing
a method body with a statechart results in an abstract syntax tree
containing an object of type CDWithSCSCDef (cf. Figure 4). This
type is a subtype of SCDef and therefore, the class diagram code
generator invokes the generator for Statecharts via the registered
generator adapter.

6 FEATURE-ORIENTED LANGUAGE
ENGINEERING

This section explains how the variability and composition of lan-
guage components as explained in Section 5 (the solution space [5])
integrates with the variability model and the derivation of variants
in the problem space. With the feature model at hand, all possible
compositions of language components are described at product line
level. The composition mechanism and the definition of language
components are loosely coupled to an employed feature modeling
tool, which is therefore easily exchangeable. The set of bindings for
a concrete feature model is realized as a model conforming to a dedi-
cated small-scale DSL. The feature model restricts the cardinality of

the bindings between several extensions and the extension point. To
this effect, it also realizes the differentiation between optional and
mandatory extension points. Although in general, dependencies
between different language components may lead to unpredicted
issues, such dependencies sometimes can be very useful. Hence,
the feature model may indicate that a certain feature requires an-
other feature, which allows the respective language component to
have (e.g., grammar inheritance) dependencies to other language
components. Further, the composition of two specific language
components can be forbidden using excludes in the feature model.

The language product line manager assigns language compo-
nents to features and aligns the feature model meaningfully. After
completing the product line, she generates adapters for all gen-
erators and artifacts of language components, which are directly
related and implements the adaptations accordingly using the gen-
eration gap pattern.

Afterwards, a product owner can configure a language product
by selecting desired features. After validating the feature config-
uration against the feature model, the language components and
their constituents are resolved. Based on these, the new grammar
that extends from the grammars of all related features is synthe-
sized and for each binding, a new production rule is created that
realizes this binding through grammar rule extension and imple-
mentation. Based on this grammar, MontiCore generates a parser,
AST classes, context condition interfaces, and visitors. Further, all
context conditions are collected and a wrapper for the generated
context condition checking visitor is generated that parametrizes
the latter with the collected context conditions. Thus, parsing and
checking models of the language product already is possible.

«interface»

ICDGenerator
CD2JavaGen

+ gen(CD ast, String path) + CDJavaGen()

+ register(Class<? extends ASTNode> ep, Object gen)

+ Object getRegisteredGen(ASTNode ast)

+ CDWithSCJavaGen()

public CDWithSCJavaGen() {

super();

this.register(

IMethodBody.class,

new ISCGen2IBehaviorJavaGenAdapter(new SC2JavaGen()));

}

wrapper generated
from selected variant

registers generator gen

for extension point
typed with ep

implemented by CD2JavaGen developer: must create an ExtensionPointInfo
instance for each extension point typed with the extension point‘s AST class

code generator referenced in
language component

returns the most specific
registered generator for

ASTNode ast

provided by
every generator

CDWithSCJavaGen

+

+

+

Figure 8: The generator CDWithSCJavaGen is generated from
the selected variant.

Generators are composed by generating a wrapper for the gen-
erator of the feature model’s root feature that parametrizes that
generator with the other selected generators. This is realized by
instantiating the respective (handcrafted) generator adapter class.
Where multiple levels of generators are selected, the parametriza-
tion is nested accordingly. This wrapper then is registered with the
new language model processing framework generated by Monti-
Core. On artifact level, adapters typically are instantiated within
the templates of the embedding generator. As the name of arti-
fact adapters is fixed (cf. Section 5) and derived from provided and
required artifact interfaces, the name can be calculated within tem-
plates. Finally, a new language component is generated that uses
the synthesized grammar, the context condition checker wrapper,
and the synthesized code generator to process and transform mod-
els. This composed language component can be reused, e.g., in a
new language product line.

7 EXAMPLE REVISITED
The previous sections explained composition mechanisms for the
grammars, context conditions, and generators of language compo-
nents. A more detailed explanation of the composition of grammars
is given in [4]. This section provides an insight into the composition
of code generators alongside of the example with the composition
of the Statechart language component and class diagrams (Figure 6).

