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Abstract

In this paper we propose I�O��state transition diagrams for service descrip�
tion� In contrast to other techniques like for example Statecharts we allow
to model non�atomic services by sequences of transitions� This is especially
important in a distributed system where concurrent service invocation cannot
be prohibited� We give a mathematical model of object behaviour based on
concurrent and sequential messages� Then we give a precise semantics of the
service descriptions in terms of the mathematical model�
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� INTRODUCTION

The object�oriented paradigm is based on the encapsulation of data within ob�
jects� This data can only be accessed by other objects through service calls�
We use the term service as a synonym formethod� Thus� services are the ma�
jor constituent for object behavior� However� looking at the di�erent object�
oriented analysis and design methods� the abstract speci�cation techniques of
services and the interplay between di�erent services within one object still lack
a precise semantics� In most cases �e�g� OMT �Rumbaugh� Blaha� Premerlani�
Eddy � Lorensen 	

	�� UML �Booch� Rumbaugh � Jacobson 	

��� Syn�
tropy �Cook � Daniels 	

�� state transition diagrams �STD� � inspired by
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Harels� Statecharts �Harel 	
��� Harel � Gery 	

�� � are used to specify the
object behavior� The STD determines the sequences of object states resulting
from service executions� However� services are often not atomic� since even
in sequential systems service execution may involve another service execution
on the same object� In distributed systems� regarding complex services which
involve calls to other objects as atomic� is� in general� a too strong restriction�
Objects should react concurrently to as many service calls as possible� while
preserving data consistency�
Therefore� we propose to use a whole state transition diagram for the de�

scription of one service� Transitions correspond to service steps between an
input and an output� Object behavior is derived from the service description
by interleaving of the service steps� The service description can also be marked
to indicate at which execution states interleaving of other services is allowed�
Because the details of the object behavior are quite intricate� we give a

mathematical semantics to object behavior based on the framework of stream
processing functions �Broy� Dederichs� Dendorfer� Fuchs� Gritzner � Weber
	

�� Klein� Rumpe � Broy 	

�� and I�O��state machines �Rumpe � Klein
	

��� In particular� we distinguish sequential and concurrent services calls�
This allows to de�ne multiple threads as in Java� As we will show� sequential
and purely asynchronous systems are special cases of this model�
Altogether� the paper is structured as follows� First� we introduce the used

formal foundation� in particular state machines for the modeling of object be�
havior� In the following section� we show how to adapt this model to the above
sketched communication paradigm� Then we introduce I�O��state transition
diagrams as the abstract description technique for services� We show how to
give semantics to object behavior based on the service descriptions�

� MATHEMATICAL SYSTEM MODEL

In �Klein et al� 	

�� we developed a formal model of distributed systems�
based on the theory of streams �Broy et al� 	

��� This mathematical sys�
tem model serves as a semantical basis for several description techniques� like
object models� state transition diagrams� or process diagrams� as for exam�
ple given in UML �Booch et al� 	

�� Breu� Hinkel� Hofmann� Klein� Paech�
Rumpe � Thurner 	

���
In this section� we extend the mathematical system model to service descrip�

tions� The model emerged from �Grosu � Rumpe 	

�� Rumpe � Klein 	

��
Rumpe 	

�� where the underlying theory of state machines is developed� In
�Grosu � Rumpe 	

�� a composition of object behavior is de�ned�

Basic assumptions
We make three basic assumptions about the kind of systems we take into
account� First� objects can only read or modify parts of the state of another
object through services� even those from the same class� Second� we do not
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allow more than one service to be active at the same time �however� they may
be interleaved�� And third� communication between objects is asynchronous
such that messages must be accepted� but may be delayed �sequential pro�
gramming languages correspond to the special case where only one object is
active at a time and activity is transferred with service calls��

I�O��State machines
In the following� we introduce the mathematical basis for state based ob�
ject behavior description� An I�O��state machine� �S� I� O� �� S�� consists
of a nonempty set of object states S� a nonempty set of input messages I � a
nonempty set of output messages O� a transition relation � � S� I �S�O��
and a nonempty set of initial states S� � S�
None of the above given sets need to be �nite� The sets of input and out�

put messages I contain service calls and return messages� possibly with ar�
guments� The reaction to any input is attached to the same transition� This
leads to a more compact notation compared to the well�known I�O�automata�

�Lynch � Stark 	
�
�� The transition relation � is allowed to be nondeter�
ministic� On one hand� this is adequate for the nondeterminism inherent
in distributed systems� On the other hand� nondeterminism is important to
cope with underspeci�cation allowing re�nement of such speci�cations� In
�Rumpe 	

