Towar ds Enabling Architectural Refactorings
through Source Code Annotations

Holger Krahn, Bernhard Rumpe
Technische Universitat Braunschweig
Institut fir Software System Engineering
38106 Braunschweig, Germany

Abstract: It is well known that software needs to change to meet new requirements.
The synchronization of software architecture models and implementation is of high
importance to keep the architecture documents useful and the software evolution pro-
cess manageable. In this paper we achieve this synchronization by a two-step pro-
cess. First, we augment the source code with architectural information. Second, this
“lightweight architectural model” can be checked more easily against the full architec-
tural description. Based on this approach refactorings on either side (code or architec-
ture) are detected automatically and conformance checks become possible.

1 Introduction

The conceptual architecture of a software system can be described by components and
connectors. Furthermore, ports are used as well defined communication interfaces between
components. Such a software architecture description is then used as a guideline for the
structuring and implementation of a software system.

In current development projects, the architecture description is normally used to develop
the initial version of the software. As the software evolves, the requirements change or
the source code is refactored, it may happen that the architecture description is not up-
dated accordingly. Experience reports from practicing architects argue that the software
architecture is already out-dated in the moment it is published [SSWA96].

Therefore it is important to use refactorings on an architectural level in conformance with
the existing source code. To keep both system descriptions (architecture and source code)
synchronized, we describe a special form of annotating the source code such that the code
remains coupled with its software architecture description. Ideally the source code will be
refactored in synchronization with the architecture description by using the coupling via
annotations. However, in a first step it is already useful that a developer can discover the
affected parts of the source code automatically although the code still has to be changed
manually.

Our hypothesis is that an architecture description is of more value, if it is explicitly present
to all developers during the coding phase [Rum04a, RumO04b]. In agile development
projects all developers need to understand every artifact and part of the software. In larger
projects this goal can only be achieved, if the developers can rely on an abstract description

[KRO6] H. Krahn, B. Rumpe.

Towards Enabling Architectural Refactorings through Source Code Annotations..
Modellierung 2006. Proceedings. 22.-24. Marz 2006, Innsbruck.

In: Proceedings der Modellierung 2006.. 22.-24. Marz 2006, Innsbruck.
GI-Edition - Lecture Notes in Informatics, LNI P-82,

ISBN 3-88579-176-5, 2006.

www.se-rwth.de/publications

of the whole system. Therefore condensed and accurateegithie descriptions are a key
factor. As described earlier, this paper concentrates aapanoach to keep architecture
and code synchronized through source code annotationse Bmnotations are not meant
to replace the architecture description but to keep it ctest with the code.

The rest of the paper is structured as follows. Section 2aéxplthe problem of archi-
tectural conformance and its relevance for architectwtdatorings. In Section 3 the
software architecture description used in this paper isvah@ection 4 describes briefly
the annotations provided for a developer, whereas Sectixplins how this annotations
can be used to automatically check architectural confoomargection 6 shows which
kind of refactorings can be applied to our architecturaktdpsion. Section 7 compares
our approach to related work and Section 8 concludes thisrpap

2 Architectural Conformance

The source code and its software architecture descripteseperate artifacts, both pro-
duced and used in different activities of the developmentecyThus both artifacts usu-
ally evolve independently and it is very doubtful that baidysconsistent with each other
without considerable effort. This effort is usually callgliecking for architectural confor-
mance [Men00] and needs to be repeated when evolving one afi¢htioned artifacts.

Architectural reviews make architectural conformancespms. In order to assist and
simplify this process we propose to use an intermediaterigi¢ien of the architecture
which is added to the source code in form of annotations. fitegrmediate description can
be checked in an automatic fashion against the architéctesaription. This check can be
applied repeatedly by a developer during coding. This agugrdés similar to writing unit
tests and using a test framework to quickly check if the taseés still execute successfully
after a code change.

However, the intermediate description is not necessaohsistent with the source code,
as the annotations might be wrong or incomplete. This has thecked during an archi-
tectural review phase. The proposed approach reduces tleeszey effort, because only
the relation between code and annotations has to be chenllgtbathe relation between
architecture description and code anymore. Furthermame @and annotations are co-
located in the source files which makes it more likely thahkare updated together and
that the programmer is well informed about the part of théesyunder change. Figure 1
illustrates our approach.

