
0740 -7459 / 21©2021 I EEE MARCH/APRIL 2021 | IEEE SOFTWARE 119

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.orgINSIGHTS

Editor: Olaf Zimmermann
University of Applied Sciences
of Eastern Switzerland, Rapperswil

olaf.zimmermann@ost.ch

MODELING LANGUAGES AND
frameworks have been the key tech-
nology for advancing model-driven
engineering (MDE) methods and
tools. Many industrial and research
tools have been realized and are
used across many domains. Hence,
we think it is the right time to de-
fine what should be the future of
modeling technologies, especially
the requirements for the next
generation of modeling frameworks
and languages.

I n January 2020, the S ec-
ond Winter Modeling Meeting
(WMM2020) was held in San Vi-
gilio di Marebbe, Italy, focusing on
the analysis of the state of research,
state of practice, and state of the art

in MDE. The event brought together
experts from industry, academia,
and the open source community to
assess 1) what had changed in re-
search on modeling in the last 10
years, 2) which problems are still
unsolved, and 3) which new chal-
lenges have arisen.

This article presents a set of suc-
cess stories and driving success fac-
tors of modeling and MDE, as well
as a set of challenges and corre-
sponding research directions that
emerged from the synthesis of the re-
sults of our analysis.

The use of models in computer
science can be traced back to the
earliest efforts in the field. The se-
quences of designs by Charles Bab-
bage on his Analytical Engine were
the first models of a Turing-complete
mechanical device. Since then, many

different modeling languages have
been designed in software engineer-
ing (SE), strongly shaping the disci-
pline of MDE.1

The role of models in improv-
ing productivity in SE is a recurring
theme. During the Peak of Inflated
Expectations phase in the hype cycle
at the beginning of the 2000s, con-
cepts like model-driven architecture
and model-driven SE (MDSE), as
well as the promotion of the Unified
Modeling Language (UML) as the
panacea for all possible problems in
SE, have substantially influenced the
MDE discipline.

Since then, software modeling
has arrived at the Plateau of Produc-
tivity phase, and the modeling com-
munity learned when and how to use
its founding principles for improving
the productivity of SE.2

Digital Object Identifier 10.1109/MS.2020.3041522
Date of current version: 11 February 2021

What Is the Future
of Modeling?
Antonio Bucchiarone, Federico Ciccozzi, Leen Lambers, Alfonso Pierantonio, Matthias Tichy,
Massimo Tisi, Andreas Wortmann, and Vadim Zaytsev

From the Editors

Are models both precise and usable enough to drive the engineering of a software

system and support low-code visual programming? What is the value of informal

model sketching? In this issue’s “Insights” department, we welcome guest colum-

nists from the Second Winter Modeling Meeting, an event attended by professional

software engineers from industry, open source project contributors and researchers

from academia, who share success stories and future challenges for model-driven

engineering languages, methods, and tools. — Cesare Pautasso and Olaf Zimmermann

INSIGHTS

120	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

The goal of this article is twofold:
1) to present three success stories
where modeling has been applied
in various ways for different target
groups to achieve other goals and 2)
to formulate a set of areas and corre-
sponding research directions.

Modeling Success Stories
In the following sections, we review
the successful shapes of modeling:
model-based systems engineering
(MBSE), low-code software develop-
ment, and informal software mod-
eling. Each of the three sections
concludes with a summary of the
success factors relevant for the
modeling shapes shown in Figure 1
with key experiences for each of the
shapes listed in Table 1.

MBSE
For the systematic and reliable engi-
neering of (cyberphysical) systems,
modeling, as a technique used to
describe or prescribe the system’s
properties under development, is

the essential foundation. Conse-
quently, engineers from various do-
mains have been modeling for ages.
For instance, electrical engineers use
mathematical formulae to describe a
system’s processes, and mechanical
engineers use technical drawings to
prescribe constructions (see Table 1).

The automated analysis and syn-
thesis of system models and their
parts have become possible thanks
to modeling notations that helped
define and establish practices in ap-
plication areas (e.g., automotive,
railway, and aerospace).

