Assumptions Underlying Agile Software Development
Processes

Abstract

Agile processes focus on facilitating early and fast production of working code,
and are based on software development process models that support iterative,
incremental development of software. Although agile methods have existed for a
number of years now, answers to questions concerning the suitability of agile
processes to particular software development environments are till often based
on anecdotal accounts of experiences. An appreciation of the (often unstated)
assumptions underlying agile processes can lead to a better understanding of the
applicability of agile processes to particular situations. Agile processes are less
likely to be applicable in situations in which core assumptions do not hold. This
paper examines the principles and advocated practices of agile processes to
identify underlying assumptions. The paper also identifies limitations that may
arise from these assumptions and outlines how the limitations can be addresses by
incorporating other software development techniques and practices into agile
devel opment environments.

1. Introduction

As more organizations seek to gain competitive advantage through timely deployment of
services androducts tht meet and exceed customer needs and expectations, developers are
under increasing pressure to develop new rdraaced implementationguickly [15]. Agile
software development processes were d@esloprimarily to support timely and economical
development of high-quality software that meetstomer needs at the time of delivery. It is
claimed by agile process advocates that ttas be accomplished by using development
processes that continuously adapt and adjust to (1) collective experand skills of the
developers, including experience and skills gained thus far in the development project, (2)
changes in software requirements and (3) changes in the developmoetdrgeted operating
environments. Examples of published agieocesses are Extreme Programming (XP)
[3][71[8][22][29][39], the Crystal process faiy, [13], SCRUM [33][34], Adaptive Software

E- = E [TFRO5] D. Turk, R. France, B. Rumpe.
LTy Assumptions Underlying Agile Software Development Processes..
- In: Journal of Database Management, Volume 16, No. 4, pp. 62-87, October-December 2005
Idea Group Inc., 2005

Eh-{'l- www.se-rwth.de/publications

Understanding Agile Software Development Processes — page 2

Development [19], and AUP (Agile Unified Pras® [23] which has grown out of work on the
UML [21][31][38].

Proper use of agile processes requiresiraterstanding of the situations in which agile
processes are and are not applicable. One way of determining whether an agile process is
applicable in a particular sation is to check whether thesumptions underlying the process
hold in that situation. If thassumptions do not holtien use of the agilprocess may not be
appropriate. Prevailing descriptions of agile processes seldom present the underlying
assumptions explicitly and thus it is difficult fdevelopers and projectapiners to determine the
applicability of agile processes to their projects and environments.

This paper identifies some of the assumptions uyiekgriagile processes that can be used to help
determine the applicability of agile processepaaticular situations. The paper also discusses
some of the limitations that may be inherenagile approaches because of these assumptions.
The assumptions were identified by examining published work on Extreme Programming (XP)
[3][5], Scrum [34], the Agile Unified Processs(described by Craig Larman) [23], critiques of
agile processes [10][27], and the principles stated by the Agile Alliance.

It is important to note that our critique @fgile processes is concerned with identifying
assumptions underlying a family of agile processes. Other critiques of agile processes have been
published (e.g., see [10],[27]), but none of tirgiques we have examined have focused on
identifying assumptions underlying agile procedseghe purpose of determining the scope of

their applicability. For example, in the book “Questioning Extreme Programming” McBreen [27]
presents a critique of XP in which he poses some important open questions and provides answers
to other questions based on his personal experience, but he does not explicitly identify
assumptions underlying agile processes. McBreentique was used as a source in our work
along with other experience reporieldewhere (e.g., see [14], [24]).

The remainder of the paper is structured as faldw section 2 we givan overview of a typical

agile process, exXtreme Programming, to give dasler a concrete example of an agile process.

In section 3 we describe the assumptions that we have identified. In section 4 we identify some
of the limitations that arise isituations in which these assumops are not met and suggest how
they can be addressed by adapting some @fatfile process techniques and practices. We
conclude in section 5 with an overview of theuks of our work and an outline of issues that
require further investigation.

2. Overview of eXtreme Programming — A Representative
Agile Process

There are a variety of software developmentesses that currently claim to be agile. Space
does not allow us to give an overview of all of the agile processes we have reviewed. However,

Understanding Agile Software Development Processes — page 3

since Extreme Programming (XP) is probably thest well-known agile process, we use it to
illustrate representative agile process concepts.

Extreme Programming (XP)

It can be argued that the popularity of XP helpade the way for otheagile processes. Kent
Beck, one of the chief architects of XP, statest XP is a “lightweight” development method

that is tolerant of changes in requirements. It is “extreme” in that “XP takes commonsense
principles and practices toteame levels” [5, p. xv].

XP is based on the following values:

e Communication and Feedback: Face-to-face and frequie communication among
developers and between developers andomests is important to the “health” of the
project and the products under developmergdback, through deliverof working code
increments at frequent intervals, is also ad&®d critical to the production of software
that satisfies customer needs.

e Smplicity: XP assumes that it is more efficient to develop software for current needs
rather than attempt to design flexible and reusable solutions. Under such an assumption,
developers pursue the simplest siolos that satisfy current needs.

e Responsibility: The responsibility of producing higiiality code rests ultimately with
the developers.

XP consists of technical and mageaial practices that are integrated in a complementary manner.
The architects of XP take greedre to point out that the inddual techniques and practices of
XP are not new; it is the manner in which theg woven together thad unique. They also
stress that the techniquesda practices have proven theworth in industrial software
development environments.

XP Process and Practices

The four core activities of XP ar(1) coding, (2) testing, (3)skening to the customer and to
other developers, and (4) designamyan implicit part of the coding process. XP encourages an
informal design specification process in whidevelopers discuss solutions by sketching
informal models on some presentation mediurg.(avhiteboard, flip chart). These models are
created primarily to help developers underdtand communicate ideas during development, and
are not intended to be precise descriptions of the solution.

In order to support the five fundamental principles of XRamelyrapid feedback, simplicity,
incremental changes, embracing change, andquality work — XP offers a number of practices.
The early accounts of XP [7] offered twelve praesicbut since then the number of practices has
increased (see [26],[40]). We give an overvievsaine of the original practices in what follows.

Understanding Agile Software Development Processes — page 4

Pair programming, one of the more well-know XP pramts, is a technique in which two
programmers work together to develop a singéce of code. The two programmers typically
work together at one computegllaborating to design, implemieand test a software solution
(program) [18][41][42]. At any point in time one programmer is directly working on the code,
while the other observes, provid@ternative approaches, acts as a reviewer and provides instant
feedback. The two programmers switch their gsoldten, sometimes even after just a few
minutes. This approach has been shown #&dysignificantly higher productivity and code
quality than is achieved by twrogrammers working separately [40]. The intent is that two
programmers working and evaluating the code and design are likely to complement each other’s
skills, continually propose and evaluate alternataugs are more likely toecognize errors in the

code while it is being developed [41, p. 328]. Pair programming is based on two assumptions: (1)
active reviews are the most effective way to detect errors, and (2) different people see a problem
from different perspectives and will thus have a combined approach to problem-solving that is
more effective than individually applied approaches.

Refactoring, unit and acceptance tests, collective code ownership, and continuous integration

together tackle the problem of evolving codeiniyirXP-based development. Refactoring occurs
when a change to the internal structure of a system preserves the externally observable
functionality of the system. Ractoring is especially effective when large changes can be
decomposed into smaller steps that can beiechrout using refactorgs that have been
developed by Fowler and others [17]. Thesag®lfrings can be vieweaas code transformation
patterns, and their use allows one to reduce the task of validating code after a complex change to
validation of smaller change steps.

After a refactoring, testare run to ensure that parts thlabuld not be affected by the changes

are intact and that the changes are implendenterectly. Collective @de ownership allows
developers to appropriately change parts of tuke ¢hat they did not write in order to implement

a change, while continuous integration allows developers to demonstrate the current status of
development more frequently.

XP: An Assessment

Although XP is considered an extreme processnbtsdevoid of rigor. Irparticular, XP’s focus

on code should not be interprétas an endorsement of code “hacking”. XP stipulates that
developers follow all its practices in order t@liee the benefits of agile development. As has
been pointed out by McBreen and others [27akies enormous discipline to apply XP and, for
this reason, some projects may find it diffidio adopt an XP-compliant process.

A significant problem with XP is its reliance @ource code for documentation. This usually
leads to situations in which in-depth knowledgfesoftware products (e.g., design rationale,
trade-off considerations) exist only in the head the developers who developed the products.

Understanding Agile Software Development Processes — page 5

Loss of these developers coul@deto significant organizational memory loss that could impair
an organization’s ability to comgkeprojects in a timely manner.

