
Agile Modeling with the UML

Bernhard Rumpe
Software & Systems Engineering,
Technische Universität München

85748 Munich/Garching, Germany,

This paper discusses a model-based approach to software development. It ar-
gues that an approach using models as central development artifact needs to be
added to the portfolio of software engineering techniques, to further increase
efficiency and flexibility of the development as well as quality and reusability
of the results. Two major and strongly related techniques are identified and
discussed: Test case modeling and an evolutionary approach to model trans-
formation.

1 Portfolio of Software Engineering Techniques

Software has become a vital part of our lives. Embedded forms of software are part of
almost any technical device from coffee machine to cars, the average household uses
several computers, and the internet and telecommunication world has considerably
changed our lives. All these machines are driven by a huge variety of software. Soft-
ware that must never fail, must be updated dynamically, must continuously evolve to
meet customers needs, must contain its own diagnosis and “healing” subsystems, etc.
Software is used to for a variety of jobs, starting with the control of many kinds of
processes up to simply to entertain. Software can be as small as a simple script or as
complex as an entire operating or enterprise resource planning system.

Nowadays, there is some evidence that there will not be a single notation or proc-
ess that can cover the diversity of today’s development projects. Projects are too
different in their application domain, size, need for reliability, time-to-market pres-
sure, and the skills and demands of the project participants. Even the UML [1],
which is regarded as a de-facto standard, is seen as a family of languages rather than
a single notation and by far doesn’t cover all needs. This leads to an ongoing prolif-
eration of methods, notations, principles, techniques and tools in the software engi-
neering domain. Some indicators of this ongoing diversity are:

• New programming languages, such as Python [2] without strong typing systems,

but powerful capabilities for string manipulation and dynamic adaptation of
their own program structure compete with Java, C++ and other conventional
languages.

[Rum04c] B. Rumpe.
Agile Modeling with the UML.
Ed.: M. Wirsing, A. Knapp, S. Balsamo.
In: Radical Innovations of Software and Systems Engineering in the Future.
9th International Workshop, RISSEF 2002. Venice, Italy, October 2002.
LNCS 2941. Springer Verlag 2004.
www.se-rwth.de/publications

• The toolsets around XML-based standards [3] are widely and successfully used,
even though they basically reinvent all compiler techniques known for 20 years.

• Methods like Extreme Programming [4] or Agile Software Development [5]
discourage the long well known distinction between design and implementation
activities and abandon all documentation activities in favor of rigorous test
suites.

• Upcoming CASE tools allow to generate increasing amounts of code from UML
models, thus supporting the OMG’s initiative on “Model Driven Architecture”
(MDA) [6]. MDA’s primary purpose is to decouple platform-independent mod-
els and from platform-specific, technical information. This should increase the
reusability of both.

• Completely new fields, like security, need new foundations embedded in practi-
cal tools. New logics and modeling techniques [7] are developed and for exam-
ple used to verify protocols between mutually untrusted partners.

From this observations it is evident that in the foreseeable future we will have a port-
folio of software engineering techniques that enables developers and managers to
select appropriate processes and tools for their projects. To be able for such a selec-
tion developers need to be aware of this portfolio of software engineering techniques
and master at least a comprehensible subset of these techniques. Today, however, it
is not clear which elements the portfolio should have, how they relate, when they are
applicable, and what their benefits and drawbacks are. The software and systems
engineering community therefore must reconsider and extend its portfolio of soft-
ware engineering techniques incorporating new ideas and concepts, but also try to
scientifically assess the benefits and limits of new approaches. For example:

• Lightweight projects that don’ t produce requirement and design documentation

need intensive communications and can hardly be split into independent sub-
projects. Thus they don’ t scale up to large projects. But where are the limits? A
guess is, around 10 people, but there have been larger projects reportedly “suc-
cessful” [23].

• Formal methods have built a large body of knowledge, but how can this knowl-
edge successfully and goal-oriented be applied in today’s projects? A guess
seems to be, formal methods spread best, if embodied in practical tools, using
practical and well known notations.

• Product reliability need not be 100% for all developments and already in the first
iteration. But how to predict reliability from project metrics and how to adapt
the project to increase reliability and accuracy to the desired level while mini-
mizing the project/product costs?