Figure 7 depicts the involved classes of the CD2JavaGen, the
SC2JavaGen, and the adaptation, where the abstract adapters are
generated at product line level. The CD2JavaGen initializes its ex-
tension points in its constructor and yields a method to obtain a
registered generator for an extension point based on a given node
of the AST as depicted in Figure 8. For a single extension point
there might be multiple registered generators, but for a concrete
type of ASTNode (e.g., SCDef) there must be only a single generator
translating it. To use a generator with other generators embedded
via generator adapters, a wrapper is generated (cf. Section 6). This

<#-- requires: ASTClass ast, String package, CD2JavaGen cdGen -->

class ${ast.getName()} {

<#list ast.getMethods() as met>

<#assign name = met.getMethodHead().getName()>

<#assign fqName = package + name>

<#assign g = cdGen.getRegisteredGen(met.getMethodBody())>

<#assign genClassName = g.generate(met.getMethodBody(), fqName)

.getGenClassName()>

IBehaviorArtifact ${name}Body =

new ${g.getTargetInterface()

.getSimpleName()}2IBehaviorArtifactAdapter(new ${genClassName}());

public void ${name}(Map<Object,Object> _input) {

${name}Body.compute(_input);

}

</#list> <#-- ... -->

}

FTL

method of
IBehaviorArtifact

interface

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

find most
specific

generator

generate
artifact

instantiate
generated artifact
through adapter

Figure 9: Excerpt of a template called by CD2JavaGen.

wrapper extends the host generator and in its constructor, registers
the employed handwritten extensions of the generator adapters.
Each generator adapter has to be parametrized with the concrete
instance of its adaptee. In the example, the employed generator
adapter adapts the SC2JavaGen as realization of an ISCGen to an
IBehaviorJavaGen and registers the adapter at the extension point
IMethodBody.

If invoked to translate a concrete model, the SC2JavaGen ex-
ecutes its main template as depicted in Figure 9. The template
produces a new Java class (l. 2) for each class of the class diagram.
For each method of the class to translate, it generates an artifact
adapter attribute (ll. 10-12) and a Java method (ll. 14-16). The correct
artifact adapter is determined according to the embedded generator
that translates the specific type of method body (i.e., in the example
only SCDef) and the fix naming scheme for adapters. The generated
method delegates the execution of the method of the class diagram
method to the respective artifact adapter. For generating an artifact
for an embedded IMethodBody, the template retrieves the method-
specific generator (l. 7) and executes it to synthesize the artifact
(ll. 8-9). Afterwards, the template instantiates the artifact adapter
and parametrizes it with a new instance of the generated artifact it
delegates to (ll. 11-12).

Figure 10 overviews the artifact adapter infrastructure. The arti-
fact interfaces of the code generators, in the example IBehavior-
Artifact of the CD2JavaGen and IStatechart of the SC2JavaGen,
are handwritten. The notion behind the IBehaviorArtifact, for in-
stance, is that the CD2JavaGen expects all generators corresponding
to productions bound to the IMethodBody extension point to pro-
duce classes that implement the IBehaviorArtifact interface. To
this effect, it provides an implementation of the method compute()
that has the given parameters and return type. IStatechart2-
IBehaviorArtifactAdapterTOP is a generated, abstract adapter
class. It implements the interface it adapts to and holds an attribute
for the adaptee. When initialized, each adapter has to specify the
concrete instance of the adaptee. Concrete adapter implementa-
tions have to be handcrafted (cf. Section 5). For instance, the class
IStatechart2IBehaviorArtifactAdapter is a concrete adapter
implementation that extends the abstract adapter and follows the
naming scheme. In this concrete adapter, all methods that are re-
quired by the interface that the adapter adapts to, have to be imple-
mented while delegating to the methods provided by the adaptee

public class IStatechart2IBehaviorArtifactAdapter extends
IStatechart2IBehaviorArtifactAdapterTOP {

public IStatechart2IBehaviorArtifactAdapter(IStatechart adaptee) {
super(adaptee);