Via model-based analyses, simu-
lations, and syntheses across system
parts provided by experts of differ-
ent domains, challenges and mis-
takes too costly to address in real
systems can be uncovered early. For
example, cases like extreme situa-
tions (Boeing 737 MAX) or incom-
patible assumptions of system parts
(Ariane 5), if proactively discovered,
can significantly reduce failures in
the resulting systems.

Research and industry have pro-
duced various modeling techniques
for the engineering of software for
embedded and cyberphysical sys-
tems. Those techniques address dif-
ferent phases in the engineering
process. Large-systems engineering
companies in avionics successfully
apply architecture modeling lan-
guages to decompose system com-
ponents’ structure and behavior and
facilitate the development, analysis,
and integration of subcomponents
across multiple departments. Par-
ticularly, the modeling and analysis
of extrafunctional requirements like
dependability and timeliness have
been a success in that area.

To describe continuously vary-
ing behavior, corresponding model-
ing languages have been broadly and
successfully adopted. In many en-
gineering departments, MATLAB’s
Simulink (https://www.mathworks
.com/products/simulink.html) has
become one of the prime modeling
tools. Modeling languages enable

Informal Modeling

Low-Code Software
Development MBSE

• Emergent Graphical Notations
 Support Communication,
 Collaboration, and
 Understanding
• Postponement of any
 Structural Limitation on the
 Sketched Models as Long as
 Possible

• Inclusion of Nonprofessional
 Developers
• SE With Minimal Up-Front
 Investment
• Costs Rise in Proportion to
 Business Value

• Communication, Understanding,
 and Development Across Experts
• Stability of Languages, Methods,
 and Tools
• Industry Can Rely on Educators
 Training Future Employees

• AI-Based MDE Techniques
• Multiparadigm Modeling
• Model for Modeling
• Model Management

Open Challenges

FIGURE 1. Modeling success stories and challenges. AI: artificial intelligence.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on March 23,2021 at 12:10:06 UTC from IEEE Xplore. Restrictions apply.

[BCL+21] A. Bucchiarone, F. Ciccozzi, L. Lambers, A. Pierantonio, M. Tichy, M. Tisi, A. Wortmann, V. Zaytsev:
{What Is the Future of Modeling?
In: IEEE software, 38(2), pp. 119-127, IEEE, March-April 2021.
www.se-rwth.de/publications/

INSIGHTS

	 MARCH/APRIL 2021 | IEEE SOFTWARE � 121

both the automated analysis of cor-
rectness and other properties and the
automatic generation of code that is
widely used in today’s products such
as Eclipse, MetaEdit+, and Modelica.

The standardization of modeling
languages by ANSI/International
Society of Automation, the National
Institute of Standards and Technol-
ogy (NIST), or the International
Organization for Standardization
has built the foundation for multi-
stakeholder, cross-company model-
ing required to successfully engineer
cyberphysical systems. Popular stan-
dards that employ modeling tech-
niques define modeling languages,
such as function block diagrams
[IEC 61131-3 (https://plcopen.org/
s tatus - iec- 61131-3 - s tandard)] ,
IDEF0 manufacturing functions
[NIST FIPS 183 (https://csrc.nist
.gov/publications/fips)], or the EX-
PRESS data modeling language [ISO
10303 (https://www.iso.org/standard/
38047.html). These standards allow

companies and stakeholders to rely
on the same explicit models to en-
sure the systems’ compatibility under
development. Moreover, they enable
tool builders to rely on stable, shared
foundations. Overall, standards are
vital to the success of modeling in in-
dustrial practice.

The success of modeling for cy-
berphysical systems is due to the
levels of precision of the modeling
languages, standardization, and the
importance of frontloading in sys-
tems engineering: Successful lan-
guages, such as AADL (http://www
.aadl.info) or Simulink, are tailored
to broad domains without being
overly specific.

