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When a large number of people with heterogeneous knowledge and skills run a project
together, it is important to use a sensible engineering process. This especially holds for a
project building an intelligent autonomously driving car to participate in the 2007 DARPA
Urban Challenge. In this article, we present essential elements of a software and systems
engineering process for the development of artificial intelligence capable of driving
autonomously in complex urban situations. The process includes agile concepts, like test first
approach, continuous integration of every software module and a reliable release and
configuration management assisted by software tools in integrated development
environments. However, the most important ingredients for an efficient and stringent
development are the ability to efficiently test the behavior of the developed system in a
flexible and modular simulator for urban situations.

[. Introduction

FOCUSED research is often centered around interesting challenges and awards. The airplane industry started off
with awards for the first flight over the British Channel as well as the Atlantic Ocean. The Human Genome Project,
the Robo Cups and the series of DARPA Grand Challenges for autonomous vehicles serve this very same purpose to
foster research and development in a particular direction. The 2007 DARPA Urban Chaitemajéng place to
boost development of unmanned vehicles for urban areas. Although there is an obvious direct usage for DARPA’s
financiers, there will also be a large number of spin-offs in technologies, tools and engineering techniques, both for
autonomous vehicles, but also for intelligent driver assistance. An intelligent driver assistance function needs to be
able to understand the traffic around the car, evaluate potential risks and help the driver to behave correctly, safely
and, in case it is desired, also efficiently. These topics do not only affect ordinary cars, but also busses, trucks,
convoys, taxis, special-purpose vehicles in factories, airports, mines, etc. It will take a number of years before we
will have a mass market for cars that actively and safely protect the passenger and the surrounding area, like
pedestrians, from accidents in all situations.

Intelligent functions in cars are obviously complex systems. For a stringent deadline-oriented development of

such a system it is necessary to rely on a clear, usable and efficient development process that fits the project’s needs.
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Furthermore, changing requirements and enhancemeittechnologies need to be incorporated into the
development effectively. This kind of situationviell known in business and web-based software dewe¢nt.
Therefore, this industry has developed severalggpate methods and process frameworks to handiekiid of
project. Among a number of agile development prsesBxtreme ProgrammingXP)* *!, Scrunt and the Crystal
family of processé$ are the most prominent. However, these developpreesses are dedicated to software only
and to some extent clash with traditional engimgpprocesses. Therefore, a compromising adaptetinacessary
that addresses the needs of both worlds. Furthernwee do not just combine and adapt already giprite
standardized) algorithms, but to a large extenemiwnew forms of software and algorithms for outoaomous

driving intelligence. In Section II, we describer@evelopment process in more detail.

Fig. 1 Caroline, an autonomously driving vehicle.

A coherent and efficient tool suite is inevitabbe & goal-oriented development project. We desaibefficient
tooling infrastructure necessary for such a develem project in Section Ill. This tooling is sumgrigly light-
weight, as we decided to base our development psooe agile concepts. We do not have a long andugdool

chain, but use a process for informal requiremémtdirect coding approaches. Of course, the oveaiiware



architecture needs to be developed and stabilizéatéhand. For quality management quite a numbactdns are
taken. Among others, the steady integration, tlg@iest for continuously running code and the regimygration
into the car are part of the plan. Most importdrttywever, and this over time became a more and wlovous
advantage, are the automatic tests that have tmerioped for all parts and integration stages. I8mto the test
first development approach, tests for simple funcdiare coded parallel to the actual code. Thent#aby and
measurements to enable this testing process ardlmisin detail in Section 1l as well.

The fulfilled requirements for a safe autonomousare of course very intensively tested. This goalone by
running the software in a virtual test-bed. The dator acts like the real surroundings for the oeas, called
artificial brain in our software, by producing imfoation such that the reasoner thinks it was onstheet and
decides accordingly. This real world simulator wlaseloped not only to test the requirements, ad & “virtually
drive” through hundreds of different situations, npeof them with a lot of other “virtual cars” inwad. The
simulator therefore allows us to test — and esfigtiare-test — the behavior of the intelligenciheut any possible
harm. We can not only test for positive situatiomst also for negative and physically impossibteations of the
surrounding area and obstacles. Furthermore thelaion can be used in an interactive mode to utaledsa car’s
behavior and thus is one of the basic elementadurally being able to develop our autonomouslyidg car (Fig.
1), called “Caroline®, in time to participate in the 2007 DARPA Urbanaflange. The simulator is described in

detail in Section IV and its application in the depment of Caroline in Section V.

II.  Software & systems engineering process

Whenever things become complex, they need to bentigased into smaller pieces. Also when the devedopm
of a product is complex, not only the product, blso the development activity needs to be strudttmebecome
manageable. Both in the areas of software developamd systems engineering, a variety of such psEeexist.
An appropriate process can be chosen based onettds rof the project in terms of complexity, criliyaand
urgency of the product. However, due to the diffiémrature of “virtual” software vs. physically etiieg hardware,
these development processes differ greatly. Nowsdhis process gap is a constant source of prablBefore we
look at the process we used for the developme@aobline, we highlight a few of those distinctions.

Due to its immaterial nature, software can mordled® reorganized and evolved than physically txis

hardware. Therefore software development procasmede iterative and incremental to allow for anletionary



evolvement towards a stable, robust result. Regrotesses like XP Scruni, or RUP® advocate iterations in all
stages with various durations. Iterations are rsargsbecause it is very hard to produce correttrabust software
from the beginning. So iterations are a vital gartdeal with the necessary improvement of exis8offware,
changing requirements and an incremental proceats dacomposes software into smaller pieces. Thee mor
innovative software products are, the less preblieta software development process is. In suchnéegbmany
small iterations are preferable over a few largeeso More and smaller iterations give the softwaemagement
more agility to guide the project.