}

@Override
public void compute(Map<Object,Object> _input) {

String scInput = (String)_input.get("trigger");
boolean wasFinal = false; int i = 0;
while(i<scInput.length() || !isFinal)
isFinal = getAdaptee().updateCurrentState(entry.charAt(i));

}
}

}

public interface IStatechart {
public boolean updateCurrentState(char trigger);

}

public abstract class IStatechart2IBehaviorArtifactAdapterTOP

implements IBehaviorArtifact {
private IStatechart adaptee;
public IStatechart2IBehaviorArtifactAdapterTOP(IStatechart adaptee) {

this.adaptee = adaptee;
}

}

public interface IBehaviorArtifact {
public void compute(Map<Object,Object> _input);

}

Java
01
02
03

01
02
03
04
05
06
07

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

01
02
03

Figure 10: Parts of the artifact adaption infrastructure.

interface. In this example, the compute method has to be imple-
mented to adapt the execution of a method of the class diagram
to the execution of a Statechart. The implementation retrieves a
parameter trigger, which it assumes is present and of type String.
Then it iterates over the concrete String and updates the state of the
Statechart by invoking the method updateCurrentState() with
the next character of the String, until either the Statechart is in a
final state or the input word is processed completely.

The presented approach relieves product owners from being
software language engineers completely. A product owner should
know the language concepts required for a certain product, but
does not require to implement adapters or any form of “glue code”.
Further, all composition mechanisms applied during derivation of
a variant are completely automated. Product line engineers have to
be software language engineers as these have to connect extension
points to extensions and realize, e.g., the adapters for code genera-
tors. Nonetheless, product line managers do not have to be aware of
intricate details of the implementations within individual language
components, which greatly facilitates reusability of these.

8 DISCUSSION AND RELATEDWORK
Our work is a first approach to realize parts of the VCU (variability,
customization, use) model of reuse [21] for software languages as
sketched in [18]. To this end, we support aggregating language
concerns – including syntax and semantic realizations – through
features. We therefore currently investigate whether partial config-
uration of language products is suitable.

Our approach to compose code generators is limited to compos-
ing independent generators. Adding, e.g., aspect-like functionality
through a single feature is not supported and we are currently inves-
tigating this extension.Moreover, our approach limits the variability
of language syntax, well-formedness, and dynamic semantics to
a single dimension. While this reduces the effort of modeling a
language product line, it may require to produce multiple language

components that rely on common constituents. For example, if a
language can be translated either to Java or C using two different
code generators, our approach relies on two different language
components. These have references to the same grammar and well-
formedness rules, but each employs a different code generator. Our
approach also leverages language embedding as the composition
mechanism of choice. With this, a loose coupling of languages, in
which their abstract syntaxes are not composed – such as language
aggregation [15] – is not supported, but subject to ongoing research.
Another open challenge is to make language components an ac-
tive unit of systematic reuse, for instance through inheritance of
language components. Some approaches consider code generation
as the last step in a pipeline of tools that process a model. In this
representation, the language’s semantics is realized via applying
several model-to-model transformations in a certain order and then
translating the transformed model into text by employing a code
generator. Currently, our approach does not explicate model-to-
model transformations within language components. Considering
model-to-model transformations as first phase of executing a code
generator, however, is possible.

Our generator variability mechanism ensures compatibility be-
tween composed code generators, but cannot guarantee correctness
of the generated code. However, the syntactical correctness (e.g.,
avoiding that two generators generate a file with the same names)
can be checked. Also, the restriction to code generators producing
standalone artifacts enables a better investigation of their compati-
bility, but limits their modularity to be coarser grained. While many
use cases of code generator composition can be realized following
this premise, we are aware of its limitations. For instance, code
generators producing, a return statement of method bodies only,
are too fine-grained for our composition approach. Future work
will investigate how the composition of generators and artifacts
can be realized with finer grained modularity of generators.