Moreover, this broad use of such
sufficiently precise modeling lan-
guages fosters communication, un-
derstanding, and development across
experts from different departments,
companies, and domains. Another
reason for the success of explicit mod-
eling in engineering is that modeling

languages—and, by extension, the
tools featuring them—are either sup-
ported by large industrial consortia
or are standardized. The broad com-
mitment to specific technologies,
languages, and standards enables
companies to rely on their availabil-
ity and stability in the future, which
encourages further commitments to
their use, development, and extension.
However, this generality introduces a
challenging conceptual gap3 between
the experts’ domains, with their con-
cepts and methods, and the solution
domain of SE, along with its own
concepts and methods; this gap needs
to be addressed in next-generation
modeling tools. The idea of bridg-
ing these two worlds with automated
means is intriguing and has engaged
the community, but it has not al-
ways worked. Successful applications
in these areas focus on the domains’
specifics and provide well-integrated
platforms with clear technical benefits
for developers.

Table 1. The selected key experiences of modeling success stories.

Success story Modeling goal Experiences Reference

MBSE Cost and time savings for domain
experts and system integrators

“[MBSE] enables realization of several key benefits
including: Establishing a common understanding of
the structure and meaning of information, enabling
domain knowledge reuse, making domain assumptions
explicit, maintaining separation of domain knowledge
and operational knowledge, supporting reasoning and
analysis of domain knowledge, capturing agreements on
usage, and enabling consistent [...] conversation, thereby
preventing confusion and misunderstanding.”

14

Low-code software development Shifting programming tasks from
software engineers to domain
experts

“[...] a significant difference from traditional development
was observed in that the application architecture was
provided through the platform, leaving the developer to
concentrate primarily on what data are required and how
they should be captured.”

15

Informal modeling Communication and collaboration “Over 70% of all survey participants used models often
or always for communicative and cognitive processes.”
“Models were used more as a ‘thought tool’ and to
facilitate discussions among stakeholders with diverse
backgrounds.”

6

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on March 23,2021 at 12:10:06 UTC from IEEE Xplore. Restrictions apply.

INSIGHTS

122	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Heavyweight modeling, pro-
foundly relying on rigorous specifica-
tion and state-of-the-art engineering
practices—as employed in cyber-
physical systems—works well if mod-
els are continually used throughout
the development process. Ideally,
models provide the single source of
truth; tools are used to analyze the
models, performing timing analysis,
correctness, control stability of feed-
back controllers, easy deployment,
code generation, or interpretation of
the model (see “Model-Based Soft-
ware Engineering”).

These benefits are also shown in
the highly positive results of empiri-
cal studies on the effect of modeling
in the embedded systems domain,
where modeling affects very posi-
tively the productivity of engineers
and the quality of the products.2

Low-Code Software Development
Recently, low-code development
platforms have been considered
promising for democratizing digi-
tal processes in organizations.4
Notably, earlier attempts to sim-
plify software development, e.g.,
fourth-generation languages, were
not exempt from problems. Today,
end-user programming, mashups,
or situational programming lever-
age abstraction and automation

by making full use of recent ad-
vances in domain-specific modeling,
visual editing, and user experience.
Spreadsheet applications’ over-
whelming success has inspired low-
code platforms, with their ease of
use and substantial computational
power. Major-market analysis firms
have highlighted current impressive
investments by vendors and cus-
tomers in low-code platforms for
business applications, an foreseen
positive trend for the next several
years. Besides the current commer-
cial success in business application
development, other domains are
considered reasonable grounds for
these solutions, such as knowledge
management and digital transfor-
mation in manufacturing.

Several web giants have recently
started providing their own low-code
development platform, e.g., Micro-
soft PowerApps (https://powerapps
.microsoft.com), Google App Maker
(ht tps: //developers.google.com/
appmaker), and Amazon Honeycode
(https://www.honeycode.aws). Some
medium-sized vendors were recently
protagonists of impressive acquisi-
tions [e.g., US$360 million by KKR
and Goldman Sachs for OutSys-
tems (https://www.outsystems.com)
and US$730 million by Siemens
for Mendix (https://www.mendix

.com)]. Other popular low-code plat-
form providers include AppSheet
(https://www.appsheet.com), Caspio
(https://www.caspio.com), File-
Maker (https://www.filemaker.com),
Kony (https://www.kony.com), Pa-
rabola (https://parabola.io), Quick-
B a s e (h t t p s : / / w w w.qu i c kb a s e
. com), and Salesforce (https://www
.force.com).

