
Software & Systems Engineering Process and Tools for the
 Development of Autonomous Driving Intelligence

Christian Basarke1, Christian Berger2, Bernhard Rumpe3
Institute for Software Systems Engineering, Braunschweig, 38106

When a large number of people with heterogeneous knowledge and skills run a project
together, it is important to use a sensible engineering process. This especially holds for a
project building an intelligent autonomously driving car to participate in the 2007 DARPA
Urban Challenge. In this article, we present essential elements of a software and systems
engineering process for the development of artificial intelligence capable of driving
autonomously in complex urban situations. The process includes agile concepts, like test first
approach, continuous integration of every software module and a reliable release and
configuration management assisted by software tools in integrated development
environments. However, the most important ingredients for an efficient and stringent
development are the ability to efficiently test the behavior of the developed system in a
flexible and modular simulator for urban situations.

I. Introduction

OCUSED research is often centered around interesting challenges and awards. The airplane industry started off

with awards for the first flight over the British Channel as well as the Atlantic Ocean. The Human Genome Project,

the Robo Cups and the series of DARPA Grand Challenges for autonomous vehicles serve this very same purpose to

foster research and development in a particular direction. The 2007 DARPA Urban Challenge16 is taking place to

boost development of unmanned vehicles for urban areas. Although there is an obvious direct usage for DARPA’s

financiers, there will also be a large number of spin-offs in technologies, tools and engineering techniques, both for

autonomous vehicles, but also for intelligent driver assistance. An intelligent driver assistance function needs to be

able to understand the traffic around the car, evaluate potential risks and help the driver to behave correctly, safely

and, in case it is desired, also efficiently. These topics do not only affect ordinary cars, but also busses, trucks,

convoys, taxis, special-purpose vehicles in factories, airports, mines, etc. It will take a number of years before we

will have a mass market for cars that actively and safely protect the passenger and the surrounding area, like

pedestrians, from accidents in all situations.

 Intelligent functions in cars are obviously complex systems. For a stringent deadline-oriented development of

such a system it is necessary to rely on a clear, usable and efficient development process that fits the project’s needs.

1 Dipl.-Inf., Braunschweig University of Technology, Mühlenpfordtstr. 23.
2 Dipl.-Wirt.-Inf., Braunschweig University of Technology, Mühlenpfordtstr. 23.
3 Prof. Dr., Braunschweig University of Technology, Mühlenpfordtstr. 23.

F

[BBR07] C. Basarke, C. Berger, B. Rumpe.
Software & Systems Engineering Process and Tools for the Development of Autonomous Driving Intelligence.
In: Journal of Aerospace Computing, Information, and Communication (JACIC) Vol.4, Nr.12, S. 1158-1174, October 2007
www.se-rwth.de/publications

Furthermore, changing requirements and enhancements of technologies need to be incorporated into the

development effectively. This kind of situation is well known in business and web-based software development.

Therefore, this industry has developed several appropriate methods and process frameworks to handle this kind of

project. Among a number of agile development processes Extreme Programming (XP)5, 31, Scrum4 and the Crystal

family of processes14 are the most prominent. However, these development processes are dedicated to software only

and to some extent clash with traditional engineering processes. Therefore, a compromising adaptation is necessary

that addresses the needs of both worlds. Furthermore, we do not just combine and adapt already given (quite

standardized) algorithms, but to a large extent invent new forms of software and algorithms for our autonomous

driving intelligence. In Section II, we describe our development process in more detail.

Fig. 1 Caroline, an autonomously driving vehicle.

A coherent and efficient tool suite is inevitable for a goal-oriented development project. We describe an efficient

tooling infrastructure necessary for such a development project in Section III. This tooling is surprisingly light-

weight, as we decided to base our development process on agile concepts. We do not have a long and tedious tool

chain, but use a process for informal requirements to direct coding approaches. Of course, the overall software

architecture needs to be developed and stabilized beforehand. For quality management quite a number of actions are

taken. Among others, the steady integration, the request for continuously running code and the regular integration

into the car are part of the plan. Most important, however, and this over time became a more and more obvious

advantage, are the automatic tests that have been developed for all parts and integration stages. Similar to the test

first development approach, tests for simple functions are coded parallel to the actual code. The technology and

measurements to enable this testing process are described in detail in Section III as well.

The fulfilled requirements for a safe autonomous car are of course very intensively tested. This is also done by

running the software in a virtual test-bed. The simulator acts like the real surroundings for the reasoner, called

artificial brain in our software, by producing information such that the reasoner thinks it was on the street and

decides accordingly. This real world simulator was developed not only to test the requirements, but also to “virtually

drive” through hundreds of different situations, many of them with a lot of other “virtual cars” involved. The

simulator therefore allows us to test – and especially to re-test – the behavior of the intelligence without any possible

harm. We can not only test for positive situations, but also for negative and physically impossible situations of the

surrounding area and obstacles. Furthermore the simulator can be used in an interactive mode to understand a car’s

behavior and thus is one of the basic elements for actually being able to develop our autonomously driving car (Fig.

1), called “Caroline”20, in time to participate in the 2007 DARPA Urban Challenge. The simulator is described in

detail in Section IV and its application in the development of Caroline in Section V.

II. Software & systems engineering process

Whenever things become complex, they need to be decomposed into smaller pieces. Also when the development

of a product is complex, not only the product, but also the development activity needs to be structured to become

manageable. Both in the areas of software development and systems engineering, a variety of such processes exist.

An appropriate process can be chosen based on the needs of the project in terms of complexity, criticality and

urgency of the product. However, due to the different nature of “virtual” software vs. physically existing hardware,

these development processes differ greatly. Nowadays, this process gap is a constant source of problems. Before we

look at the process we used for the development of Caroline, we highlight a few of those distinctions.

Due to its immaterial nature, software can more easily be reorganized and evolved than physically existing

hardware. Therefore software development processes can be iterative and incremental to allow for an evolutionary

evolvement towards a stable, robust result. Recent processes like XP5, Scrum4, or RUP25 advocate iterations in all

stages with various durations. Iterations are necessary, because it is very hard to produce correct and robust software

from the beginning. So iterations are a vital part to deal with the necessary improvement of existing software,

changing requirements and an incremental process that decomposes software into smaller pieces. The more

innovative software products are, the less predictable a software development process is. In such a context many

small iterations are preferable over a few larger ones. More and smaller iterations give the software management

more agility to guide the project.

