
0018-9162/04/$20.00 © 2004 IEEE64 Computer

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Meaningful Modeling:
What’s the
Semantics
of “Semantics”?

T he Unified Modeling Language (UML) is a
complex collection of mostly diagram-
matic notations for software modeling,
and its standardization has prompted an
animated discussion about UML’s seman-

tics and how to represent it. As the “Wrong Ways
to View Semantics” sidebar describes, authors have
quite different ideas of what constitutes semantics
for UML subsets and adaptations. Worse, implicit
assumptions often influence these definitions and
results. Comparing published research on UML
semantics is thus very difficult, since the compari-
son must take into account the subsets dealt with,
the kind of systems assumed, the relationships
among constructs, the definitions’ detail level, and
the notations and representations used.

Obviously, a multitude of concepts surround the
proper definition of complex modeling languages,
and many people are confused about what these
concepts—both crucial and marginal—really mean
and how to understand and use them. This confu-
sion is particularly apparent in the context of UML,
a multifaceted effort whose followers are ever grow-
ing, but it is also characteristic of other modeling
approaches.

We have thus set out to clarify some of the
notions involved in defining modeling languages,
with an eye toward the particular difficulties arising
in defining UML. We are primarily interested in dis-

tinguishing a language’s notation, or syntax, from
its meaning, or semantics, as well as recognizing the
differences between variants of syntax and seman-
tics in their nature, purpose, style, and use.

ELEMENTS OF A LANGUAGE DEFINITION
Much has been said about the distinction

between the purist notion of information and its
syntactic representation as data. The literature gen-
erally agrees that data is used to communicate, but
extracting or understanding the information behind
it requires an interpretation—a mapping that
assigns a meaning to each (legal) piece of data.

A major source of confusion is the mixing of the
data and information notions. In one case, two
pieces of data might encode the same information,
for example, “June 20, 2000” and “The last day of
the first spring in the second millennium.” In
another case, the same piece of data might have sev-
eral meanings and therefore denote different infor-
mation for different people or applications. The
information the reader derives from “John’s birth-
day,” for example, depends on the context. Deeply
understanding the difference between syntax and
semantics helps avoid confusion.

Just as people use natural languages to commu-
nicate with each other, machines use machine-read-
able languages for communication. Both kinds of
language—whether they are natural, artificial, pro-

Much confusion surrounds the proper definition of complex modeling
languages, especially the Unified Modeling Language. At the root of the
problem is insufficient regard for the crucial distinction between syntax and
true semantics and a failure to adhere to the nature and purpose of each.

David Harel
Weizmann Institute
of Science

Bernhard
Rumpe
Technische
Universität
Braunschweig

[HR04] D. Harel, B. Rumpe.
Meaningful Modeling:
What's the Semantics of "Semantics"?.
In: IEEE Computer, Volume 37,
No. 10, pp 64-72,
IEEE, October 2004.
www.se-rwth.de/publications

gramming, or hardware description languages—
contain a great variety of meaningful language ele-
ments. Communication stakeholders must thus
agree on the language, which in turn fixes the data
set that they can communicate.

Accordingly, a language consists of a syntactic
notation (syntax), which is a possibly infinite set of
legal elements, together with the meaning of those
elements, which is expressed by relating the syntax
to a semantic domain. Thus, any language defini-
tion must consist of the syntax semantic domain
and semantic mapping from the syntactic elements
to the semantic domain.

Syntax
Depending on the language type, syntactic ele-

ments can be words, sentences, statements, boxes,
diagrams, terms, models, clauses, modules, and so
on. In our description and the “Two Language
Examples” sidebar, we use “expression” to repre-
sent these terms.

Textual languages are symbolic in spirit, and their
basic syntactic expressions are put together in linear
character sequences. In contrast, the basic expres-
sions in iconic languages are small pictorial signs
that visually depict elements. An iconic language
can be more intuitive than a textual language, but
only if the designer resists abusing the icons.

In diagrammatic languages, or visual for-
malisms,1 basic expressions include lines, arrows,
closed curves and boxes, and composition mecha-
nisms involve connectivity, partitioning, and “in-
sideness.” Despite some well-known critiques,2,3

diagrammatic languages are proving extremely
helpful in software and systems development. In a
theoretical sense, textual languages and visual or
diagrammatic ones have no principal difference,
but when rigor and formality are called for, prop-
erly defining diagrams seems much harder.