In integrated software and systems developmentegi®jthe traditional engineering process, whicimigh
similar to the Waterfall Software Lifecyleand an iterative software development procesdsieebe aligned or at
least made compatible. The best approach is tougéedioth subprojects as much as possible suchtlieat
individual processes can be followed in subprojeétset of high-level milestones connect the sujgats and
ensure a coherent process on the top, but withdh gabproject different forms of processes aresi wooking into
the software development process, we find thatethmany small iterations strongly imply a numberodtfier
development practices that are necessary to emsoggess and quality. Most important of all is antinuous
integration of the software pieces. Experience shtivat software simply cannot be developed indegethdand
integrated later, even if the interfaces are defiae precisely as possible, because patchworktatsdyimust be
done in the integration that invalidates earlievelepment work. With modern tools for version cohtand
configuration management continuous integrationtmaachieved rather easily. The most tricky and @amachieve
part is to ensure that all team members are diseghlenough for a continuous integration procebss i& because
software must be developed in a collaborative fashivhere no code ownership exists and everybodgkshin
their software at least several times a day. Wheevateam forms, this usually takes a while andaafrse it helps
to take explicit actions to train the team towaadkarmonized and disciplined use of these supppsgoftware
management tools.

Disciplined use of versioning forms the basics tfog next important process element, namely autamatel
integrated testing. Testing is by far the most intgoat technique for quality assurance and comesany different
flavors, beginning with unit tests to integrati@sts up to full system tests. From software devebi projects, we
know that iterative and incremental processes neelb testing very often. Either after each itematdr increment

all the tests are re-tested or sooner or laterespart of the early developed software will faildamobody will



notice. This “testing trap” can only be escapedulgh automated replays of tests, also called reigmesesting, for
each increment. The important part of automatetihtpss not finding appropriate tests (what tesfoauation also
could do), but the techniques that run the curcede to determine whether some property of the oderrect or
wrong efficiently and without humans to run thettes interpret the result. As known frodUnit test§ **
automation helps each developer to know whetheeregr was introduced to the code, in which iteratibwas
introduced and in which part of the software. Emletection thus becomes much easier and after dnarinerror
detected, an identification of the location is tigkly easy within a small area.

A very important aspect of automated testing ig thaot only can be used to test each iteratiag. (every
week), but for each version. This means each dpueat subtask, may it be a 10-minute bugfix or o8¢
development of an algorithm, can easily be cheagainst all available tests at no cost of manpoWer therefore
integrated the automated testing infrastructuréa whie version control system: each version chedkddggers a
testing process, where all —usually several thaldisamsts are run and feedback in the form of theber of failed
tests (and names and detailed information if asgiven. Our experience is that in the long rus #ind of quality
assurance helps very much to foster an efficiemeldpment of software. Initially however, it needslot of
discipline. Furthermore, appropriate tooling infrasture is inevitable to make the developers dcttep discipline.
Initially discipline is necessary to start with @éping tests for software elements immediatelyhase should not
be any untested functions in the system at any. thugunately, developers can later have fun sesirigmatic tests
run through to status “green” at every new versibesting also needs to deal with configuration atiohs — a
popular C/C++ problem allows code to behave difidyeon different platforms. The test first apprbadescribed
in’ must be lived from the beginning.

When developing intelligent autonomous driving canstomated testing has a number of challengeactdet
First of all software is integrated and closelykéd with hardware, such as sensors and actuataigheough them
to the surrounding environment. Appropriate absivas for different parts of the software and tlaedware help to
run tests efficiently. For the intelligent part e software, it is not necessary to run tests dasefull sensory
input, but to provide distilled, aggregated infotioa about possible obstacles as well as the pathwadrive
through them. A highly important abstraction fofi@ént test automation is to replace the real heamdt by a
simulation. A simulation of the hardware allows amuated tests on ordinary computers and is thudadlaifor

each developer independently. As all physical elgmare simulated, it furthermore allows decoupling time a



software test actually takes from real-time. THieves for running a complete city traversal in avfeeconds. We
are thus able to run thousands of tests for evewy version each night. As a prerequisite we ne¢detbvelop a
testing infrastructure that:
(a) allows us to define various constellations and gstiesn configurations of the software parts to Istei,
(b) provides a software test-bed to probe the softwader test and to understand whether it behavedatby,
(c) is capable of providing physics-based behaviothef d¢ontrolled engine as well as the urban surrawsdi
correctly and in sufficient detail, and

(d) allows us to easily define new tests including endted verdict of the test results.

Of course, tests that deal with only the simulasoftware are not enough to ensure a robust auteeneystem.
Therefore, a continuous deployment of the softvergsystem into the car and a (re-)run of a suffitydarge set
of tests in the car are inevitable. For that puepege have an additional test team that runs thedguipped car in
various traffic situations. The test team receiseffware releases in regular (usually weekly) tteres and checks
the car’s abilities against the requirements froaffit rules, DARPA Urban Challenge rules and stogrds
mapping those requirements into concrete drivingsions (see below). However, a stringent softwastirg
process considerably reduces the amount of timessacy to fully run the hardware-in-the-loop (HHEsts.
Furthermore, the complexity of traffic situationscessary to do the test usually requires seveagll@én each test
run. For example, any single test that deals withraect behavior in a junction takes roughly fimeutes to setup,
run and check the resulting behavior. It involvegesal cars and people to produce appropriateipmsituations.
Multiplied by the variety of junctions and the mapgssibilities of cars coming in different directsy this would
take far too long to actually run all of them iraliey. So quite a number of junction situations tegted only in the
simulator. The possibility to rerun those situasi@fficiently and automatically is important to eresthe stringent
and effective development process needed.