For composition of generators and generated artifacts, the prod-
uct line engineer has to provide two adapters per combination
of code generators on product line level. If, however, we assume
that the product manager is also a software language engineer, the
adaptation could be performed later – while deriving the variant.
This reduces the number of adapters to be created to twice the
number of selected generators. Also, the product owner could per-
form variant-specific integration of handcrafted code to further
customize the other constituents of the language components (such
as integration of novel inter-language well-formedness rules). Ulti-
mately, our composition mechanism also relies on the constituents
of all language components to be implemented in the same techno-
logical space. This prevents, e.g., defining the language components
of a single product line in different language workbenches. Such
inter-space language definitions also subject to ongoing research.

Future work on the benefits of code generator composition
through feature must also investigate efficiency and usability con-
siderations. Our approach requires only little overhead (a language
component model per language and the interfaces per code genera-
tor) and leverages this to yield black-box composition of reusable
code generators. These interfaces are very compact and the lan-
guage composition merely aggregates existing artifacts. Code gen-
erator composition without explicit interfaces for generators and

artifacts requires sophisticated and costly white-box generator in-
vestigation. To uncover the benefits of generator variability, future
work could investigate and apply metrics regarding size and com-
plexity of artifacts as well as empirical metrics regarding usability.

Research and practice have produced a number of languagework-
benches, i.e., software tools that support developing and (re)using
modeling languages [10]. These language workbenches employ
different language definition paradigms, e.g., to (1) define concrete
syntax and abstract syntax of languages (usually grammars [2, 15,
30, 32], metamodels [6, 28], or projectional editing [38]); (2) develop
the well-formedness rules applied to the abstract syntax (typically
OCL [17] or GPL rules [15]); and (3) describe the behavior of mod-
els (interpretation [3] or code generation [5]). Due to this wealth
of technological spaces and fragmentation in different solution
techniques for language development, support for reusing syntac-
tic and semantic language components is rare [31]. Consequently,
language reuse is an ongoing research challenge and different ap-
proaches [25] exist to address this challenge. Some approaches
employ plain negative variability to derive variants of a 150% meta-
model [40], which limits their extensibility. There are, however,
few approaches addressing both syntax and semantics of modeling
languages. The revisitor approach [24] is one of these. It uses a new
pattern to enable independent extensions of executable DSMLs
covering both metamodel and the realization of the semantics. It
supports to extend a language without foreseeing explicit extension
points at its design time and reusing language components without
recompilation. To the best of our knowledge, it does not support to
develop extending language and extended language independent
of another.

Neverlang [30] is a language development framework that en-
ables to develop compositional languages components comprising
a grammar-based syntax definition and several evaluation phases
realizing that, among other things, include type checking and code
generation. Extension points in these grammars are placeholders,
which are unused nonterminal names. To the best of our knowledge,
there is no dedicated typing system for placeholders. AiDE [23],
built on top of Neverlang, guides language developers in compo-
sition of the language components by extracting dependencies
between language components. From these, AiDE synthesizes a fea-
ture model for a language product line fully automated. There is an
extension to Neverlang using the common variability language for
organizing the variability across language components [31]. How-
ever, both extensions to Neverlang require dependencies between
the language components. Compared to our approach, this limits
their reuse in different contexts as language components cannot be
developed independently.

The approach presented in [8] enables developing programming
languages gradually from independent language modules contain-
ing context-free grammars as their syntaxes and action semantics.
Action semantics differ from the denotational semantics realized
with code generators as presented in our approach. Action seman-
tics modules are built from action notation symbols and as such
limited to the expressiveness of the underlying symbols. This yields
the advantage that composing semantics modules is more control-
lable compared to our approach. Further, such symbols are inter-
pretable from different target GPL interpreters. To the best of our

knowledge, the approach lacks an explicit variability model to build
up product lines of languages.

mbeddr [35, 36] is an extensible set of language modules that
builds upon C and the languageworkbenchMPS [34]. It is, therefore,
limited to use C as common base language and, to the best of our
knowledge, lacks a variability model to properly manage available
language modules and their conceptual interrelations. However, it
has great usability in terms of editors through MPS. The MPS code
generator is extensible by resolving all generator rules and mapping
configurations of the individual languages and then building a
generation plan. The order of executing the single code generators
is specified via priorities. Similarly, ableC [20] is an extensible
language framework that builds upon C. It uses Silver and Copper
as underlying technologies for the definition of attribute grammars
to describe the syntax, and provides several mechanisms to realize
composition of these.

