

Agile Test-based Modeling

Bernhard Rumpe
Software Systems Engineering
TU Braunschweig, Germany

www.sse.cs.tu-bs.de

Model driven architecture (MDA) concentrates on
the use of models during software development. An
approach using models as the central development
artifact is more abstract, more compact and thus
more effective and probably also less error prone.
Although the ideas of MDA exist already for years,
there is still much to improve in the development
process as well as the underlying techniques and
tools. Therefore, this paper is a follow up on [13],
reexamining und updating the statements made
there. Here two major and strongly related
techniques are identified and discussed: Test case
modeling and an evolutionary approach to model
transformation.

Keywords: Model-based programming, Model-based
testing, Agile methods, Model evolution

1 Introduction: Modeling meets
Programming

The UML [1] has become the most popular modeling
language for software intensive systems. UML as well
as other models (Matlab or domain specific ones) can
be used for quite a variety of purposes. Among them
diagrams are still mainly used for documentation of
requirements and design. Requirements are usually
captured in natural language and a few informal and
top-level drawings that denote an abstract architecture,
use cases or activity diagrams. Architecture and
designs are then captured and documented with
models. In practice, these models are increasingly
often used for generation of code respectively code
frames that are filled in manually.
More sophisticated and therefore less widespread uses
of models are analysis of certain features (such as
throughput, robustness, failure likelihood), generation
of tests from models and a transformation based
evolutionary approach from high-level models to
running code. Quite a few UML-based tools offer

functionality to emulate models or generate code or at
least code frames. Tool vendors still work hard on

continuous improvement of these features. It is
foreseeable that together with the effort of defining
virtual machines respectively executable UML, a large
sublanguage of the UML will become a high-level
programming language and modeling at this level
becomes identical to programming. This raises a
number of interesting questions:
• Is it critical for a modeling language to be also

used as programming language? For example
analysis and design models may become
overloaded with details that are not of interest yet,
because modelers are addicted to executability. To
our experience, high-level designs then become
too detailed to be reused in different applications.
As a consequence it would be necessary to
integrate an executable sublanguage of the UML
with a specification-oriented and not-executable
language for reuse of requirement captures.

• Is the UML expressive enough to describe
systems completely or will it be accompanied by
conventional languages? How well are these
integrated? We believe that there will be
techniques to thoroughly integrate several
languages. Today, executable pieces of code
written e.g. in Java are still treated like strings
within UML models. In the future, there will be
better integration and specifically, there will be
techniques for composition of such language
parts.

• How will the toolset of the future look like and
how will it overcome round trip engineering (i.e.
mapping code and diagrams in both directions)?
We believe that round-trip engineering is not a
technique that will last for ever. Round-trip had
been used in a similar way, when people didn’t
trust compilers and wanted to check and change
compiled code manually. But today, it’s quite
unclear to understand how to overcome this kind
of jojo-engineering.

• What are the implications of an executable UML
on the development process? Only few people
believe in the UML as a full programming
language. Indeed, the UML (including its action
language, OCL and behavioral diagrams) is in its
current form not very convenient for

[Rum06] B. Rumpe.
Agile Test-based Modeling.
In: Proceedings of the 2006 International Conference on Software Engineering Research & Practice. SERP‘2006.
CSREA Press, USA, June 2006.
www.se-rwth.de/publications

programming. However, if tooling becomes more
efficient and the UML is enriched with
appropriate programming concepts, this might
change. But will it lead to better code or just more
quickly to bad implementations?

In [4,5] we have discussed these issues and have
demonstrated, how the UML in combination with Java
may be used as a high-level programming language.
But, to ensure quality of the result the UML cannot
only be used for modeling the application, but more
importantly for modeling tests on various levels
(class, integration, and system tests) as well.
One advantage of using models for test case
description is that application specific parts are
modeled with UML-diagrams and technical issues,
such as connection to frameworks, error handling,
persistence, or communication can be handled by the
parameterized code generator. This basically allows us
to develop models independent of any technology or
platform, as for example proposed in [6]. Only in the
generation process platform dependent elements are
added. When the technology changes, we only need to
update the generator, but the application defining
models can be reused without much change. This
concept also supports the above mentioned MDA-
Approach [2] of the OMG. Another important
advantage is that both, the production code and
automatically executable tests at any level, are
modeled by the same kind of UML diagrams.
Therefore developers use a single homogeneous
language to describe implementation and tests. This
will enhance the availability of tests already at the
beginning of the coding activities. Similar to the “test
first approach” [7,8], sequence diagrams are used to
model drives of test cases. They can be taken from
requirements that have also been modeled using
sequence diagrams.