The prominent success of low-
code platforms in business appli-
cations is tied to the present-day
software-production landscape.
Despite aggressive recruitment ef-
forts and innovative working condi-
tions, the IT industry’s development
capability is at capacity. Low-code
development platforms enable the in-
clusion of nonprofessional develop-
ers into the application production
process, letting IT experts focus on
the more knowledge-intensive tasks.

Typically, low-code platforms
are inspired by different modeling
paradigms and tailored to the most
diverse domains. Therefore, it is not
trivial to provide a unifying and in-
formative characterization of the
features they offer and for which
types of applications. Nevertheless,
they can be distinguished by the fol-
lowing factors: 1) advanced user-
interfaces that help the user develop
his or her proficiency with the tool in
a learning-by-doing manner quickly;
2) platform-as-a-service architecture
to mitigate the accidental complexity
of managing (e.g., installing and up-
grading versioned components) the
modeling environment, deploying
the application, and monitoring its
execution; and 3) machine learning
techniques to ease the user’s devel-
opment process by providing him or
her with automatic assistance tools,
such as a recommendation system.
Modeling languages and model-
driven techniques are used within

MODEL-BASED SOFTWARE
ENGINEERING

In MBSE, the modeling is successful if standardized or established modeling
techniques and languages lead to cost and time savings for domain experts and
system integrators. This is often achieved by enabling the analysis and synthe-
sis of system parts at design time, long before the real system or its compo-
nents are manufactured, to avoid failures, rather than to detect the reasons
for them.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on March 23,2021 at 12:10:06 UTC from IEEE Xplore. Restrictions apply.

INSIGHTS

MARCH/APRIL 2021 | IEEE SOFTWARE 123

low-code platforms either explicitly
or implicitly (e.g., hidden behind vi-
sual editors or forms).

Low-code development plat-
forms’ technical merits do not fully
explain their significant commercial
success thoroughly. Although their
interoperability, openness, and scal-
ability are still subject to further in-
vestigation, 5 their accessibility, user
focus, strategies for hiding acciden-
tal complexity, and a convenient
learning curve can spur innovation,
leading to better model-driven plat-
forms (see “Low-Code Software
Development”).

Informal Modeling
The aforementioned two scenarios
show the application and value of
modeling in two specific and differ-
ent application areas. Additionally,
modeling is also used extensively in
generic SE, albeit with different in-
tentions than the applications men-
tioned previously.

Störrle conducted a survey6 to
identify how and with which fre-
quency modeling is used in the SE
industry. The results show that more
than 70% of all survey participants
used models often or always for
communicative and cognitive pro-
cesses, which were the most popu-
lar usage areas; code generation was
never or rarely used by half of the
survey’s population. Additionally,
models were used more in the early
phases of the development, e.g., for
domain- and requirements-oriented
discussions. This means that mod-
els were used more as a “thought
tool” and to facilitate discussions
among stakeholders with diverse
backgrounds. According to the sur-
vey results, software architects were
the stakeholders who benefited the
most from modeling, with 91% of
the respondents rating the benefits

for software architects as “a lot” or
“crucial.”

A nother empi r ica l s tudy by
Baltes and Diehl7 showed that in-
formal modeling such as sketching
is frequent in SE. Of the study par-
ticipants, 77% created and/or used

model sketches in the previous week,
and 68% of the sketches were rated
as “informal.” In line with the find-
ings of Störrle, Baltes and Diehl re-
ported that design, explaining, or
understanding were the most com-
mon purposes of the sketches. Sim-
ilarly, sketches were often used to
analyze requirements. Sketches are
not only used as informal and tempo-
rary means for communication and
discussion; whiteboard sketches are
sometimes subsequently detailed on
paper, later more formally modeled

in a tool and sometimes converted
to text, too. Interestingly, generic
drawing tools like yEd (https://www
.yworks.com/products/yed), miro
(https://miro.com), or Visio were re-
ported to have been used for model-
ing. Finally, the study reported that

roughly half of the sketches were
rated as “helpful” to understand the
related source code artefact(s) in
the future.