�� Rumpe � Klein 	

��� a re�nement calculus for state machines
is given which de�nes a set of development steps to be used for specialization
of object behavior during development as well as for inheritance from super�
class to subclass� Because of the basic assumptions about systems� an object
cannot reject a message� This corresponds to input enabledness of the state
machine� For each source state s and input message i � I � there exists at least
one destination state t and reaction o � O� with ��s� i� t� o��

Messages and States
Object states are composed of several parts that deal with the attribute state
and active or suspended service states� We assume that local variables as well
as arguments are private to the service invocation they belong to�
Let the set of variables VAR and the set of corresponding values VAL be

given� We abstract from the fact that variables are typed� and regard each
partial mapping VAR � VAL as variable assignment� We assume that
each object has a �xed set of attributes and each service a �xed set of local
variables� but do not formalize these constraints here� Given an abstract set
PC of program counters� suspended service invocations are formalized as
SI � �VAR� VAL��PC�ID� where the �rst component contains arguments
and local variables� PC is used to denote special locations in the service code�
where a message is awaited and therefore computation is suspended� The third
component ID denotes the caller of the service� This is the object� where a

�We call them I�O�
�state machines� because each transition is labeled accordingly�

�In our classi�cation I�O automata would be called I �O automata�
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�possible� response is to be delivered� To handle recursion of service calls� as
usual� a stack of service invocations is used� We assume the mathematical
datatype stack�M� over set M with the services push� pop� top and � for the
empty stack to be given�
If considering multiple threads� one stack is not enough� Indeed� we need

a separate stack for each thread� We abstract from actual threads by the set
TAG� each tag denoting a thread identi�er� We incorporate a mapping TAG�
stack�SI� into each object state� Messages are tagged also with elements of
TAG to indicate the thread they belong to� Thus� a message is a tuple

�sen� rec� tt�mn� ar� � ID� ID� TAG�MSG� �VAR� VAL��

where sen is the sender identi�er� rec is the receiver identi�er� tt is the �thread�
tag� mn is the message name� and ar is the argument assignment�
The set MSG contains the service names� but also a special message ret that
indicates return messages� The return value �if one exists� is encoded in the ar�
guments of the return message� We use a pool for thread tags for each object�
which is used whenever a new thread is started� Each two pools of di�erent
objects are disjoint� The states of objects are

�at� st� po� pt� � �VAR� VAL�� �TAG� stack�SI��� P�TAG��

where at is the attribute assignment� st is a mapping� which assigns a stack
to each thread� and pt is the pool for tags� This set of states is usually in��
nite� Note that one can easily extend this model to object creation with an
additional pool for object identi�ers such that object creation is just treated
as a special message�

Transitions
To model data encapsulation� there are a number of restrictions on the state
changes� We shortly repeat the most important restrictions here� without
giving a formal de�nition� The set of attributes of an object and the value of
attribute self are immutable� The tag pool may only be diminished� No tag
may be used unless removed from the pool� Only one stack is changed in a
transition� Either a service invocation is added� removed or the top invocation
changed� If the top one is changed� the set of arguments and their values are
immutable� Only call messages can add stack elements�
So each transition of the state machine resembles a part of a service execu�

tion� If a service calls other services� awaiting their answers� it is partitioned
into several transitions�

� MULTI�THREAD COMMUNICATION

In this section� we specialize the behavior model given above to a particular
model of communication allowing for service calls where activity is transferred
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mni mno st��tti�

sequ � ret � st�tti�
sequ� conc sequ � push�st�tti�� �ari � loc� pc� sndi��
conc conc � st�tti�
� ret � ret � pop�st�
� ret sequ � push�pop�st�tti��� �ari � loc� pc� sndi��
� ret conc � st�tti�

Figure � Restrictions on I�O��state machines

�sequential� as well as for service calls starting a new thread �concurrent��
This model could be specialized to purely sequential calls� as in pure C��� or
purely concurrent calls� The mixed style presented here is supported in Java�
and also is the most �exible for modelling purposes�
Java allows di�erent threads to simultaneously work on the same object

and therefore allows to share data� It supports synchronization concepts� but
the programmer is responsible to use them correctly� We prevent shared data
access by interleaving the service executions� We therefore restrict the Java
programming model at this point� However� this can easily be implemented in
Java using semaphores� Altogether� we distinguish between sequential call

messageswhere the caller awaits the return message� return messages that
are answers to sequential calls� and concurrent call messages that invoke
a new thread of computation�
We assume� that no service can compute internally for ever� such that each