In integrated software and systems development projects the traditional engineering process, which is much

similar to the Waterfall Software Lifecycle9, and an iterative software development process needs to be aligned or at

least made compatible. The best approach is to decouple both subprojects as much as possible such that the

individual processes can be followed in subprojects. A set of high-level milestones connect the subprojects and

ensure a coherent process on the top, but within each subproject different forms of processes are in use. Looking into

the software development process, we find that these many small iterations strongly imply a number of other

development practices that are necessary to ensure progress and quality. Most important of all is a continuous

integration of the software pieces. Experience shows that software simply cannot be developed independently and

integrated later, even if the interfaces are defined as precisely as possible, because patchwork inevitably must be

done in the integration that invalidates earlier development work. With modern tools for version control and

configuration management continuous integration can be achieved rather easily. The most tricky and hard to achieve

part is to ensure that all team members are disciplined enough for a continuous integration process. This is because

software must be developed in a collaborative fashion, where no code ownership exists and everybody checks in

their software at least several times a day. When a new team forms, this usually takes a while and of course it helps

to take explicit actions to train the team towards a harmonized and disciplined use of these supporting software

management tools.

Disciplined use of versioning forms the basics for the next important process element, namely automated and

integrated testing. Testing is by far the most important technique for quality assurance and comes in many different

flavors, beginning with unit tests to integration tests up to full system tests. From software development projects, we

know that iterative and incremental processes need to do testing very often. Either after each iteration or increment

all the tests are re-tested or sooner or later, some part of the early developed software will fail and nobody will

notice. This “testing trap” can only be escaped through automated replays of tests, also called regression testing, for

each increment. The important part of automated testing is not finding appropriate tests (what test automation also

could do), but the techniques that run the current code to determine whether some property of the code is correct or

wrong efficiently and without humans to run the test or interpret the result. As known from JUnit tests6, 41

automation helps each developer to know whether an error was introduced to the code, in which iteration it was

introduced and in which part of the software. Error detection thus becomes much easier and after having an error

detected, an identification of the location is relatively easy within a small area.

A very important aspect of automated testing is that it not only can be used to test each iteration (e.g. every

week), but for each version. This means each development subtask, may it be a 10-minute bugfix or a 3-hour

development of an algorithm, can easily be checked against all available tests at no cost of manpower. We therefore

integrated the automated testing infrastructure with the version control system: each version checked in triggers a

testing process, where all –usually several thousand– tests are run and feedback in the form of the number of failed

tests (and names and detailed information if any) is given. Our experience is that in the long run this kind of quality

assurance helps very much to foster an efficient development of software. Initially however, it needs a lot of

discipline. Furthermore, appropriate tooling infrastructure is inevitable to make the developers accept this discipline.

Initially discipline is necessary to start with developing tests for software elements immediately as there should not

be any untested functions in the system at any time. Fortunately, developers can later have fun seeing automatic tests

run through to status “green” at every new version. Testing also needs to deal with configuration variations – a

popular C/C++ problem allows code to behave differently on different platforms. The test first approach described

in7 must be lived from the beginning.

When developing intelligent autonomous driving cars, automated testing has a number of challenges to tackle.

First of all software is integrated and closely linked with hardware, such as sensors and actuators, and through them

to the surrounding environment. Appropriate abstractions for different parts of the software and the hardware help to

run tests efficiently. For the intelligent part of the software, it is not necessary to run tests based on full sensory

input, but to provide distilled, aggregated information about possible obstacles as well as the pathway to drive

through them. A highly important abstraction for efficient test automation is to replace the real hardware by a

simulation. A simulation of the hardware allows automated tests on ordinary computers and is thus available for

each developer independently. As all physical elements are simulated, it furthermore allows decoupling the time a

software test actually takes from real-time. This allows for running a complete city traversal in a few seconds. We

are thus able to run thousands of tests for every new version each night. As a prerequisite we needed to develop a

testing infrastructure that:

(a) allows us to define various constellations and subsystem configurations of the software parts to be tested,

(b) provides a software test-bed to probe the software under test and to understand whether it behaved correctly,

(c) is capable of providing physics-based behavior of the controlled engine as well as the urban surroundings

correctly and in sufficient detail, and

(d) allows us to easily define new tests including automated verdict of the test results.

Of course, tests that deal with only the simulation software are not enough to ensure a robust automotive system.

Therefore, a continuous deployment of the software subsystem into the car and a (re-)run of a sufficiently large set

of tests in the car are inevitable. For that purpose, we have an additional test team that runs the fully equipped car in

various traffic situations. The test team receives software releases in regular (usually weekly) iterations and checks

the car’s abilities against the requirements from traffic rules, DARPA Urban Challenge rules and story cards

mapping those requirements into concrete driving missions (see below). However, a stringent software testing

process considerably reduces the amount of time necessary to fully run the hardware-in-the-loop (HIL) tests.

Furthermore, the complexity of traffic situations necessary to do the test usually requires several people in each test

run. For example, any single test that deals with a correct behavior in a junction takes roughly five minutes to setup,

run and check the resulting behavior. It involves several cars and people to produce appropriate junction situations.

Multiplied by the variety of junctions and the many possibilities of cars coming in different directions, this would

take far too long to actually run all of them in reality. So quite a number of junction situations are tested only in the

simulator. The possibility to rerun those situations efficiently and automatically is important to ensure the stringent

and effective development process needed.

Another important issue to be taken care of from the beginning is to organize the software in appropriate

subsystems and components packages, to define the technical interfaces and to take additional actions so that the

software can be developed and tested independently. Only if the software obeys a number of best practices is it

possible to test the software efficiently. For example we can decouple the time a test takes from the time the tested

software thinks it runs in, if the software does not directly call the operating system about the current time or even

worse, counts itself, but uses an adapter interface. Similar techniques are necessary, if outside software needs to be

incorporated that does not have a testable software architecture, neighbouring systems are not part of the testable

subsystem or sensors and actuators come into play. A list of architectural testing patterns30 helps to develop software

that can be tested in various configurations and parts individually. For Caroline, we have developed an architecture

that decouples the reasoner from the input aggregation, called data fusion, and the basic control software in such a

way that the below described simulator allows us to efficiently test the reasoner on abstractions of the street and

traffic contexts.

Of course, we have adopted numerous more practices, e.g. from Extreme Programming5, beyond short iterations.

For example, one successful organizational and structuring tool were story cards. A story card describes briefly and

explicitly the goals for a development iteration and thus leads to a useful, efficient and focused structuring of the

requirements and also the development project. Accompanied with a definition of measurable goals for every task,

these story cards allow the developers to understand and measure progress of development.