XP specifically targets small- to medium-sizeajects. XP proponents claim that XP’s unique
composition of best practices, and its omissiotiraé-intensive software engineering activities
(e.g., detailed specification or modeling mfquirements and design), can help downsize
otherwise large projects. There have also bemmposals for scaling ¢hXP process to large
projects (e.g., see [14]), includj an approach that involveseharchically structuring XP and
installing a steering committee to guide the individual projects [20].

To date, there are few objective surveys of gutg claiming to use XP. One such survey [32]
was conducted on 45 projects that were labae&P projects by the developers. The results
show that XP is still in the “hype phase”:wias not clear whether the claimed successes were
based on developer enthusiasm or on the XP pesctie summary of the survey results is given
below:

e More than 90% of the projects claimed tosuecessful (as judgdry the developers, not
by the customers)

All surveyed said they would like to @P again. None blamed failures on XP.

The unavailability of customers wasdreently the highest risk identified.

Use of unit tests and pair programmimgre considered important practices.

33% used XP because it seenmedre attractive thaalternatives; 28%, because it fit the
project requirements best; and 9% becdlisananagement or customer wanted it.

The results of this survey also indicate thhere may be situations in which the basic
assumptions underlying XP are valid. XP assuthes the cost of change slowly approaches
some limit over time, rather than increasing exponentially as has been traditionally assumed [7].
XP practices are based on the assumptiondabiaecting requirements errors and design flaws
later does not cost significantly more than if they were detected and removed earlier. This
assumption allows developersdo less than thorouganalysis and design in the early phases
and, instead, make improvements throughout these of the project byefactoring the code.
There is no objective evidence tliais assumption is valid in gera, but it can be argued that

the cost of change curve can be flattened yguseusable design experiences in the form of
architectural and design patterrand capitalizing on new techogles supporting rapid program
development (e.g., libraries, components #madneworks, and more powerful compilers that
enable short and incremental compilations).

In the testing area, an issue that XP practérs face is determining the tests needed to
adequately cover the code. It has been recognized by some advocates that knowledge of
systematic testing techniques can be beneficien developing unit and acceptance tests in XP
[27].

Understanding Agile Software Development Processes — page 6

The set of tests developed forapplication can be viewed asredel of the system: it describes

an exemplar set of data with intended bebtavirhe tests are not necessarily readable by
customers, but developers can use the tegiaitounderstanding of code they did not write, by
exercising the code using the tests. This impiedel of the system is a necessary prerequisite
for collective code ownership and refactoring techniques. However, if the rationale behind a test
is not documented, over time it may become unclear what aspects are being tested.

3. Identifying Assumptions Underlying Agile Processes

In recent years a number of processes claiming tadike” have been proposed in the literature.

To avoid confusion over what it means for a process to be “agile”, seventeen methodologists and
proponents of agile processes metliscuss and come to an agreement on what “agility” means.
The result of the meeting was the formation of Agtle Alliance and the publication of a
manifesto that included a list of principles agicesses should support [1]. A summary of
these principles (numbered and in order as reddsy the Agile Alliance [1] are given in Figure

1 below.

1. “Our highest priority is tsatisfy the customer through
early and continuous delivepf valuable software.”

2. “Business people and developers must work together
daily throughout the project.”

3. “Welcome changing requirements, even late in

development.”

“Deliver working software frequently.”

“Working software is the primary measure of progress.

“Build projects around motivated individuals. Give thém

the environment and support they need, and trust them

to get the job done.”

7. “The best architectures, requirements, and designs
emerge from self-organizing teams.”

8. “The most efficient and effective method of conveyin
information to and within a development team is face
to-face conversation.”

9. “Agile processes promote sustainable development.’

10.“Continuous attention taethnical excellence and good
design enhances agility.”

11.“Simplicity is essential.”

12.“Project teams evaluate their effectiveness at regular

intervals and adjust theloehavior accordingly.”
Figure 1: Principles of the Agile Alliance

oA

Q2

Understanding Agile Software Development Processes — page 7

The manifesto of the “Agile Alliance” is a condeds#efinition of the values and goals of “Agile
Software Development” and is detailed through ¢hgsnciples which can be viewed as a set of
policies and rules that should bepported by processes claimingo®“agile”. These principles
provide a good base for identifg assumptions underlying agile pesses. In the next section

we review these principles and identify assumptions that appear to be made when accepting these
principles.

Principles, Practices, Assumptions, and Limitations

Figure 2 summarizes our view of the relatiopshetween Principles, Practices, Assumptions,
and Limitations. We have takenretlview that there are assumptipasually unstated, that led to

the acceptance of the Agile Alliance’s prineipl There are also assumptions made by
developers (again unstated) regarding what theseiples mean and their relative importance.
Based on these principles and assumptions, lalevent practices are set in place. Whether
intended or not, these assumptions lead to limitations in the resulting agile processes. The
limitations discussed later in this paper are based in part on our assessment of the assumptions
that exist behind agile processnmiples and practices. In thégction we identify assumptions
underlying the Agile Alliance principles, as we pawe them. The discussion in this section is
organized around clusters of relhterinciples, where each clustervgs rise to a distinct set of
assumptions. We also identify examples ofaditins in which the assumptions may not hold.

Assumptions

based on

Principles

w from

Assumptions

Practices ~Tbased on

support

have lead to

Limitations
Figure 2: Relationships Between PrinciplBsactices, Assumptions, & Limitations

Principle 1. “Our highest priority is tsatisfy the customer through early and
continuous delivery of valuable software.”

Principle 4. “Deliver workng software frequently.”

Principle 5. “Working software ithe primary measure of progress.”

The prominence of Principle 1 serves to remind gpers that software is developed to perform
services that add value to users at the timeebivery. (Principles 4 & 5 can be viewed as
consequences of principle 1, and thus areudsed together here.) Developers and project

Understanding Agile Software Development Processes — page 8

planners need to keep in mind that customesrds evolve through use of systems. Support for
Principle 4 allows developers gauge and address evolvingstamer needs. Agile processes
provide support for these prinogd by structuring development activities into short fixed-time
iterations that each producesrking code. These fixed-timigerations make agile processes
predictable along the time dimeosi The price paid is that proctuscope can benpredictable:

in meeting an iteration deadline, developera choose not to implement features originally
marked for implementation in the iteration. Agil@pesses utilize practicéisat help developers
minimize the time it takes to realize elicited requients in working code. In XP, these practices
include building simple designs, continuoustegration, collective code ownership, and
refactoring.

The frequent delivery of working code gives theject visibility in terms that the customer can

relate to (i.e., in terms of an evolving executable product), rather than in terms of evolving plans

in the form of requirements and design docutmehat are often not presented in terms a
customer can relate to or understand. Customers can use the increments delivered by iterations as
the basis for (1) determining project progress@ecified by Principle 5 and (2) clarifying and
refining requirements. Short iteration lengths facilitate timely customer feedback that can help
ensure that the end product will meet customer needs at time of delivery.

The importance of involving end-eis and customers in the swdire development process is
widely recognized, and was the primary motioatiof work in the early 1980s on “end-user”
software development [12]. Much of this eaviyrk focused on developing mechanisms that
would allow end-users to directly contribute the development of requirements and designs,
and understand the artifacts created by softwasgyders. The work at that time focused on
developing requirements and design notations dahat‘customer-friendly”, that is, that can be
used to create requirements specificatiomd designs that provide siwmers with significant
insight into requirements and designs. Mechasissuch as fourth-generation programming
languages (4GLs) and executable requirement8QiB5][36] and design specifications were
considered to be enabling technologies for end-user software development. Rather than
emphasize technical facilitators of custometeiaction, agile processes emphasize continual
collaboration of developer and customer teams.

Assumptions Underlying Principles 1, 4, and 5

Visibility Assumption: Project visibility can be achieved solely through delivery of working
code.

Visibility of software devedpment projects is traditiongllaccomplished through reports,
specifications, and measures of quality and petidity, and the working application (code) is
only seen after the developer has done a langeunt of work and spent a great amount of time
working on the project. For customers, it is easd gain a sense of whether the project is

Understanding Agile Software Development Processes — page 9

progressing in the direction needed if they can actsedlyhe user interface and actuadise the
softwaredo the things they need it to do, rathearithsimply relying on reports, specifications,

and other measures. Because it is the end-product the customer really cares about, the primary
measure of progress in agile processesssdan the code developed in the project.

This works well for software that is equipped with user interfaces that evolve over time. In
projects in which the user-interface is not alwgart of a deliverablencrement, or projects
concerned with developing systems with nanlam interface (e.g., embedded systems) some
other means of visibility is needed. For suplojects, software simulations, coverage of
acceptance tests, and formal reviews and inspections of deliverable increments can provide some
visibility.