Fig. 1. Mapping of UML-models to code and test code
Some of the UML-models (mainly deployment and
class diagrams as well as statecharts) are used
constructively, while others are used for test case
definition (mainly OCL, sequence and enhanced
object diagrams). The following Fig. 1 illustrates the
key mappings from various diagrams to the

production and test code. The notations on the left
side are usually considered “complete” and are
therefore useful for generating production code,
whereas the notations on the right are “exemplaric”
and thus useful for modeling individual tests.
However, both sides are not disjoint, because it’s
possible to generate e.g. initialization code from an
object diagram as well as test drivers from a
statechart.

The following section 2 discusses the combination of
agile methods and model-based software development
from a methodical point of view. It is argued that the
use of models increases efficiency, quality and other
project elements such that the project can be
downsized and run in an agile way. As primary
technical elements of model-based development, the
definition of model-based tests is discussed in section
3 and the evolution (refactoring) of models is
discussed in section 4. Section 5 gives a final
conclusion and summary.

2 Agile Modeling: Using Models in
Agile Projects

In the last years a number of Agile Methods [9] have
been brought to practice that share a some special
characteristics subsumed under “agile” resp. “light-
weight”. Among these Extreme Programming (XP)
[3] is currently the most widely used and discussed
method [17]. Some of the XP characteristics are:
• XP early focuses on the primary goal, the running

production code. Other artifacts, like
documentation are produced and used only in a
very limited way, but coding standards are
enforced to document the code.

• At any stage of development, automated tests are
used to ensure quality of the result. Our practical
experience shows, that when this is properly done,
the defect rate is in fact considerably low.
Furthermore, the automation allows us as well as
new developers and the paying customer to repeat
tests continuously, even if the customer doesn’t
understand the content of the test.

• Very small iterations with continuous integration
are enforced and the system is kept as simple as
possible.

• Refactoring of code is used to improve the code
structure and tests ensure the defect rate
introduced through refactoring is rather small if
existent at all.

code and
test case
generation

tes t co de

s ta techarts

c lass
d iag ram s seque nce d iag ram s

ob ject d iag ra m s
__ :

__ :

__ :

O C LJav a

produ ction
code

th ickness of arrow
ind icates im portance
of generation

code and
test case
generation

tes t co de

s ta techarts

c lass
d iag ram s seque nce d iag ram s

ob ject d iag ra m s
__ :

__ :

__ :

O C LJav a

produ ction
code

produ ction
code

th ickness of arrow
ind icates im portance
of generation

The lack of documentation is motivated by the
reduction of workload gained and the observation, that
developers don’t trust documents anyway, because
these are out of date too often. So, XP focuses on
code. All design activities manifest in the code
directly. Quality is ensured through strong emphasis
on testing activities, ideally on development of the
tests before the production code
(“test first approach” [7]). An explicit architectural
design phase is abandoned and the architecture
emerges during coding. Architectural shortcomings
are resolved through the application of refactoring
techniques [10,11]. These are transformational
techniques to refactor a system in small steps to
enhance its structure. The concept isn’t new [12], but
through availability of appropriate tools and the use of
refactoring in XP, transformational development now
has the potential to become used in a wider range of
projects.
When using an executable version of UML to develop
the system within an agile approach, the development
project should become even more efficient. On the
one hand, through the abstraction of the platform
independent models, these models are more compact.
When developing such a model, the developer can
focus on requirements only, completely disregarding
the technological platform. These models can more
easily be written, read and understood than code. On
the other hand in classic development projects these
models are developed for documentation anyway. But,
increased reuse of these models for later stages now
becomes feasible through better assistance. Therefore,
model-based development as proposed by the MDA-
approach [2] should become applicable in recent
future. These UML-models also serve as up-to-date
documentation much better than commented code
does.