Having highlighted a number of special issues that arise when integrating an agile software and a classic

engineering process, we note that classic engineering and software engineering indeed have different development

cultures. It takes a while until both cultures efficiently work together, but when properly integrated, the resulting

output is tremendous and of very good quality. In Section V we show how we used an agile process in the CarOLO

project by highlighting an overview of the process as well as discussing lessons learned.

III. Tools for an efficient development process

As any other development of complex software-intensive systems, the software development process described

above can only be accomplished if appropriate tooling infrastructure is available. This is important because to

participate in the Urban Challenge the complete software and hardware system has to be developed on a tight

schedule since there are no negotiations on any milestone. For a successful participation, both efficiency and quality

of actions have to be balanced wisely. These special circumstances led to the organizational implementation of the

agile software and system engineering process based on Extreme Programming5. Clearly, a modern IDE, like

Eclipse, is used for direct code development in C++ and Matlab27 for the control part. However, as Matlab/Simulink

doesn’t scale for complex data structures, most of the code by far was written in C++. Therefore, in the following,

we concentrate on the C++-part of the software development. For planning purposes, plain mathematical functions

are used to understand the algorithms, and UML’s class and deployment diagrams as well as statecharts are used for

software architecture as well as important state-based behaviors and data structures. However, these diagrams are

based on paper only and therefore just serve as documentation and the basis of discussions.

Fig. 2 Virtual story card in the web based portal Trac.

As described, milestones are centered on story cards that serve as a definition of measurable goals. These

measurable goals are the base for a consistent test process and its tooling infrastructure that is described in the

following. The whole team is distributed in several locations and team members often work in different time zones

(software often is developed at night). For a uniform understanding of progress, a single source of information is

necessary for collecting tasks, tracking bugs and publishing progress. Using Trac18 as an integrated and easy to use

web based portal for the complete software and system development process allows the team to track changes to the

software over time, and evaluate the actual state of the software generated by the back-end tool chain. As mentioned

above, every story card is virtually available for every team member at any time to see the most important aspects

for the current and next development iteration as shown in Fig. 2. In addition to the description of the next iteration,

a list of tasks, each with a measurement of its completion and a list of occurred bugs are available for every virtual

story card.

For achieving the goals described in a story card, among other things, the simulator described in Section IV is

used by the developers to test their code. In an initial step, the requirements of the story card are translated into an

initial number of tests even before the software is developed. After fulfilling the requirements in the simulator the

software is put into operation on the real hardware. To manage parallel development as well as different

configurations in the simulator and real hardware, a release and configuration management tool based on Subversion

and FSVS respectively36 is used. This allows us to progressively enhance the software development in small

increments, while at the same time reload older, stable versions for demonstrations and events, where a stable and

demonstrable software version needs to be loaded on the car. Furthermore, configuration management has to ensure

that hardware changes fit to the software releases loaded. As usual, all seven car computers are not only backed up

in their own configuration, but also version-controlled.

Using FSVS as a version control system enables the team to simply and safely test new software versions and to

maintain the integration between parallel developments as well as tracking of open issues and potential bugs found.

Based on version control the independent test team has the ability to retrieve specific software releases that the

development team wants to be tested. This further decouples testing and development and allows more

parallelization and thus increases efficiency. All car computers are consistently restored to the specific software

release and a detailed test process based on the measurable goals of the virtual story cards can be performed rather

efficiently. In particular, bugs and behavioral inadequacies can be recorded in such a way that they can be replaced

and understood in detail if necessary. Both development and test teams can simply restore the development state of

the car in the desired software release by switching every car computer to the appropriate revision using one simple

command.

The combination of virtual story cards and a consistent release and configuration management enables the team

to safely develop and test potentially dangerous new software functions without breaking an already running

software system on the vehicle. Furthermore, the list of open or closed tasks allows the project management to get a

current impression of the project’s status. Appropriate tools for those are:

(a) Story cards: Powerpoint

(b) Modeling: Paper and Powerpoint

(c) Programming: Eclipse for C++, Matlab/Simulink 27

(d) Version and configuration management: Subversion 37

(e) Unit testing: CxxTest 15

(f) Requirements testing: Simulator developed within the project

(g) Deployment: Unix-based scripts developed within the project combined with FSVS 36

(h) Consistent compilation and integration: Cook 28

(i) Milestone planning and tracking: Trac 18

(j) Bug management: Trac

(k) Knowledge management: Wiki inside Trac

Our software and systems engineering process relies on a variety of software development tools and some

customizations and extensions to combine these tools and optimize our tool chain. As said, elements of Extreme

Programming, like the test first approach, collective code ownership, pair programming, and continuous integration

are the basis of an efficient and successful development process. Reducing integration activities to nearly zero

through the continuous integration principle is one key element in our development process. As described earlier,

this implies that every developer integrates his work frequently and is disciplined in using the controlled source code

repository based on the version control system. Subversion manages nearly everything needed to do a project build.

From install scripts, property files and test scripts, up to IDE configurations, the repository holds and provides all

project-dependent data. This enables the team to fully build the system from just a checkout on a machine with only

a minimum amount of software installed, like some third party libraries. Moreover the use of Subversion and Cook

allows us to setup the fully automated build process, including test runs, which acts as a monitor to the repository

needed for quality assurance.

With this approach we are able to find errors quickly and fix them as soon as possible. Triggered by every

commit against the repository, central servers start to check out the project sources and initiate a build. This is the

point where Cook comes into play. On the developer site Cook helps to speed up the build process and at the same

time ensures a consistently built result by analyzing changes and dependencies to identify what really needs to be

rebuilt without some of the problems that Make has. On the server side it allows us to build alternative targets for

different forms of use, so we are able to run a system build with or without test code. Furthermore, the testing

system separates time consuming high level tests by detaching the complete automated test run to be done in parallel

on different servers. So whenever a developer checks in a new version of the software the complete automated set of

tests is run.

Feedback of the automated and continuous build and test process is sent to the developer by notification through

email and through publication of the build and test results on the project specific portal web site using Trac. This

greatly improves responsiveness of the test system. Problems do not remain undetected for long, and in only a few

hours the fault is limited to a small portion of changed code. Efficiency of the development process as well as a

responsible and self-disciplined form of development are effectively assisted by the tooling and testing

infrastructure.

Fig. 3 Multi level test process.