Another important issue to be taken care of from Beginning is to organize the software in appaipri
subsystems and components packages, to definedhrital interfaces and to take additional actismghat the
software can be developed and tested independédtlly. if the software obeys a number of best pcastiis it
possible to test the software efficiently. For epégnwe can decouple the time a test takes frontittie the tested

software thinks it runs in, if the software does divectly call the operating system about the entitime or even



worse, counts itself, but uses an adapter interfaiceilar techniques are necessary, if outsideasoé needs to be
incorporated that does not have a testable softamt@tecture, neighbouring systems are not patheftestable

subsystem or sensors and actuators come intoAliést of architectural testing patteffifielps to develop software
that can be tested in various configurations amtspadividually. For Caroline, we have develogedarchitecture

that decouples the reasoner from the input aggmegatalled data fusion, and the basic controlvgafe in such a

way that the below described simulator allows ugft@iently test the reasoner on abstractionshef $treet and

traffic contexts.

Of course, we have adopted numerous more practagsiromExtreme Programmirigbeyond short iterations.
For example, one successful organizational andtsiting tool were story cards. A story card desesibriefly and
explicitly the goals for a development iteratiordathus leads to a useful, efficient and focusedcstiring of the
requirements and also the development project. ipamied with a definition of measurable goals feerg task,
these story cards allow the developers to undaetsiad measure progress of development.

Having highlighted a number of special issues ti@e when integrating an agile software and asidas
engineering process, we note that classic engimgemd software engineering indeed have differertlbpment
cultures. It takes a while until both cultures @#intly work together, but when properly integratdte resulting
output is tremendous and of very good quality. éct®n V we show how we used an agile processarCiarOLO

project by highlighting an overview of the processwell as discussing lessons learned.

lll.  Tools for an efficient development process

As any other development of complex software-intensystems, the software development process ibedcr
above can only be accomplished if appropriate ngoinfrastructure is available. This is importamchuse to
participate in the Urban Challenge the completéwsoe and hardware system has to be developed tayhta
schedule since there are no negotiations on argstoite. For a successful participation, both efficy and quality
of actions have to be balanced wisely. These speiccmstances led to the organizational impleragoin of the
agile software and system engineering process basdgxtreme Programmirig Clearly, a modern IDE, like
Eclipse, is used for direct code development in @GnaMatlab?’ for the control part. However, gatlab/Simulink
doesn’t scale for complex data structures, moshefcode by far was written in C++. Therefore,hie following,

we concentrate on the C++-part of the software ldgwaeent. For planning purposes, plain mathemafigattions



are used to understand the algorithms, and UMldsschnd deployment diagrams as well as statedrartssed for
software architecture as well as important statetdehaviors and data structures. However, thegeaths are
based on paper only and therefore just serve asur@ation and the basis of discussions.

Milestone: AP8: Emergency Brake + Traffic Jam

5 days late

Closed tickets: 0  Active tickets: &

Stopped
vehicle

Stopped
vehicle

Caroline kann einen Not-Halt ausfohren und schlangelt sich durch verstopfte Kreuzungen.

Aufgabeliste Bug-Report

Fig. 2 Virtual story card in the web based portalTrac.

As described, milestones are centered on storysctrat serve as a definition of measurable godesd
measurable goals are the base for a consistenptestss and its tooling infrastructure that iscdbed in the
following. The whole team is distributed in sevdmdations and team members often work in diffetene zones
(software often is developed at night). For a umifainderstanding of progress, a single source fofrimation is
necessary for collecting tasks, tracking bugs anulighing progress. Usingrac'® as an integrated and easy to use
web based portal for the complete software andesystevelopment process allows the team to trackgesato the
software over time, and evaluate the actual sfalecosoftware generated by the back-end tool chfsrmentioned

above, every story card is virtually available éery team member at any time to see the most tauptoaspects



for the current and next development iterationhesa in Fig. 2. In addition to the description bétnext iteration,
a list of tasks, each with a measurement of itspetion and a list of occurred bugs are availableelvery virtual
story card.

For achieving the goals described in a story cangdpng other things, the simulator described iniSedV is
used by the developers to test their code. In #ialistep, the requirements of the story cardteaaslated into an
initial number of tests even before the softwardéaseloped. After fulfilling the requirements inetlsimulator the
software is put into operation on the real hardware manage parallel development as well as diftere
configurations in the simulator and real hardwareglease and configuration management tool bas&diloversion
and FSVSrespectivel$f is used. This allows us to progressively enharee doftware development in small
increments, while at the same time reload oldahlstversions for demonstrations and events, waetable and
demonstrable software version needs to be loaddbeooar. Furthermore, configuration managementmassure
that hardware changes fit to the software relebrseted. As usual, all seven car computers are migtlacked up
in their own configuration, but also version-cotigd.

Using FSVS as a version control system enabletetira to simply and safely test new software vessimd to
maintain the integration between parallel developime@s well as tracking of open issues and potdmniigs found.
Based on version control the independent test teasnthe ability to retrieve specific software reksmthat the
development team wants to be tested. This furtherouples testing and development and allows more
parallelization and thus increases efficiency. édr computers are consistently restored to theifspasoftware
release and a detailed test process based on tsurable goals of the virtual story cards can b#opaed rather
efficiently. In particular, bugs and behavioral deguacies can be recorded in such a way that @reye replaced
and understood in detail if necessary. Both devekag and test teams can simply restore the deveopstate of
the car in the desired software release by switchirery car computer to the appropriate revisiangiene simple
command.