In [26], generator composition is realized similar to our approach.
Here, each code generator implements one out of three predefined
interfaces and provides basic information required by the main
generator to call other generators. To this end, each generator yields
a model describing its interface-related properties. This approach
enables to compose generators, but the composed generators have
to implement the predefined interfaces and possible extensions are
restricted to existing generator interfaces. The runtime dimension
is not covered as all possibly existing generator types are known a
priori and, hence, generated source code matches by construction.
However, this approach is limited to embedding behavior languages
into architecture description languages.

9 CONCLUSION
We have introduced a method to reuse modeling language (parts)
through syntactic and semantic embedding of language compo-
nents. Based on this, modeling language product lines foster sys-
tematic reuse of languages and related tooling. Our method relies
on abstract syntax descriptions that support underspecification and
code generators that, yielding explicit interfaces, produce target
GPL artifacts whose contracts (e.g., interfaces), they make explicit.
With this, language product line engineers can arrange features rep-
resenting language components such that various domain-specific
language variants can be derived easily. All language engineer-
ing efforts (such as integration of inter-language well-formedness
rules or code generator adapters) are with the language product
line manager. Hence, all composition is transparent to the product
line users and modelers. Ultimately, this can facilitate reducing the
proliferation of (domain-specific) modeling languages.

REFERENCES
[1] Kai Adam, Arvid Butting, Oliver Kautz, Jerome Pfeiffer, Bernhard Rumpe, and

Andreas Wortmann. 2018. Retrofitting Type-safe Interfaces into Template-based
Code Generators. In Proceedings of the 6th International Conference on Model-
Driven Engineering and Software Development (MODELSWARD’18). SciTePress,
179 – 190.

[2] Lorenzo Bettini. 2016. Implementing Domain-Specific Languages with Xtext and
Xtend. Packt Publishing Ltd.

[3] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer, Julien Dean-
toni, and Benoit Combemale. 2016. Execution framework of the gemoc studio
(tool demo). In Proceedings of the 2016 ACM SIGPLAN International Conference on
Software Language Engineering. ACM, 84–89.

[4] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas
Wortmann. 2018. Controlled and Extensible Variability of Concrete and Ab-
stract Syntax with Independent Language Features. In Proceedings of the 12th
International Workshop on Variability Modelling of Software-Intensive Systems
(VAMOS’18). ACM, 75–82.

[5] Krzysztof Czarnecki and Ulrich W. Eisenecker. 2000. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley.

[6] Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais, and Jean-
Marc Jézéquel. 2015. Melange: A Meta-language for Modular and Reusable
Development of DSLs. In 8th International Conference on Software Language
Engineering (SLE). Pittsburgh, United States.

[7] Thomas Degueule, Tanja Mayerhofer, and Andreas Wortmann. 2017. Engineering
a ROVER Language in GEMOC STUDIO & MONTICORE: A Comparison of
Language Reuse Support. In Proceedings of MODELS 2017. Workshop EXE (CEUR
2019).

[8] Kyung-Goo Doh and Peter D Mosses. 2003. Composing programming languages
by combining action-semantics modules. Science of Computer Programming 47, 1
(2003), 3–36.

[9] Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. 2012. Language
Composition Untangled. In Proceedings of the Twelfth Workshop on Language
Descriptions, Tools, and Applications (LDTA ’12). ACM, New York, NY, USA.

[10] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex
Loh, Gabriël D.P. Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen
Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin
van der Vlist, Guido H. Wachsmuth, and Jimi van der Woning. 2013. The State of
the Art in Language Workbenches. In Software Language Engineering. Springer
International Publishing.