Fig. 3 shows the workflow of our multi-level build process. The fully automated process for software quality

checking consists of five consecutive steps. Starting with a compile check, compilation conflicts as well as

syntactical conflicts are detected. However, it is expected that code that cannot be compiled is never checked into

the version control system. To automate tests, we are using a light-weight testing framework for C++, called

CxxTest. During the test run, the memory checker Valgrind39 searches for existing and potential memory leaks in the

source code. An additional tool from the GNU compiler collection, namely GCov22, is used to report the test

coverage of the source code. While running the test code it counts and records executed statements. The intent is to

implement test cases that completely cover the existing source code. Tests are usually implemented directly in C++.

Experiences have shown that for a disciplined test definition in a project, it is very helpful that the implementation

of tests be done in the same language. This enables an integrated test development process and avoids the hurdle of

learning another testing notation. The failure of any single test case causes the complete build to fail and immediate

feedback is given to the developer. In order to check real-time properties, which are of course necessary for a timely

execution in a traffic situation, a final step profiling is done to check the timing behavior.

For an initial phase, we found it helpful to add another step to the build process, which checks some compliance

rules for the coding guidelines. For example, it analyses the source code for appropriate definitions of names of

variables and classes, checks depth of inheritance, number of attributes, sizes of method bodies, appropriateness of

intention, existence of comments and the like. This was helpful for the project in the beginning to reach a consensus

on common coding guidelines, but after an initial phase it was no longer necessary and could be skipped on the

client side by default.

This process is not only working automatically at every check-in, but can also be executed manually by every

developer. When starting a commit cycle the developer first updates his working copy, runs all tests and checks and

then commits his changes only if everything builds and all tests run without errors. This leads to a double check,

both before the developers commit and automatically at the server side by the master build process. This is

reasonable because there is always a chance that the repository was not properly updated.

As a result of this approach, developers can easily rerun tests and detect many bugs or inconsistent

enhancements locally and rather quickly. So fixing discovered bugs is done rapidly and we have a stable and

properly working system almost all the time. The benefit is that everyone shares a stable base to start development.

Frequent commits, usually more than once a day, guarantee that re-integration of newly developed or enhanced code

does not take long and we usually have little integration overhead.

IV. Simulation for intelligent software components

As discussed earlier, simulation of various traffic situations that the intelligence has to handle is the key to an

effective development process. The simulator can be run in automatic mode to run automatic tests or in interactive

mode to visualize the behavior of the system. Given a piece of software as the system under test, the simulator runs

the software, provides the necessary input data and checks or visualizes the output data. Furthermore, the simulator

provides appropriate feedback to the system under test, by interpreting the steering commands and changing the ego-

state in the surrounding appropriately.

Depending on which parts of the software need to be tested, the simulator and the test infrastructure provide

different sets of input data and drivers. As described, for the reasoner itself we use an aggregated set of objects in the

world. The simulator can also be used for interactively testing newly developed functions of the reasoner without the

need for real hardware. A developer can simply and safely test the functions with a modicum of effort. Our approach

is to provide a simulator component that can safely and reliably simulate missing parts of the complete target

software system architecture on the one hand. On the other hand, the simulator is also part of an automatic testing

infrastructure for ensuring software quality and regression testing at every new version in the continuous integration

approach we use.

Simulator
Application

Simulator Factory

Components
Factory

View
Factory

Object
Factory

Simulator

Model

1

1

1

1 1 1

Simulator
Application

Simulator Factory

Components
Factory

View
Factory

Object
Factory

Simulator

Model

1

1

1

1 1 1

Fig. 4 Basic classes for the simulator.

Fig. 4 shows some basic classes of the core simulator application where aggregation and fusion of sensory data

into objects on a world map has occurred. The main idea behind this form of the simulator is the use of sets of

coordinates in a real world model as context and input. These coordinates are stored in the model and used by the

simulator. Every coordinate in the model is represented by a simulator object position describing the absolute

position and orientation in the world. Each of these positions is linked to a simulator object that represents one

single object. These objects can have a variety of behaviors, shapes and other information necessary for the

simulation. The model is linked with a simulator control that manages simulation runs. The overall simulator

application controls the instantiation of every simulator component like the simulator view, simulator components

and every simulator object in the world’s model by using object factories21.

Fig. 5 shows more object factories, associations and creates relationships. Every simulator view encapsulates a

specific point of view of the world’s model reflecting that a sensor only sees a restricted part of the world. In

particular a view allows us to focus on an extract of the data of the world’s model that is visible through the sensor.

Based on this infrastructure, it is possible to model different sensor configurations that cover varying areas and

ranges of visible objects and information about it around the ego object that represents our car, Caroline. This allows

us to mask parts of the world’s model that are not visible by the current sensory configuration. Furthermore it is

possible to simulate different aspects of sensory behavior under certain circumstances like weather, heat, and sensor

damages without modifying the core data model, but only by debasing the view to the world model. This is possible

because of the clear separation between the description of the environmental data model in the world’s model and

the view for every simulator object that computes the actual data extract using the sensory configuration in the

simulator view similar to32.

 Another part of the simulator is the data distribution and controlling part. The simulator view encapsulates a

read-only view of an extract of the world’s model. Every simulator view is linked with a simulator components

group as shown in Fig. 5. A component represents missing parts of the whole system like an actorics module for

steering and braking or a sensor data fusion module for combining several measured values and distributing the

fused results. Therefore, using the simulator view, every component in the components group can access the

currently visible data of the core data model. As mentioned above, every simulator object position is linked with a

simulator object, each of them equipped with its own configuration. Thus, every component can retrieve the relevant

data of the owned simulator object.

Simulator Factory

Components
Factory

View
Factory

Object
Factory

Object

View
Components Group

Component

Model

creates creates creates

1

n

n

1 1 1

n

n

1

Simulator Factory

Components
Factory

View
Factory

Object
Factory

Object

View
Components Group

Component

Model

creates creates creates

1

n

n

1 1 1

n

n

1

Fig. 5 Object factories creating the environment for the simulation.

The most interesting part however is the simulation step. It showed it was sufficient to use a global timing

assumption for all components involved and to advance time synchronously in all components by timing steps of

varying duration. A simulation step is a function call to the world’s model with the elapsed time step ∆ti ≥ 0 as a

parameter that modifies the world’s model either sequentially or in parallel. ∆ti describes the time progress between

ti and t(i+1).

Fig. 6 World's model and motion behavior interface.