Moreover, although semantics actually describes
a language’s meaning, computer tools make it
impossible to manipulate semantics directly.
Instead, everything on paper or the screen is a syn-
tactic representation. This is also true of the
machine’s internal representation, the so-called
abstract syntax or metamodel.

Because a rigid syntax is critical to correct lan-
guage interpretation, any attempt to compromise it
could be disastrous. Writing read(data) in a lan-
guage in which the input commands are of the form
input(data) will result in a syntax error, for
example. And a computer can’t exactly recognize
the command, “How about getting me a value for
K?” Thus, a formal, concise, and rigid set of syn-

October 2004 65

Wrong Ways to View Semantics

It is an understatement to say that different people view semantics
differently across software and systems engineering. After listening to
numerous presentations and reading even more papers, we have iden-
tified both specializations of the general concept and downright mis-
uses. The following are some common erroneous views, many in the
context of UML.

Semantics is the metamodel. This is a common misuse of the term.
The metamodel is but a way to describe the language’s syntax; it is a
crucial precursor, but it is not the semantics itself. Knowing what a lan-
guage looks like does not equate with understanding what it means.

Semantics is the semantic domain. Some people use the word seman-
tics as shorthand for the statement, “The semantics is given in terms of
a particular semantic domain or maps the syntax into that domain.”
Using semantics and semantic domain interchangeably is erroneous,
since it avoids the most crucial part of the semantics—the semantic map-
ping.

Semantics is the context conditions. This use of the term has its roots
in compiler theory, where everything beyond the basic context-free
grammar is viewed as semantics. It seems to have had a great influence
on the way Object Constraint Language constraints are used on top of
UML’s metamodel. This use of the term semantics is also erroneous, as
it does not entail either a semantic domain or a semantic mapping. It sim-
ply further constrains the syntax. In the UML standardization docu-
ments, “static semantics” is used instead of “context conditions.”

Semantics is dealing with behavior. Some of the most intricate lan-
guages deal with behavior, especially reactive behavior. Their semantics
must prescribe the system’s behavior for each allowed program/model/
expression, so that for such languages, behavior and semantics are
closely related. However, structure description languages, for example,
don’t talk about behavior, but they still need semantics. Hence, seman-
tics and behavior are not to be confused.

Semantics is being executable. Taking the previous point one step
further, some people equate having semantics with being executable.
Clearly, if a language is executable, it probably has an adequate seman-
tics, although that semantics might not have been given an adequately
clear representation. However, not all languages specify behavior, and
not all those that do so are (or need to be) executable. Also, even if the
language is meant to be executable, it can have a nonexecutable, deno-
tational semantics. Thus, in general, having adequate semantics has lit-
tle to do with a language’s ability to be executed.

Semantics is the behavior of a system. Sometimes people talk about
the semantics of a particular system—the way it behaves, its reaction
time, and so on. This is quite different from the semantics of the lan-
guages used to describe that system.

Semantics is the meaning of individual constructs. People often refer
to the semantics of some part of the language, even just one construct.
Clearly, there is much more to semantics than that.

Semantics means looking mathematical. When some people see that
parts of a language definition have mathematical symbols, they are con-
vinced that it is probably also precisely defined. This is simply not true.

Semantics is ________. Some people simply give a buzzword to indi-
cate something about how the semantic definition goes, as in “the
semantics is given by message-passing.” This prompts others to think
that the language is properly endowed with semantics. Sadly, the worst
cases are when the people making this kind of statement actually believe
it themselves.

66 Computer

ticular point, X must be equal to X + Y, and the
program must check that fact.” Worse, who says
that the keywords for, print, and read have
anything to do with their English meanings? Who
says that “+” denotes addition? And what does
“++” mean anyway?

It is possible to guess the meaning of most terms,
since a good language designer probably chooses
keywords and special symbols with a meaning sim-
ilar to some accepted norm. But a computer can-
not act on such assumptions. To be useful in the
computing arena, any language—whether it is tex-
tual or visual or used for programming, require-
ments, specification, or design—must come com-
plete with rigid rules that clearly state allowable
syntactic expressions and give a rigid description
of their meaning.

Semantic domain
Agreement on a language’s meaning is partly a

sociological process, without which the communi-
cated data is worthless. A language’s semantics

tactic rules is essential for precise communication.
Consider the algorithm

K = read();
X = 0;
for (Y = 1 ; Y ≤ K ; Y ++) {

X = X + Y;
}
print (X);

in which the authors want the computer to calcu-
late and print the sum of all natural numbers up to
the input K. The computer (as well as other peo-
ple) must have this same semantic interpretation
and must therefore somehow be told about the pro-
gram’s intended meaning. This is the responsibility
of the semantics. When carefully devised, the
semantics assigns an unambiguous meaning to each
syntactically allowed phrase.

