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Abstract
Robotics currently adopts model-driven engineering focus-
ing software modeling languages. This forces domain ex-
perts to employ these languages instead of enabling appli-
cation of more appropriate DSLs. This ultimately produces
monolithic, hardly reusable applications. We present an in-
frastructure for the development of service robotics appli-
cations employing DSLs aimed at domain experts and tai-
lored to domain challenges. It facilitates separation of con-
cerns of participating robotics, domain, and software engi-
neering experts and integrates their models via a component
& connector reference architecture and a combined code
generation framework. The infrastructure was successfully
deployed and evaluated with robotics manufacturers, care-
givers, and software engineers in a German hospital. We
believe that model-driven engineering with languages tai-
lored to the various stakeholders’ needs can greatly facilitate
robotic application engineering.

Keywords Separation of Concerns, Domain-Specific Lan-
guages, Code Generation, Service Robotics

1. Introduction
Engineering robotics applications is a complex endeavor that
requires solutions from multiple domains as well as their
successful integration. Domain experts (such as hospital IT
staff) are rarely software engineering experts and due to the
conceptual gap between domain challenges and their soft-
ware engineering solutions (France and Rumpe 2007), in-
tegration of their solutions often results in monolithic soft-
ware architectures that are hardly reusable in different con-
texts (Schlegel et al. 2011). This severely hampers service
robotics adoption (Hägele et al. 2011). Model-driven engi-
neering with domain-specific languages (DSLs) can facili-
tate robotics software engineering by abstracting from the
complexity of general programming languages (GPLs) and
by enabling domain experts to contribute solutions in better
suitable languages – ultimately reducing the conceptual gap.

We propose to separate concerns of domain experts,
robotics experts, and integration experts by providing appro-
priate DSLs as depicted in Fig. 1. These DSLs enable do-

main experts to describe tasks as sequences of goals a robot
should achieve. Tasks operate in the context of a domain
model, a robot model, and a world model. All are translated
into integrated GPL implementations that employ a planner
to solve tasks in a dynamic environment. The implementa-
tions are integrated with robot-specific GPL code provided
by robotics experts. The task planner translates tasks into
sequences of actions that are executed on loosely coupled
robot platforms. The modeling infrastructure is integrated as
a C&C architecture developed by integration experts.
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Figure 1. Separation of concerns is achieved by separation
into roles with different expertises.

We have detailed the DSLs enabling such separation of
concerns for service robotics applications in (Heim et al.
2015). This paper presents its (1) integrated code generation
and model execution infrastructure and (2) an evaluation
with praticioners in a German hospital.

In the following, Sect. 2 motivates separation of concerns
and modeling in service robotics, before Sect. 3 sketches the
DSLs. Afterwards, Sect. 4 presents the code generation in-
frastructure and Sect. 5 illustrates models execution. Sect. 6
describes the evaluation. Sect. 7 discusses observations and
Sect. 8 highlights related work. Sect. 9 concludes.

2. Scenario
Consider engineering of a service robotics application to
support hospital caregivers in logistics tasks. Successfully
deploying it requires expertise in robotics, software en-
gineering, and the application domain. Instead of forcing
robotics experts and domain experts to use noisy (Wile 2001)
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Figure 2. Top depicts the service robotics application meta model, bottom depicts conforming models.

and overly complex (France and Rumpe 2007) GPLs, they
are provided with DSLs tailored to the challenges of service
robotics logistics tasks. Proper integration of these DSLs and
their automated transformation into GPL artifacts enables to
describe solutions in a more abstract, reusable fashion with-
out interfering with the other experts’ domains.

An typical task in this scenario is the robotic delivery of
supplies from a storage room to a patient’s room. Success-
ful deployment of a suitable robotic platform1 requires that
robotic experts provide the hardware and software required
for a movable robot that can interact with caregivers. Do-
main experts contribute knowledge about the causalities of
the hospital (for instance, which floors are accessible for the
robot). Ultimately, software engineering experts integrate
the solutions of robotics experts and domain experts.