Motion Behavior
Car

Object

Static Object

Model

Dynamic Object

n

1Car

Object

Static Object

Model

Dynamic Object

n

1

The last part of the simulator is for modifying the world model over time. Since the simulator view has a read-

only access to the data model, no modifications are allowed by any simulator component. As already mentioned, the

simulator view is directly linked with a simulator object in the world’s model. For modifying an object in the

world’s model, every non-static object in the world model uses an object that implements the interface

MotionBehavior as shown in Fig. 6. A motion behavior executes a simulation step for an individual object. Like

with objects, various motion behaviors exist. A simulator component implementing a concrete motion behavior

registers itself with the simulator object. For every simulation step the simulator object needs to call the motion

behavior and therefore enables the behavior implementation to modify its own position and orientation according to

a simulator component. The decoupling of objects and their motion behavior, for example, allows us to model

moving as well as standing cars and highly individual behaviors specific for certain traffic situations. It is also

possible to switch the motion behaviors at runtime or to efficiently implement new motion behaviors at development

time. For testing Caroline, we have developed additional motion behaviors like MotionBehaviorByKeyboard for

controlling a virtual car in the interactive mode by using keys or a MotionBehaviorByRNDF that controls an

environment car using a predefined route to follow.

Fig. 7 Trajectory bounded by black pearls.

The most interesting motion behavior however is the MotionBehaviorByTrajectory. This is the one that the test

infrastructure uses (via the embedded reasoner) for controlling the virtual car. This planning module plans new paths

by computing trajectories expressed as a string of pearls that form consecutive gates for the trajectory, as shown in

Fig. 7. The approach used here is to identify possible pathways in the form of left and right boundaries in the form

of this string of pearls and to allow the control unit to identify optimal paths between them. The rectangle with an

arrow indicates the car, its current velocity and direction. The thick black pearls on the left and right hand side of the

vehicle show the path planned by the reasoner.

One rather simple implementation of the MotionBehaviorByTrajectory is based on a simple linear interpolation

between every gate as shown in Fig. 8. In this realization, the left Pi,l and right Pi,r pearls are connected by a straight

line and Mi, the mid point between them, is computed. The orientation of the vehicle is computed by using the last

position and the position of the next pearl in front of the vehicle. That implementation works quite nicely in many

situations, but yields an erroneous behavior in circumstances with short movements where the vehicle violates the

string of pearls. Furthermore, the behavior is not very realistic even for a virtual obstacle car, and when it comes

close to our virtual Caroline, this unrealistic behavior becomes visible.

Therefore, we added a more realistic approximation based on 3rd order B-splines as shown in Fig. 9. For the

computation of such a B-spline at least four nodes are necessary. From the linear interpolation we inherit the

computation of the middle points. For an efficient computation, we store the points of the curve in a lookup table

using a scalable resolution. We compute the single points using the equation shown in Eq. 1.

b(t) = (x ; y)T

 = ((1-t)³ · Mi,x · 1/6 + (3·t³ - 6·t² + 4) ·1/6· Mi+1,x + (-3·t³+3·t²+3·t+1) ·1/6· Mi+2,x + 1/6· Mi+3,x ·t³ ;

 (1-t)³ · Mi,y · 1/6 + (3·t³ - 6·t² + 4) ·1/6· Mi+1,y + (-3·t³+3·t²+3·t+1) ·1/6· Mi+2,y + 1/6· Mi+3,y ·t³)
 T (1)

Using a B-spline yields a smoother motion in the simulation and a driving behavior sufficiently close to reality –

if taken into account that for intelligent driving functions we need not handle the physical behavior in every detail,

but in an abstraction useful for an overall correct behavior.

Having different motion behavior classes also allows us to have behavior patterns, either interactively or by

using scripting, to freely adapt the position and orientation of a simulation object over time. It is also possible to

compose different motion behaviors to create a new composed motion behavior. For example, we can build a truck

with trailer from two related, but only loosely coupled objects. A composition of the motion behaviors yields a new

motion behavior that modifies the position and orientation of the related simulator objects according to inner rules as

well as general physical rules.

y

x
yCar

xCar

P1,r

P2,r

P3,r
P4,r

P1,l

P2,l

P3,l

P4,l

M2

M3
M4

y

x
yCar

xCar

P1,r

P2,r

P3,r
P4,r

P1,l

P2,l

P3,l

P4,l

M2

M3
M4

Fig. 8 Linear interpolation.

There are several mechanisms that can be applied to modify the world’s model. A simple variant is to modify

every simulator object sequentially. In this variant the list of simulator objects is addressed through an iterator and

the motion behavior objects directly operate on the original data of the objects. Although, this is efficient, it is not

appropriate when the objects are connected and rely on behaviors from other objects. Another possibility is to use

the algorithms as if a copy of the set of simulator object positions were created. While reading the original data, the

modification uses the copy and thus allows a transaction like stepwise update of the system, where related objects

update their behavior together. Admittedly, problems could arise for collision detection: which simulator object is

responsible for a collision? The simulator currently does not address this issue, as our purpose is to test higher order

intelligent driving functions, this is not necessary. For our project it was even sufficient to use the simple case of

calling sequential updates for every simulator object because the set of dynamic objects is quite small and most of

the vehicles are spread out in the world’s model. As an aside, according to DARPA regulations our artificial

intelligence module stops early if another vehicle is on a collision course. So, if a collision occurs, it is always the

other vehicle that is held responsible.

As mentioned earlier, the simulator is usable both interactively and in automatically executed system integration

tests. Therefore, a test developer can specify intelligent software functions that are automatically tested by the

simulator to determine differences in the expected values in the form of a constraint that shall not be violated

through the test. For this purpose, we added so called validators. A validator implements a specific interface that is

called automatically after a simulator step and right before the control flow returns to the rest of the system. A

validator checks, for example, distances to other simulator objects, validates whether a car has left its lane or

exceeded predefined speed limits. After an unattended system and integration test, the Boolean method

hasPassed() is called to summarize the results of all test cases. The results are collected and formatted in an

email and web page as presented in Section III. A history of older test runs is available to check optimizations in the

intelligent software functions over time or to measure key figures.

y

x
yCar

xCar

P1,r

P2,r

P3,r
P4,r

P1,l

P2,l

P3,l

P4,l

M2

M3
M4

y

x
yCar

xCar

P1,r

P2,r

P3,r
P4,r

P1,l

P2,l

P3,l

P4,l

M2

M3
M4

Fig. 9 B-spline interpolation using four nodes.