Of course, without semantics, the syntax is
worthless because severe misinterpretations can
occur, such as reading X = X + Y as “at this par-

To illustrate the difference between syntax and semantics,
we offer two simple language examples, one based on arith-
metic expressions and one based on dataflow diagrams.

Arithmetic expressions
A BNF-like grammar gives the syntax for simplified arith-

metic expressions. The grammar’s main composition rule is

<Exp> ::= <Number> | <Variable>
| (<Exp>) | − <Exp>
| <Exp> + <Exp> | <Exp> ∗ <Exp>
| foo (<Exp>)

The language’s basic expressions are the arithmetic opera-
tions, the function symbol foo (a symbol often used to illus-
trate examples of things with no particular meaning or
importance), and the symbols used to define numbers and vari-
ables.

For the semantic domain S we choose all natural numbers
(S<Exp> = Nat), and the semantic mapping M associates a num-
ber with each expression: M<Exp>: <Exp> → Nat. Standard
mathematics is a natural notation for describing the mapping.

In the same way that developers and mathematicians build
expressions as syntax trees, the semantic mapping is defined
inductively. The basic cases are arithmetic constants like
M(“42”) = 42. Accordingly, variables need a variable assign-
ment, which the environment provides.

In the inductive cases, expressions containing simpler expres-
sions are combined using operators. The obvious mapping of
“+” is to the mathematical operation of addition, for example.
We could map the syntactic character “+” to something else,
such as the modulo operation, but that would be strange.
Therefore, we map “+” to the operation plus in the expected

way. Thus, if an expression has the form a “+” b, and a,b ∈
<Exp>, the semantics of the combination is

M(a “+” b) = M(a) + M(b)

where the quotation marks distinguish the symbol’s use as syn-
tax from its more common mathematical use.

This kind of definition is perhaps annoyingly obvious, but it
is extremely important, especially for functions that do not
have a commonly agreed-on interpretation. For the function
symbol “foo,” for example, we choose

M(“foo(” a “)”) = M(a) ∗ M(a).

Dataflow diagrams
Figure A shows a sample expression in the dataflow language.

2

div

mult

add

1

n : N

f(n) : N

Two Language Examples

Figure A. A sample dataflow language expression. The dataflow
calculates output f(n) = n*(n+1)/2 from its input n.

must provide the meaning of each expression, and
that meaning must be an element in some well-
defined and well-understood domain. In the first
sample language in the sidebar, for example, we
chose natural numbers as the semantic domain.

A common misconception in modeling languages
is to confuse semantics with behavior. Both a sys-
tem’s behavior and its structure are important views
in system modeling: Both are represented by syn-
tactic concepts, and both need semantics. Thus,
even entity-relationship diagrams for databases or
UML class diagrams also need semantics so that
users know exactly what the language is defining.

The semantic domain is not to be taken lightly:
It specifies the very concepts that exist in the uni-
verse of discourse. As such, it serves as an abstrac-
tion of reality, capturing decisions about the kinds
of things the language should express. The domain
is also a prerequisite to comparing semantic defin-
itions. Consequently, an explicit definition of the
semantic domain is crucial, and although it is nec-
essary to define a language’s meaning, the seman-

tic domain itself is normally independent of the
notation.

So how can the semantic domain be described
and what does it look like? The description can be
in varying degrees of formality, from plain English
to rigorous mathematics. For example, defining the
semantic domain of the full UML, which contains
many diagrammatic sublanguages, is far from a sim-
ple matter: A satisfactory definition must involve
combinations of myriad elements, such as messages,
states, events, data values, Boolean values, time ele-
ments, and many combinations thereof.

At present, we see no simple and obvious way to
define this complex semantic domain precisely,
clearly, and readably. While descriptions in the lit-
erature go into great detail about the syntax of the
various UML sublanguages, the same authors
define the semantic domain informally, if at all,
scattering the relevant information throughout an
often extremely long verbal description. Whereas
language designers have provided satisfactory
semantics for several widely known modeling lan-

October 2004 67

Dataflow diagrams consist of computational nodes equipped
with input and output channels for communication. Directed
dataflow links connect channels in a one-to-many style. Special
nodes describe the diagram’s interface to the environment.