An example of informal model-
ing via collaborative sketching on an
interactive whiteboard is introduced
by OctoUML (https://github.com/
Imarcus/OctoUML), which supports
the creation of UML models at vari-
ous levels of formality (or precision),
collaborative, and multimodal inter-
action. OctoUML is a prototype of a
new-generation design environment

In low-code software development, the modeling is successful if it enables
software engineering with a minimal up-front investment in setup (e.g., by
native integration with an existing development platform), training (e.g., by
advanced user interfaces, self-explaining, and artificial intelligence-assisted
integrated development environments), and deployment (e.g., as platform-as-a-
service), and, if costs rise in proportion to the business value of the developed
applications.

LOW-CODE SOFTWARE
DEVELOPMENT

Modeling languages and model-
driven techniques are used within
low-code platforms either explicitly
or implicitly (e.g., hidden behind visual
editors or forms).

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on March 23,2021 at 12:10:06 UTC from IEEE Xplore. Restrictions apply.

INSIGHTS

124	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

that enhances informal collabora-
tion when architecting a product.
Similar approaches are beneficial
in other settings, such as teaching
and training.

In contrast to formal and, more
generally, less flexible modeling, in-
formal modeling (e.g., by sketch-
ing on a whiteboard) is particularly
useful for communication, collabo-
ration, and understanding. Here,
cheap solutions like whiteboard or
drawing tools are enough to reap
significant benefits and make the
design phase faster and more effec-
tive without costly investments.
Moreover, being more flexible and
less chained to specific formalisms
and constraints, informal modeling
pushes down the learning/training
curve of beginners and supports the
needs of a wider variety of stake-
holders. Industrial experience using
modeling tools shows a noteworthy
division between stakeholders pre-
ferring different types of modeling
notations; we believe that informal
and thereby flexible modeling is the
only viable way to broaden the
acceptance of modeling tools by in-
dustrial stakeholders (see “Infor-
mal Modeling”).

Challenges and Opportunities
There have been many empirical
studies carried out in modeling-rich
domains about standing issues, ap-
parent trends, and future challenges,

including object-oriented modeling,
business process modeling, model-
data management, self-adaptive sys-
tems, and specifically in MDSE.8
Many mention the same issues but
in different contexts: the demonstra-
tion of added value to potential us-
ers/customers, and the integration of
produced artifacts, learnability, reli-
ability, and so forth. In the follow-
ing, we highlight the most important
new issues that have changed sig-
nificantly over the last few years, as
discussed during the Second Winter
Modeling Meeting (WMM2020).

AI
Admittedly, it was impossible to
overlook the recent advances in AI,
which are now dramatically chang-
ing how we design, engineer, and
maintain software. Many believe
that this will cause a massive shift in
skill sets, which software developers
will be expected to carry. MDE tech-
niques are also being enhanced with
AI extensions for automation and
bringing quantifiable advantages.9
The main reason is that many MDE
techniques are already based on the
intensive use of knowledge and data.
Even the success factors of other ar-
eas of AI, like TensorFlow (https://
www.tensorflow.org) and its internal
domain specific language, are similar
to those of software modeling. In the
future, we will see more applications,
such as modeling bots that assist

modelers by identifying potential is-
sues and giving advice,8 or model rec-
ommenders that are integrated into
IDEs.10 For example, the new version
of MATLAB Simulink includes reus-
ing components by creating library
blocks from subsystem clones and re-
placing clones with library links.

Multiparadigm Modeling
When engineering cyberphysical sys-
tems, experts from different domains
collaborate to contribute solutions to
various aspects of the systems under
development. To engineer these solu-
tions, experts employ different para-
digms (discrete versus continuous,
geometric versus functional, and so
on) reified in modeling languages;
tools; and processes; which need to
be integrated to describe the systems
under development. One of the solu-
tions to this integration is known as
multiparadigm modeling,11 which
envisions modeling everything, i.e.,
each aspect of the system and each
corresponding process is specified
using models at the appropriate
level of abstraction, while model
transformations propagate infor-
mation. By modeling everything,
the paradigms (models plus related
processes) provided by different
domain experts are made explicit
and can be integrated, analyzed,
and synthesized automatically. This
ultimately enables the support of
cross-d isc ipl inary communica-
tion and collaboration.