The combination of virtual story cards and a cdesisrelease and configuration management endideteam
to safely develop and test potentially dangerous seftware functions without breaking an alreadyning
software system on the vehicle. Furthermore, steoli open or closed tasks allows the project memegt to get a
current impression of the project’s status. Appiatprtools for those are:

(a) Story cardsPowerpoint



(b) Modeling: Paper anBowerpoint

(c) ProgrammingEclipsefor C++,Matlab/Simulink27

(d) Version and configuration managemedtibversior87

(e) Unit testing:CxxTestl5

() Requirements testing: Simulator developed withanpioject

(g) Deployment: Unix-based scripts developed withinghgect combined with FSVS 36
(h) Consistent compilation and integratid®ook28

() Milestone planning and trackingrac 18

() Bug managementirac

(k) Knowledge managementiki insideTrac

Our software and systems engineering process reliea variety of software development tools and esom
customizations and extensions to combine these t@mull optimize our tool chain. As said, element&Extfeme
Programming, like the test first approach, collesttode ownership, pair programming, and continuotegration
are the basis of an efficient and successful deweémt process. Reducing integration activities ¢arly zero
through the continuous integration principle is &g element in our development process. As desdréarlier,
this implies that every developer integrates hiskWcequently and is disciplined in using the colfied source code
repository based on the version control syst8aobversiormanages nearly everything needed to do a projélet.b
From install scripts, property files and test stiup to IDE configurations, the repository holdsl provides all
project-dependent data. This enables the teanlljolfuild the system from just a checkout on a niaetwith only
a minimum amount of software installed, like somiect party libraries. Moreover the use of SubvarssmdCook
allows us to setup the fully automated build prgcéscluding test runs, which acts as a monitoth® repository
needed for quality assurance.

With this approach we are able to find errors gyidnd fix them as soon as possible. Triggered \mrye
commit against the repository, central servers stacheck out the project sources and initiataiigdb This is the
point where Cook comes into play. On the develgiter Cook helps to speed up the build process atiteasame
time ensures a consistently built result by analyzthanges and dependencies to identify what reakyls to be

rebuilt without some of the problems thdake has. On the server side it allows us to buildralttve targets for



different forms of use, so we are able to run aesysbuild with or without test code. Furthermoree testing
system separates time consuming high level testietaching the complete automated test run to he doparallel
on different servers. So whenever a developer chigcl new version of the software the completeraated set of
tests is run.

Feedback of the automated and continuous buildestdrocess is sent to the developer by notificatiirough
email and through publication of the build and testults on the project specific portal web siteg§rac. This
greatly improves responsiveness of the test systernblems do not remain undetected for long, anahily a few
hours the fault is limited to a small portion ofaciged code. Efficiency of the development proceswell as a
responsible and self-disciplined form of developtmeme effectively assisted by the tooling and tegti

infrastructure.

A A

| Compile Check l

‘ Memory Leak Check |

| sauljepIND BuIPoD |

| Test Execution |-

Test Coverage =
[Profiing

Fig. 3 Multi level test process.

Fig. 3 shows the workflow of our multi-level buifgtocess. The fully automated process for softwardity
checking consists of five consecutive steps. Sigrivith a compile check, compilation conflicts a®lwas

syntactical conflicts are detected. However, iexpected that code that cannot be compiled is nevecked into



the version control system. To automate tests, meuaing a light-weight testing framework for C+eglled
CxxTest During the test run, the memory checkaigrind® searches for existing and potential memory leakbé
source code. An additional tool from the GNU compitollection, namelyGCoV?, is used to report the test
coverage of the source code. While running thedede it counts and records executed statemengsiniént is to
implement test cases that completely cover thdirgisource code. Tests are usually implementesttljrin C++.
Experiences have shown that for a disciplined de§nition in a project, it is very helpful thatehmplementation
of tests be done in the same language. This enabledegrated test development process and attoédsurdle of
learning another testing notation. The failure 0§ aingle test case causes the complete buildltarfd immediate
feedback is given to the developer. In order tackhreal-time properties, which are of course neagsfor a timely
execution in a traffic situation, a final step pliofy is done to check the timing behavior.

For an initial phase, we found it helpful to adater step to the build process, which checks soongpliance
rules for the coding guidelines. For example, ialgses the source code for appropriate definitiohaames of
variables and classes, checks depth of inheritangaper of attributes, sizes of method bodies, @pateness of
intention, existence of comments and the like. T¥as helpful for the project in the beginning tagk a consensus
on common coding guidelines, but after an initinhge it was no longer necessary and could be skippehe
client side by default.

This process is not only working automatically aery check-in, but can also be executed manuallg\mry
developer. When starting a commit cycle the dgp@idirst updates his working copy, runs all testd checks and
then commits his changes only if everything buidsl all tests run without errors. This leads tooalde check,
both before the developers commit and automaticallythe server side by the master build processs iEh
reasonable because there is always a chance ¢hegptbsitory was not properly updated.

As a result of this approach, developers can eastyn tests and detect many bugs or inconsistent
enhancements locally and rather quickly. So fixdigcovered bugs is done rapidly and we have a estabtl
properly working system almost all the time. Thedfé is that everyone shares a stable base toddaelopment.
Frequent commits, usually more than once a dayagtee that re-integration of newly developed dragrced code

does not take long and we usually have little iragn overhead.