We can define a dataflow diagram’s semantics several ways,
depending on what is being described. If the intent is to describe
the structure only, the semantics should prescribe a white-box
structural view for each enclosing component. This allows a
hierarchical decomposition, but nothing is said or meant about
whether, when, or why data will actually flow.

If the aim is to incorporate behavioral aspects, new questions
arise. Does a computational component have memory? Can it
be nondeterministic? Can the component react to partial input
by emitting a partial result? Can several results be sent as a
reaction to a single input? Is there a need to track the causality
between input and output or is a message trace sufficient? Do
the components need to be greedy, and can they emit messages
spontaneously? Is there a buffer along the communication lines
between components for storing unprocessed messages, or are
messages lost if unprocessed? Is the fairness of processing input
from different sources guaranteed? Is feedback (looping) in the
diagram allowed? And on and on.

Different answers to such questions lead to a variety of dif-
ferent kinds of semantic domains for behavior: traces,
input/output-relations, streams and stream-processing func-
tions, and so on. In general, the less powerful components and
channels are, the easier it is to define the semantic domain.

In the simplest case, the dataflow network is deterministic,
reacts only to complete sets of inputs, and has no memory. It
is then sufficient to adopt a function from inputs to outputs as
the semantic domain: IOfunc: I → O. For this language, this
would be IOfunc: Nat → Nat defined by IOfunc(n) = n(n + 1)/2.

Another semantic domain could be the set of traces, which

includes observations of inputs and outputs in an interleaved
manner: IOtrace = {x | x ∈ (I ∪ O)*}, where * denotes Kleene-
iteration), but it is not possible to track a causal relationship for
reactions or to describe composition properly. One way to alle-
viate this is to use an even richer semantic domain.1

Space permitting, we could describe more than 12 reason-
able semantic domains for this language, each with its own spe-
cial issues and complexities. Generally, however, for dataflow
semantics, a subtle change in the semantic domain can improve
the convenience of defining the semantic mapping for a given
notation.

Because we have used only deterministic components, the
semantic mapping in our example is rather easy. A determinis-
tic history function can represent a dataflow component’s
semantics. The add component adds its inputs pointwise and
thus corresponds to the semantic function Fadd: Nat* × Nat*
→ Nat* by stating that on any pair of input sequences a = [a1,
a2, … , ak] and b = [b1, b2, … , bl], with m = min(k,l), we have
Fadd(a,b) = [a1 + b1, a2 + b2, … , am + bm].

This definition allows inputs on channels to arrive at differ-
ent times, so it implicitly models buffers on the dataflow links
and at the same time specifies add as a greedy component. The
1-component models a continuous source of constants: F1 =
1*. The function composition then simply carries out compo-
sition. In our example, F(n) = Fdiv(Fmult(n, Fadd(n, F1)), F2).2

References
1. M. Broy et al., The Design of Distributed Systems—An Introduc-

tion to Focus, rev. version, SFB-Bericht 342/2-2/92A, Technische
Universität München (Tech. Univ. of Munich), Jan. 1993.

2. D. Harel and B. Rumpe, Modeling Languages: Syntax, Semantics
and All That Stuff, tech. report MCS00-16, Weizmann Institute of
Science, 2000.

68 Computer

guages, including one or two of UML’s sub-
languages, full UML, with its multitude of
languages and its complex set of intercon-
nections between them, still suffers severely
from this deficiency.

Semantic mapping
A sound language definition must relate the

syntactic expressions to the semantic domain
elements so that each syntactic creature maps
to its meaning. In particular, when defining a
language’s semantics, it is essential to explic-

itly and clearly associate each syntactic operator
(even obvious ones like “+”) with its meaning as
an operator over the semantic domain. We cannot
overestimate the importance of doing this, even
though the task might seem trivial in this example.

Often, language definers explain the mapping
informally through examples and plain English.
Regardless of the exposition’s degree of formality,
the semantic mapping M: L → S must be a rigor-
ously defined function from the language’s syntax
L to its semantic domain S. Needless to say, an ade-
quate semantic mapping for the full UML does not
exist.

The sidebar shows how to build a semantic def-
inition for an arithmetic expression from the
semantic definitions of the expression’s con-
stituents. The resulting semantics is compositional,
composed analogous to the way the syntax is struc-
tured, with the meaning of a composite creature
being fully based on the meanings of its parts.4 A
compositional semantics is highly desirable,
although often difficult (and sometimes impossi-
ble) to achieve.