Adoption Model for Modeling
As outlined in the “Modeling Suc-
cess Stories” section, different types
of modeling can be successful for
various reasons, in different do-
mains, and with different charac-
teristics. Another challenge that we
have therefore identified is how best
to support organizations on their

INFORMAL MODELING
Informal modeling is successful if a wide variety of stakeholders can employ it
for communicative and cognitive processes in early development phases using
emergent and flexible graphical notations while postponing any structural limi-
tations on the sketched models as long as possible.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on March 23,2021 at 12:10:06 UTC from IEEE Xplore. Restrictions apply.

INSIGHTS

MARCH/APRIL 2021 | IEEE SOFTWARE 125

way toward applying modeling suc-
cessfully. In other words, how can
an organization assess, evaluate, and
improve its modeling activities?

An initial idea for coming up
with a concrete solution to this over-
all challenge is elaborating an adop-
tion model for modeling. This idea is

closely related to the development of a
maturity model for the model-driven
development initiated by Rios et al.12

The overall goal of the adoption
model will be to provide guidelines
for discovering the right level of
adoption of modeling within (differ-
ent parts of) an organization as well

as to support the transitioning from
one level to the next when needed.

Implementing such guidelines
goes along with appropriate train-
ing and education. Teaching model-
ing is commonplace and almost any
degree program offers courses at
different levels, which range from

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

ANTONIO BUCCHIARONE is a senior

researcher at the Motivational Digital Systems

Unit, the Fondazione Bruno Kessler, Trento,

38123, Italy. Further information about him can

be found at https://bucchiarone.bitbucket

.io/. Contact him at bucchiarone@fbk.eu.

MATTHIAS TICHY is a full professor for soft-

ware engineering for complex, technical sys-

tems at Ulm University, Ulm, 89081, Germany,

and the director of the Institute of Software

Engineering and Programming Languages, Ulm,

89081, Germany. Further information about him

can be found at https://www.tichy.de. Contact

him at matthias.tichy@uni-ulm.de.

FEDERICO CICCOZZI is an associate profes-

sor at Mälardalen University, Västerås, 722 20,

Sweden. Further information about him can be

found at http://www.es.mdh.se/staff/266

-Federica_Ciccozzi. Contact him at federico

.ciccozzi@mdh.se.

MASSIMO TISI is an associate professor at

the Department of Computer Science, Institut

Mines-Telecom Atlantique, Nantes, 44300,

France, and the deputy leader of the NaoMod

team at the Laboratory of Digital Sciences

of Nantes, a joint research unit of the French

National Centre for Scientific Research, Nantes,

44300, France. Further information about him

can be found at https://massimotisi.github.io/.

Contact him at massimo.tisi@imt-atlantique.fr.

LEEN LAMBERS is a senior researcher at

the System Analysis and Modeling Group,

Hasso Plattner Institute, University of Potsdam,

Potsdam, 14482, Germany. Further information

about her can be found at https://hpi.de/en/

giese/staff/dr-leen-lambers.html. Contact her at

leen.lambers@hpi.de.

ANDREAS WORTMANN is a senior re-

searcher and the chair for software engineering

at RWTH Aachen University, Aachen, 52062,

Germany. Further information about him can be

found at http://www.wortmann.ac. Contact him

at wortmann@se-rwth.de.

ALFONSO PIERANTONIO is a professor

in computer science at the Un iversità degli

Studi dell’Aquila, L’Aquila, 67100, Italy. Further

information about him can be found at https://

pieranton.io/. Contact him at alfonso.pieranto

nio@univaq.it.

VADIM ZAYTSEV is an associate professor of

software evolution at the University of Twente,

Enschede, 7522 NB, The Netherlands. Further

information about him can be found at http://

grammarware.net. Contact him at vadim@

grammarware.net.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on March 23,2021 at 12:10:06 UTC from IEEE Xplore. Restrictions apply.