Description of Java
software Annotations Source
architecture | Automatic checks Manual checks Code
for conformance by architectural
reviews

Figure 1: Architectural conformance in two steps

3 UML Composite Structure Diagrams

Software architectures can be described in various wayscaffeentrate on Component-
and-Connector (C&C) views [CBB03] which can be used to model the structure of soft-
ware systems. Often ports are added to a C&C view to descrdfiedefined interaction
points between components that are linked via connecta&€ ¥lews are supported by
most of the available architecture description languaiges; survey of the most common
notations see [MTOQ].

Inthe new UML 2.0 standard [OMG] Composite Structure DiagsgCSD) are introduced
as a technique to model hierarchy, distribution and compatitin channels. In addition,
roles can be associated with classes in order to model dpattgrns [GHJV96]. CSDs
containStructured Classifiersvhich are subclasses of the UML metacl@assifierand
allow classes to have parts and ports. A part has an assbcidéename and a type. The
relationship between a part and its class can be understad aggregation. Ports are
interaction points that isolate the classifier from its eswiment [RSRS99]. One of the
advantages of UML CSDs is the possibility to model classesimstances of classes in a
uniform way. CSDs allow us to describe the connections betvibeir parts on a more
detailed level than class diagrams but are more generalabjaet diagrams which only
describe exemplary instances. Figure 2 contains such a CSD.

Car

axle p
rear: Wheel [2] e: Engine

Figure 2: Example CSD [OMG]

4 Annotating Java Source Code

Java in its current version 5.0 [Jav] extends the pure prograg language by adding

annotations. This approach substitutes older annotationd that used comments in the
source code (e.g. [WRO03]). The developer can annotate gask&lasses, interfaces,
enums, fields, constructors, methods, method or constrpet@ameters, local variables
and annotations themselves, but no other language elemé&hésannotation developer
can restrict the annotation to certain elements of the list/a. In addition three retention
policies are possible. The option ranges from pure chediynthe compiler and discard-

ing the annotation afterwards, over storing the annotatidine class file but not making it

available at runtime, to full availability at runtime andcassibility through the reflection

mechanism.

In our approach, we supply the programmer with a set of predéfannotations to relate
the source code to a software architecture description.igagsed above, the usage of
the annotations is similar to writing unit tests during ecuyli

The @onponent annotation assigns a class or interface to a component iarttn-
tecture description. Figure 3 shows the annotation dedmith Java source code that is
restricted to types (which are mainly classes and intesfadéhe retention policy is set to
source because there is no reason to retain the annotatidims dbject code or even at
runtime. This retention policy is the same for all our antiotes.

The value of the@onponent annotation describes its name. For convenience, we
use the annotation element calledl ue allowing us to use the annotation in the form
@omponent (" Component Nane") for a component calle@omponentName

i mport java.l ang.annotation. *;

[+ This is an annotation for a conponent in
* a software arch. description. =*/
public

@ar get ({ El enent Type. TYPE})

@ret enti on(Ret enti onPol i cy. SOURCE)

@ nterface Conponent {

/+** @eturn name of conponent =/
String[] value();

Figure 3: Java definition for th@onponent annotation

To save space, we use an informal and condensed form to lkesiee following annota-
tions that allow to model CSDs within Java source code. THeviing text contains the
condensed information from Figure 3.

@conponent applies to types
String val ue : Name of the component

In some cases a class may belong to different componentfénedit architectural views.
Unfortunately Java doesn’t allow us to use the same anpatitpe with a different value
attributes for a single language element. Hence the vatribwge is an array of strings.
This use of arrays to store multiple values is the same fdpldlwing annotations but is
omitted in the condensed form.

A part of a component is marked using t@Bar t annotation.

@rart applies to field declarations
String val ue: Role of part in enclosing component

A portis a well-defined interaction point that a componemtases to its environment: (a)
a groups of methods, (b) a supported interface, (c) a ndtdicanechanism like in the
observer pattern, et cetera.