message is processed� As discussed in �Klein et al� 	

��� the communication
medium of the general system model ensures that the order of messages is
preserved and that message contents are not changed�
Assume a transition ��s� i� t� o�� Let s � �at� st� pt� be the source state�

t � �at�� st�� pt�� the destination state� i � �sndi� reci� tti�mni� ari� the input
message and o � o���h�sndo� reco� tto�mno� aro�i the sequence of output
messages� where the last message plays a special role� Only the stack of the
input tag tti may be changed� Attribute assignments may change arbitrarily�
For each concurrent output message in o� a new tag identi�er is removed from
pt� Sending a concurrent message does not interrupt the active service� but
sending of a sequential one does� So only the last message emitted during a
transition can be sequential� The tag of a possibly emitted sequential message
has to be identical to the tag of the processed message� Is the processed service
a concurrent one� the last message may be sequential� but only a call not a
return message� All other conditions for state changes are shown in �gure 	�
With mn � ret we indicate return messages� with sequ sequential and with

conc concurrent messages� The case of empty output is subsumed under the
case of only concurrent output� In the simplest case �sequ�ret� an input call is
immediately handled� the stack is not changed� If the output is sequential� the
current service is suspended� A concurrent output does not change the stack�
The other two cases deal with input return messages� where the stack has
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Figure � Bank scenario

to contain an according message invocation� which can be popped �ret�ret�
or modi�ed �ret�sequ�� In case of modi�cation an according program counter
pc and an assignment loc of local variables denotes the internal state of the
service invocation�
We illustrate this model by the following example �see �gure ��� Assume we

have two customers C and and D as well as two banks A and B� Customer C
has one account per bank� B gives better interests� but A is used for payment
transfers� Customer C uses a cheque for payment of customer D� In our con�
crete scenario� the account in bank A will be overdrawn� after D cashed the
check and C gets an according request to balance� Now C is asking for the
actual account at both banks and then placing an order to transfer �� from
bank B to A� Bank B awaits the acknowledgment of A before completing the
transfer�

� SERVICE DESCRIPTION

In this section� we introduce a state based description technique for services
and de�ne object behaviour semantics in terms of I�O��state machines� We
use an abstract version of I�O��state machines called I�O��state transi�

tions diagrams� They allow for a �nite description of the in�nite state ma�
chines� We use state predicates to partition the state space� Similarly� we
allow to abstract from the message parameters by using preconditions re�
ferring to attributes and input parameters and by using patterns for input
messages� Also� we allow postconditions to describe the e�ect of data changes
and patterns for output messages� The de�nition given below is a special case
of the STD de�ned in �Grosu� Klein� Rumpe � Broy 	

��� where input is
restricted to a one�element sequence� Altogether� an I�O��state transition di�
agram �att� I� O� S��� �� S�� consists of the set att of attributes� the nonempty
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create [(no,*) ∉ acc]/
no [acc’ = acc + (no,0)]

∈acc]/
[acc’ = acc - (no,0)]

delete(no)[(no,0) 

∈ acc]/withdraw(no,k) [(no,*)
[acc’ = acc- (no,m) + (no,m-k)]

∈ acc]/
[acc’ = acc- (no,m) + (no,m+k)]
deposit(no,k)[(no,*) 

service transfer

∈ acc]/

wait
ret(to_acc,k,ack)[ack= not_ok]/

ret(to_acc,k,ack)[ack=ok]/
[acc’ = acc - (no,m) + (no,m-k)]

[acc’ = acc]

attributes
acc : Set (number : Nat, amount : Int)

init TRUE

service 

service 

service 

service 

create

delete

withdraw

deposit

transfer_order(no,to_b,to_acc,k)
[(no,*)

to_b. deposit(to_acc,k)

Figure � Bank description with I�O��STD for each service

set I of input messages� the nonempty set O of output messages� a nonempty�
�nite set of diagram states S� a mapping � � S � hPredi associating a predi�
cate over the attributes att with the diagram states� a �nite transition relation
� � S � hPatti � hPredi � S � hExpri � hPredi� where each transition is la�
belled with input pattern� precondition� output expression and postcondition�
and a nonempty� �nite set of initial diagram states S��
��s� must be satis�able for all diagram states s � S and the predicates of

two di�erent diagram states exclude each other� Also the postcondition of a
transition must be satis�able� if the precondition is satis�ed�
We call a set of diagrams describing one service each together with a pred�

icate init characterizing the initial object states the object behavior de�

scription� As an example� consider a bank object� Figure � shows the object
description with attributes de�ning the state space and with separate service
diagrams for create� delete� withdraw� deposit� transfer�
The semantics of object behavior description is given in terms of I�O��state

machines� Each diagram transition gives rise to a set of machine transitions
satisfying the input pattern� the output pattern and the pre� and postcondi�
tions� In addition also the tags and stacks handling the interleaving of services
have to be introduced� Thus� let �att� lock� Ik � O� Sk��k� �k� S