3 Model-based Testing

There exists quite a variety of testing strategies
[14,15]. The use of models for the definition of tests
and production code can be manifold:
• Code or at least code frames can be generated

from a design model.
• Test cases can be derived from an analysis or

design model that is not used/usable for
constructive generation of production code. For
example behavioral models, such as statecharts,
can be used to derive test cases that cover states,
transitions or even paths.

• The modeling technique itself can be used to
describe a test case or at least a part thereof.

The first two forms have already been discussed e.g.
in [15]. Therefore, in this section we concentrate on
the development of models that describe tests. A
typical test, as shown in Fig. 2 consists of a
description of the test data, the test driver and an
oracle characterizing the desired test result. In object-
oriented environments, the test data can usually be
described by an object diagram (OD). It shows the
objects necessary to run the test as well as concrete
values for their attributes and the linking structure.
The test driver can be modeled using a simple method
call or, if more complex, a sequence diagram (SD). An
SD has the considerable advantage that not only the
triggering method calls can be described, but it is
possible to model desired interactions and check
object states during the test run.

Fig. 2. Structure of a test modeled with object
diagrams (OD), sequence diagram (SD) and the
Object Constraint Language (OCL).

For this purpose, the Object Constraint Language
(OCL, [16]) is used. Furthermore, it has proven
efficient to model test oracles using a combination of
an object diagram and OCL properties. The object
diagram in this case serves as a property description
and can therefore be rather incomplete, just focusing
on the desired effects. The OCL constraints used can
also be general invariants or specific property
descriptions.

As already mentioned, being able to use the same,
coherent language to model the production system and
the tests allows for a good integration between both
tasks. It allows the developer to immediately define
tests for the constructive model developed. It is
imaginable that in a kind of “test-first modeling
approach” the test data in form of possible object
structures is developed before the actual
implementation.

objects under
test

o1

o3 o4

o2 o1

o3 o4

o2

o5

OD OD

OCL

SD or method call

+

test data test driver
expected result and/or
OCL-contract as
test oracle

objects under
test

o1

o3 o4

o2
o1

o3 o4

o2 o1

o3 o4

o2

o5

o1

o3 o4

o2

o5

OD OD

OCL

SD or method call

+

test data test driver
expected result and/or
OCL-contract as
test oracle

4 Model Evolution using Automated
Tests

Neither code nor models are correct from the
beginning. For code, many sources of incorrectness
can rather easily be analyzed using type checkers of
compilers and automated tests that run on the code.
For models this is usually a problem that leaves many
errors undetected in analysis and design models. This
is particularly critical as conceptual errors in these
models are rather expensive if detected only late in the
development process. The use of code generation and
automated tests helps to identify errors in these
models.
Besides detecting errors, which might even result from
considerable architectural flaws, nowadays, it is
expected that the development and maintenance
process is capable of being flexible enough to
dynamically react on changing requirements. In
particular, enhanced business logic or additional
functionality should be added rapidly to existing
systems, without necessarily undergo a major re-
development or re-engineering phase. This can be
achieved at best, if techniques are available that
systematically evolve the system using
transformations. To make such an approach
manageable, the refactoring techniques for Java [10]
have proven that a comprehensible set of small and
systematically applicable transformation rules seems
optimal. Transformations, however, cannot only be
applied to code, but to any kind of model. A number
of possible applications are discussed in [12].
Having a comprehensible set of model transformations
at hand, model evolution becomes a crucial step in
software development and maintenance. Architectural
and design flaws can then be more easily corrected,
superfluous functionality and structure removed,
structure for additional functionality or behavioral
optimizations be adapted, because models are more
abstract, exhibit higher-level architectural and design
information in a better way.
Two simple transformation rules on a class diagram
are shown in Fig. 3. The figure shows two steps that
move a method and an attribute upward in the
inheritance hierarchy. The upward move of the
attribute is accompanied by the only context
condition, that the other class “Guest” didn’t have an
attribute with the same name yet. In contrast, moving
the method may be more involved. In particular, if
both existing method bodies are different, there are
several possibilities: (1) Move up one method
implementation and have it overridden in the other