INSIGHTS

126	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

foundational aspects to laboratory
practice. Recently, the state of the
practice of modeling and MDE has
been characterized by Burgueño et
al.,13 where a precise picture of the
covered topics and their relevance is
presented. In particular, it emerges
that modeling can be considered a
trait d’union between software and
language engineering: On the one
hand, models can be used at any
stage of the development process
for documenting; analyzing; de-
signing; deploying; and simulating
systems; while on the other hand,
metamodeling techniques can be
used for designing notations and the
associated modeling environment.
Consequently, this distinction makes
for a diversity of courses at both the
bachelor and master’s level, covering
the most relevant aspects of model-
based SE and MDE.

Model Management
Current modeling tools are sophisti-
cated tools that provide features to
simplify and automate development
activities. However, the sheer com-
plexity of modern software systems
often requires designers to deal with
heterogeneous collections of related
models. Their continuous manage-
ment, deployment, and integration
are crucial at different development
stages and can take the form of re-
using artifacts, analyzing their char-
acteristics, managing consistency, or
leveraging the underlying informa-
tive contents. Several model reposi-
tories have been proposed over the
last decade. A daunting challenge is
represented by the enhancement of
these platforms from merely cloud
storage to (possibly collaborative)
modeling environments, where the
designer can smoothly maintain col-
lections of consistent artifacts; ef-
ficiently clustering, quickly locating

and reusing them, and composing
different transformations.

More recently, several initia-
tives, including Visual Studio Code
(ht tps: //code.visualstudio.com),
Eclipse Che (https://www.eclipse
.org/che/), Theia (https://theia-ide
.org), and others, have demonstrated
great promise to shift modeling en-
vironments from monolithic instal-
lations to cloud-based platforms to
reduce the accidental complexity and
extend the set of offered features. In
a way, this represents a refreshing
scenario, where commercial compet-
itors will also contribute to the field’s
advance. As a consequence, it seems
that the state of the art suggests that
versioning tools will soon be part of
the modeling environment, alongside
collaborative-modeling possibilities.

I n Figure 1, a visual summary of
this article is provided. It cap-
tures what we discussed at a

single glance: how modeling is be-
ing increasingly adopted across the
diverse areas of software and system
engineering—and beyond. Besides
fields where models are traditional
instruments, like embedded and cy-
berphysical systems domains, new
areas of applications have emerged,
including the so-called low-code de-
velopment platforms, where even
people with considerably less pro-
gramming experience can develop
software applications within orga-
nizations. Empirical studies have
showed that modeling positively af-
fects both engineers’ productivity
and the products’ resulting quality,
with thanks to consortia and stan-
dardization bodies.

The urge for improved platforms
and foundations is stringent because
of the pervasive adoption of mod-
els and related environments. This

article presented some of the most
daunting challenges facing a move
toward a community road map. Such
a road map aims to provide a mo-
tivated collection of challenges,
addressing which can be used to
improve modeling technology and
which can be utilized to leverage
adjacent research and development
fields.

Acknowledgments
The authors thank all the participants
of WMM2020 (http://eventmall
.info/ WMM2020/), e s p e c i a l l y
those who actively contributed to
discussing these issues and describing
them. The corresponding author of
this article is Antonio Bucchiarone.

References
1.	M. Brambilla, J. Cabot, and M.

Wimmer, Model-Driven Soft-

ware Engineering in Practice. Vol.

1. San Rafael, CA: Morgan &

Claypool, 2012. [Online]. Avail-

able: https://doi.org/10.2200/

S00441ED1V01Y201208SWE001

2.	G. Liebel, N. Marko, M. Tichy, A.

Leitner, and J. Hansson, “Model-based

engineering in the embedded systems

domain: An industrial survey on the

state-of-practice,” Softw. Syst. Model.,

vol. 17, no. 1, pp. 91–113, 2018. doi:

10.1007/s10270-016-0523-3.