• Promising techniques such as functional programming still need to find their
place in practical software engineering, where they don’ t play an appropriate
role today. A guess is that e.g., functional programming will be combined with
object-techniques such that functional parts can be embedded in conventional
programs.

Based on the observation for a general demand for a broad portfolio of SE tech-
niques, we will in the following examine two trends that currently and in the fore-
seeable future will influence software engineering. These are on the one hand, the
modeling notation UML and on the other hand agile development techniques. Al-
though, these two trends currently work against each other, we can see that there is
potential for their combination that takes benefits from both.

Section 2 discusses synergies and problems of using models for a variety of activi-
ties, including programming. Section 3 explores the possibilities of increasing effi-
ciency and reducing development process overhead that emerges from the use of
models as code and test case descriptions. In Section 4 the overall scenario of a
model based test approach is discussed. Section 5 finally presents the benefits of an
evolutionary approach to modeling in combination with an intensive, model-based
test approach. In particular, the usability of tests as invariant observations for model-
transformations is explored. For sake of conceptual discussions, technical details are
usually omitted, but can be found in [8].

2 Modeling meets Programming

UML [1] undoubtedly has become the most popular modeling language for software
intensive systems used today. Models can be used for quite a variety of purposes.
Among them are most common:

• Informal sketches are used for communication. Such a sketch is usually drawn

on paper and posted on a wall, but not even used for documentation.
• More precisely defined and larger sets of diagrams are used for documentation

of requirements and design. But requirements are usually captured in natural
language and a few top-level and quite informal drawings that denote an ab-
stract architecture, use cases or activity diagrams.

• Architecture and designs are captured and documented with models. In practice,
these models are used for code generation increasingly often.

More sophisticated and therefore less widespread uses of models are analysis of cer-
tain features (such as throughput, failure likelihood) or development of tests from
models. Many UML-based tools today offer functionality to directly simulate models
or generate at least parts of the code. As tool vendors work hard on continuous im-
provement of this feature, this means a sublanguage of UML will become a high-
level programming language and modeling at this level becomes identical to pro-
gramming. This raises a number of interesting questions:

• Is it critical for a modeling language to be also used as programming language?

For example analysis and design models may become overloaded with details
that are not of interest yet, because modelers are addicted to executability.

• Is the UML expressive enough to describe systems completely or will it be ac-
companied by conventional languages? How well are these integrated?

• How will the toolset of the future look like and how will it overcome round trip
engineering (i.e. mapping code and diagrams in both directions)?

• What implications does an executable UML have on the development process?

In [8,9] we have discussed these issues and have demonstrated, how the UML in
combination with Java may be used as a high-level programming language. But,
UML cannot only be used for modeling the application, but more importantly for
modeling tests on various levels (class, integration, and system tests) as well. Execu-
table models are usually less abstract than design models, but they are more compact
and abstract as the implementation.

One advantage of using models for test case description is that application specific
parts are modeled with UML-diagrams and technical issues, such as connection to
frameworks, error handling, persistence, or communication are handled by the pa-
rameterized code generator. This basically allows us to develop models independent
of any technology or platform, as for example proposed in [10]. Only in the genera-
tion process platform dependent elements are added. When the technology changes,
we only need to update the generator, but the application defining models can di-
rectly be reused. This concept also directly supports the above mentioned MDA-
Approach [6] of the OMG. Another important advantage is that both, the production
code and automatically executable tests at any level, are modeled by the same UML
diagrams. Therefore developers use a single homogeneous language to describe im-
plementation and tests. This will enhance the availability of tests already at the be-
ginning of the coding activities. Similar to the “test first approach” [11,12], sequence
diagrams are used for test cases and can be taken from the previously modeled re-
quirements.

Fig. 1. Mapping of UML-models to code and test code.