@or t applies to methods, constructors and types
String val ue: Name of the port it belongs to

During the initial specification of a software architectutiee parts of a component are
often considered as static and it is often neglected how gpooent is created. This
dynamic changes must be added during the implementatioron#ponent usually does
not initialize itself in an automatic fashion and in mostesg can be instantiated multiple
times in a single system. Our annotations can be used to mettkogts and constructors
which add or remove parts from a component. Note that we dddd abstract away
from a too detailed description: The annotations are natildet enough to specify which
instances are added or removed when the parts have a nuitiplifferent than one.

@\ddPart applies to methods and constructors
String val ue : Name of the part
String conponent name : Name of component

@renpvePart applies to methods and constructors
String val ue : Name of the port
String conponent name : Name of component

In [SG96, p. 165] connectors are described as follows: “@otors do not in general

correspond individually to compilation units; they masif¢hemselves as table entries,
instructions to a linker, dynamic data structures, systeiis cinitialization parameters

[...] and the like." Especially light-weight connectorg.erealized through method calls
do not necessarily manifest in a direct structural connectiThese are both difficult to

discover during an architectural review and difficult toatetine from the Java source
code. Therefore, we decided that methods and construbtmrsdtup or disconnect certain
connectors should be annotated.

@onnect s applies to methods and constructors
String | eft conponent : Name of first component
String | eft : Name of the part or port (opt)
String rightconponent : Name of second component
String right : Name of the part or port (opt)
Enun{{* * }LEFT",{" " }RIGHT",{* *}BIDI R'] type: Connection type

In addition we provide two annotations that have the samm fas the@onnect s an-
notation. The@i sconnect s annotation states that a method or constructor tears a
connector down that connected two parts or ports.

The @onnect or annotation states that a type, field declaration or locahb#er stores
information concerning the connection between two othetspar ports. An example

is a hashtable that manages a complex relationship betwgeot® of two classes. The
@Connect or annotation is used for tagging the information store oftéxgsconnections
whereas th@Connect s/@i sconnect s annotations are used to tag places where this
connection changes. A possible implementation that camgdo the CSD from Figure 2
can be found in Figure 4.

public @Conponent ("Car") class Car {
private @art("rear") \Weel[] rear;

private @art("e") Engine e;

public @ddPart({"rear", "e" })
@Connects(left="rear", right="e.p", type=Arrow. LEFT)
Car() { /+..*/ }

Figure 4: Example implementation using annotations

5 A Sketch on Checking Architectural Conformance

The software architecture description of a system can bergéd from the complete and
correctly given set of annotations. However, for metholdieasons we don’t recommend
this procedure. One of the problems is that it is not necégsaise to locate the infor-
mation about where a class belongs only in the class itséénTwithout tool support it
becomes e.g. difficult to relocate the class into anothepmmant. Experience shows that
it is better to maintain a separate software architectuserifgion and check the actual
architecture obtained from the annotations against itialty it is even useful to generate
the code frames together with the respective annotatiam &ppropriate architectural
documents. However, when both artifacts exist, e.g. thkseks can be applied:

e Completeness of annotations in the source code: For evedelnetement in the
CSD like components, parts and ports an annotations exiseisource code.

e Completeness of architecture description: For every atioot exists an equivalent
element in the architecture description.

e Consistency of code and architecture description: Onlyneations listed in the
architecture description exist in the source code.

Note that these checks only compare the annotations withrtigtecture description, but
can be done automatically. The second step, to check theaioms with the source code
itself, has to be done manually as explained earlier. Tlsis tan be supported by tools
like SA4J [SA4] or JDepend [JD] but cannot be solved in an @uatic fashion. Among
others late binding, reflective language elements and thieusamanifestations of CSD
modeling concepts in the code prevent us from a static aisalfthe dependencies within
arbitrary applications.

6 Refactoringson Architectural Level

An essential part of the refactoring concept is their trigggethrough bad smell& A bad
smell describes a constellation in a software system gegmithat for some reason may

cause trouble with respect to quality, maintainabilitygletion or the like. Although Kent

Beck and Martin Fowler coined the phrase that “no set of metivals informed human

intuition" [Fow99, p.75], we think that tool support is uskfo detect potential smells and
humans can easier judge on this pre-selection where paltéiati's are located.