REPRESENTATION
All elements of a language definition—the syn-

tax, semantic domain, and semantic mapping—
need a representation. This could entail using a
fourth language or using the same language (such
as basic mathematics) to describe both the seman-
tics itself and its representation.

Either case gives rise to additional sources of con-
fusion. Most languages have several definition lay-
ers. Many textual languages have not only clearly
defined and separated layers, but also standard
techniques for defining them:

• A set of characters forms an alphabet.
• Groups of characters form words, denoting

keywords, numbers, delimiters, and so on.
Regular expressions typically define this lexi-
cal layer.

• A third layer groups these words into sentences
or expressions, usually with a context-free
grammar.

• A fourth and final layer constrains the sen-
tences by imposing context conditions, for
example, that variable use be consistent with
variable types.

In compiler theory, the constraints on the fourth
layer are often called semantic conditions because
semantic considerations trigger them. However, the
constraints affect only the syntax; they do not con-
tribute to the actual definition of semantics. For
example, some conditions are expressed as context
conditions for convenience, although they could
have been expressed as part of the context-free gram-
mar with the same effects. An example of this is the
well-known priority scheme for infix operators.

A typical constraint for the arithmetic language
in the sidebar restricts the set of well-formed sen-
tences by disallowing use of the special name “foo”
as a variable or as a function with more than one
parameter. Language designers must define context
conditions in a decidable form, since normally the
parser must be able to check them.

Although there is no principal difference between
textual and visual languages, it is harder to make
words and sentences in a visual language. Language
designers often start out with a set of topological
notions that they first specialize using geometry,
then put together topologically, and finally spe-
cialize once again using geometry.

The process might follow these steps:

• create the first layer with two kinds of basic
topological elements: open and closed line seg-
ments (closed segments being closed Jordan
curves);

• specialize these elements geometrically into
several kinds of lines and closed shapes—
arrows, straight lines, splines, boxes and cir-
cles, and so on—with various line styles and
colors;

• arrange the geometric shapes into diagrams by
first making topologically meaningful combi-
nations using connectivity, insideness, parti-
tioning and intersection, and the like and then
laying these out geometrically in a 2D or 3D
diagram; and

• create the fourth layer by imposing context
conditions for the set of legal diagrams.

To characterize the elements in each syntactic
layer, a notation NL represents the syntax of lan-

The semantic
domain captures
decisions about

the kinds of things
the language

should express.

guage L. For textual languages, NL typically con-
sists of a combination of the Backus-Naur Form
(BNF) and Chomsky-2 context-free grammars. As
a side benefit, NL also provides an abstract version
of L, sometimes called the abstract syntax, together
with an algorithm for parsing the concrete into the
abstract version. In this way, the language and its
abstract version become identifiable.

Defining the semantic domain S requires an under-
lying notation NS. In practice, the NS’s used for this
purpose are more numerous than NL’s: natural lan-
guages such as English, general-purpose formal lan-
guages such as logic and algebraic specification
languages, standard mathematics, and so on.

The various NL’s and the NS’s give rise to many
ways of defining the mapping between the two
notations. Often authors describe the semantic
mapping informally, showing specific examples of
the mapping but without giving the mapping itself.
An explicit definition of the mapping M, which is
clearly preferable, requires a notation as well, NM.

Candidates for NM are pure mathematical nota-
tion5 as well as graph transformations. The map-
ping notation must somehow include both NL and
NS such that “NL, NS ⊆ NM.” Graph transforma-
tions work nicely if both domains are graph struc-
tures, and mathematics works well too, since the
language designer can deal with all relevant ele-
ments within the generic mathematical framework.
However, using Z or an algebraic language similar
to the mapping notation would require major addi-
tional work to model the language’s syntax NL

within Z. Further, using Z as the semantic domain
would render an explicit mapping definition
extremely difficult.

METAMODELING IN UML
Although visual formalisms are becoming

increasingly popular, it is not that clear what nota-
tions would be best for describing them. For tex-
tual languages, using grammars for the syntax is
widely accepted, but visual languages have two
major competing approaches. One involves graph
grammars,6 which extend grammar concepts from
textual languages to diagrams. The other approach
calls for using a kind of entity-relationship dia-
gram—specifically UML class diagrams—to model
a diagrammatic language’s abstract syntax. While
class diagrams appear to be more intuitive than
graph grammars, they are also less expressive.