IV.  Simulation for intelligent software components



As discussed earlier, simulation of various traffituations that the intelligence has to handlthéskey to an
effective development process. The simulator carubhan automatic mode to run automatic tests dnferactive
mode to visualize the behavior of the system. Giwgriece of software as the system under tessithelator runs
the software, provides the necessary input datechadks or visualizes the output data. Furtherntbee simulator
provides appropriate feedback to the system uredrhy interpreting the steering commands andgihgrihe ego-
state in the surrounding appropriately.

Depending on which parts of the software need tdested, the simulator and the test infrastruchrmvide
different sets of input data and drivers. As ddwatj for the reasoner itself we use an aggregateaf ®bjects in the
world. The simulator can also be used for intevatyi testing newly developed functions of the reesavithout the
need for real hardware. A developer can simplysafdly test the functions with a modicum of eff@tr approach
is to provide a simulator component that can safely reliably simulate missing parts of the conglitrget
software system architecture on the one hand. ©mtier hand, the simulator is also part of anraat@ testing
infrastructure for ensuring software quality angression testing at every new version in the cootits integration

approach we use.

Simulator 1
Application -
Simulator Factory
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Simulator View Object Components
Factory Factory Factory
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Fig. 4 Basic classes for the simulator.

Fig. 4 shows some basic classes of the core siangiplication where aggregation and fusion of sendata
into objects on a world map has occurred. The nidga behind this form of the simulator is the u$esets of
coordinates in a real world model as context apaitinThese coordinates are stored in the modeluaad by the
simulator. Every coordinate in the model is repnésé by a simulator object position describing #iesolute

position and orientation in the world. Each of themsitions is linked to a simulator object thgtresents one



single object. These objects can have a varietpedfaviors, shapes and other information necessaryhi
simulation. The model is linked with a simulatorntm| that manages simulation runs. The overallutitor
application controls the instantiation of every giator component like the simulator view, simulat@mponents
and every simulator object in the world’s modelusjng object factoriés

Fig. 5 shows more object factories, associations@gates relationships. Every simulator view esuokgies a
specific point of view of the world’s model refleng that a sensor only sees a restricted part efvibrid. In
particular a view allows us to focus on an extafdhe data of the world’s model that is visibleahgh the sensor.
Based on this infrastructure, it is possible to sladifferent sensor configurations that cover vagyareas and
ranges of visible objects and information aboatritund the ego object that represents our car li@ard his allows
us to mask parts of the world’s model that are visible by the current sensory configuration. Farthore it is
possible to simulate different aspects of sensehabior under certain circumstances like weathesit,hand sensor
damages without modifying the core data model,dmly by debasing the view to the world model. Tikipossible
because of the clear separation between the diésorigf the environmental data model in the worldisdel and
the view for every simulator object that computes &ctual data extract using the sensory configurah the
simulator view similar t&.

Another part of the simulator is the data disttitmu and controlling part. The simulator view ensalates a
read-only view of an extract of the world’s modekery simulator view is linked with a simulator cpaments
group as shown in Fig. 5. A component represenssing parts of the whole system like an actoricslute for
steering and braking or a sensor data fusion moftuleombining several measured values and digtriguhe
fused results. Therefore, using the simulator viewery component in the components group can adtess
currently visible data of the core data model. Aentioned above, every simulator object positiotinked with a
simulator object, each of them equipped with itsymenfiguration. Thus, every component can retrigngerelevant

data of the owned simulator object.
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Fig. 5 Object factories creating the environment fothe simulation.

The most interesting part however is the simulastep. It showed it was sufficient to use a glofming
assumption for all components involved and to adeaime synchronously in all components by timitgps of
varying duration. A simulation step is a functicalldo the world’s model with the elapsed time stgép> 0 as a

parameter that modifies the world’s model eithequsatially or in parallelAt; describes the time progress between

t; and E+1).
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e
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Fig. 6 World's model and motion behavior interface.




The last part of the simulator is for modifying twerld model over time. Since the simulator vievs lzaread-
only access to the data model, no modificationsaiosved by any simulator component. As already tineed, the
simulator view is directly linked with a simulatabject in the world’'s model. For modifying an oljex the
world’s model, every non-static object in the wondodel uses an object that implements the interface
MotionBehavioras shown in Fig. 6. A motion behavior executesnaulation step for an individual object. Like
with objects, various motion behaviors exist. A giator component implementing a concrete motionaitn
registers itself with the simulator object. For gveimulation step the simulator object needs tib tb@ motion
behavior and therefore enables the behavior impiestien to modify its own position and orientatiaccording to
a simulator component. The decoupling of objectd #reir motion behavior, for example, allows usntodel
moving as well as standing cars and highly indigldbehaviors specific for certain traffic situaton |t is also
possible to switch the motion behaviors at runtomé efficiently implement new motion behaviordatvelopment
time. For testing Caroline, we have developed &ifdit motion behaviors likéMotionBehaviorByKeyboardor
controlling a virtual car in the interactive modg bsing keys or aMotionBehaviorByRNDRhat controls an

environment car using a predefined route to follow.

D
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Fig. 7 Trajectory bounded by black pearls.

The most interesting motion behavior however isNtationBehaviorByTrajectoryThis is the one that the test

infrastructure uses (via the embedded reasonecpfuatrolling the virtual car. This planning modylans new paths



by computing trajectories expressed as a stringeafls that form consecutive gates for the trajgcis shown in

Fig. 7. The approach used here is to identify fsgathways in the form of left and right boundarin the form

of this string of pearls and to allow the controituo identify optimal paths between them. Thetaagle with an

arrow indicates the car, its current velocity amgation. The thick black pearls on the left arghtihand side of the
vehicle show the path planned by the reasoner.