Additional information provided by the developer througimatations introduces some
redundancy that can be used to detect inconsistencies. ¢analidates are for example a
group of classes associated with a component that is distidtamong different packages
or a single connector that has more than one connecting aocdrdiecting method (or none
at all). These kinds of bad smells can be detected autoriigtinaa tool and either (a)

exposed to the developer or even (b) repaired automati¢altase of (a) the developer has
to judge, if this bad smells are really flaws or constructsdh@designed on purpose, while
in (b) refactoring of source code affects the architectdesign documents automatically.

The automatic architectural conformance check (cf. Sedjocan be applied to the sys-
tem after each refactoring step to gain the confidence tkeatytstem is still conforming to
its architectural description. This procedure is simitaahd should also be supplemented
by the execution of unit tests after each refactoring step.

Figure 5 describes a typical desktop application which sts®f several parts that can
be considered as top level components of a system. In ordextemd it to a client-
server application where some parts of the original systenegecuted on the server an
architectural refactoring is planned. This is a rather $imgxample, but it demonstrate
the idea of refactoring by composing basic steps to compéactorings. We apply the
following refactoring plan to this architecture. The rasuf the individual steps can also
be found in Figure 6.

1.-4. Add four new ports to the system.
5.-7. Add new connectors to conndédbdelwith Query.
8. Remove the obsolete connector from the system.
9.-10. Remove the obsolete ports from the system.

11. Split the system into two main components.

Now the resulting system has been split into two parts. Ahestep the developer can use
the annotation lookup to find the elements in the source duateatre related to elements

Queries

Figure 5: Software architecture description of the exarsptgem

@.-4. Add ports @5.-7. Add connectors

8. Remove connector

Queries Queries
11. Splitcomponen@ 9.-10. Remove ports@

Figure 6: Complex refactoring on architectural level

of the architecture description and apply the necessanygd®a To ensure that there is no
behavioral difference between the new and the old systesmécessary to ensure that the
new connection and the old connection behave equally. Brieaq. be described through
an invariant and can be tested through appropriate und test

After the refactoring a developer can e.g. change the corwation technology of the

connection from method calls to a TCP/IP-connection. Thiange is not reflected in
the software architecture description because we modeéetbgical communication on
an abstract level only. The developer can list all methods tlonnect or disconnect a
certain connection (as annotated @gonnect s and @i sconnect s) or list classes

that represent the connection itself (as annotate@®nnect or). This helps to localize

the necessary changes which is especially helpful in lagsems.

7 Related Work

There are quite a number of approaches with similar goaldexithiques. Here we con-
centrate on the most interesting ones. In [Men00] logicadbrpeogramming is used to de-
scribe the relationship between an implementation anédifft architectural views. The
approach supports the user with automatic support for cordnce checking of an archi-
tecture description and an implementation if the relatigmss correctly specified. The
approach differs from ours as it requires the use of an amfditianguage, namely Prolog,
to relate the source code with the architectural descripfitis leads to more expressivity
as there are fewer restrictions on the elements that canrmatad, but requires more
knowledge on technical details.

ArchJava [ACN02a, ACNO2b] extends the Java programminguage with first class
concepts to describe connectors and ports. This approlmstsahe programmer to ex-
press the architecture directly in the program itself an thakes conformance checking
obsolete. However, using architectural diagrams direz$lyporogramming language has
the disadvantage, that architectural planning and progriagget intertwined, different
views on a system cannot be provided and incomplete modetsaallowed because this
would directly lead to an incomplete software.

Gestalt [SSWA96] is an architecture description language allows automatic confor-

mance checks of an architecture description with source.cbde approach is applied to
the programming language C and checks interconnectionsligysing the include graph

of source files.

In [MNS95] software reflexion modelasre introduced that relate source code elements
to an architecture description. The system allows an auioroanformance check with
information extracted from a call graph with a model thatsists of modules and inter-
connections.