Official UML definitions use the class diagram
approach in a recursive, bootstrapping fashion. The
technique, metamodeling, also uses context condi-
tions written in the Object Constraint Language

that help overcome the weaker expressive
power. Metamodeling’s advantage is that
UML users, who probably have basic UML
knowledge, don’t need to learn a new exter-
nal notation to be able to see a good syntax
definition.

But however intuitive and appropriate the
technique is, using it to define UML is still
limited to describing syntax; the problem of
defining semantics remains. Just as C++
semantics cannot be adequately understood
merely from its context-free grammar and its addi-
tional context conditions, so UML is not under-
standable from its syntax alone. And even for the
simpler issue of syntax definition, this bootstrap-
ping requires a solid base, which means that UML
language designers must first define class diagrams
and the Object Constraint Language expressions in
full—including semantics. Obviously, this requires
techniques beyond metamodeling.

In its current form, the Object Management
Group’s documents do not offer a rigorous defin-
ition of UML’s true semantics, not even of the
semantic domain. Rather, they concentrate on the
abstract syntax, intermixed with informal natural-
language discussions of what the semantics should
be. These discussions certainly contain much
interesting information on the semantics, but they
are a far cry from what developers, as well as tool
vendors, really need. As recent research shows,
they still lack many clarifying details and contain
many inconsistencies.

Actually, rigorously defining semantics for the
full UML is a daunting task that would require a far
more detailed mathematical analysis of UML’s
many loosely connected kinds of diagrams than has
been done to date.

Nevertheless, defining the semantics of the lan-
guage of statecharts, which is UML’s pure behav-
ioral core and can be used to drive the execution
of UML models, has indeed been carried out, both
for its non-object-oriented and object-oriented ver-
sions.7,8 In such a definition, a detailed algorithm
is given for computing the legal executions (runs)
of any system defined using the language. The
semantic domain consists of these appropriately
represented system runs, and the algorithm consti-
tutes the semantic mapping.

DEGREE OF FORMALITY
One misconception about formality is that tex-

tual and symbolic languages are inherently formal
and visual, and diagrammatic languages are not.
Many people believe that if a language is formal

October 2004 69

The UML standard
concentrates on

syntax and does not
offer a rigorous

definition of UML’s
true semantics.

70 Computer

looking it must be formal, as if they were measur-
ing formality by how many Greek letters and math-
ematical symbols the language contains. This is a
myth. Some languages, such as versions of Petri nets
and statecharts, don’t look formal at all, but are in
fact very formal.

Admittedly, there is a correlation between a lan-
guage’s mathematical appearance and its degree of
formality simply because people who communicate
using mathematical terminology and notation tend
to define things mathematically and therefore pre-
cisely as well. Still, we emphasize that “visual” and
“informal” are by no means synonymous, and that
“formal” is a label for any language endowed with
precise and unambiguously defined syntax and
semantics.

Another kind of precision is also relevant—the
degree to which language expressions make precise
statements. This is not the same as how precisely a
language is defined. As Figure 1 shows, a language
can be very rigorous, yet can still be used to make
imprecise statements, but the reverse is not gener-
ally true.

Even in the complex situation of modeling sys-
tems, the degree of formality of the notation used
to describe a system is orthogonal to the degree of
the model’s precision—the model’s “detailedness.”
It is possible to describe a system using a rather
abstract model—with many details not described—
even with a fully satisfactory formal definition of
UML syntax and semantics.

One of the main arguments against a formal
foundation for visual languages stems from incor-
rectly equating model abstraction with language
fuzziness. Consequently, people incorrectly con-
clude that a precisely defined language forces devel-
opers to fill out details they don’t want to. This
overspecification problem does not arise from the
language’s formality, but from the developers’ fail-
ure to use the right abstractions. Sometimes the lan-
guage’s inability to provide those abstractions is at
fault, but mostly the culpability lies with the tools
that implement the language.

THE DOODLING PHENOMENON
In general, people tend to take diagrams too

lightly, finding it difficult to consider a collection of

graphics serious enough to be a language and pro-
found enough to be the real thing. Perhaps the blame
lies with the early failure of visual programming
techniques to replace conventional programming
languages. As a result, we often see the doodling phe-
nomenon—a mind-set that says diagrams are what
an engineer scribbles on the back of a napkin, but
the real work is done with textual languages.

Sadly, too many language designers and method-
ologists share this view. Some find it difficult to
understand why we can’t simply add more graph-
ical notations to a visual formalism without spoil-
ing an easy to understand semantics by introducing
special cases or concept combinations that contra-
dict each other. For example, in private communi-
cation, people have proposed all kinds of
extensions to statecharts, such as (actual quotes) a
new kind of arrow that “means synchronization”
and a new kind of box that “means separate-thread
concurrency.”