���������
	��
� �� � �������
����	������ ��� ��	

test code

statecharts

class
diagrams sequence diagrams

object diagrams
__:

__:

__:

OCLJava

production
code

����� ����	������������
�������
� 	�� � ��� � ��� � � � ��� � �
	����
���!����	��
��� ��� ��	

���������
	��
� �� � �������
����	������ ��� ��	

test code

statecharts

class
diagrams sequence diagrams

object diagrams
__:

__:

__:

OCLJava

production
code

production
code

����� ����	������������
�������
� 	�� � ��� � ��� � � � ��� � �
	����
���!����	��
��� ��� ��	

Part of the UML-models (mainly class diagrams and statecharts) are used construc-
tively, others are used for test case definition (mainly OCL, sequence and enhanced
object diagrams). Fig. 1 illustrates the key mappings.

3 Agile Modeling: Using Models in Agile Projects

In the last few years a number of agile methods have been defined that share a cer-
tain kind of characteristics, described in [13]. Among these Extreme Programming
(XP) [4] is the most widely used and discussed method. Some of the XP characteris-
tics are:

• It focuses on the primary goal, the production code. Documentation instead is

widely disregarded, but coding standards are enforced to document the code
well.

• Automated tests are used on all levels. Practical experience shows, that when
this is properly done, the defect rate is considerably low. Furthermore, the auto-
mation allows to repeat tests continuously.

• Very small iterations with continuous integration are enforced and the system is
kept as simple as possible.

• Refactoring is used to improve the code structure and tests ensure a low defect
rate introduced through refactoring.

The abandoning of documentation is motivated by the gained reduction of workload
and the observation, that developers don’ t trust documents, because these usually are
out of date. So, XP directly focuses on code. All design activities directly manifest in
the code. Quality is ensured through strong emphasis on testing activities, ideally on
development of the tests before the production code (“ test first approach” [11]). An
explicit architectural design phase is abandoned and the architecture emerges during
coding. Architectural shortcomings are resolved through the application of refactor-
ing techniques [14,15]. These are transformational techniques to refactor a system in
small steps to enhance its structure. The concept isn’ t new [16], but through avail-
ability of tools and its embedding in XP, transformational development now becomes
widely used.

When using an executable version of UML to develop the system within an agile
approach, the development project should become even more efficient. On the one
hand, through the abstractness of the platform independent models, these models are
more compact and can more easily be written, read and understood than code. On the
other hand in classic development projects these models are developed anyway. But,
increased reuse of these models for later stages now becomes feasible through better
assistance. Therefore, model-based development as proposed by the MDA-approach
[6] becomes applicable. The separation of application models and platform specific
parts that are combined through code generation only exhibits some characteristics

of aspect oriented programming [17]. These UML-models also serve as up-to-date
documentation much better than commented code does.

To summarize, Fig. 2 shows the techniques used on models. This is quite in con-
trast to [18], where models are only used as informal drawings on the wall without
further impact.

Fig. 2. The potential uses of UML-models.

4 Model-based Testing

There exists a huge variety of testing strategies [19,20]. The use of models for the
definition of tests and production code can be manifold:

• Code or at least code frames can be generated from a design model.
• Test cases can be derived from an analysis or design model that is not

used/usable for constructive generation of production code. For example behav-
ioral models, such as statecharts, can be used to derive test cases that cover
states, transitions or even paths.

• The modeling technique itself can be used to describe a test case or at least a
part thereof.

Fig. 3. Structure of a test modeled with object diagrams (OD), sequence diagram
(SD) and the Object Constraint Language (OCL).

models

static analysis

rapid prototyping

code generationautomated tests

refactoring/
transformation

documentation

models

static analysisstatic analysis

rapid prototypingrapid prototyping

code generationcode generationautomated testsautomated tests

refactoring/
transformation
refactoring/
transformation

documentationdocumentation

objects under
test

o1

o3 o4

o2 o1

o3 o4

o2

o5

OD OD

OCL

SD or method call

+

test data test driver

expected result and/or
OCL-contract as
test oracle

objects under
test

o1

o3 o4

o2
o1

o3 o4

o2 o1

o3 o4

o2

o5

o1

o3 o4

o2

o5

OD OD

OCL

SD or method call

+

test data test driver

expected result and/or
OCL-contract as
test oracle

The first two uses are already discussed e.g. in [20]. Therefore, in this section we
concentrate on the development of models that describe tests. A typical test, as
shown in Fig. 3 consists of a description of the test data, the test driver and an oracle
characterizing the desired test result. In object-oriented environments, the test data
can usually be described by an object diagram (OD). It shows the necessary objects as
well as concrete values for their attributes and the linking structure. The test driver
can be modeled using a simple method call or, if more complex, a sequence diagram
(SD). An SD has the considerable advantage that not only the triggering method
calls can be described, but it is possible to model desired interactions and check ob-
ject states during the test run.