Getting such a simulator up and running requires quite a number of architectural constraints for the software

design. As discussed earlier, it is absolutely necessary that no component of the system under test tries to call any

system functions directly, like threading or communication, but only through an adapter. Depending on whether it is

a test or an actual running mode, the adapter decides if the function call is forwarded to the real system or

substituted by a result generated by the simulator. Because of the architectural style, it is absolutely necessary that

no component retrieves the current time by calling a system function directly. Time is fully controlled by the

simulator and knows which time is relevant for a specific software component if different times are used. Otherwise,

time-based algorithms will get confused if different time sources are mixed up.

V. Applying the simulator in the CarOLO project

As mentioned in Section IV, we are using the simulator not only for interactive development of an artificial

intelligence module in the CarOLO project but also as part of an automated tool chain running on our servers over

night. The main goal behind this application is to ensure a certain level of software quality. Therefore, we have

extended the test first approach mentioned in Section III by test first approach using the simulator as shown in Fig.

10Fehler! Verweisquelle konnte nicht gefunden werden.. We call this approach the “simulate first approach”.

Almost any development process starts by analyzing the requirements documents provided by the customer. In

CarOLO, we used the DARPA Urban Challenge documents to understand the requirements. These documents

contain mostly abstract and non-functional definitions for the vehicles. On the one hand, these requirements are

rather stable – even though they are occasionally changed. On the other hand, they are rather vague and leave open a

lot of options for possible traffic situations, weather conditions, forms of roads, etc. Three big phases lead the

project from an initial setting through the first application (end of phase 1), through the site visit (end of phase 2) to

the National Qualification Event (NQE) and final event (phase 3). Actually, in any good development project, there

is a phase 4 with a retrospective and a recording of the findings, the knowledge and experience gathered and a

consolidation of the software developed. This also includes the identification of reusable parts of the software. Each

of the first three phases is broken up into several small iterations.

In every iteration a new task dealing with a coherent requirements group is chosen by the development team,

prioritized in the product backlog and defined using the Scrum process for agile software engineering as mentioned

in Section II. These requirements are refined into the already discussed story cards and tests are designed for both a

virtual test drive and a real test suite for test in the completely equipped car. This early definition of the virtual test

drive forces developers to clarify general parameters and conditions before starting their implementation. The result

is a test drive specification that tests all requirements to be implemented. Now implementation of the system and the

virtual tests can run in parallel.

Analyze

requirements.

Requirements

documents

Test drive

specification
Design virtual test

drive.

Necessary

validators available?

Implement test

case using test

drive specification

and validators.

Yes

Design and

implement missing

validators.

No

Implement

software functions

fulfilling

requirements.

Test software

functions against

test drive

specification.

Test drive

specification

fulfilled?

No

Plan real vehicle

test drive.

Yes

Test drive

specification

fulfilled?

No

Build new

software release

on car computers.

Yes

Fig. 10 Simulate first approach.

In the testing path, after designing a virtual test drive the availability of necessary validators is checked. If there

is a condition not yet handled, an appropriate validator is implemented. As said earlier these validators are the base

for automatic test runs, which are necessary for the continuous integration of the complete software system and

therefore a vital part of a consistent software system engineering process. The newly implemented test cases are

grouped together in a test suite and become an executable specification of the virtual test drive. The new test suite is

then integrated in the tool chain. None of the old test suites should fail and only the new one should not pass. With

these failed tests, the implementation of the new artificial software functions begins. In small iterative development

steps the software module is extended for fulfilling every test case of the new test suite.

Although the above sounds like a normal test first approach, there are a number of differences. First of all, the

test suite capturing the high level requirements for handling traffic usually do not change the signature of the overall

system. The reasoner as well as the simulator have stable interfaces and only need behavior changes. So we do not

need to define interfaces before tests can be defined. And second, these high level tests are black-box and do not rely

on the internal structure of the code. However, for a thorough test of the reasoner, it is also helpful to add more

simulator based tests after the code is implemented to check the states and transitions between them that occur in the

reasoner as well as traffic situations that the reasoner has to handle.

As with usual “test first” approaches, these small steps are iterated until the complete test suite is satisfied. After

completing the implementation the new intelligent software function will fulfill the requirements in the virtual test

drive. Subsequently, the test drive is planned and executed using the real vehicle.

If the test drive is successful the new software is released and marked as stable. After the test drive, usually

optimizations must be implemented, bugs fixed and technical issues or misunderstandings from the requirements

documents fixed. Before the code is modified, the simulator is again used to extend the test suite in such a way that

the error becomes visible under a virtual test and then the software is modified. These virtual test drives can be

repeatedly performed at nearly no cost and help the team to develop quickly and on time the necessary software

functions.

In a second version, we have enhanced our simulator environment in such a way that multiple car instances can

drive in the same world model. Using multiple instances allows running several intelligent cars against each other.

On the one hand this is a good way to investigate artificial learning of optimal driving behavior in a potentially

hostile world. On the other hand, we can handle racing conditions by running multiple instances of the artificial

intelligence that start from the same position in the world data with the same mission, i.e. have to drive the same

route. Starting multiple instances with the same mission data allows us to understand and compare the performance

of several versions of our intelligent car. It is also possible to measure the stability of the intelligent algorithms over

time when using the same software revision in slightly enhanced courses. Furthermore, it is possible to watch virtual

Caroline becoming an ever more optimal driver based on the increasingly optimized revisions of the artificial

intelligence modules.

VI. Related work

The approach described in this paper has been used to develop an autonomous driving vehicle for the 2007

DARPA Urban Challenge16. In the CarOLO project a 2006 VW Passat station wagon has been enhanced using car

computers and many sensors for understanding the environment and actuators for controlling the car by software. 2

discusses an overview of an earlier development state of the tool chain presented in this article. Meanwhile we have

optimized some parts of the development process and changed the internal structure of some tools. Furthermore we

have restructured the simulator component to be more flexible and extensible for future requirements.

In 8 some technical aspects of software architectures are presented to ensure software quality for intelligent

functions in automotive software. On the one hand, the focus lies on software patterns for ensuring software quality

during run time. On the other hand, it focuses the design of complex software architectures on quality, which are

already in the design phase of a project.

If a larger number of developers work separately over a significant period of time, it would be very hard to

predict how long the inevitable integration phase would take. Continuous integration solves this problem by

handling integration as a non-event. As described in 17, continuous integration is a software engineering practice of

immediately committing every change to a centralized revision control system.