I teration Assumption: A project can always be structarinto short fixed-time iterations.

Agile processes require developénsgroup required featurestanloosely coupled bundles that

can each be addressed in short, fixed-time iterations. Such decomposition is usually based on an
implicitly imposed architecture consisting of logsebupled modules and is thus desirable. The
assumption here is that the dgng application can be brokerntansmall, discrete increments,

that can be developed and demaatstd in short fixed-time intenaland that afteeach of these
iterations the customer will be able to obserddigonal functionality in the product. Because of

this, the customer will be able to give frequdeedback as to thprogress of the project,
indicating whether it is being develed as needed / expected or not.

Structuring work in small bundles that can beliemented quickly may not always be possible.
For example, in some complex systems apliaation may be required to interface with a
number of subsystems in complex ways justptovide basic services that are of value to
customers. In these situations it may nofpbssible create small enough bundles of features to
tackle in an iteration because of the tight dependencies.

Principle 2. “Business people and ve®pers must work together daily
throughout the project.”

The interaction between developarsd end-users in agile processe concerned primarily with
resolving feature-related issues and determitinegscope of effort. This interaction does not
occur only at the start of a pedjt; it occurs throughout the praese Specificallyagile processes
advocate interactions that could involve cust@r(@) providing inputs ithe form of informal
descriptions of expected behavifor example, stories in Extreme Programming), (2) answering
guestions about desired features, (3) collaborating with developers in resolving issues pertaining
to features to be implemented, and (4) collabng with developers tevolve project plans

Understanding Agile Software Development Processes — page 10

One of the most important effects of this closélaboration between usesiad developers is the
better understanding of each other's probleansl needs, which reduces human interaction
problems and thus significantly enhancesthance for a successful project result.

This principle is not only applicable to the irgetions between developers and customers; it also
extends to interactions among developers as welequent interaction allows developers to
quickly resolve problems and misunderstandings, and to moreygarad reliably move forward

on the project.

Assumptions Underlying Principle 2

Customer Interaction Assumption: Customer teams are available for frequent interaction when
needed by developers.

Some major assumptions here are that the custisragrilable at the time the developers need
to interact with them, and that the customer alavays reschedule other work so that there is
time for frequent interactions with the develop€elhe reality is that it may not always be
possible for a customer to reschedule other work.

Team Communication Assumption: Developers are located in time and place such that they are
able to have frequent, intensive communication with each other.

This assumption is very similar to the Custortrgeraction Assumptioriut is focused on the
ability of developers to interact with each athelust as the Customer Interaction Assumption
assumes a certain amount of common time, plaseurees, and availability, so does the Team
Communication Assumption. Time, place, resoureesl availability musall be coordinated

and provided in order to allow this principle to be supported. Examples of projects in which this
assumption does not hold are plentiful. It i$ nousual to have development teams on a single
project that are dispers@twide geographical areas involving many time zones.

Principle 8. “The most efficient andfe€tive method of conveying information
to and within a developmentam is face-to-face conversation.”

In agile processes, face-to-face communicatisnemphasized over formal and precise
documentation, but also over tele-/video-confeesnor email conversations. The agile process
community claims that more is gained througformal personal communications than through
communication based on formal documentatiomnethough the ability terack all information
disappears. An advantage of face-to-face commtioit#s that the parties involved can change
the direction of the discussion as needed to geiights into the topiander discussion, and can
observe and respond to non-verbaimmunication cues as develapand/or customers interact.

Understanding Agile Software Development Processes — page 11

Even though formal and technical communicatiaechanisms are discouraged, protocols or “to
do” lists should be used to keep traxfkhings that have been discussed.

Assumptions Underlying Principle 8

Face-to-Face Assumption: Face-to-face interaction igshe most productive method of
communicating with customers and among developers.

It is hard to imagine Principle 8 being realized without having co-located customers and
developers and without scheduteat allow frequent interactioduring a project. If customers

and developers are all co-located, even to the extent they can walk down the hall and talk with
each other, then any time questions, issues,atnigms arise, they can be addressed immediately
and clear resolution may be immediately ol#d. Without face-to-face contact there is
increased potential for mis-communication, ahére is always the difficulty of getting in
contact — the “telephone tagf “e-mail tag” problem.

The de-emphasis of documentation as a commuamicatd is based on an assumption that tacit
knowledge is to be valued ovekternalized knowledge. Propongrgoint out thatdevelopers

need to internalize externalized knowledge make it useful and that learning can be
accomplished by sharing of tacit knowledge througihversations [27]. Critics have argued that

the focus on tacit knowledge makes projects tisat agile processes dependent on experts [10].
Another concern is #t valuing tacit knowledge over ertalized knowledgecan lead to
corporate memory loss and a reduced ability for an organization to systemically learn from its
collective experience. An organization that is concerned with its ability to effectively learn from
past experience needs to value both tacit and externalized knowledge and understand their
interactions. Tacit knowledge is critical toiloing externalized knowledge, as pointed out by
Nonaka [25][37], and externalizéeshowledge can interact with tacit knowledge to reveal hidden

or create new tacit knowledge. Organizationat thalue systemic learning need to foster
environments that not only support the shaohgacit knowledge but also support externalizing
tacit knowledge.

Documentation Assumption: Developing extensive (relatively complete) and consistent
documentation and software models is counter-productive.

Given agile developers’ code-centfarus (see principles 1, 4, & 5 above), this downplaying of
documentation and software models is not surprisifige assumption is that it is more reliable
to determine specifications and design from ctiden from other documents — especially since
specifications, requirements, design documemid, rmodels may not be kept up-to-date when
code is changed. Thus, the code is the raostirate and reliable degatton of what a system
does and how it was designed.

Understanding Agile Software Development Processes — page 12

A reason for the agile process community’s dibam¢ment with modeling may be a result of
prior experiences with commeatimodeling tools that were rohg more than tailored drawing
environments. Such tools provided very littlgoport for the more difficult tasks of maintaining
(1) traceability links across models and) (2onsistency between models and their
implementations. Current modeling tools have moved somewhat beyond this and now provide
support for code generation and round-trip eagring. More importalyt, major tool vendors
are currently extending their offerings to supggbe Object Management Group’s model-driven
software development approach, known as the Model-Driven Architddida) [28]. MDA is
based on a separation of platform-specific systitails from platform-independent details.
MDA-based tools provide mechanisms for magpplatform-independent details to platform-
specific implementations, with a significant pon of the mapping being automated through the
use of patterns, templates, and other formseofkable experiences. In the MDA approach,
models are the central artifacts, and the o MDA tools can help speed up development
through automated generation of significant portions of applicata middleware code and by
raising the level of abstraoti at which developers work.

For customers who contract with developersptovide systems, precise models may not be
necessary. However, there are situations in whioldels are valuable itmeir own right, and in

which it would be beneficial to maintain these models for future use. Some of these situations are
described below:

e Evolving large complex systems that have Idifggcycles: The availability of good models
can reduce the cost and effort of modifyinglssystems. Without 8se models, developers
are forced to analyze source code to urtdadsit and determine the impact of change.
Studies have shown that a significant portion eféfort required to evolve systems is spent
understanding the code. Good modea help ease this task.

e Managing enterprise systems to ensurgnafient with business glsa Good models of
business processes and systems can be usedebyrese architects to (1) check that planned
and implemented systems align with bussnegmals, (2) identify how existing systems
services can be composed to create newicas, (3) identify rdundancies in systems
(particularly when organizatiorw sub-organizations merge with other organizations or sub-
organizations), (4) identify tesable development experiences, and (5) determine the impact
of change on existing systems. Businessd aystem-level models, well-defined mappings
between them, and the correspondence with ,ccae greatly enhance the management of
enterprise systems.

Good models and documentation can also be tasbdng new hires up to speed on the business
and the systems being developed, and helppoment users determine whether a software
component really addresses their requirements.

Understanding Agile Software Development Processes — page 13

Principle 3. “Welcome changing requments, even late in development.”

Requirements will change during software development to reflect changes in (1) the environment
in which the software will be implemented, aind(2) the development environment. This has
been widely recognized (withiand outside of the agile press community) and is one major
reason for rejecting the simple waterfall modelolving requirements is often viewed as an
inherent problem of software developmenhhe agile process community views requirements
changes as providing opportunities for evolving software that can enhance the customer’s
competitiveness in a rapidly evolving envircemh. Development teams that can handle such
changes and produce software that is useful to the customer at the time of delivery (rather than at
the start of the project) are more likely to haatisfied customers. Short iteration cycles and the
“plan one iteration at a time” approach araimled to provide the flexibility needed to
accommodate changes in agile processes. Agileegs proponents claim that adhering to this
principle significantly increases the competitiveness of a company.