class. (2) Just add the method as abstract signature in
the superclass. (3) Adapt the method implementations
in such a way that common parts can be moved
upward. This can for example be achieved by
factoring differences between the two
implementations of “checkPasswd” into smaller
methods, such that at the end a common method body
for “checkPasswd” remains. As a context condition,
the moved method may not use attributes that are
available in the subclasses only.
Many of the necessary transformation steps are as
simple as the upward move of an attribute. However,
others are more involved and their application comes
with a larger set of context conditions and
accompanying steps similar to the adaptation
necessary for the “checkPasswd” method. These of
course need automated assistance. The power of these
simple and manageable transformation steps comes
from the possibility to combine them and evolve
complex designs in a systematic and traceable way.
Following the definition on refactoring [10], we use
transformational steps for structure enhancement that
does not affect “externally visible behavior”. For
example both transformations shown in Fig. 3 do not
affect the external behavior if made properly.
By “externally visible behavior” Fowler in [10]
basically refers to behavioral changes visible to the
user. This can be generalized by introducing an
abstract “system border”. This border serves as
interface to the user, but may also act as interface to
other systems. Furthermore, in a hierarchically
structured system, we may enforce behavioral
equivalence for “subsystem borders” already. It is
therefore necessary to explicitly describe, which kind
of behavior is regarded as externally visible. For this
purpose tests are the appropriate technique to describe
behavior, because (1) tests are already available
through the development process and (2) tests are
automated which allows us to check the effect of a
transformation through inexpensive, automated
regression testing. A test case thus acts as an
“observer” of the behavior of a system under a certain
condition. This condition is also described by the test
case, namely through the setup, the test driver and the
observations made by the test. Tests do not necessarily
constrain their observation to “externally visible
behavior”, but can make observations on local
structure, internal interactions or state properties even
during the system run. Therefore, it is essential to
identify, which tests are regarded as “internal” and are
evolving together with the transformed system and
which tests need to remain unchanged, because they
describe external properties of the system. Tests in

one categorization can roughly be divided into unit
tests, integration tests and acceptance tests.

Fig. 3. Two transformational steps moving an attribute
and a method along the hierarchy.

Unit and integration tests focus on small parts of the
system (classes or subsystems) and usually take a deep
look into system internals. It therefore isn’t surprising
that these kinds of tests can become erroneous after a
transformation of the underlying models. Indeed,
these tests are usually transformed together with the
code models. For example, moving an attribute
upward as shown in Fig. 3 induces object diagrams
with Guest-objects to be adapted accordingly by
providing a concrete value for that attribute. In this
case it may even be of interest to clone tests in order
to allow for different values to be tested. Contrary,
tests may also become obsolete if functionality or data
structure is simplified. The task of transforming test
models together with production code models can
therefore not be fully automated.
Unit and integration tests are usually provided by the
developer or test teams that have access to the systems
internal details. Therefore, these are usually “glass
box tests”. Acceptance tests, instead, are “black box”
tests that are provided by the user (although again
realized by developers) and describe external
properties of the system. These tests must be a lot
more robust against changes of internal structure.
To achieve robustness, acceptance tests should be
modeled against the published interfaces of a system.
In this context “published” means that parts of the
system that are explicitly marked as externally visible
and therefore usually rather stable. Only explicit
changes of requirements lead to changes of these tests
and indeed the adaptation of requirements can very
well be demonstrated through adaptation of these test
models followed by the transformations necessary to
meet these tests afterwards in a “test-first-approach”.
An adapted approach also works for changes in the
interfaces between subsystems.