One rather simple implementation of thetionBehaviorByTrajectorys based on a simple linear interpolation
between every gate as shown in Fig. 8. In thigzatibn, the left R and right P, pearls are connected by a straight
line and M, the mid point between them, is computed. Thentaigon of the vehicle is computed by using thé las
position and the position of the next pearl in frohthe vehicle. That implementation works quiteety in many
situations, but yields an erroneous behavior inuitstances with short movements where the vehiolates the
string of pearls. Furthermore, the behavior is verly realistic even for a virtual obstacle car, aviten it comes
close to our virtual Caroline, this unrealistic beior becomes visible.

Therefore, we added a more realistic approximaliased on "8 order B-splines as shown in Fig. 9. For the
computation of such a B-spline at least four nodes necessary. From the linear interpolation weerihtthe
computation of the middle points. For an efficieomputation, we store the points of the curve lnakup table

using a scalable resolution. We compute the sipgiets using the equation shown in Eq. 1.

bt) = (x; y)
= (1) Miy- 1/6 + (38 - 612 + 4)-1/6 Miy1x + (-3C+312431+1) -1/6 Misox + 1/6 Misgx 13

(12 My - 1/6 + (3t - 612 + 4)-1/6 iy, + (-38+312431+1) -1/6 Moy + 1/6 Miygy 12)7 1)

Using a B-spline yields a smoother motion in thawation and a driving behavior sufficiently clasereality —
if taken into account that for intelligent drivirignctions we need not handle the physical behadwi@very detalil,
but in an abstraction useful for an overall cortstavior.

Having different motion behavior classes also aflawg to have behavior patterns, either interagtieel by
using scripting, to freely adapt the position amgrtation of a simulation object over time. Itaso possible to
compose different motion behaviors to create a oemposed motion behavior. For example, we can lautidick

with trailer from two related, but only loosely quead objects. A composition of the motion behavigiedds a new



motion behavior that modifies the position and miié¢ion of the related simulator objects accordmmner rules as

well as general physical rules.

Q X

Fig. 8 Linear interpolation.

There are several mechanisms that can be applietbtlify the world’s model. A simple variant is toodify
every simulator object sequentially. In this vatittre list of simulator objects is addressed thtoag iterator and
the motion behavior objects directly operate ondkhiginal data of the objects. Although, this i§i@ént, it is not
appropriate when the objects are connected andorelyehaviors from other objects. Another posgibib to use
the algorithms as if a copy of the set of simulatioject positions were created. While reading thgireal data, the
modification uses the copy and thus allows a tretima like stepwise update of the system, wheratedl objects
update their behavior together. Admittedly, protdecould arise for collision detection: which sintalaobject is
responsible for a collision? The simulator curngilibes not address this issue, as our purposeeéstdigher order
intelligent driving functions, this is not necessdfor our project it was even sufficient to use #imple case of
calling sequential updates for every simulator cbfgecause the set of dynamic objects is quitelsmnal most of
the vehicles are spread out in the world’'s moded. gh aside, according to DARPA regulations ourficidl
intelligence module stops early if another vehislen a collision course. So, if a collision ocglitss always the

other vehicle that is held responsible.



As mentioned earlier, the simulator is usable lothractively and in automatically executed systetagration
tests. Therefore, a test developer can specifyligegat software functions that are automaticakysted by the
simulator to determine differences in the expeatatlies in the form of a constraint that shall net\olated
through the test. For this purpose, we added dedcablidators. A validator implements a specifiterface that is
called automatically after a simulator step andtrigefore the control flow returns to the rest loé system. A
validator checks, for example, distances to otlewuktor objects, validates whether a car has itefiane or
exceeded predefined speed limits. After an unagigndystem and integration test, the Boolean method
hasPassed() is called to summarize the results of all tesesadhe results are collected and formatted in an
email and web page as presented in Section Illisfoty of older test runs is available to checkimptations in the
intelligent software functions over time or to maaskey figures.

y

Q X

Fig. 9 B-spline interpolation using four nodes.

Getting such a simulator up and running requiréseqa number of architectural constraints for tbévsare
design. As discussed earlier, it is absolutely ssagy that no component of the system under tiest tiv call any
system functions directly, like threading or comication, but only through an adapter. Dependingvbether it is
a test or an actual running mode, the adapter dgdifdthe function call is forwarded to the reabteyn or
substituted by a result generated by the simul&ecause of the architectural style, it is abstyutecessary that
no component retrieves the current time by callingystem function directly. Time is fully contralldy the
simulator and knows which time is relevant for adfic software component if different times aredsOtherwise,

time-based algorithms will get confused if differéime sources are mixed up.



V. Applying the simulator in the CarOLO project

As mentioned in Section IV, we are using the sitmulanot only for interactive development of an faial
intelligence module in the CarOLO project but asopart of an automated tool chain running on ewess over
night. The main goal behind this application isettsure a certain level of software quality. Themfave have
extended the test first approach mentioned in &edtl by test first approach using the simulatsrshown in Fig.
10Fehler! Verweisquelle konnte nicht gefunden werdenWe call this approach the “simulate first appidac

Almost any development process starts by analyiegrequirements documents provided by the custoimer
CarOLO, we used the DARPA Urban Challenge documémtanderstand the requirements. These documents
contain mostly abstract and non-functional defim#i for the vehicles. On the one hand, these reqpaints are
rather stable — even though they are occasionbinged. On the other hand, they are rather vagliteane open a
lot of options for possible traffic situations, wWeer conditions, forms of roads, etc. Three bigsgisalead the
project from an initial setting through the firgipdication (end of phase 1), through the site \({isitd of phase 2) to
the National Qualification Event (NQE) and finaleew (phase 3). Actually, in any good developmenjqut, there
is a phase 4 with a retrospective and a recordfnipe findings, the knowledge and experience gathemd a
consolidation of the software developed. This atetudes the identification of reusable parts & foftware. Each
of the first three phases is broken up into sevarsalll iterations.