Assumptions Underlying Principle 3:

Changing Requirement Assumption: Requirements always evolve, because of changes of
technology, customer needs, business don@iesen acquisition of new customers.

The assumption here is basically a re-statemetiteoprinciple. Changg requirements are not
regarded as necessarily bad, atg welcomed as an opportunitysatisfy customer needs even
better than when inflexibly sticking to old reqemnents. If customer needs change late in the
project, then making sure that the project asldp these changes is important to making the
project a success.

Cost of Change Assumption: Cost of change does not dramatically increase over time.

Agile processes challenge the widely-accepted belief that errors introduced early and detected
late in the process have significantly highestsothan errors detected early. Agile process
proponents argue that appropriate of new development techagies and practices can reduce

the cost of uncovering errors late in the depeient process. One can make a credible case that
the use of technologies and practices such pyvdfly fast compilers with sophisticated type
systems, (2) integrated development environments, (3) systematic improvement of code through
refactoring, and (4) automatedstesuites can help manage thestcof detecting and removing
errors even when the errors are uncovered latbanprocess. It is also clear that the cost of
correcting errors that can be fixed by localized changes — that is, changes with limited impact —
should be relatively stable over time. On the othedhé is also clear thatertain types of errors

— for example, architectural design flaws that@esty compromise the integrity of the design, or
errors that require corrective actions that havdewmpact — are more costly to correct the later
they are uncovered.

Understanding Agile Software Development Processes — page 14

Principle 6. “Build projects around mwated individuals. Give them the
environment and support they need, and trust them to get the job done.”

Principle 7. “The best architecturaquirements, and designs emerge from
self-organizing teams.”

Principle 12. “Project teams evaluatesith effectiveness at regular intervals
and adjust their behavior accordingly.”

Agile processes such as XP and Scrum emphasize the need to shelter developers from
distractions so that they can fecsolely on project activities. Mag@ment's role is to facilitate
development by ensuring that developers haeerésources they need when needed, and that
they are not distracted by concerns outside dbope of the projecManagement should also
refrain from imposing and micro-managing thevelepment team: developers should be trusted

to get the work done using a process that setdan their collective expences (i.e., the team
should be self-organizing). Motivation is onetb&é most important properties humans need in
order to achieve ambitious goals with good quality results.

It can be difficult to transform a traditional teanto an agile, self-organizing team. In some
agile processes this can require team leaddransfer some of their traditional responsibilities
to team members. The short iterations of agic@sses allow the projectlger to test transfer
of responsibility, and thus incrementally buildgt in a team’s abilityo get the job done.

It is claimed that support foPrinciple 6 leads to products thate of higher quality, meet
customer requirements at delivery time, are betteictured, and require less effort to build than
those created using more prediet{heavy-weight) presses. However, we are not aware of any
empirical studies that provide evidence of ioywd quality and reduced effort as a result of
using agile processes.

The frequent reviews advocated by agile procefseus on the products and the process used to
develop the products. The planning of iterations alkaws for reflection on previous results and
adjustment of future iterations. As the customer is continuously invaiiéelent viewpoints on

the effectiveness of the project team can be obtained and flexible reaction to this reflection is
possible. The agility in agilprocesses is achieved througlif-egamination of the processes
used and corresponding adaptation of the process.

A self-evaluation and adjustmeoit a project, howevemneeds a project environment that allows
flexible adaptations. If the environment is “hastjl this means it is inflexible to change, its
customers are not willing to actively participats,abntractors insist on written specifications to
be fulfilled, etc. It becomes much neadifficult to act in an agile manner.

Understanding Agile Software Development Processes — page 15

Assumptions Underlying Principles 6, 7, and 12

Team Experience Assumption: Developers have the experienaeded to define and adapt their
processes appropriately.

Another way of saying this is that an organiaatcan always form a team consisting of bright,
experienced problem solvers capatilesvolving their process effectively. A development team
that (1) consists of developers with solidgramming skills and relevant process and product
experience, and (2) has the ability to convergeuyh rational discussions wilkely be able to
effectively define and adaptein project processes. Unfortualy, not all development teams
have these qualities. Some need guidance imdgti@g appropriate processes. For such teams,

a “standard” process may work better than an adaptable process that they could find difficult to
control. Indeed, the Team Experience Assumpsaritical to the success of agile development
projects.

It is generally accepted that there is no singlegse that will be applicédto all projects. On

the other hand, there are a number of best pes;tiechniques, and experiences that developers
can use in appropriate situations. Software kgreent teams that consist of leading members
that understand the situationswhich particular processes andgtices are applkdle are more
likely to be successful ithin an agile environment. It is eéhefore the responsibility of future
agile developers to develop such an undergtgndy gaining experiences with a variety of
approaches. Teams consisting of developers wébetlskills are more likely to benefit from the
use of agile processes.

Embedded within the Team Experience Assuamptihere seem to be two more assumptions:
The Self-Evaluation Assumption and the Self-Organizing Assumption.

Self-Evaluation Assumption: Teams are able and willing to evaluate themselves.

A team must evaluate its process if it hopes talide to adapt and/or improve the process. The
assumption is that the team is able and willingloothis. This is difficult in a project culture,
where less than optimal behavior is regarded asrious liability, and thus team members may

be reticent to rive honest self-evaluations. Furtleeeneven if the teams willing to self-assess,

the team also needs to have the skills to do so. This basically boils down to the necessity of the
team members having gained experience in ptsvsuccessful projects to be able to compare
this project’s effectiveness with previoases and identify possible improvements.

Self-Organization Assumption: The best architectures, requirents, and designs emerge from
self-organizing teams.

Understanding Agile Software Development Processes — page 16

The assumption here is that motly are the best architectures, requirements-elicitation, and
designs produced from self-organizing teams thait the resources exist for self-organizing
teams to be created, and that managemakows and supports this approach.

While this assumption is basically a restatenwériPrinciple 7 it should not be regarded as
simply redundant. It is assumed that teantlsself-organize, drawing from the most highly-
gualified talent-pool available, thuseating teams of diverse cagdigs, and thus the ability to
create the best products possible. The concegalbbrganizing teams is very different from
how many organizations work. Thus, if an orgatipn expects to gain the most from applying
Agile processes it should be aware that its mamagé of teams may need to be radically re-
designed.

Principle 9. “Agile processes pmote sustainable development.”
Principle 10. “Continuous attention technical excellence and good design
enhances agility.”

Using agile processes, developers focus on @etfig just the functiondy needed and timely
evolution of the software in response to dms in customer needs and the market. Agile
process advocates stress the importance of fiogtardevelopment environment that continually
stimulates and motivates developers. Rules, such as XP’s 40 hour weeks and No-Overtime,
target this principle.

The primary quality control activities in agilequesses are code testing and customer feedback.
Frequent review meetings are advocated in processes such as Scrum, while Extreme
Programming advocates continuous reviews through pair-development of code. Extreme
Programming also advocates thelding of test cases before theilding of code, and the use of
regression tests to ensurattimplemented changes do not have undesirable effects.

As systems grow through time, an initially iv&esigned architecture may become increasingly
blurred. Extreme programming uses the refaotptechnique to consttiy redesign the system
and therefore keep the design quality at annmyotn. This keeps implementations enhanceable
for further iterations and maintainable for the future.

Assumptions Underlying Principles 9 and 10

Quality Assurance Assumption: Evaluation of software artifac{products and processes) can be
restricted to frequent informalterviews, reviews and code testing.

XP replaces the traditional review with pg@irogramming, collective code ownership, and a
rigorous “test first” approach. These approagheside opportunities for continuous review and
improvement of the product during developm@&urum and Crystal advoeathe frequent use of

Understanding Agile Software Development Processes — page 17

workshops, review meetings, and interviews taleate products and the process, and use the
results to adapt the process accordingly.

Despite their apparent strengths, it seems that informal evaluation techniques of agile
processes may not be sufficient for establishingytiadity of safety-critical systems — systems in
which in which failure can resuilih direct injury to humans or cause severe economic damage.
Development and testing techniques which are rfmreal and/or rigorously planned may help
ensure the quality of these types of systeffisose, however, require significantly more effort

and are thus a lot more expensive. Validating an implementation against its requirements
through analysis techniques, for example, me¢hata precise and detailed specification model
must be derived from the requirements.

Continuous-Redesign Assumption: Systems can be continuously redesigned (refactored) and
still maintain their structa and conceptual integrity.