These well-meaning individuals seem to think
that it is enough simply to add concepts and explain
their intended meaning in a few words. In reality,
such additions can be extremely challenging.
Defining a consistent syntax and semantics for a
full-fledged extension of statecharts9 that would
allow states to overlap took considerable work,10

and the results turned out to be too complex to
implement. Nevertheless, people still ask why state-
charts don’t support overlapping. One person, cer-
tainly a die-hard doodler, kept asking, “Why don’t
you just tell your system not to give me an error
message when I draw these overlapping boxes?” as
if that were all there was to it.

ACCOMMODATING THE INTENDED AUDIENCE
Any decision about how to represent a language

definition must consider the intended audience. Are
potential readers notation developers, language
definers, methodologists, tool vendors, or users?

If the target audience is users, formulas won’t be
suitable. Typical users won’t try to understand even
the semantic domain definition, especially if they
have to first understand the notation for it (NS),
which itself is probably another formal language.
Because no semantic formalism is understandable
to a broad range of users, it’s probably best to use
natural language with many examples to explain
the notation and carefully describe the semantics.

Language developers and methodologists, on the
other hand, would be willing to cope with the nota-
tions for semantics. Developers would gather
insights into what would be the best form for lan-
guage concepts. Methodologists would be moti-

Statement precision
HighLow

30 < X < 70

Number of
about 100

99 < X < 101

Not possible

High

Language
precision

Figure 1. Language
precision versus
statement
fuzziness. It’s
possible to make
imprecise
statements with a
precise, rigorously
defined language,
but it’s hard to be
precise with an
imprecise language.

vated to use the notation in the interest of discov-
ering how to advise language users.

Tool vendors should also be exposed to a rigor-
ous semantics, but they are probably better off with
precise descriptions of “how to deal with” instead
of the “what” and the “why.” They typically will
be less interested in a definition of what the nota-
tion means mathematically, preferring to learn how
to generate code and tests from it that are faithful
to the original semantics. Some vendors are also
interested in rules for adding, removing, and adapt-
ing notation elements, as in refinement, refactor-
ing, and transformation calculi.5,11

PERTINENT QUESTIONS
Usually, deep insights result from the rigorous

process of defining a language’s semantics—insights
that are foundational to improving the language
itself. This process should involve seeking answers
to at least these four questions:

• Does the given formalization capture the
intended users’ intuition?

• Are the context conditions sufficient to ensure
that language expressions are consistent and
meaningful?

• Does the notation permit the specification of
important semantic domain properties?

• If analysis techniques or transformations for
the language exist, are they sound with respect
to the semantics?

A tremendous amount of work is necessary to
address such questions, but it is work that must be
part of any serious language definition. A prereq-
uisite for determining sound analysis techniques
and transformations (fourth question) is an explicit
definition of the semantic mapping. Other ques-
tions address issues of user consensus and accep-
tance, which are based on a broadly accepted, clear,
and precise standardization of both syntax and
semantics.

Developers use programming languages to intro-
duce new classes, attributes, or operations, and
multinotation modeling languages are often extend-
able as well. UML has numerous mechanisms for
introducing new elements. Besides classes, methods,
and other so-called first-class citizens, UML allows
users to specialize the meaning of certain elements
through stereotypes and tagged values. Un-
fortunately, however, UML does not offer a mecha-
nism to precisely describe the meaning of these
additions within the language itself. Instead, users
resort to informal descriptions, which places UML

at an even greater distance from the ultimate goal of
a full, well-defined language.

Another disturbing issue with broad modeling
frameworks like UML is the possibility of con-
structing conflicting descriptions. We won’t attempt
a detailed discussion of this, but suffice to say that
when multiple language views offer different ways
to capture the same aspects of the modeled system,
users will get into trouble. Thus, many UML users
discover that the behavioral aspects of their speci-
fications overlap, causing redundancy at best and
inconsistency at worst. Therefore, providing a for-
mal semantics for all such sublanguages and all
their interconnections, together with tools for ana-
lyzing and executing their behavior and for con-
sistency checking, is crucial.

A s the complexity of modeling languages such
as UML increases, so does the confusion
about how to properly define them. Rather

than being merely a definitional issue, this is fun-
damental to using such languages for specifying
and designing critical large-scale systems, especially
systems with intricate dynamic behavior.