[11] Robert France and Bernhard Rumpe. 2007. Model-Driven Development of Com-
plex Software: A Research Roadmap. In Future of Software Engineering 2007 at
ICSE.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional.

[13] Timo Greifenberg, Katrin Hoelldobler, Carsten Kolassa, Markus Look, Pedram
Mir Seyed Nazari, Klaus Mueller, Antonio Navarro Perez, Dimitri Plotnikov,
Dirk Reiss, Alexander Roth, Bernhard Rumpe, Martin Schindler, and Andreas
Wortmann. 2015. A Comparison of Mechanisms for Integrating Handwritten and
Generated Code for Object-Oriented Programming Languages. In Proceedings
of the 3rd International Conference on Model-Driven Engineering and Software
Development. Scitepress, Angers, France.

[14] Object Management Group. 2010. Object Constraint Language Version 2.2 (OMG
Standard 2010-02-01). (2010).

[15] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez,
Bernhard Rumpe, Steven Voelkel, and Andreas Wortmann. 2015. Integration of
Heterogeneous Modeling Languages via Extensible and Composable Language
Components. In Proceedings of the 3rd International Conference on Model-Driven
Engineering and Software Development. Scitepress, Angers, France.

[16] David Harel and Bernhard Rumpe. 2004. Meaningful Modeling: What’s the
Semantics of “Semantics“? Computer 37, 10 (2004), 64–72.

[17] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, Michael Thiele,
Christian Wende, and Claas Wilke. 2010. Integrating OCL and textual modelling
languages. In International Conference on Model Driven Engineering Languages
and Systems. Springer, 349–363.

[18] Jean-Marc Jézéquel, Manuel Leduc, Olivier Barais, Tanja Mayerhofer, Erwan
Bousse, Walter Cazzola, Philippe Collet, Sébastien Mosser, Benoit Combemale,
Thomas Degueule, Robert Heinrich, Misha Strittmatter, Jörg Kienzle, Gunter
Mussbacher, Matthias Schöttle, and Andreas Wortmann. 2018. Concern-Oriented
Language Development (COLD): Fostering Reuse in Language Engineering. Com-
puter Languages, Systems & Structures 54 (2018), 139 – 155.

[19] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick Valduriez.
2006. ATL: a QVT-like Transformation Language. In Companion to the 21st ACM
SIGPLAN symposium on Object-oriented programming systems, languages, and
applications. ACM, 719–720.

[20] Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. 2017. Reliable
and Automatic Composition of Language Extensions to C: The ableC Extensible

Language Framework. Proc. ACM Program. Lang. 1, OOPSLA, Article 98 (Oct.
2017), 29 pages. https://doi.org/10.1145/3138224

[21] Jörg Kienzle, Gunter Mussbacher, Omar Alam, Matthias Schöttle, Nicolas Belloir,
Philippe Collet, Benoit Combemale, Julien Deantoni, Jacques Klein, and Bernhard
Rumpe. 2016. VCU: The Three Dimensions of Reuse. In International Conference
on Software Reuse. Springer, 122–137.

[22] Holger Krahn, Bernhard Rumpe, and Steven Völkel. 2010. MontiCore: a Frame-
work for Compositional Development of Domain Specific Languages. In Interna-
tional Journal on Software Tools for Technology Transfer (STTT).

[23] Thomas Kühn, Walter Cazzola, and Diego Mathias Olivares. 2015. Choosy and
picky: configuration of language product lines. In Proceedings of the 19th Interna-
tional Conference on Software Product Line. ACM, 71–80.

[24] Manuel Leduc, Thomas Degueule, Benoît Combemale, Tijs Van Der Storm, and
Olivier Barais. 2017. Revisiting Visitors for Modular Extension of Executable
DSMLs. In ACM/IEEE 20th International Conference on Model Driven Engineering
Languages and Systems. Austin, United States. https://hal.inria.fr/hal-01568169

[25] David Méndez-Acuña, José A Galindo, Thomas Degueule, Benoît Combemale,
and Benoit Baudry. 2016. Leveraging Software Product Lines Engineering in
the Development of External DSLs: A Systematic Literature Review. Computer
Languages, Systems & Structures 46 (2016), 206–235.