One major assumption behind agile developmetitasa design can and should be continuously
redesigned. Day after day the design is re-evaluated, and as better designs are determined,
refactoring and re-development a&ried out. Of course, a bigsumption for this is that this
redesign can be carried out for a significant amaofitime without destrging the structural and
conceptual integrity of the design and the product.

Principle 11. “Simpligy is essential.”

This principle is a direct reaction to whatperceived as unnecessary complexity imposed by
heavyweight processes. Agile processes therefore advocate gyripdih in the code and the

tools used. Code generators @nfreworks are advocated onlthiey provide clear value to the
project. Of utmost importancehe design is to be kept simple to support future iterations.
Therefore, a focused architecture satisfying toslangeds is preferred to a general architecture
that is “designed for the future”. This follows the idea that future changes are almost absolutely
unforeseeable and it therefore makes little sense to plan for a future that might not happen.
Furthermore, redesign is @uraged if it simplifies the system and removes unneeded
functionality.

Application-Specific Development Assumption: Reusability and generality should not be goals
of application-specific software development.

Part of keeping an application simple is to stay focused on current requirements and needs rather
than trying to build a more general system that will “more easily be adapted to future needs”.
Building a more general and “adaptable” systends to make the system more complex.

Understanding Agile Software Development Processes — page 18

Agile processes encourage the o$eeusable artifacts (e.g. glgn frameworks, patterns) only
when it is clear that their use can help reduce costs or increase quality. Building a generalized
piece of code (one that can be used in a nummbsituations) is encouraged in agile processes
when it is clear that such generality canused in the same project (e.g. factoring common
method parts). Many agile process$vocates claim that a focus omating general solutions can
result in efforts on making systems amenable to changes that may never occur. This is true
especially of those developers who adopt X¥ie approach to agile development; it is not
necessarily inherent in the prip itself. By focusing on building software that implements the
specific requirements at hand, and keepinig thell-designed, agility for completing this
development is enhanced.

Part of this assumption is the idea that the {targn costs of developmeare smaller if at any
given time the focus is on current requirementserathan on generalizath. Of course, this
assumption is debatable, since it may turn outithlé original design had been more general, it
would have been easier, and tHass costly, to add and adapt features over time. But this
viewpoint must be held in contrast to the viewatti is hard to know what future changes will be
required, and thus that developers may be im@#h generalizations that will never be needed.

Continuous-Redesign Assumption (re-iterated): Systems can beoantinuously redesigned
(refactored) and still maintain thestructural and conceptual integrity.

Generally, when a system is first designed it is in its simplest state. Over time, and after many
changes have been made, the design typicllyrades and thus the system becomes more
“complex”. The assumption here is that thmntinuous re-design actually keeps the system
simpler.

Figure 3 below summarizes the assumptions identified in this section that lie behind the
principles of the Agile Alliance.

Understanding Agile Software Development Processes — page 19

fine

1. The Visibility Assumption Project visility can be achieved solely through
delivery of working code.
2. The lteration Assumption A project catways be structured into short
fixed-time iterations.
3. The Customer Interaction |Customer teams are available for frequent
Assumption interaction when needed by developers.
4. The Team Communication Developers are located in time and place such
Assumption that they are able to have frequent, intensive
communication with each other.
5. The Face-to-Face Face-to-face interaction is the most productive
Assumption method of communicating with customers and
among developers.
6. The Documentation Developing extensive (relatively complete) ang
Assumption consistent documentation and software models is
counter-productive.
7. The Changing Requirement®Requirements always evolve, because of changes
Assumption of technology, customer needs, business domains
or even acquisition of new customers.
8. The Cost of Change Cost of change does not dramatically increase
Assumption over time.
9. The Team Experience Developers have the experience needed to de
Assumption and adapt their processes appropriately.
10. The Self-Evaluation Teams are able and willing to evaluate
Assumption themselves.

11.The Self-Organization
Assumption

The best architectures, requirements, and des
emerge from self-organizing teams.

gns

12.The Quality Assurance
Assumption

Evaluation of software artifacts (products and
processes) can be restricted to frequent inform
interviews, reviews and code testing.

al

13.The Application-Specific
Development Assumption

Reusability and generalighould not be goals of
application-specific software development.

14.The Continuous-Redesign
Assumption

Systems can be continuously redesigned
(refactored) and still maintatheir structural and

conceptual integrity.

Figure 3: Summary of Assumptions Behind Principles of the Agile Alliance

4. Tackling Limitations of Agile Processes

From the discussion in the previous section it should be clear that the assumptions underlying
agile processes do not hold in all software development projects and environments. This should
not be surprising: Agile approaches are not gsa#ver bullets. Because these assumptions are

Understanding Agile Software Development Processes — page 20

not met in all organizations and/or developmemiironments, agile approaches, in their current
forms, do have limitations. It is possibledgtend agile processes to address their limitations.
Such extensions can involve incorporating ppies and practices often associated with more
predictive, plan-based, or “trdainal” development processes into agile processes. In general,
users of agile processes need to ensure thatipes based on assumptidhat are not valid in
their development environments are modified accordingly.

In this section we identify some limitations associated with the assumptions made by agile
processes and discuss how some of these lionwtan be addressed. For each limitation we
characterize the situations in which the assumptions that lead to the limitation do not hold and
discuss how agile processes can be modified tienexthe applicability of agile processes. Not

all the assumptions identified in the previous secksad directly to limitations discussed in this
section.

Figure 4 below summarizes thdatgonships between the limitations discussed in this section
and the relevant assumptions identified in firevious section. We have identified two
categories of limitations: Personnel-related limitations and Product-related limitations. The
assumptions that are people-oriented tend to tedichitations in thePersonnel category, while
assumptions about the typesanfifacts produced in a projectal@ to limitations in the product
category.

Understanding Agile Software Development Processes — page 21

Assumptions

Agile Process Limitations

Personnel Limitations

Product Limitations

Limited support
for distributed
development
environments

Limited support
for
subcontracting

Limited support
for
development
involving large

Limited support
for building
reusable
artifacts

Limited support
for developing
safety-critical
software

Limited support
for developing
large, complex
software

teams

Customer X
Interaction

Assumption

X

Team
Communication
Assumption

Face-to-Face
Assumption

Changing
Requirements
Assumption

Documentation
Assumption

Quality
Assurance
Assumption

Iteration
Assumption

Application-
Specific
Development
Assumption

Continuous
Redesign
Assumption

Figure 4: Limitations of Agile Rocesses and Related Assumptions

Limited Support for Distributed Development Environments

Distributed development environments are emwinents in which the developers are not all
located at the same geographical location, ernat located in close geographical proximity to
each other. Likewise, if the development teamdslocated in close geographical proximity to
the customer similar issues can result.

Geographical dispersion leads to various issugisdb not exist when everyone is located at the
same site, or, at least, are located relativelyectoseach other (e.g., in the same city or in two
cities that are not far apart). Distributédvelopment typically makes communication more
difficult, because people are notlalo interact at the same time and/or same place. Even if
communication is not harder, distributed depenent requires special supporting tools,

Understanding Agile Software Development Processes — page 22

technologies, and communication mechanismerder to address the unique requirements and
characteristics of such an environment.

In distributed development environments, t@estomer Interaction, Team Communication,
Face-to-Face, and Documentation assumptiordy not hold. The first three assumptions
presume that it is very easy for developers teract with each othemd with customers. In
fact, the Face-to-Face assumption assumes thatogers and customers are all together where
they can meet face-to-face — thia¢y are co-located — since agilevelopers believe this is the
most productive way to interact.

Geographical distribution makemteractions harder becaus# varying work schedules,
differences in time zones, and because devedoped clients cannot always see each other’s
reactions, and share ideas as flexibly anctlaarly. The emphasis on co-location in agile
processes does not fit well with the drive bynsoindustries to realize globally distributed
software development environments. Differentifldiacosts in other regions or other countries
may motivate customers to employ offshorevedepers, or may motivate developers to use
offshore labor. Development environments inahhteam members and customers are physically
distributed may not be able to accommodateféite-to-face communicaticadvocated by agile
processes. In such cases, one can at least approximate face-to-face communication using
technologies such as video-conferencing, chat and on-line whiteboarfiseocce calls, etc., but
these technologies can be expensive anda@ralways as efféiwe as one would hope.

Face-to-face communication can be as important in distribum@doaments as non-distributed
ones. Such meetings must be planned in advemeasure that all involved can participate and
that the discussions are effective and notttow consuming. One can use such face-to-face
meetings as major synchronization events imctvlgeographically dispersed developers (1) are
made aware of the progress made by otheds (@) discuss plans fdurther evolving the
product. In between such meetings, documeasrigtheyond code) may become the primary form
of communication, with e-mail, chat, analgb-conferencing technologies supplementing.