In every iteration a new task dealing with a coherequirements group is chosen by the developreamh,
prioritized in the product backlog and defined gsihe Scrum process for agile software engineaasgentioned
in Section Il. These requirements are refined thtoalready discussed story cards and tests aignedsfor both a
virtual test drive and a real test suite for testhie completely equipped car. This early definitaf the virtual test
drive forces developers to clarify general paransedé@d conditions before starting their implemeatatThe result
is a test drive specification that tests all reguients to be implemented. Now implementation ofsstem and the

virtual tests can run in parallel.
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Fig. 10 Simulate first approach.

In the testing path, after designing a virtual wr$te the availability of necessary validatorsliecked. If there
is a condition not yet handled, an appropriatedeatir is implemented. As said earlier these vatidaare the base
for automatic test runs, which are necessary ferdbntinuous integration of the complete softwargtesn and
therefore a vital part of a consistent softwareesysengineering process. The newly implementeddases are
grouped together in a test suite and become arutate specification of the virtual test drive. Tiew test suite is

then integrated in the tool chain. None of thetekt suites should fail and only the new one shaoldpass. With



these failed tests, the implementation of the neificgal software functions begins. In small itéxee development
steps the software module is extended for fulfijlevery test case of the new test suite.

Although the above sounds like a normal test fugbroach, there are a number of differences. Bfrsll, the
test suite capturing the high level requirementshémndling traffic usually do not change the signatof the overall
system. The reasoner as well as the simulator st@ae interfaces and only need behavior changesveSdo not
need to define interfaces before tests can beatkfiind second, these high level tests are blagkabhd do not rely
on the internal structure of the code. However,gdahorough test of the reasoner, it is also héligfuladd more
simulator based tests after the code is implemetotetieck the states and transitions between thatrotcur in the
reasoner as well as traffic situations that theasear has to handle.

As with usual “test first” approaches, these sre@ps are iterated until the complete test suisatisfied. After
completing the implementation the new intelligeothware function will fulfill the requirements irhé virtual test
drive. Subsequently, the test drive is plannedextstuted using the real vehicle.

If the test drive is successful the new softwareelseased and marked as stable. After the tese dusually
optimizations must be implemented, bugs fixed athnical issues or misunderstandings from the reouénts
documents fixed. Before the code is modified, fineutator is again used to extend the test suituich a way that
the error becomes visible under a virtual test #rah the software is modified. These virtual testes can be
repeatedly performed at nearly no cost and helpdébm to develop quickly and on time the necessaftyare
functions.

In a second version, we have enhanced our simudavironment in such a way that multiple car insemncan
drive in the same world model. Using multiple imstes allows running several intelligent cars adadash other.
On the one hand this is a good way to investigdiécel learning of optimal driving behavior in potentially
hostile world. On the other hand, we can handléngaconditions by running multiple instances of gmficial
intelligence that start from the same positionhia world data with the same mission, i.e. haverteedhe same
route. Starting multiple instances with the samssion data allows us to understand and comparpetiermance
of several versions of our intelligent car. It iscapossible to measure the stability of the ifgett algorithms over
time when using the same software revision in fljgtnhanced courses. Furthermore, it is possibleatch virtual
Caroline becoming an ever more optimal driver basedthe increasingly optimized revisions of theifiaral

intelligence modules.



VI. Related work

The approach described in this paper has been tosddvelop an autonomous driving vehicle for th@7220
DARPA Urban Challengé. In the CarOLO project a 2006 VW Passat statiogomahas been enhanced using car
computers and many sensors for understanding tfioament and actuators for controlling the carsbjtware. 2
discusses an overview of an earlier developmete stfahe tool chain presented in this article. Mehile we have
optimized some parts of the development processchadged the internal structure of some tools.Heunmore we
have restructured the simulator component to besrfilexible and extensible for future requirements.

In 8 some technical aspects of software architestare presented to ensure software quality fedligent
functions in automotive software. On the one hahe,focus lies on software patterns for ensurirfgrsoe quality
during run time. On the other hand, it focusesdasign of complex software architectures on qualityich are
already in the design phase of a project.

If a larger number of developers work separatelgroa significant period of time, it would be vergrt to
predict how long the inevitable integration phaseuld take. Continuous integration solves this peablby
handling integration as a non-event. As describetl7, continuous integration is a software engingepractice of
immediately committing every change to a centralimvision control system.

As presented in Section 1V, our simulator approegies on a set of coordinates. The set of cooteinés
modified by using different motion behaviors if tlrresponding simulator object is a dynamic objekt
comparable approach is used by the Open Dynamigm&n It implements a complete and bounded simulation o
rigid body physics. That approach addresses rigalisbvements and forces but it is not suitable sionulating
software or software architectures in a complexesystest like our approach does. Actually, it iarpled to
integrate the Open Dynamics Engine in our apprdéachenerating more realistic motions.