For this purpose, the Object Constraint Language (OCL, [21]) is used. In the se-
quence diagram in Fig. 4, an OCL constraint at the bottom ensures that the new
closing time of the auction is set to the time when the bid was submitted (bid.time)
plus the extension time to allow competitors to react (the auction system containing
this structure is in part described in [8,22]). Furthermore, it has proven efficient to
model the test oracle using a combination of an object diagram and OCL properties.
The object diagram in this case serves as a property description and can therefore be
rather incomplete, just focusing on the desired effects. The OCL constraints used can
also be general invariants or specific property descriptions.

Fig. 4. A sequence diagram (SD) describing the trigger of a test driver and some test
interactions as well as an OCL property that holds at that point of time.

As already mentioned, being able to use the same, coherent language to model the
production system and the tests allows for a good integration between both tasks. It
allows the developer to immediately define tests for the constructive model devel-
oped. It is imaginable that in a kind of “ test-first modeling approach” the test data in
form of possible object structures is developed before the actual implementation.

OCL constraints
describe
properties during
the test run

copper:
Auction

:BidPolicy :TimingPolicy

test driver

validateBid(bid)

return OK

validateBid(bid)

return OK

return t

getNewClosingTime(bid)

t.time ==
bid.time + extensionTime

return t

getNewClosingTime(bid)getNewClosingTime(bid)

t.time ==
bid.time + extensionTime

«trigger»
handleBid(bid)

SD

5 Model Evolution using Automated Tests

Neither code nor models are initially correct. For code, many sources of incorrect-
ness can rather easily be analyzed using type checkers of compilers and automated
tests that run on the code. For models this is usually a problem that leaves many
errors undetected in analysis and design models. This is particularly critical as con-
ceptual errors in these models are rather expensive if detected only late in the devel-
opment process. The use of code generation and automated tests helps to identify
errors in these models.

Besides detecting errors, which might even result from considerable architectural
flaws, nowadays, it is expected that the development and maintenance process is
capable of being flexible enough to dynamically react on changing requirements. In
particular, enhanced business logic or additional functionality should be added rap-
idly to existing systems, without necessarily undergo a major re-development or re-
engineering phase. This can be achieved at best, if techniques are available that
systematically evolve the system using transformations. To make such an approach
manageable, the refactoring techniques for Java [14] have proven that a comprehen-
sible set of small and systematically applicable transformation rules seems optimal.
Transformations, however, cannot only be applied to code, but to any kind of model.
A number of possible applications are discussed in [16].

Fig. 5. Transformations to improve the quality of design opposed to development
steps that add functionality.

Having a comprehensible set of model transformations at hand, model evolution
becomes a crucial step in software development and maintenance. Architectural and
design flaws can then be more easily corrected, superfluous functionality and struc-
ture removed, structure for additional functionality or behavioral optimizations be
adapted, because models are more abstract, exhibit higher-level architectural and
design information in a better way. During development, the situation can roughly be
described with Fig. 5. It shows the dimension of functionality (measured for example
in function points) and the “quality of design” (without a good metrics and therefore

quality of design

functionality

development

transformations
(refactoring)

target: 100% of the functionality,
acceptable design

optimal

100%

as informal concept). The development process tries to reach the 100% functionality
while at the same time targets a reasonable good design.

The core development process ideally consists of step from two categories:

• Development (or programming) steps add functionality. But usually they in
practice also introduce “erosion” of the design quality. For example repeated
adding of new methods to a class overloads that class, simplifications of the
code might come up, etc. Thus design quality usually suffers.

• Transformational (refactoring) steps build the second category. They improve
structure and design, without changing the “externally observable behavior” .