[26] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wortmann.
2014. Code Generator Composition for Model-Driven Engineering of Robotics
Component & Connector Systems. In 1st International Workshop on Model-Driven
Robot Software Engineering (MORSE 2014) (CEURWorkshop Proceedings), Vol. 1319.
York, Great Britain, 66 – 77.

[27] Bernhard Rumpe and Katrin Hölldobler. 2017. MontiCore 5 Language Workbench.
Edition 2017. Shaker Verlag.

[28] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2009. EMF:
Eclipse Modeling Framework (2. ed.). Addison-Wesley, Boston, MA.

[29] Alan Mathison Turing. 1937. On computable numbers, with an application to
the Entscheidungsproblem. Proceedings of the London mathematical society 2, 1
(1937), 230–265.

[30] Edoardo Vacchi and Walter Cazzola. 2015. Neverlang: A framework for feature-
oriented language development. Computer Languages, Systems & Structures 43
(2015), 1–40.

[31] Edoardo Vacchi, Walter Cazzola, Suresh Pillay, and Benoît Combemale. 2013.
Variability Support in Domain-Specific Language Development. In Software Lan-
guage Engineering, Martin Erwig, Richard F. Paige, and Eric Van Wyk (Eds.).
Springer International Publishing, Cham, 76–95.

[32] Tijs van der Storm. 2011. The Rascal Language Workbench. CWI. Software
Engineering [SEN].

[33] John Vlissides. 1998. Pattern Hatching: Design Patterns Applied. Addison-Wesley.
online at http://www.research.ibm.com/designpatterns/pubs/gg.html.

[34] Markus Voelter and Vaclav Pech. 2012. Language modularity with the MPS
language workbench. In Software Engineering (ICSE), 2012 34th International
Conference on. IEEE, 1449–1450.

[35] Markus Voelter, Daniel Ratiu, Bernhard Schaetz, and Bernd Kolb. 2012. Mbeddr:
An Extensible C-based Programming Language and IDE for Embedded Systems.
In Proceedings of the 3rd Annual Conference on Systems, Programming, and Appli-
cations: Software for Humanity (SPLASH ’12). ACM, New York, NY, USA, 121–140.
https://doi.org/10.1145/2384716.2384767

[36] Markus Voelter, Jos Warmer, and Bernd Kolb. 2015. Projecting a Modular Future.
IEEE Software 32, 5 (2015), 46–52.

[37] Markus Völter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats He-
lander, Lennart C L Kats, Eelco Visser, and Guido Wachsmuth. 2013. {DSL}
Engineering - Designing, Implementing and Using Domain-Specific Languages.
dslbook.org.

[38] Markus Völter and Eelco Visser. 2010. Language extension and composition
with language workbenches. In Proceedings of the ACM international conference
companion on Object oriented programming systems languages and applications
companion. ACM, 301–304.

[39] Guido HWachsmuth, Gabriel DP Konat, and Eelco Visser. 2014. Language Design
with the Spoofax Language Workbench. Software, IEEE 31, 5 (2014), 35–43.

[40] Jules White, James H Hill, Jeff Gray, Sumant Tambe, Aniruddha S Gokhale,
and Douglas C Schmidt. 2009. Improving domain-specific language reuse with
software product line techniques. IEEE software 26, 4 (2009).

https://doi.org/10.1145/3138224
https://hal.inria.fr/hal-01568169
https://doi.org/10.1145/2384716.2384767

	Abstract
	1 Introduction
	2 Background and Example
	3 Preliminaries
	3.1 MontiCore Language Workbench
	3.2 Composing Grammars and Context Conditions

	4 A Concept for Code Generator Variability
	5 Composing Independent Code Generators
	6 Feature-Oriented Language Engineering
	7 Example Revisited
	8 Discussion and Related Work
	9 Conclusion
	References