With proper DSLs, domain experts define declarative
tasks as sequences of reusable goals that abstract from the
specific platform. Instead they describe requirements on
robot and world in form of abstract actor models. For in-
stance, a task may prescribe that the robot first visits the
storage room, loads the required supplies, visits the patient’s
room, and unloads. The goals might entail requirements on
the robot and world (such as having a position), but abstract
from their implementations. From these models, the infras-
tructure generates interfaces that robot experts implement
to realize functionalities on the platforms. Hence, they are
liberated from dealing with domain causalities. The soft-
ware engineers instantiate the infrastructure’s reference ar-
chitecture and extend it with application-specific compo-
nents as necessary. The architecture uses the interfaces gen-
erated from task, domain, robot, and world models and takes
care of task execution using the implementations provided
by robotics experts. Deploying a similar application – for in-
stance to another domain or with another platform – requires
to adjust the implementations of robot models or the compo-
sition of tasks only. This facilitates successful deployment
of model-driven service robotics applications.

3. Modeling Service Robotics Applications
Pervasive modeling of service robotics applications com-
prising of a domain, tasks, goals, robots, and worlds facil-

1 Platform comprises hardware and software to provide high-level skills.

itates their platform-independent description (Heim et al.
2015). An application is modeled using heterogeneous, inte-
grated modeling languages for different aspects (Haber et al.
2015). The meta model of applications is depicted at the top
part of Fig. 2. The data types of a domain are modeled as
UML/P class diagrams (CDs) (Rumpe 2016). They describe
the static context of an application. Each application com-
prises two actors: The world describes properties and ac-
tions of the application environment, the robot describes
properties and actions of the platform. Properties of an ac-
tor are dynamic domain qualities and actions are executable
operations. An action can define parameters of domain data
types and has two Boolean expressions: a precondition must
hold for the action to be executable and a postcondition that
is assumed to hold after the action has been executed. State-
ments of these expressions can be values of parameters or
values of properties of another actor. In this, our model-
ing language for robots and worlds resembles classic plan-
ning languages (Fikes and Nilsson 1972). Action execution
is delegated to actor implementations as employing robotics
middlewares. Goal models may reference a robot, a world,
and domain data types. The latter can be used to parametrize
goals. Each goal model contains a Boolean expression that
reflects a situation, which must be satisfied at an instant to
consider the goal fulfilled. The value of the goals’ param-
eters as well as imported properties of robot and world ac-
tors can be used as statements of the expression. Tasks are
sequences of parametrized goal references. Similar to goal
models, tasks can be parametrized with domain types. A
task can provide its parameters to its referenced goals. For a
task to be executed successfully, the referenced goals have to
be satisfied sequentially. The existence of referenced model
elements from different modeling languages is checked via
inter-language well-formedness rules (Heim et al. 2015).

The bottom part of Fig. 2 describes an example applica-
tion comprising instances conforming to the respective meta
model elements. The example application describe as basic
logistics scenario in which Waypoint instances describe
the topology of the environment. Some waypoints are rooms
that can be addressed with a name. The RoomsWorld
actor knows waypoints and for each pair of waypoints,
the RoomsWorld indicates whether they are adjacent or
not. The application also features the LogisticsRobot



Actor1 domain LogisticsDomain;
2

3 robot LogisticsRobot {
4 property WayPoint loc();
5 action move(WayPoint src, WayPoint dst) {
6 pre: loc() == src && RoomsWorld.adj(src, dst);
7 post: loc() == dst;
8 }
9 }

Listing 1. The robot actor model LogisticsRobot has
a property for the location of the robot and an action
describing that the robot can move between waypoints.

Task1 domain LogisticsDomain;
2

3 task GoTo(Room src, Room dst) {
4 IsAt(src);
5 IsAt(dst);
6 }

Listing 2. The task model GoTo describes the robot moving
from Room src to Room dst using two IsAt goal
references.

actor which abstracts from the platform to be employed
(cf. Lst. 1). It yields the property loc to indicate its current
location in terms of waypoints (l. 4) and can move from one
waypoint to an adjacent waypoint using the action move
(ll. 5-8). The property in this example does not define pa-
rameters, and the action has two WayPoints parameters.
The precondition (l. 6) of move ensures that the robot is
at the src waypoint and that src and dst waypoints are
adjacent, before move can be executed. For the postcondi-
tion (l. 7) to hold, the robot has to be at the waypoint dst.
The robot can be instructed via GoTo tasks (cf. Lst. 2) to
move from one room to another. However, the task allows
only to move from and to Room instances. It contains two
goal references that are to be satisfied sequentially. First,
the goal IsAt(src) has to be satisfied, and then the goal
IsAt(dst). The referenced goal model IsAt (cf. Lst. 3)
describes the situation in which the robot’s current location
equals the waypoint set as the goal’s parameter (ll. 3-4).