Two simple transformation rules on a class diagram are shown in Fig. 6. The figure
shows two steps that move a method and an attribute upward in the inheritance hier-
archy. The upward move of the attribute is accompanied by the only context condi-
tion, that the other class “Guest” didn’ t have an attribute with the same name yet. In
contrast, moving the method may be more involved. In particular, if both existing
method bodies are different, there are several possibilities: (1) Move up one method
implementation and have it overridden in the other class. (2) Just add the method as
abstract signature in the superclass. (3) Adapt the method implementations in such a
way that common parts can be moved upward. This can for example be achieved by
factoring differences between the two implementations of “checkPasswd” into
smaller methods, such that at the end a common method body for “checkPasswd”
remains. As a context condition, the moved method may not use attributes that are
available in the subclasses only.

Fig. 6. Two transformational steps moving an attribute and a method along the hier-
archy.

Many of the necessary transformation steps are as simple as the upward move of an
attribute. However, others are more involved and their application comes with a
larger set of context conditions and accompanying steps similar to the adaptation
necessary for the “checkPasswd” method. These of course need automated assistance.
The power of these simple and manageable transformation steps comes from the
possibility to combine them and evolve complex designs in a systematic and trace-
able way.

Following the definition on refactoring [14], we use transformational steps for
structure enhancement that does not affect “externally visible behavior” . For example

Person
CD

Guest

checkPasswd()

Bidder

long ident

checkPasswd()

Bidder

Person

checkPasswd()

long ident

Guest

CD

transformation

Person
CD

Guest

checkPasswd()

Bidder

long ident

checkPasswd()

Bidder

Person

checkPasswd()

long ident

Guest

CD

transformation

Bidder

Person

checkPasswd()

long ident

Guest

CD

Bidder

Person

checkPasswd()

long ident

Guest

CD

transformationtransformation

both transformations shown in Fig. 6 do not affect the external behavior if made
properly.

By “externally visible behavior” Fowler in [14] basically refers to behavioral
changes visible to the user. This can be generalized by introducing an abstract “sys-
tem border” . This border serves as interface to the user, but may also act as interface
to other systems. Furthermore, in a hierarchically structured system, we may enforce
behavioral equivalence for “subsystem borders” already. It is therefore necessary to
explicitly describe, which kind of behavior is regarded as externally visible. For this
purpose tests are the appropriate technique to describe behavior, because (1) tests are
already available through the development process and (2) tests are automated which
allows us to check the effect of a transformation through inexpensive, automated
regression testing.

A test case thus acts as an “observer” of the behavior of a system under a certain
condition. This condition is also described by the test case, namely through the setup,
the test driver and the observations made by the test. Fig.7 illustrates this situation.

Fig. 7. A test case acts as observation.

Fig. 7 also shows that tests do not necessarily constrain their observation to “exter-
nally visible behavior” , but can make observations on local structure, internal inter-
actions or state properties even during the system run. Therefore, it is essential to
identify, which tests are regarded as “ internal” and are evolving together with the
transformed system and which tests need to remain unchanged, because they de-
scribe external properties of the system. Tests in one categorization can roughly be
divided into unit tests, integration tests and acceptance tests.

Unit and integration tests focus on small parts of the system (classes or subsys-
tems) and usually take a deep look into system internals. It therefore isn’ t surprising
that these kinds of tests can become erroneous after a transformation of the underly-
ing models. Indeed, these tests are usually transformed together with the code mod-
els. For example, moving an attribute upward as shown in Fig. 6 induces object dia-
grams with Guest-objects to be adapted accordingly by providing a concrete value for
that attribute. In this case it may even be of interest to clone tests in order to allow
for different values to be tested. Contrary, tests may also become obsolete if function-

test = driver and “observer”

setup &
call

compare with
expected result

time axis

snapshots
of the
test run

observe
creation

check
property

observe
interaction

test = driver and “observer”

setup &
call

compare with
expected result

test = driver and “observer”

setup &
call

compare with
expected result

time axis

snapshots
of the
test run

time axis

snapshots
of the
test run

observe
creation

check
property

observe
interaction

observe
creation

check
property

observe
interaction

ality or data structure is simplified. The task of transforming test models together
with production code models can therefore not be fully automated.

Unit and integration tests are usually provided by the developer or test teams that
have access to the systems internal details. Therefore, these are usually “glass box
tests” . Acceptance tests, instead, are “black box” tests that are provided by the user
(although again realized by developers) and describe external properties of the sys-
tem. These tests must be a lot more robust against changes of internal structure. Fig.
8 illustrates a commuting diagram that shows how an observation remains invariant
under a test.