A similar approach for simulation purposes is tleeNaker Vehicle Simulation by IPG Automotive Gnb#hd
VEDYNA 3% a numerical simulator of full car dynamics wititdrfaces to Matlab/simulink. Both try to ease the
development and integration of vehicle controll@iisis software, like the Open Dynamics Engine, duassupport
the consistent and integrated simulation of softweachitectures and software components and icpkat does

not fit into our approach of automated integragsting, and thus cannot be used.



Article 23 presents possibilities for performindtaa@re tests if tests in real environments areidift to realize.
The bases for that work are rule based systemsthgtimain focus on 3D simulation. Compared to qureach, it
is however not possible to integrate the toolsnmatomated background tool chain for continuotegration.

24 is comparable to the work presented in 23 anehtiancement to the earlier presentation for #id 6f agile
manufacturing. The focus lies on supplementing devésts. Some errors found by the use of the miexseool
could however be discovered by using adequate demg®ttings. For example, the Boolean expresdiens==
b) and(a = b) are obviously unequal and mean different thingss ®error could simply be found by using
correct compiler settings such as higher level imgsto optimize the code’s quality. Therefore, th&n focus lies
on interactive software tests.

The work presented in 19 proposes a virtual vehagproach for implementing and testing differenttoal
algorithms. That approach however does not aimugpert the quality assurance process in moderrwadcdt
development. Compared to our work, this one tresupport the design and implementation of a cbalgorithm
for car-like robots but aims for programming sugord not the software engineering process in géner

The article 29 presents the Virtual Environment iglehInterface for controlling and visualizing retely
located robots as part of an extra terrestrial Enogne by NASA. This paper however states that tieus
Environment Vehicle Interface is not a simulaticecause of the lack of physical laws and collisietedtion, for
example. The main purpose is to visualize the enwirent of a vehicle-like robot thousands of kiloragtaway
from mission control and to let other scientistgtipgpate in missions. In comparison with our apgaro, that work
neither supports the software engineering prodssl nor can be part of a continuous integratimtess.

The work in 40 presents an approach for simulatifiging behavior in intersection areas. The autlshiew the
combination of different behaviors such as cruidiepavior for accelerating a car or following beba¥f another
vehicle drives in front of one’s own car. That warén be applied to other vehicles in our simulasra new
MotionBehaviorinstead of the current naitotionBehaviorByRNDREhat simply follows a pre-defined route.

A number of state machine based development appesaexist, like 12, which describes a framework for
hierarchical, concurrent state machines (HCSMs Utsed, for example, to control traffic in a siatidn, primarily
in the lowa Driving Simulator (IDSJ. The IDS is a platform where different kinds ofs@an be mounted and

integrated in a HIL simulation. Therefore, integwatin an automated background tool chain is nasjiie.



Another approach is to model behaviors and scaneshian environments with the Environment Desaipti
Framework and the Scenario Description Langtfadfelt allows a developer to model autonomous behassing
HCSM as mentioned before and might be an interg@stkiension to our current simulator. 11 addresssinilar
problem, but concentrates on designing scenariddafining behaviors. Furthermore they presentveamiemodel
for defining actions by special occurrences. Thénngaal is to ease the design of virtual scenaaiod behaviors
even for non-specialists. Because of the similatitythe work described in 42 the same restrictiapply in
comparison to our approach.

13 presents the main software architecture for @8, lespecially the modeling of driving behaviorg fo
controlling traffic vehicles. Therefore it amendgetwork in 11 but does not point out possibilities designing
complex software architectures with regard to satioh of software and system components.

In 34 a keyboard controlled virtual vehicle is désed to simulate vehicle traffic on virtual highyga The
simulator allows, like our approach, to model kegtabcontrolled vehicles and vehicles that drivepog-defined
routes. Furthermore, the authors enforce the uségdkeir simulator in so called simulated test bedswever,
automatically executed integration tests as paa ®frver side tool chain in a coherent softwaséesy engineering

process is missing.

VII.  Conclusion

Intelligent driving assistance functions need apdeederstanding of the vehicle surroundings, ofdheing
situation and the traffic rules and regulationsvei as a reasonable knowledge about the physicarsf In the end,
an intelligent driver assistant must be able teedon its own. Thus the 2007 DARPA Urban Challeisga great
opportunity to foster this area of autonomic vedscind their twins, the intelligent driving assissa Developing
this kind of complex software needs an innovatagile development process that is compatible with dverall
system consisting of a standard car, such as a ¥¥8&®, sensors, actuators and a number of compuitable for
automotive use.

For an efficient and stringent development projaatumber of actions have to be taken, includingtenative
development in small increments, early bug-detactiod bug-fixing, stable version and configuratioanagement,
a solid architecture that embraces automated &sdsy level of software, and most of all, a thgtdy designed

test infrastructure. Tests include full systemdstebut for efficiency reasons it is important &sttas much as



possible while focusing on the subsystem under &stindividual methods and classes are testedllgquell as
the whole reasoner. The test architecture allowsoufully extract the reasoner into virtual, sinteld traffic
situations, and allows checking the car behaviovarious traffic situations efficiently. Automatiasf these tests
allows us to (re-) run tests as desired at leastyavight.

There are so many complex traffic situations, leha junction layouts and various possibilitiesbehavior of
other cars, that it is inevitable to run many tésta simulated environment. The simulator is ratfeneral and will
be usable for testing and interactive simulatiootimer contexts as well, e.g. it can be combinat Wardware-in-
the-loop tests.

The approach used and the results gained in th@l&aproject are not only proof that autonomous idgvis
just a few years ahead, but also that efficientettpment of complex software in combination witke thverall
system is possible if the development process ssiglined, yet responsible, agile and assisted gprapriate

modern tool infrastructures.
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