During execution of a task, one goal at a time is planned
and thereby translated into a list of actions. With this ap-
proach, a task describing the movement between rooms that
are not adjacent in the world, can be executed by trans-
lating it into multiple actions that describe the movement
between adjacent waypoints. An application model as de-
scribed above only models a logical view on the application.
Without a runtime environment including planning software
and an employed action execution implementation, the mod-
els cannot be translated into executable GPL artifacts. The
syntax of task models follows comprehensible rules (e.g., no
loops or conditions) to cater potential non-programmers in a
hospital’s IT department.

Goal1 domain LogisticsDomain;
2

3 goal IsAt(WayPoint wp) {
4 LogisticsRobot.loc() == wp
5 }

Listing 3. The goal model IsAt is satisfied if the robot has
reached the location indicated by waypoint wp.

4. From Application Models to Executable
Artifacts

Domain experts develop models conforming to the ac-
tor, task, and goal DSLs to capture robotics platform-
independent requirements related to the actions, properties,
and tasks of a robot and the world it operates in (cf. Fig. 1).
A complete robotics system is modeled by a robot actor,
a world actor, multiple tasks, multiple goals as well as an
UML/P CD (Rumpe 2016) domain model.

To close the gap between these conceptual models and
platform-specific realizations, we employ code generators
producing classes containing information captured by mod-
els conforming to the different DSLs and component im-
plementations for parts of a reference architecture modeled
with the MontiArcAutomaton architecture description lan-
guage (Ringert et al. 2015). The code generators produce a
task class for each task model and a goal class for each goal
model. Each task class is associated to the goal classes gen-
erated for the goals referenced by the task’s model. Tasks
and goals may be parametrized with parameters of types de-
fined in their imported domain models. Tasks reference the
parameters in their goals, while goals reference their param-
eters in their predicates (cf. Fig. 2). Further, the generators
produce a class for each domain type modeled by the UML/P
CD. Instances of the domain type classes encode runtime in-
formation. Task instances can be passed to the reference ar-
chitecture to start their execution.

The reference architecture comprises components with
domain-specific implementations generated from actor, do-
main type, and goal models as well as domain-independent
components with predetermined implementations. Some of
the generated component implementations are complete,
whereas others have to be complemented with handcrafted
code as illustrated in Fig. 3. The behavior of component
Controller is predetermined. It processes incoming
tasks and decomposes these into goals to determine which
goal to accomplish next. The implementation of compo-
nent Planner is completely derived from the actor and
goal models as well as the UML/P CD describing the ap-
plication’s domain types. It transforms the actor, goal, and
domain type models to appropriate PDDL (McDermott
et al. 1998) problems and utilizes Metric-FF (Hoffmann and
Nebel 2001) for solving these while using up-to-date world
states that it requests from component StateProvider.
Since the Planner implementation is completely gen-
erated and it automatically calculates plans for the goals
modeled by the domain experts, developers do not have to
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Figure 3. The reference software architecture featuring
components to control task execution, using a planner and
two components interacting with the platform.

be planning experts. The implementations of components
ActionExecuter and StateProvider are generated
from the domain types and the actor models but have de-
pendencies to code artifacts that have to be handcrafted by
robotics experts (cf. Fig. 1). For this purpose the code gen-
erators produce the interface IRobot from the robot actor
as well as the interface IWorld from the domain types and
the world actor. Both interfaces consist of a method for each
action and for each property of the corresponding actors,
while the interface generated for the world actor addition-
ally contains a method for each domain type. To complete
the component implementations, robotics experts (cf. Fig. 1)
provide implementations of these interfaces to interact with
the specific platforms employed. This decouples logical task
planning from its actual execution and enables to reuse tasks,
goals, and the reference architecture with different robots
and in different worlds. For instance, Fig. 4 depicts the in-
terface generated for the robot actor illustrated in Lst. 1. The
StateProvider component calls the methods generated
for the properties and for the domain types to prompt the
current system state at runtime, i.e., to calculate currently
holding properties and to query currently existing objects
relevant for planning. The ActionExecuter component
invokes the methods generated for the actions to trigger their
physical execution. Such a method might, for example, del-
egate action execution to an appropriate middleware.