To achieve robustness, acceptance tests should be modeled against the published
interfaces of a system. In this context “published” means that parts of the system that
are explicitly marked as externally visible and therefore usually rather stable. Only
explicit changes of requirements lead to changes of these tests and indeed the adapta-
tion of requirements can very well be demonstrated through adaptation of these test
models followed by the transformations necessary to meet these tests afterwards in a
“ test-first-approach” . An adapted approach also works for changes in the interfaces
between subsystems.

Fig. 8. The transformed system model is invariant under a test observation.

To increase stability of acceptance tests in transformational development, it has
proven useful to follow a number of standards for test model development. These are
similar to coding standards and have been found useful already before the combina-
tion with the transformational approach:

• In general an acceptance test should be abstract, by not trying to determine

every detail of the tested part of the system.
• A test oracle should not try to determine every part of the output and the re-

sulting data structure, but concentrate on important details, e.g. by ignoring
uninteresting objects and attribute values.

• OCL property descriptions can often be used to model a range of possible re-
sults instead of determining one concrete result.

transformation

observation

test = driver and “observer”

system run modified system run

transformation

observation

test = driver and “observer”

system run modified system run

• Query-methods should be used instead of direct attribute access. This is more
stable when the data structure is changed.

• It should not be tried to observe internal interactions during the system run.
This means that sequence diagrams that are used as test drivers concentrate
on triggers and on interactions with the system border only.

• Explicitly published interfaces that are regarded as highly stable should be
introduced and acceptance tests should focus on these interfaces.

6 Conclusions

The proposal made in this paper can be summarized as a pragmatic approach to
model-based software development. It uses models as primary artifact for require-
ments and design documentation, code generation and test case development. A
transformational approach to model evolution allows an efficient adaption of the
system to changing requirements and technology, optimizing architectural design
and fixing bugs. To ensure the quality of such an evolving system, intensive sets of
test cases are used. They are modeled in the same language, namely UML, and thus
exhibit a good integration and allow to model system and tests in parallel.

However, the methodology sketched here still is a major proposal, adequate to be
described in proceedings about the future of software technology. Major efforts still
have to be done. On the one hand, even though initial works on various model trans-
formations do exist, they are not very well put in context and not very well integrated
with the UML in its current version. For example, it remains a challenge to provide
automated support for the adaptation necessary for sequence diagrams that are af-
fected by statechart changes. Similarly, object diagrams usually are affected when the
underlying class diagrams are changed. At least in the latter case, a number of re-
sults can be reused from the area of database schema evolution. But neither the
pragmatic methodology, nor theoretic underpinning are very well explored yet, even
though there is currently intensive research in the area of test theory development.

On the other hand, model based evolution will become successful only if well as-
sisted by tools. This includes parameterized code generators for the system as well as
for executable test drivers, analysis tools and comfortable help for systematic trans-
formations on models. Today, there is not yet enough progress in these direction.

As a further obstacle, these new techniques, namely an executable sublanguage of
the UML as well as a lightweight methodological use of models in a development
process are both a challenge to traditional software engineering. They exhibit new
possibilities and problems. Using executable UML allows to program in a more ab-
stract and efficient way. This may finally downsize projects and decrease costs. The
free resources can alternatively be used within the project for additional validation
activities, such as reviews, additional tests or even a verification of critical parts of
the system. Techniques such as refactoring and test-first design will change software
engineering and add new elements to its portfolio.

To summarize, models can and should be used as described in this paper, but of
course they are not restricted to. Instead it should be possible to have a variety of
sophisticated analysis and manipulation techniques available that ideally operate on
the same notations. These techniques should be used whenever appropriate. Even
though, data and control flow techniques, model checking or even interactive verifi-
cation techniques are already available, they still have to find their broad application
to models.

The Model Driven Architecture (MDA) [6] initiative from the OMG has currently
received lots of interest and several tools and approaches like “executable UML” are
coming up to assist this approach. However, in the MDA community there is gener-
ally a belief that MDA only works for large and rather inflexibly run projects. It may
therefore remain a challenging task, to derive efficient tools as described above and
to adapt the currently used development processes to this very model-centric and
agile development process.