8 Summary and Outlook

The paper presents a lightweight approach to annotate daveescode using the newly
Java 5.0 annotation mechanism to relate programming l@fggoanstructs to a software
architecture description. The annotations are coupled thi¢ architecture description
while the relationship between elements of source code ettdtacture can always be
many to many. The main advantage is that this form of architealescription can eas-
ily be integrated in a code-centric agile development pssecehile also maintaining a
separate architecture description.

The coupling of the software architecture description dralannotations is expressive
enough to support the user when applying architecturatt@fmgs. The approach allows
predicting necessary code changes when applying a reffagt@mnd checking consistence
after restructuring the source code.

Our experiments show that the new Java annotation mechasigenerally helpful to
relate code and architecture description. However, it didnd even more helpful if we
would be able to annotate more language elements and usantieeag;inotation type more
than once for a certain language element. We furthermoteates! ourselves to a subset
of possible annotations which led to some restrictions wdestribing the architecture in
the annotations. We are currently exploring if the propcs®abtations are sufficient for
practical use.

In the future we also want to explore if and how this kind offatecture description can
be successfully used to automatically change larger pattseexisting source code. We
want to statically analyze the existing source to allow aeolution of architecture de-
scription and source code planned on the architectural. lévvés still an open question
how reflective elements in the source code should be tredéd:ourse, this approach
is not only interesting for software architecture but phalgaqually interesting for trac-

ing requirements to code. We will look into this, when we havere experience with
architecture and code links.

References

[ACNO2a] Jonathan Aldrich, Craig Chambers, and David NatRirchitectural Reasoning in Arch-
Java. InProceedings of ECOOP 'Qpages 334—-367. Springer-Verlag, 2002.

[ACNO2b] Jonathan Aldrich, Craig Chambers, and David NatkirchJava: connecting software
architecture to implementation. Proceedings of ICSE 'QDages 187-197, 2002.

[CBB*03] Paul Clements, Felix Bachmnan, Len Bass, David Gralamed Ivers, Reed Little,
Robert Nord, and Judith StaffordDocumenting Software Architectures - Views and
Beyond Addison-Wesley, 2003.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Programaddison-
Wesley, 1999.

[GHJV96] Erich Gamma, Richard Helm, Ralph Johnson, and Jdissides. Design Patterns
Addison-Wesley, 1996.

[Jav] http://java.sun.com/j2se/1.5.0/.
[ID] JDepend. http:/iwww.clarkware.com/software/JDepbtml.

[Men00] Kim Mens. Automating architectural conformance checking by meaneg€ meta
programming PhD thesis, Vrije Universiteit Brussel, 2000.

[MNS95] Gail C. Murphy, David Notkin, and Kevin Sullivan. 8aare reflexion models: bridging
the gap between source and high-level model$rbt. of SIGSOFT '95pages 18-28.
ACM, 1995.

[MTOO] Nenad Medvidovic and Richard N. Taylor. A Classificetand Comparison Framework
for Software Architecture Description LanguagéSEE Transactions on Software En-
gineering 2000.

[OMG] Object Management GroupJML 2.0 Superstructure Specification
http://www.uml.org/.

[RSRS99] Bernhard Rumpe, M. Schoenmakers, A. Radermaeher,Andy Schirr. UML +
ROOM as a Standard ADL? IRroceedings of ICECCS’99999.

[RumO4a] Bernhard Rumpdgile Modellierung mit UML : Codegenerierung, Testfalleféctor-
ing. Xpert.press. Springer-Verlag, 2004.

[RumO04b] Bernhard Rumpévodellierung mit UML : Sprache, Konzepte und Methodik
Xpert.press. Springer-Verlag, 2004.

[SA4] Structural Analysis for Java. http://www.alphawsibm.com/tech/sa4,.

[SG96] Mary Shaw and David GarlarSoftware Architecture - Perspectives on an Emerging
Discipline Prentice Hall, 1996.

[SSWA96] R. W. Schwanke, V. A. Strack, and T. Werthmann-Ageir. Industrial software archi-
tecture with Gestalt. lfProceedings of IWSSD '9fage 176. IEEE, 1996.

[WR03] Craig Walls and Norman Richard&Doclet in Action Manning, 2003.

10