Good documentation of requirements and desigmslymed and maintained a timely manner,

is essential to ensure that the distributed team members all maintain the same vision of the
product to be built. This should not be intetpteas a requirement to document or model all
aspects of software. Documentation and modetld be created and ma&ined only if they
provide value to the project and project stakeholders.

Agility is not always possible if communicati is restricted to exchange of formal
documentation due to legal reasonglue to world-widalistributed developent. In these cases,

only elements of agile process can be introduoedlly, with formal processes being used to
coordinate the larger, distributed project.

Understanding Agile Software Development Processes — page 23

Unfortunately, in distributed environments esjally, documentation is even more important
because of differing time and place workiates, and different people and teams
simultaneously and sequentially working on the same project. Documentation becomes more
important because of the limited ways in which@epers and customers can interact The focus
on minimizing documentation thus creates limgasi in how well distributed development can

be done following agile processes.

Limited Support for Subcontracting

Outsourcing of software dewgment tasks to subcontractorsoiten based on contracts that
precisely stipulate what is required of the sariicactor. Subcontracted tasks have to be well-
defined in the cases where subcontractors hab<for the contract. In coming up with a bid, a
subcontractor will usually develop a plan that includes a process — with milestones and
deliverables — in sufficient detail to determiaecost estimate. The process could follow an
iterative, incremental approach, but the subcontractor will likely have to make the process
predictive by specifying the number of itecats, and the deliverables associated with each
iteration, in order to compete. Because of,ttiie Customer Interaction, Team Communication,
Face-to-Face, Documentation and Changing Reménts assumptions may not hold when work

is subcontracted in a project.

As discussed above, the first three assumptovasume that developers and customers are all
co-located so they can hawacé-to-face interaction whenever negdit may not be possible to
co-locate subcontractors with déwgers and customers. In teesases, the same issues that
were identified for distributed develogmt exist for subcontracting as well.

By requiring subcontractors to co-locate witie primary developers and the customer, these
issues can be addressed.

As was discussed above, the documentation aggamygiates that documentation (other than
actual program code) should only be created vetieolutely necessary. In subcontracting, as
was described for distributed development environments, documentation is important because
people and teams who do not work togetirea day-to-day basis must communicate and

provide information so that others (other sulicactors, the main developers, the customer, etc.)
can interact with what has been done araluate its acceptability within the project.

Given the greater “distance” between the mawettgers and subcontractors, and between the
subcontractors and the customer, the assumptionldlcaimentation is not so important is easily
seen to be invalid.

There is not much an agile development orgdiminacan do to address this issue other than to
increase its documentation, or to requsubcontractors to co-locate with them.

Understanding Agile Software Development Processes — page 24

The changing requirements assumption statgs#guirements always evolve. However,
subcontractors typically have wam award to develop software for a fixed set of requirements.
If requirements change frequently, the contrasttbachange frequently, and this can lead to
significant cost increases, since contracts typicalye that there will be extra charges for each
change to the contract. The basis of thetiact used by agile developers and that of
subcontractors is fundamentally differenhcg one assumes changing requirements and the
other assumes a fixed set of given requirements.

In order to address this issue, it is possilbhat contracts can be written that allow a
subcontractor some degree of flexibility in how they develop the product within time and cost
constraints. This is certainlyossible if the subcontractor sxa good track record and can be
trusted by the contracting company to devedoproduct that meets the contracting company's
needs. A contract supporting agile developniernihe subcontractor environment might ought to
consist of two parts:

e Fixed Part: This part defindd) the framework that constra how the subcontractor will
incorporate changes into the product (e.gstcand time-based criteria for accepting or
rejecting changes to the Variable Part (see below) of the contract, (2) the activities that must
be carried out by the subcortdtar (e.g., quality assurancetiaties), and (3) requirements
that are to be considered fixed ataliverables that must be delivered.

e Variable Part: This part defines the requirerseautd deliverables that can vary within the
boundaries defined in the Fixed Part. This gart evolve within the constraints defined in
the Fixed Part. At the time the contract is sayreedescription of prioritized deliverables and
requirements should be included.

Limited Support for Development Involving Large Teams

Large teams often have many sub-teams ddcigfists, and these may exist at different
geographically-distributed locations. Large tedaymscally focus on very large projects, where a
large amount of human resources are neededdlving the project’problems. Because of
these issues, large teams require more irtierecamong their members and a higher degree of
focus in order to manage them. In theswim®nments, the Customer Interaction, Team
Communication, Face-to-Face, and Doeuntation assumptions may not hold.

The size of teams can limit the effectivenesd irquency of face-toate interactions. Agile
processes support process "management-in-th#*smathat its coordination, control, and
communication mechanisms are applicable to stoathedium sized teams. With larger teams,
the number of communication lines that havéoéomaintained can reduce the effectiveness of

Understanding Agile Software Development Processes — page 25

practices such as informal face-to-face cammations and review meetings. Large teams
require less agile approaches to tackle ispaetscular to "management-in-the-large”.

There is not much that can be done to addressafisumption other thdaa attempt to minimize
the size of the team and to maximize the atgon that occurs, whilat the same time not
allowing the amount interaction to overwitethe developers and the customer(s).

With large teams, more documentation is inhdyeneeded, simply for coordinating among the
large number of team members. Given their béhat any documentationtar than code is to

be minimized, agile development processes provide limited support for development involving
large teams.

Traditional software engineering practicesittemphasize documentation, change control and
architecture-centric devggdment are more applicable for large teams. This is not to say that agile
practices are not applicablesnch environments. There may be opportunities for large teams to
use agile practices, but the degrof agility possible may be less than that found in smaller
projects. For instance, the largverall team may have strict requirements for documentation,
but, within this, it may be possible for smalates to apply agile development methods while
they work on their project. After the projectasmpleted, or at certain time intervals, the team
may document certain aspects of the projectasoto be in line with the large team’s
requirements. This would allow most of the wetokbe done in an agile manner, and only at the
end (or other specified points) pooduce required documentation.

Limited Support for Building Reusable Artifacts

Reusable artifacts are code and other components (analysis and design documents, patterns, etc.)
that can be reused from one project to anothether entirety or at least in a major part. In

order to create components that are reusabheg-picture view must béaken while they are

being developed, rather than simply focusingtlo& current application. What other types of
systems / applications might be able to bieriedm this component? How many different ways

might one want to use it? What are the requirements of the domain, in contrast to simply this
application in the domain? These are a few of the questions that must be asked when thinking
about making components reusable and momergé-purpose. When developing reusable
artifacts, agile development’'s Documentation, Quality Assurance, Application-Specific
Development, and Continuous Redesign assumptions may not be valid.

If documentation other than actual code is miaed, it may be harder to determine when and
where a given artifact can be reused. Additi@mrumentation may be needed to help indicate
the reuse possibilities for an asttt. In order foragile processes taigport development of
reusable artifacts, they may need tor@ase the amount of documentation created.

Understanding Agile Software Development Processes — page 26

Agile processes such as Extreme Programmiegdan building software products that solve
specific problems. Development in "Internemé&" often precludes developing generalized
solutions even when it is clear that this couleigilong-term benefits. In such an environment,
the development of generalized solutions arfieiotforms of reusable software (e.g., design
frameworks) is best tackled projects that are primarily concerned with the development of
reusable artifacts. This separation of the prédpecific development environment from the
reusable artifact development environment @imary feature of the reuse-oriented framework
called theExperience Factory developed by researchers at thevigrsity of Maryland at College
Park [5]. The wide applicability of a reusable faxti requires that the process used to build the
artifact emphasize quality control because theaichjpf low quality (in particular, severe errors)
is as wide as the number of applications tteatse the artifact. On the other hand, timely
development of reusable artifacts is desirable.

Continuous redesign is difficult when not deyeng application-spefic artifacts. The
opportunity for customer feedback is lesseraad] thus the improvements in quality and design

are reduced. In order to address this issue, agile developers must put in place specific processes
that are intended to obtain thigoe of feedback so that thesiign and quality of the reusable
artifacts can be enhanced.

It seems apparent that agile development duasnaturally fit well for building reusable
artifacts. However, with some careful atien, and some key adjustments made to agile
processes, as mentioned above, it may bssiple to successfully adapt and apply agile
processes to developmaegitreusable artifacts.