Acknowledgements

I would like to thank Markus Pister, Bernhard Schätz und Tilman Seifert for com-
menting an earlier version of the paper as well as for valuable discussions. This work
was partially supported by the Bayerisches Staatsministerium für Wissenschaft, For-
schung und Kunst and through the Bavarian Habilitation Fellowship, the German
Bundesministerium für Bildung und Forschung through the Virtual Software Engi-
neering Competence Center (ViSEK).

References

1. OMG - Object Management Group. Unified Modeling Language Specification. V1.5.
2002.

2. Lutz M., Ascher D. Learning Python. O'Reilly & Associates. 1999.
3. W3C. Extensible Markup Language (XML) 1.0 (2nd ed.). http://www.w3.org/xml, 2000.
4. Beck, K. Extreme Programming explained, Addison-Wesley. 1999.
5. Cockburn, A. Agile Software Development. Addison-Wesley, 2002.
6. OMG. Model Driven Architecture (MDA). Technical Report OMG Document

ormsc/2001-07-01, Object Management Group, 2001.
7. Jürjens J. UMLsec: Extending UML for Secure Systems Development. In: J.-M.

Jezequel, H. Hussmann, S. Cook (eds): UML 2002 - The Unified Modeling Language,
pages:412-425, LNCS 2460. Springer Verlag 2002.

8. Rumpe, B. Agiles Modellieren mit der UML. Habilitation Thesis. To appear 2003.
9. Rumpe, B. Executable Modeling with UML. A Vision or a Nightmare? In: Issues &

Trends of Information Technology Management in Contemporary Associations, Seattle.
Idea Group Publishing, Hershey, London, pp. 697-701. 2002.

10. Siedersleben J., Denert E. Wie baut man Informationssysteme? Überlegungen zur Stan-
dardarchitektur. Informatik Spektrum, 8/2000:247-257, 2000.

11. Link J., Fröhlich P. Unit Tests mit Java. Der Test-First-Ansatz. dpunkt.verlag Heidel-
berg, 2002.

12. Beck K. Aim, Fire (Column on the Test-First Approach). IEEE Software, 18(5):87-89,
2001.

13. Agile Manifesto. http://www.agilemanifesto.org/. 2003.
14. Fowler M. Refactoring. Addison-Wesley. 1999.
15. Opdyke W., Johnson R. Creating Abstract Superclasses by Refactoring. Technical Re-

port. Dept. of Computer Science, University of Illinois and AT&T Bell Laboratories.
1993

16. Philipps J., Rumpe B.. Refactoring of Programs and Specifications. In: Practical founda-
tions of business and system specifications. H.Kilov and K.Baclawski (Eds.), 281-297,
Kluwer Academic Publishers, 2003.

17. Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopez C., Loingtier J.-M., Irwin J.
Aspect-Oriented Programming. In ECOOP'97 - Object Oriented Programming, 11th Euro-
pean Conference, Jyväskylä, Finnland, LNCS 1241. Springer Verlag, 1997.

18. Ambler S. Agile Modeling. Effective Practices for Extreme Programming and the Unified
Process. Wiley & Sons, New York, 2002.

19. Binder R. Testing Object-Oriented Systems. Models, Patterns, and Tools. Addison-
Wesley, 1999.

20. Briand L. and Labiche Y. A UML-based Approach to System Testing. In M. Gogolla and
C. Kobryn (eds): «UML» - The Unified Modeling Language, 4th Intl. Conference, pages
194-208, LNCS 2185. Springer, 2001.

21. Warmer J., Kleppe A. The Object Constraint Language. Addison-Wesley. 1998.
22. Rumpe B. E-Business Experiences with Online Auctions. In: Managing E-Commerce and

Mobile Computing Technologies, Julie Mariga (Ed.) Idea Group Inc., 2003.
23. Rumpe B., Schröder A. Quantitative Survey on Extreme Programming Projects. In: Third

International Conference on Extreme Programming and Flexible Processes in Software
Engineering, XP2002, May 26-30, Alghero, Italy, pg. 95-100, 2002.