As presented in Section IV, our simulator approach relies on a set of coordinates. The set of coordinates is

modified by using different motion behaviors if the corresponding simulator object is a dynamic object. A

comparable approach is used by the Open Dynamics Engine33. It implements a complete and bounded simulation of

rigid body physics. That approach addresses realistic movements and forces but it is not suitable for simulating

software or software architectures in a complex system test like our approach does. Actually, it is planned to

integrate the Open Dynamics Engine in our approach for generating more realistic motions.

A similar approach for simulation purposes is the CarMaker Vehicle Simulation by IPG Automotive GmbH1 and

VEDYNA 10, 35, a numerical simulator of full car dynamics with interfaces to Matlab/simulink. Both try to ease the

development and integration of vehicle controllers. This software, like the Open Dynamics Engine, does not support

the consistent and integrated simulation of software architectures and software components and in particular does

not fit into our approach of automated integrated testing, and thus cannot be used.

Article 23 presents possibilities for performing software tests if tests in real environments are difficult to realize.

The bases for that work are rule based systems with the main focus on 3D simulation. Compared to our approach, it

is however not possible to integrate the tools in an automated background tool chain for continuous integration.

24 is comparable to the work presented in 23 and an enhancement to the earlier presentation for the field of agile

manufacturing. The focus lies on supplementing device tests. Some errors found by the use of the presented tool

could however be discovered by using adequate compiler settings. For example, the Boolean expressions (a ==

b) and (a = b) are obviously unequal and mean different things. This error could simply be found by using

correct compiler settings such as higher level warnings to optimize the code’s quality. Therefore, the main focus lies

on interactive software tests.

The work presented in 19 proposes a virtual vehicle approach for implementing and testing different control

algorithms. That approach however does not aim to support the quality assurance process in modern software

development. Compared to our work, this one tries to support the design and implementation of a control algorithm

for car-like robots but aims for programming support and not the software engineering process in general.

The article 29 presents the Virtual Environment Vehicle Interface for controlling and visualizing remotely

located robots as part of an extra terrestrial programme by NASA. This paper however states that the Virtual

Environment Vehicle Interface is not a simulation because of the lack of physical laws and collision detection, for

example. The main purpose is to visualize the environment of a vehicle-like robot thousands of kilometres away

from mission control and to let other scientists participate in missions. In comparison with our approach, that work

neither supports the software engineering process itself nor can be part of a continuous integration process.

The work in 40 presents an approach for simulating driving behavior in intersection areas. The authors show the

combination of different behaviors such as cruising behavior for accelerating a car or following behavior if another

vehicle drives in front of one’s own car. That work can be applied to other vehicles in our simulator as a new

MotionBehavior instead of the current naïve MotionBehaviorByRNDF that simply follows a pre-defined route.

A number of state machine based development approaches exist, like 12, which describes a framework for

hierarchical, concurrent state machines (HCSM). It is used, for example, to control traffic in a simulation, primarily

in the Iowa Driving Simulator (IDS)26. The IDS is a platform where different kinds of cars can be mounted and

integrated in a HIL simulation. Therefore, integration in an automated background tool chain is not possible.

Another approach is to model behaviors and scenes in urban environments with the Environment Description

Framework and the Scenario Description Language42, 38. It allows a developer to model autonomous behavior using

HCSM as mentioned before and might be an interesting extension to our current simulator. 11 addresses a similar

problem, but concentrates on designing scenarios and defining behaviors. Furthermore they present an event model

for defining actions by special occurrences. The main goal is to ease the design of virtual scenarios and behaviors

even for non-specialists. Because of the similarity to the work described in 42 the same restrictions apply in

comparison to our approach.

13 presents the main software architecture for an IDS, especially the modeling of driving behaviors for

controlling traffic vehicles. Therefore it amends the work in 11 but does not point out possibilities for designing

complex software architectures with regard to simulation of software and system components.

In 34 a keyboard controlled virtual vehicle is described to simulate vehicle traffic on virtual highways. The

simulator allows, like our approach, to model keyboard controlled vehicles and vehicles that drive on pre-defined

routes. Furthermore, the authors enforce the usage of their simulator in so called simulated test beds. However,

automatically executed integration tests as part of a server side tool chain in a coherent software system engineering

process is missing.

VII. Conclusion

Intelligent driving assistance functions need a deep understanding of the vehicle surroundings, of the driving

situation and the traffic rules and regulations as well as a reasonable knowledge about the physics of cars. In the end,

an intelligent driver assistant must be able to drive on its own. Thus the 2007 DARPA Urban Challenge is a great

opportunity to foster this area of autonomic vehicles and their twins, the intelligent driving assistants. Developing

this kind of complex software needs an innovative, agile development process that is compatible with the overall

system consisting of a standard car, such as a VW Passat, sensors, actuators and a number of computers suitable for

automotive use.

For an efficient and stringent development project, a number of actions have to be taken, including an iterative

development in small increments, early bug-detection and bug-fixing, stable version and configuration management,

a solid architecture that embraces automated tests at any level of software, and most of all, a thoroughly designed

test infrastructure. Tests include full systems tests, but for efficiency reasons it is important to test as much as

possible while focusing on the subsystem under test. So, individual methods and classes are tested equally well as

the whole reasoner. The test architecture allows us to fully extract the reasoner into virtual, simulated traffic

situations, and allows checking the car behavior in various traffic situations efficiently. Automation of these tests

allows us to (re-) run tests as desired at least every night.

There are so many complex traffic situations, let alone junction layouts and various possibilities of behavior of

other cars, that it is inevitable to run many tests in a simulated environment. The simulator is rather general and will

be usable for testing and interactive simulation in other contexts as well, e.g. it can be combined with hardware-in-

the-loop tests.

The approach used and the results gained in the CarOLO project are not only proof that autonomous driving is

just a few years ahead, but also that efficient development of complex software in combination with the overall

system is possible if the development process is disciplined, yet responsible, agile and assisted by appropriate

modern tool infrastructures.

Acknowledgments

The authors thank their colleagues, which total 32 research assistants, students and professors from five institutes

of the Braunschweig University of Technology, who have developed Caroline. We thank our colleagues Professors

Form, Hecker, Magnor, Schumacher and Wolf as well as Mr. Doering, Mr. Homeier, Mr. Lipski, Mr. Nothdurft, Mr.