Limited Support for Developing Safety-Critical Software

Safety-critical software is software where people’s lives, health, or safety may be compromised
if the quality of the software is not extremdiigh. Some examples include aviation control
software, and software/firmware to control x-ragahines. In these types of environments it is
important to know that software has been testddnsively, and has ée designed to guarantee

that there will not be failures that affect thaligpto correctly and safely use and control the
machinery. It is not acceptaliter a machine to be allowed to gideses of x-rays that would be

fatal to the patient receiving them, or for a pito be unable to fly the airplane because of
software failure, for instance. In situationkelithese, the Documentation, Quality Assurance,
and Continuous Redesign assumptions of agile development may not be valid.

Formal specification, rigorous test coveraged ather formal analysis and evaluation techniques
included in software engineering approachesvisle more robust, but also more expensive,

mechanisms to tackle the development of safatypusiness-critical software. These approaches
can more reliably “guarantee” thappropriate tests have beemrand code has been analyzed,

so that developers and users are confident in the safety and reliability of the system.

Understanding Agile Software Development Processes — page 27

Applying some agile evaluation practices to saoftware can also be beneficial. For example,

(1) test-first approaches requires one to defing tests before wiing code, (2) the early
production of working code supported by the it incremental pross structure of agile
processes supports exploratory development of critical software in which requirements are not
well-defined, and (3) pair-programming can be an effective supplement to formal reviews.

Therefore, it can be assumed that agile and dbsuftware development are not incompatible,
but can be combined when needed: Formdiriggies may be used in combination with agile
processes to handle criticabpes of the software to increase quality and confidence.

Limited Support for Developing Large, Complex Software

Large, complex software is software thatludes large amounts of code (many hundreds of
thousands, millions, etc., of lines) and/or mayalve very intricate iterrelationships between
the various parts of the systemensure data integrity and to make certain that all parts of the
system interact reliably and run as intendedvdl@pment of large, complex software generally
requires a higher degree of nagement control and a greater amount of more “formalized”
processes to make sure everything fits amorks together, and is runs reliably. The
Documentation, Quality Assurance, Iterati@md Continuous Redesign assumptions of agile
development may not be valid in these situations.

As was discussed above regarding large dewedmt teams, when developing large, complex
software, it is likely that there is an increased need for documentation. This is necessary for
simply documenting the larger set of requiremefagatures, and design decisions, as well as for
providing a knowledge base for the larger teams that are likely to be working on such systems.
Focusing almost exclusively on the code for tlieumentation can lead to a serious lack of
understanding about the systeamd the more difficult taslof training new team members
during and after the projeés completed. |If afp developers take the conscious effort to
document key decisions, designs, etc., thenlitnitation may be able to be avoided.

Likewise, the assumption that informal testing and reviews can ensure the required level of
quality in large complex systems is probably ndidvalf the agile approach of creating tests
before writing code (test-first) isarried out, and the process use@doming up with these tests

is thorough and well-documented, then there maybeoa problem. However, this needs to be
ensured in order for quality in larggogmplex systems to be maintained.

The Iteration assumption may not be valid, @thwhen developing large, complex software
because there may be systems in which functigniliso tightly coupled and integrated that it
may not be possible to develop the software inergsily. In these cases an iterative approach in
which code is produced in each iteration canlsélused, but the code produced in each iteration
will include all the pieces in various states of incompleteness.

Understanding Agile Software Development Processes — page 28

Finally, the assumption that code refactorinmoges the need to design for change may not
hold for large complex systems in particular. Ictsgoftware there may hmitical architectural
aspects that are difficult to change because efctitical role they playn the core services
offered by the system. In such cases, the cost of changing these aspects can be very high and
therefore it pays to make extra efforts tdi@pate such changes early. The reliance on code
refactoring (an application of the ContinuousdB&ign assumption) could also be problematic
for such systems. The complexity and size athssoftware may makergit code refactoring
costly and error-prone. Models can play an intgoatr role here, especially if tools exist for
generating significant portions of the code frora thodels. This view of models as the central
artifacts for evolving systems & the heart of the Objebtanagement Group's (OMG) Model-
Driven Architecture (MDA) approach [28].

5. Open Questions, Conclusions, and Future Work

This paper has discussed claims made by agieldgers, and some ofd@hunderlying principles

and assumptions upon which agile development proceeds. Some of these assumptions have been
guestioned, and implications discussed. Sassumptions may always be true, but in other
cases, these assumptions could lead to situattbese agile developmentay not be applicable,

or even where agile development may fail. almy case, there are a variety of questions that
remain open and future work that needbéadone regarding agile development.

Open Questions

While advances in software technologiesd atevelopment tools have helped launch new
generations of software produciksjs also the case that neyenerations of software products
drive the development of more uosticated development infrasttures. It seems natural to
assume that development might become nwiffecient and effective as the development
infrastructure becomes more sophisticatedvduld seem that development processes should
improve over time as they adapt to thecre@asing sophisticatiorof the development
infrastructure. This raises the following opeuestions related to software development
infrastructures and agile and “non-agile” processes:

e Do non-agile processes have a lot of iwead because of the ‘less-sophisticated’
development infrastructure that existedted time the processes were developed?

e Do agile processes work well because of the nsomisticated infrastructure that currently
exists (e.g., component/class libraries, design frameworks, fast incremental compilers)?

e Would agile processes work so well if this infrastructure were not in place?

e What aspects of this infrastructure are keymaking agile processes successful, and what
aspects of agile processes themselves aponsible for their success? (The “nature-
nurture” question.)

Understanding Agile Software Development Processes — page 29

Answers to the above questions are not easy mmliut obtaining them can lead to a deeper
understanding of development processes and their evolution.

Need for Empirical Studies

While it appears that there have been manywsoé development project successes based on
agile processes, so far most of these successsstaave only anecdotal evidence. For a more
conclusive assessment of these new teclesiga sound scientifievaluation based on a
statistically significant number of comparaldase studies would be necessary. This could not
only help one better understand unsolved andspong problems in software engineering, but
would also allow project manageis guide their decisions on pexs selection in a better way.

It is invaluable to have hard numbers and dgtan which to base our decisions about whether to
adopt agile approaches to software developmenobr Therefore, it imecessary to collect and
analyze data about projects tl@tve used agile processes. Atfssich step was done in [32].
Such studies will lead to a better understanding of how agile processes work, how they differ
from “non-agile” processes, and under what ¢maks agile processes are applicable and are
most successful.

Empirical data comparing the effectivenessl dimitations of agile and non-agile approaches
would greatly enhance our understanding of the Iergefits and limitations of agile processes.
In this paper we presented a list of limitatiothsrived from our analysis of principles and
assumptions underlying agile processes. It appgbatscertain domains are more amenable than
others to agile developmentgmesses. Among them are Internet application domains, in which
there are significant time-to-market pressures e costs of upgrading to the next release are
minimal. However, it also appears that companthat develop long-lasting, large, complex
systems may not be able to use agile processes in their current form.

Spectrum of Development Approaches

In general, some aspects of a software agraknt project can benefiom an agile approach

while others can benefit from a less-agile or mpredictive approach. Bm this perspective,
practical software development processes canrbated by drawing techniques from agile as

well as traditional approaches, rather than considering “agile” and “traditional” as discrete
process classification points. Some projects lwamefit from techniques that are more purely
predictive, plan-based, “traditional” processesmhich the process steps are defined in detalil
early in the project, and project goals remain relatively stable throughout the execution of the
process. At the same time, these projects mayhbasefit from techniques that are more “agile”

in which process steps and mdj goals are dynamically determined based on analyses of (1)
experiences gained with previously executed process steps, (2) similar experiences gained
outside of the project, and on (3) changeshim requirements and development environment.
From this perspective, the agility of a presds determined by the degree to which a project
team can dynamically adapt the process based on changes in the environment and the collective
experiences of the developers.

Understanding Agile Software Development Processes — page 30

Barry Boehm [10], in his analysisf agile practices, has proposed a process spectrum that is
based on the degree of flexibility one has in ttgpieg process plansAnother way of looking

at development processes might be in matnmfawith “agile” characteristics listed across one
dimension and “traditional” ondssted across the other. Tlaetual process used would be a
combination of the characteristics selected from each of the two dimensions. This approach
would fit in the vein of method engineering [Mhere the specific processes and techniques that
are desired for a project are selected feonatalog (method base) of available options.

Most agile process practices are adaptatioqsauftices that have beéwuted by methodologists

over the last two decades and that can be foundare rigorous “traditional” processes. This

has been recognized byilagprocess advocates who point oudttthe differences lie not in the
individual practices, but in how they are put tibge. The cobbling togethef best practices to

create processes that fit a development environment’s values and development goals has been
advocated by a number of methodologists andrkaslted in at leasbne tailorable process
framework, known as OPENG6]. In this light, agile processes can be viewed as reference points
along a spectrum of processes by those seekirgpgses that have the values embodied in the
agile processes.