5 Conclusions

The presented approach can be summarized as a
pragmatic method to model-based software
development. It suggests the use of models as primary
artifact for requirements and design documentation,
code generation and test case development.
Transformations on models allow an efficient
adaptation of the system to changing requirements and
technology, optimizing architectural design and fixing
bugs. To ensure the quality of such an evolving
system, intensive sets of test cases are a must. They
are modeled using the same language (UML) and thus
exhibit a good integration and allow to model system
and tests in parallel.
However, the methodology sketched here was in its
basics already defined in [13], but still is a major
proposal. Major efforts still need to be undertaken.
The technology for transformation of models is not
mature yet. Neither are the tools ready for major
practical use, nor are semantically useful
transformations understood in all their details. Neither
the pragmatic methodology, nor the underpinning
theory are very well explored yet.
To summarize, models can be used as described in this
paper, but of course there are other possibilities of use.
For example, it should be possible to have a variety of
sophisticated analysis and manipulation techniques
available that ideally operate on the same notations,
but are used for requirements validation in early
stages of the project.

6 References
1. OMG. Unified Modeling Language Specification.

V2.1. 2006.
2. OMG. Model Driven Architecture (MDA).

Technical Report OMG Document ormsc/2001-
07-01, Object Management Group, 2001.

3. Beck, K. Extreme Programming explained,
Addison-Wesley. 1999.

4. Rumpe, B. Agiles Modellieren mit UML. Springer
Berlin. 2004.

Person
CD

Guest

checkPasswd()

Bidder

long ident

checkPasswd()

Bidder

Person

checkPasswd()

long ident

Guest

CD

transformation

Person
CD

Guest

checkPasswd()

Bidder

long ident

checkPasswd()

Bidder

Person

checkPasswd()

long ident

Guest

CD

transformation

Bidder

Person

checkPasswd()

long ident

Guest

CD

Bidder

Person

checkPasswd()

long ident

Guest

CD

transformationtransformation

5. Rumpe, B. Executable Modeling with UML. A
Vision or a Nightmare? In: Issues & Trends of
Information Technology Management in
Contemporary Associations, Seattle. Idea Group
Publishing, Hershey, London, pp. 697-701. 2002.

6. Siedersleben J., Denert E. Wie baut man
Informationssysteme? Überlegungen zur
Standardarchitektur. Informatik Spektrum,
8/2000:247-257, 2000.

7. Link J., Fröhlich P. Unit Tests mit Java. Der Test-
First-Ansatz. dpunkt.verlag, 2002.

8. Beck K. Aim, Fire (Column on the Test-First
Approach). IEEE Software, 2001.

9. Agile Manifesto. http://www.agilemanifesto.org/.
2006.

10. Fowler M. Refactoring. Addison-Wesley. 1999.
11. Opdyke W., Johnson R. Creating Abstract

Superclasses by Refactoring. Technical Report.
Dept. of Computer Science, University of Illinois
and AT&T Bell Laboratories. 1993

12. Philipps J., Rumpe B. Refactoring of Programs
and Specifications. In: Practical foundations of
business and system specifications. H.Kilov and
K.Baclawski (Eds.), 281-297, Kluwer Academic
Publishers, 2003.

13. Rumpe, B., Model-Based Testing of Object-
Oriented Systems. In: Formal Methods for
Components and Objects, International
Symposium, FMCO 2002, Leiden. LNCS 2852.
Springer Verlag, 2003.

14. Binder R. Testing Object-Oriented Systems.
Models, Patterns, and Tools. Addison-Wesley,
1999.

15. Briand L. and Labiche Y. A UML-based
Approach to System Testing. In M. Gogolla and
C. Kobryn (eds): «UML» - The Unified Modeling
Language, 4th Intl. Conference, pages 194-208,
LNCS 2185. Springer, 2001.

16. Warmer J., Kleppe A. The Object Constraint
Language. Addison-Wesley. 1998.

17. Rumpe B., Schröder A. Quantitative Survey on
Extreme Programming Projects. In: Third
International Conference on Extreme
Programming and Flexible Processes in Software
Engineering, XP2002, May 26-30, Alghero, Italy,
pg. 95-100, 2002.

18. Rumpe, B., Modellieren mit UML. Springer
Berlin. 2004.