The generated interfaces abstract from platform-specific
implementation details. Thus, models and the generated ref-
erence architectures are reusable in different, conceptually
similar applications. Only the platform-dependent imple-
mentations of the generated interfaces have to be adapted
with respect to the platform-specific technologies. This fa-
cilitates separation of domain concerns captured by mod-
els conforming the DSLs presented in Sect. 3 and applica-
tion specific software development concerns hidden by the
generated interfaces. Abstracting from platform implemen-
tation details especially enables to reuse tasks and goals with
platforms yielding different capabilities easily: whether the
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Figure 4. The interface IRobot is generated from the
robot actor of Lst. 1 with its handcrafted implementation
LogisticsRobot.

action move (cf. Lst. 1) is implemented using a humanoid
robot or an unmanned aerial vehicle might be irrelevant to
the conceptual domain challenges.

5. Executing Application Models
Integration experts can extend the RefArc software archi-
tecture with application-specific components with little ef-
fort by connecting its ports (cf. Fig. 1). The interface of
RefArc consists of one port for receiving tasks and another
for emitting status information. On task instantiation, values
are substituted for a task’s parameters and thereby also for
the parameters of the goals the task consists of. After task
instantiation, its execution can be initiated by using the in-
terface of the reference architecture.

For each goal of each task, the Planner component
needs to derive a plan as a sequence of actions (cf. Fig. 3,
“Plan”) that fulfills the goal given the current situation
(cf. Fig. 3, “Properties”). The object space induced by the
parameters of tasks and goals is potentially infinitely large.
Furthermore, the domain types and properties of actors pos-
sibly model infinitely many environmental situations. Thus,
it is practically not feasible to calculate all plans for all pos-
sible goal instances prior to runtime. Therefore, for each
individual goal to be satisfied, the Planner component
translates the goal, entity, and domain models as well as
information about the current environmental situation, cap-
tured by objects encoding runtime information, into PDDL
models at runtime. Then it uses the Metric-FF planner (Hoff-
mann and Nebel 2001) to solve the goal, and transforms the
result back to lists of actions.

The planning process may succeed or fail, e.g., if a goal
is unsatisfiable. If planning fails, the Controller initiates
planning for the same goal up to three times, again, since
the environmental situation might have changed. To avoid
a deadlock, it aborts task execution and dismisses the cur-
rent task in case planning fails four times in a row. In that
case a request for remote operation is issued via its Status
port. How this is treated depends on the application context
and the capabilities of the platform. We evaluated the refer-
ence architecture in a setting where a remote operator could
access the robot’s camera and proximity sensors to take con-



trol over the robot. If planning succeeds, the Controller
tries to perform the actions of the plan received from com-
ponent Planner in order of appearance. To this effect, it
sends the next action to execute via the Action (cf. Fig. 3)
port to component ActionExecuter, which tries to ex-
ecute the action by calling the handcrafted methods of the
actor implementations, e.g., move (cf. Fig. 4), and sends in-
formation indicating whether action execution was success-
ful via the Result port (cf. Fig. 3). If the execution of an
action fails, the system initiates a replanning process up to
three times as described above. If an action is successfully
executed and its corresponding plan contains more actions,
the Controller tries to execute the next action. If a suc-
cessfully executed action is the last action of a plan, the cor-
responding goal is satisfied. In this case, the system tries to
satisfy the next goal, if there is any, or is ready for starting
the execution of a new task, otherwise.

Executing the planned actions should lead to accomplish-
ing the current goal. To ensure the assumptions made at plan-
ning time do not diverge from the actual situation at action
execution (for instance, a door assumed to be open might
have been closed in the meantime), the reference architec-
ture’s ActionExecuter evaluates each action precondi-
tion immediately prior to executing it.

6. The iserveU Robotics Application
We evaluated the presented infrastructure in the federal is-
erveU service robotics research project 2. This project in-
vestigated pervasive model-driven software engineering for
complex service robotics applications on example of hospi-
tal logistics applications. The 3-year project was conducted
with three partners from academia and three industrial part-
ners from different fields of robotics. In the project, we tested
the overall system, including the DSLs, the reference archi-
tecture, its binding to the SmartSoft (Schlegel et al. 2011)
robotics middleware, and novel robotics hardware for a week
in the Katharinen Hospital in Stuttgart.