�

k
�� k � 	� ���� n�
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be a set of I�O��STD� where each STD describes a service over the object
attributes att and the local service variables lock� and let init be a predicate
over the attributes� The semantics of this object behavior description is any
I�O��state machine � �S� �I� �O� ��� �S�� satisfying the following�

� �S � f� � BEL � ��self � id and ��tag associates with each tag � TAG
a stack of service invocations SIg� where BEL is the set of all variable
assignments giving values to the attributes and some additional variables
like self � tags and for the program counter of the currently active service�
The set of service invocations SIk is given by �lock � VAL� Sk� ID� and
SI �

S
n

k��
SIk� Note that we use the states of the service STD as program

counter values�
� �S� � f� � �S � � j� initg�

� �I � �O� is derived from I �O� by using the appropriate message and parameter
names and introducing the tag in the messages

� ��s� �sndi� reci� tti�mni� ari�� �t� out �� �sndo� reco� tto�mno� aro�� � ��� if
there exists 	 � k � n� T � �k� � � BEL such that � satis�es the state
predicates� pre� and postconditions� patterns and expressions of T �written
as � j� T � and �jatt � �s and �jatt� � ��

t� where we use the slash notation to
denote the values of the variables in the successor state� and either the stack
of the tag is empty ���tagi � �� and � j� T and a new service execution
is started ���pc � s � S�

k
�� or the stack is nonempty with program counter

s on top �first���tagi� � ��� s� id�� and �� � j� T and the stack is handled
according to section ��

Note that with this semantics the labeling of the diagram states for the ser�
vices carries a special weight� this labeling describes the set of all states the
object may assume while the service is pending at that state� If the state pred�
icate is not satis�ed in a state where the pending service is to be continued�
arbitrary behavior is possible �due to input enabledness�� From a methodolog�
ical point of view� it sometimes is necessary that services can be guarded from
interleaving with other services� For example� account closure should not be
possible while transfer is active� This could already be expressed using suit�
able preconditions and diagram state predicates such that the precondition
for account closure is incompatible with the predicate labeling the wait�state
of the transfer STD� However� we also allow a more direct way of speci�cation�
where diagram states may be labeled with service sets indicating the services
which are not allowed to be interleaved at that state �called exclusion sets��
With this extension� the semantics has to be adopted such that the transitions
respect all exclusion sets of pending service invocations �	��	��T �� �� Ex�u�
for all ��� u� id� somewhere on some stack� ��

�By � j� init we denote that formula init is satis�ed under variable assignment �
�By �i we select the i�th component of a tuple�
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� CONCLUSIONS AND RELATED AND FUTURE WORK

We have discussed a semantic model for service execution in the context of
multiple threads� We also have introduced a special kind of state transition
diagrams for service description and shown how to this object behavior de�
scription can be given a precise semantics in terms of state machines taking
care of di�erent threads of activity through stacks�
Similar to SDL�
� �Braek � Haugen 	

��� services are used to structure

object �process� behaviour� In contrast to SDL services� the I�O��STD de�
scription of services makes explicit the state space of the object� This is nec�
essary for an abstract description of service synchronization�
The major di�erence to Statechart�based description techniques is that we

allow services to be distributed over several transitions� while usually only one
transition per service is used� The latter kind of modeling is too restrictive�
since not all services can be considered to be atomic �e�g� like the transfer
service�� In Syntropy and O�Mate� for a service additional internal events
may be generated� However� a new external event may be treated only when
the Statechart has stabilized� that means it has handled all the internal events
generated in response to the last external event� Thus� internal events still do
not allow e�g� two active transfer services�
Up to now� we have not treated nested states in I�O��STD� These states

are very important for factoring object behavior over orthogonal sets of at�
tributes� Since in our framework we do not allow internal events for communi�
cation between di�erent substates� we avoid the usual di�culties of Statechart
semantics �von der Beeck 	

�� Thus� we do not expect any di�culties with
incorporating nested states�
Another point we want to clarify in the near future is the use of re�nement

techniques as discussed in �Rumpe � Klein 	

��� In that paper a calculus of
re�nement steps on STD is introduced which can be adapted to the framework
here without di�culties� We will also explore this notion of re�nement as a
basis for an inheritance notion covering behavioral properties�
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