The crux of proper modeling language definition
is in the clear distinction between syntax and true
semantics. Semantics is not merely a term that the-
oreticians use to prove theorems. Rather, it denotes
an extremely important issue in language defini-
tion. Language designers and users must take the
time to understand what semantics is about, how
to describe it, and how to recognize its unique pur-
pose. Only then will we be able to provide better
tools and methods for the complex modeling lan-
guages now being used and help ease the intro-
duction of future ones. �

References
1. D. Harel, “On Visual Formalisms,” Comm. ACM,

vol. 31, no. 5, 1988, pp. 514-530.
2. E. Dijkstra, “On the Economy of Doing Mathemat-

ics,” The Mathematics of Program Construction, J.
Woodcook, C. Morgan, and R. Bird, eds., Springer-
Verlag, 1993.

3. F.P. Brooks Jr., “No Silver Bullet: Essence and Acci-
dents of Software Engineering,” Computer, May
1987, pp. 10-19.

4. E-R. Olderog, “Semantics of Concurrent Processes:
The Search for Structure and Abstraction,” Parts I
and II, Bull. EATCS, 1986, no. 28, pp. 73-97, and
no. 29, pp. 96-117.

October 2004 71

5. B. Rumpe, Formal Method for Development of Dis-
tributed Object-Oriented Systems, Herbert Utz Ver-
lag Wissenschaft, Munich Univ. of Technology (in
German), 1996.

6. H. Ehrig, “Introduction to the Algebraic Theory of
Graph Grammars,” Proc. Int’l Workshop Graph-
Grammars and Their Application to Computer Sci-
ence and Biology, V. Claus, H. Ehrig, and G.
Rozenberg, eds., LNCS 73, Springer-Verlag, 1979.

7. D. Harel and A. Naamad, “The STATEMATE Seman-
tics of Statecharts,” ACM Trans. Software Eng.
Methodologies, vol. 5, no. 4, 1996, pp. 293-333.

8. D. Harel and H. Kugler, “The Rhapsody Semantics
of Statecharts (or On the Executable Core of the
UML),” Proc. 3rd Int’l Workshop Integration of
Software Specification Techniques for Applications
in Engineering, H. Ehrig et al., eds., LNCS 3147,
Springer-Verlag, 2004, pp. 325-354.

9. D. Harel, “Statecharts: A Visual Formalism for Com-
plex Systems,” Scientific Computer Programming,
vol. 8, 1987, pp. 231-274.

10. D. Harel and H.A. Kahana, “On Statecharts with
Overlapping,” ACM Trans. Software Eng. Method-
ologies, vol. 1, no. 4, 1992, pp. 399-421.

11. W.F. Opdyke and R.E. Johnson, Creating Abstract
Superclasses by Refactoring, tech. report, Computer
Science Dept., Univ. of Illinois and AT&T Bell Lab-
oratories, 1993.

David Harel is dean of the Faculty of Mathematics
and Computer Science at the Weizmann Institute of
Science. He has worked in many computer science
areas, including automata and computability the-
ory, logics of programs, database theory, software
and systems engineering, visual languages, diagram
layout, modeling and analysis of biological systems,
and the synthesis and communication of smell.
Harel was also a cofounder of I-Logix Inc. He
invented statecharts, coinvented live-sequence
charts, and was a member of the team that designed
Statemate and Rhapsody. Recently, he coinvented
the play-in/out approach to scenario-based pro-
gramming and the Play-Engine. He is a Fellow of
the ACM and the IEEE. Contact him at dharel@
weizmann.ac.il.

Bernhard Rumpe is head of the Software Systems
Engineering Institute at the Technische Universität
Braunschweig. He advocates an approach to soft-
ware development that includes rigorous model
analysis, test modeling, and model refactoring, as
well as application of the methodologies underly-
ing these new technologies for industrial projects.
He has contributed to the definition of UML, to
OMG’s model-driven architecture, and to the devel-
opment and enhancement of software engineering
processes. Contact him at b.rumpe@tu-bs.de.

Don’t miss special issues on

Incorporating COTS
�

Project Management
�

Aspect-Oriented Software Development
��

Architecture Fundamentals

h t tp : / /computer.org/subscr ibe
To subscribe, visit

ht tp : / /computer.org/subscr ibe
or contact our Customer Service Department:

+1 800 272 6657 (toll-free in the US and Canada)

+1 714 821 8380 (phone)

+1 714 821 4641 (fax)

IEEE

Stay in the software game!Stay in the software game!