Practical processes lie somewhere in betweerptinely agile and purely predictive extremes of
the process spectrum. Current agitecesses are close to theglyragile end of the spectrum,
but they are not purely agile because they proaigeocess framework that constrains the form
of processes that developers must follow. &le, most publisheslorks on agile processes
stipulate an iterative, incremental process auVocate practices such as test-first code
development, pair-programming, and dailyiesv meetings with particular formats.

Conclusions

It is important to be aware that agile dieygment approaches are built on many, possibly
implicit, assumptions, and that these assimng are probably notappropriate for all
organizations or development projects. Whha assumptions made by agile development
methods are not in alignment, or even directlgflict, with those of tle organization, managers

in charge of development need to take stepadipt the agile development process if such an
approach is adopted, or be confident in choosing a “traditional” approach, knowing that it will
better fit their environment. this is not done, an agile development approach may very likely
provide less than desirable resuiecause of the limitations that result from these assumptions.

6. References

[1] Agile Alliance. (2002). http:www.agilealliance.org. Visited 2002 Aug 9.

[2] Ambler, S. (2002).Agile Modeling: The Official Agile Modeling (AM) Site.
http://www.agilemodeling.comVisited 2002 Aug 9.

[3] Auer, K.; & Miller, R. (2002). Extreme Programming Applied. Boston: Addison-Wesley.

Understanding Agile Software Development Processes — page 31

[4] Barghouti, N.S.; & Kaiser, G. (1992). ¢8ling Up Rule-Based Software Development
Environments.” International Journal of Software Engineering and Knowledge Engineering,
2:1 (March), 59-78.

[5] Basili, V.; Caldiera, G.; & Rombach, H. (1994). “The Experience Factory. ” In:
Marciniak, J. (ed.)Yolume 1 of the Encyclodepdia of Software Engineering. John Wiley
Sons. Chapter X, pp. 469-476.

[6] Basili, V.; & Turner, A. (1975). “Iterativ&nhancement: A Practical Technique for Software
Development.” IEEE Transactions &oftware Engineering, 1:4.

[7] Beck, Kent. (2000)Extreme Programming Explained. Boston: Addison-Wesley.

[8] Beck, K.; Fowler, M. (2001lanning Extreme Programming Applied. Boston: Addison-
Wesley.

[9] Boehm, B. (1986). “A Spiral Model @oftware Development and Enhanceme®CM
S GSOFT Software Engineering Notes, 11:4 (August) 22-42.

[10] Boehm, B. (2002). “Get Ready For Agile Methods, With CaiteEE Computer, 35:1
(January), 64-69.

[11] Boger, M.; Baier, T.; Wieberg, F.; & Lamersdorf, W. (2001). “Extreme Modeling.” In:
Succi, G.; & Marchesi, M. (edsBxtreme Programming Examined. Boston: Addison-
Wesley.

[12] Briefs, U.; Siborra, C.; & Schneider, L. (eds.) (1983)stems Design For, With, and By the
Users. Amsterdam: North-Holland.

[13] Cockburn, A. (2001)Agile Software Development. Boston: Addison-Wesley.

[14] Crocker, R. (2001). “The 5 Reasons &Bn’'t Scale and What to do About Them.” In:
Proceedings of XP 2001.

[15] Cusumano, M.; & Yoffie, D. (1999). “Software Development on Internet TirEeEE
Computer, 32:10 (October), 60-69.

[16] Firesmith, D. G.; & Henderson-Sellers, B. (2000)e OPEN Process Framework. An
Introduction. Addison-Wesley.

[17] Fowler, M. (1999).Refactoring. Boston: Addison-Wesley.

[18] Fraser, S.; Beck, K.;Cunningham, W.; Crocker, Fowler, M.; Rising, L.; & Williams, L.
(2000). “Hacker or Hero? — Extreme Programming Tod#&ddendum to the Proceedings
of the 2000 ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOP3_A 2000), Mineapolis, MN, USA, October 15-19, 2000, pp. 5-7.

S GPLAN Notices, 35:10 (October), 2000.

[19] Highsmith, J. (2001)Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. Dorset House Publishing.

[20] Jacobi, C.; & Rumpe, B. (2001). “Harchical XP — Improving XP for Large Scale
Projects”. In: Succi, G.; & Marchesi, M. (ed&xtreme Programming Examined. Boston:
Addison-Wesley.

[21] Jacobson, I.; Booch, G.; & Rumbaugh, J. (199% Unified Software Devel opment
Process. Addison-Wesley.

Understanding Agile Software Development Processes — page 32

[22] Jeffries, R.; Anderson, A; & Hendrickson, C. (200Extreme Programming Installed.
Boston: Addison-Wesley.

[23] Larman, C. (2001,"2ed.). Applying UML and PattesnAn Introduction to Object-
Oriented Analysis and Design ane tbnified Process. Prentice-Hall.

[24] Lindvall, M.; Basili, V.; Boehm, B.; Cost&,.; Dangle, K.; Shull, F.; Tesoriero, R.;
Williams, L.; & Zelkowitz, M. (2002) “Empical Findings in Agile Methods” In:
Proceedings of Extreme Programming andé\llethods — XP/Agile Universe 2002,
August 2002, Springer, pp. 197-207.

[25] Nonaka, I; &Hirotak, T. (1995)The Knowledge Creating Company. Oxford: Oxford
University Press.

[26] Martin, R. C. (2003)Agile Software Development. Principles, Patterns, and Practices.
Prentice Hall.

[27] McBreen, P. (2003)Questioning Extreme Programming. Addison-Wesley.

[28] MDA (Model-Driven Archiecture). (2002). http://www.omg.org/mda. Visited 2002 Aug
9.

[29] Newkirk, J.; & Matin, R. C. (2001).Extreme Programming in Practice. Boston:
Addison-Wesley.

[30] Osterweil, L. (1987)“Software Processes are Software Too.” Proceedings of'the 9
International Conference on Softwdtagineering (ICSE’97), April.

[31] Rational Corporatio. (1998). “Rational Unified Process: Best Practices for Software
Development Teams”. A Rational Software Corporation White Paper.
http://www.rational.com/media/whitepapergirbestpractices.pdf. Visited 2002 Sep 16.

[32] Rumpe, B.; & Schroder, A. (2002JQuantitative Survey on Extreme Programming
Projects.” In:Proceedings of the Third International Conference on Extreme Programming
and Flexible Processes in Software Engineering (XP2002), May 26-30, Alghero, Italy, pp.
95-100, 2002.

[33] Rising, L.; & Janoff, N. (2000). “Th8crum Software Development Process for Small
Teams.” |IEEE Software, 17:4 (July/August), 2000, pp. 26-32.

[34] Schwaber, K.; & Beedle, M. (2001Agile Software Development with Scrum. Prentice
Hall.

[35] Sutton, S.M., Jr.; Heimbigner, D.; & Ostil, L. (1995). “APPL/A: A Language for
Software Process ProgrammingACM Transactions on Software Engineering, 4:3 (July),
221-286.

[36] Sutton, S.M., Jr.; Ostemil, L. (1997). “The Desigof a Next-Generation Process
Language.” Proceedings of the Buropean Software Engineering Conference (ESEC’97);
5" ACM SIGSOFT Symposium on the FoundatiofiSoftware Engineering (FSE’97), Sep
1997, Zurich, Switzerland, 142-158.

[37] Takeuchi, H.; & Nonaka, I. (1986)The New Product Development Gamédarvard
Business Review, pp. 137-146, 1986.

[38] UML (2002). “OMG Unified Modeling Languag8pecification”, Version 1.4.1, ad/02-06-
22. Object Management Group (OMG)ttph//www.omg.org. Visited 2002 Aug 12.

Understanding Agile Software Development Processes — page 33

[39] Wake, W. (2002Extreme Programming Explored. Boston: Addison-Wesley.

[40] Wells, D. (2002) http://www.extmeprogramming.org/. Visited 2002 Aug 12.

[41] Williams, L.; KesslerR.; Cunningham, W.; & Jeffries. R. (2000). “Strengthening the Case
for Pair Programming.” INEEE Software, 17:4 (July/August), 2000, pp. 19-25.

[42] Williams, L.; & Upchurch, R. (2001). “In Support of Student Pair-Programming.”
Proceedings of the 2001 ACM Special Interest Group on Computer Science Education
(S GCSE 2001) Conference, Charlotte, NC, USA, February, 2001, pp. 327-331.