Domain experts provided 7 task models, 5 goal models,
2 actor models containing 7 properties and 6 actions, and 1
domain model with several classes. Integration experts de-
veloped 10 MontiArcAutomaton models for the reference
architecture and robotics experts connected the system to a
Robotino3 platform equipped with infrared sensors and laser
scanners (cf. Fig. 5). For this evaluation, the reference archi-
tecture was extended with application-specific components.
This enabled interaction with a remote operator as well as in-
teraction with the hospital staff via a user interface running
on a robot-mounted tablet PC. The system application faced
daily hospital routines within a dynamic environment, i.e., it
operated between patients and caregivers.

To evaluate the modeling languages, the three tasks were
used: 1. Collect an item from a specific location and deliver
it to a destination. 2. Guide a person from one location to

2 http://www.se-rwth.de/materials/iserveu/

another. 3. Follow a specific person. From these, collecting
items was the task used most frequent. This might be a re-
sult of caregivers being more cautious in case patients in-
teract with robots. Extension of functionality in the scenario
merely increase the number of task and goal models. How-
ever, changing the employed platform or environment could
urge an adaptation of the actors. This could lead to ripple ef-
fects within the task and goal models if an actor’s interface
changes, but the reference architecture remains robust.

Figure 5. iserveU evaluation using a Robotino3 platform
connected to the reference architecture via the Smart-
Soft (Schlegel et al. 2011) robotics middleware.

7. Discussion
The presented DSLs describe distinct aspects of a service
robotics application and an underlying execution system.
They facilitate a separation of concerns into (a) domain ex-
perts, who model tasks, goals, and entities of the applica-
tion; (b) robotics experts who contribute components and
realize actions on the respective platforms, and (c) integra-
tion experts who compose the run-time system as a C&C
architecture and ensure models are translated into compati-
ble artifacts. This separation is independent of the employed
platform or application domain, but more complex applica-
tions might require further decomposition of concerns. The
DSLs to describe tasks and goals intentionally feature few
elements only to enable non-programming domain experts
to describe tasks and goals. For more experienced program-
mers, this might not be expressive enough and future work
might show these prefer more expressive DSLs (cf. (Reck-
haus et al. 2010; Diprose et al. 2012)).

The translation to PDDL models and planning at system
runtime are complex and prohibit application of our frame-
work in real-time critical contexts. For service robotics,
real-time capabilities are usually less important, but for au-
tonomous systems, this approach might be unfeasible. Our
reference architecture supports customization only in terms
of adding additional components that can communicate with



the reference architecture’s predefined interfaces. Adding
additional core functionality, for instance plan verification,
might entail complex architecture reconfiguration.

8. Related Work
There are various modeling techniques for describing robot
abilities and behavior (Nordmann et al. 2014), but these usu-
ally focus on programming experts instead of domain ex-
perts (Reckhaus et al. 2010; Diprose et al. 2012), target other
domains (Thomas et al. 2013), lack extensible execution sys-
tems, or are tied to specific platforms. The heterogeneity of
robotics rarely produces reference architectures (Lindström
et al. 2000; Graf et al. 2009) for specific applications, but ar-
chitectural styles (Quigley et al. 2009; Schlegel et al. 2011).
These reference architectures also employ planners to solve
tasks, but are limited to specific kinds of tasks (Graf et al.
2009) or are overly generic (Lindström et al. 2000).

9. Conclusion
We presented a modeling infrastructure for specification and
execution of robotics tasks comprising a collection of declar-
ative DSLs for their development. Their models are trans-
formed into implementations for an extensible C&C soft-
ware architecture that employs state-of-the-art planning to
solve tasks into sequences of actions. Via small interfaces
generated from actor models, the architecture interacts with
the underlying robotics platform, which supports to reuse ap-
plication domain expertise in form of tasks, goals, actors,
and domain models with different robots. We successfully
evaluated an implementation of the reference architecture
with three tasks in a hospital environment and, hence, be-
lieve that software engineering of robotics applications ben-
efits from model-driven separation of concerns.
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