Cornelsen, Mr. Effertz, Mr. Ohl, Mr. Wille, Mr. Gülke, Mr. Klose, Mr. Berger, Mr. Morgenroth and Mr. Sprünker

from the institutes for Flugführung (from Mechanical Engineering), Regelungstechnik (from Electrical

Engineering), Computer Graphics, Betriebssysteme und Rechnerverbund and Software Systems Engineering (all

three from Computer Science) that spent a lot of resources. As a large amount of effort and resources were necessary

to attempt into this project, it would not have been successful if not for the many people from the university and

local industry that had sponsored material, manpower and financial assistance. Particular thanks go to Volkswagen

AG and to IAV GmbH. The authors’ team also greatly thanks Dr. Bartels, Dr. Hoffmann, Professor Hesselbach, Mr.

Horch, Mr. Lange, Dr. Lienkamp, Mr. Kuser, Mr. Rauskolb, Professor Seiffert, Mr. Spichalsky, Professor

Varchmin, Professor Wand and Mr. Wehner for their help on various occasions.

References

1 IGP Automotive GmbH, CarMaker Vehicle Dynamic Simulation. http://www.ipg.de, 2006.

2 Basarke, C., Berger, C., Homeier, K., Rumpe, B., “Quality Management for Intelligent Car Functions using a ‘Virtual Car’”,

Proceedings VVC - Virtual Vehicle Creation, 2007, Stuttgart.

3 Baluja, S., Sukthankar, R., Hancock, J., “Prototyping intelligent vehicle modules using evolutionary algorithms”,

Evolutionary Algorithms in Engineering Applications. Springer, 1998.

4 Beedle, M., Schwaber K., Agile Software Development with Scrum. Prentice Hall, 2002

5 Beck, K., Extreme Programming Explained: Embrace Change. Addison Wesley, 2005.

6 Beck, K., JUnit Pocket Guide, O'Reilly, 2004

7 Beck, K., Test Driven Development – By Example, Addison Wesley, 2002

8 Berger, C., Krahn, H., Rumpe, B., “Software Engineering Methods for Quality Management of Intelligent Automotive

Systems”, Proceedings der 21. VDI/VW-Gemeinschaftstagung - Integrierte Sicherheit und Fahrerassistenzsysteme, October,

12th – 13th 2006, Wolfsburg.

9 Boehm, B. W., Software Engineering Economics, Englewood Cliffs, NJ : Prentice-Hall, 1981.

10 Chucholowski, C., Vögel, M., von Stryk, O., Wolter, T., Real Time Simulation and Online Control for Virtual Test Drives of

Cars, 1999.

11 Cremer, J., Kearney, J., Scenario Authoring for Virtual Environments, 1994.

12 Cremer, J., Kearney, J., Papelis, Y., HCSM: A Framework for Behavior and Scenario Control in Virtual Environments, 1995.

13 Cremer, J., Kearney, J., Papelis, Y., Romano, R., The Software Architecture for Scenario Control in the Iowa Driving

Simulator, 1993.

14 Cockburn, A., Agile Software Development. Software Through People. Addison-Wesley, 2001

15 CxxTest – Unit Test Framework For C++, http://cxxtest.sourceforge.net, 2006

16 DARPA Urban Challenge, http://www.darpa.mil/grandchallenge/index.asp, 2007

17 Duwall, P., Matyas, S., Glover, A., Continuous Integration: Improving Software Quality and Reducing Risk, Addison

Wesley, 2007

18 Edgewall Software, Trac. http://trac.edgewall.org, 2007.

19 Egerstedt, M., Hu, X., Stotsky, A., “Control of a Car-Like Robot Using a Virtual Vehicle Approach”, Applied Mathematics

and Computation, 1996, Vol. 90, No. 1, pp. 61 – 95.

20 Form, T. et al., Caroline - Ein autonom fahrendes Fahrzeug im Stadtverkehr, Proceedings Automatisierungs-,

Assistenzsysteme und eingebettete Systeme für Transportmittel, 2007, Braunschweig.

21 Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns. Addison-Wesley, 1996.

22 GCov - The Test Coverage Program, http://gcc.gnu.org/, 2007.

23 Jo, J., Kim, Y., Ameduri, S., Podgurski, A., A New Role of Graphical Simulation: Software Testing, 1996.

24 Jo, J., Kim, Y., Podgurski, A., Newman, W., Virtual Testing of Agile Manufacturing Software Using 3D Graphical

Simulation, 1997.

25 Kruchten, P., The Rational Unified Process-An Introduction, Addison-Wesley, 2003

26 Kuhl, J., Evans, D., Papelis, Y., Romano, R., Watson, G., The Iowa Driving Simulator: An Immersive Research Environment,

1995.

27 MathWorks, Matlab & Simulink, http://www.mathworks.com, 2007

28 Miller, P., Cook – A File Construction Tool, 2007

29 Piguet, L., Hine, B., Fong, T., Nygren, E., The Virtual Environment Vehicle Interface: a dynamic, distributed and flexible

virtual environment, 1996.

30 Rumpe, B., Agile Modellierung mit UML: Codegenerierung, Testfälle, Refactoring, Springer, Berlin, August 2004

31 Rumpe, B., Extreme Programming – Back to Basics? GI-Edition, Lecture Notes in Informatics, 2001

32 Rumpe, B., Modellierung mit UML. Springer, 2004.

33 Smith, R., Open Dynamics Engine User Guide. http://www.ode.org/ode-latest-userguide.pdf, 2006.

34 Sukthankar, R., Pomerleau, D., Thorpe, C., “SHIVA: Simulated Highways for Intelligent Vehicle Algorithms”, Proceedings

of the Intelligent Vehicles '95 Symposium, pp. 332 – 337, New York, NY, USA, 1995.

35 von Stryk, O., Vögel, M., A Guidance Scheme for Full Car Dynamics Simulations, 1996.

36 Tigris.org, FSVS. http://fsvs.tigris.org, 2007.

37 Tigris.org, Subversion. http://subversion.tigris.org, 2007.

38 University of Iowa, Hank. http://www.cs.uiowa.edu/~hank, 2007.

39 Valgrind - Suite Of Tools For Debugging And Profiling Linux Programs, http://valgrind.org, 2007.

40 Wang, H., Kearney, J., Cremer, J., Willemsen, P., Steering Autonomous Driving Agents through Intersections in Virtual

Urban Environments, 2004.

41 Westphal, F., Testgetriebene Entwicklung mit JUnit und FIT dpunkt.verlag, 2005

42 Willemsen, P., Behavior and Scenario Modeling For Real-Time Virtual Environments, 2000.