3.	R. France and B. Rumpe, “Model-

driven development of complex

software: A research roadmap,” in

Proc. Future Softw. Eng. (FOSE ’07),

May 2007, pp. 37–54. doi: 10.1109/

FOSE.2007.14.

4.	R. D. Caballar, “Programming

without code: The rise of no-code

software development,” IEEE

Spectrum, Mar. 11, 2020. [Online].

Available: https://spectrum.ieee.org/

tech-talk/computing/software/

programming-without-code-no

-code-software-development

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on March 23,2021 at 12:10:06 UTC from IEEE Xplore. Restrictions apply.

INSIGHTS

	 MARCH/APRIL 2021 | IEEE SOFTWARE � 127

5.	M. Tisi et al., “Lowcomote: Train-

ing the next generation of experts in

scalable low-code engineering plat-

forms,” in STAF 2019 Co-Located

Events Joint Proc., July 2019.

[Online]. Available: https://hal

.archives-ouvertes.fr/hal-02363416

6.	H. Störrle, “How are conceptual

models used in industrial soft-

ware development?: A descriptive

survey,” in Proc. 21st Int. Conf.

Eval. Assessment Softw. Eng.,

EASE 2017, 2017, pp. 160–169. doi:

10.1145/3084226.3084256.

7.	S. Baltes and S. Diehl, “Sketches and

diagrams in practice,” in Proc. 22nd

ACM SIGSOFT Int. Symp. Found.

Softw. Eng. (FSE-22), 2014, pp. 530–

541. doi: 10.1145/2635868.2635891.

8.	A. Bucchiarone, J. Cabot, R. F.

Paige, and A. Pierantonio, “Grand

challenges in model-driven engi-

neering: An analysis of the state of

the research,” Softw. Syst. Model.,

vol. 19, no. 1, pp. 5–13, 2020. doi:

10.1007/s10270-019-00773-6.

9.	J. Cabot, R. Clarisó, M. Brambilla,

and S. Gérard, “Cognifying model-

driven software engineering,” in

Software Technologies: Applications

and Foundations, M. Seidl and S.

Zschaler, Eds. Cham, Switzerland:

Springer-Verlag, 2018, pp. 154–160.

10.	A. Dyck, A. Ganser, and H. Lichter,

“A framework for model recom-

menders requirements, architecture

and tool support,” in Proc. 2nd Int.

Conf. Model-Driven Eng. Softw.

Dev. (MODELSWARD), 2014,

pp. 282–290.

11.	P. J. Mosterman and H. Vang-

heluwe, “Computer automated

multi-paradigm modeling: An

introduction,” Simulation, vol.

80, no. 9, pp. 433–450, 2004. doi:

10.1177/0037549704050532.

12.	E. Rios, T. Bozheva, A. Bediaga, and N.

Guilloreau, “MDD maturity model: A

roadmap for introducing model-driven

development,” in Proc. 2nd Euro. Conf.

Model Driven Archit. — Found. Appl.

(ECMDA-FA), 2006, pp. 78–89.

13.	L. Burgueño et al., “Contents for

a model-based software engineer-

ing body of knowledge,” Softw.

Syst. Model., vol. 18, no. 6, pp.

3193–3205, 2019. doi: 10.1007/

s10270-019-00746-9.

14.	A. M. Madni and M. Sievers,

“Model-based systems engineering:

Motivation, current status, and re-

search opportunities,” Syst. Eng., vol.

21, no. 3, pp. 172–190, 2018. doi:

10.1002/sys.21438.

15.	R. L. Totterdale, “Case study: The

utilization of low-code development

technology to support research data

collection,” Issues Inform. Syst., vol.

19, no. 2, pp. 132–139, 2018.

Erratum
In the article “Benchmarking Deep
Neural Network Inference Performance
on Serverless Environments With ML-
Perf,”1 which was published in the
January/February 2021 issue of IEEE
Software, there was an error introduced
during the production process.

The expansion of the acronym IE
was incorrectly given as “interfer-
ence engine.” The correct expansion
of IE is “inference engine.” This is
of crucial relevance in the article be-
cause it means the “inference of the
deep neural network.”

We sincerely apologize for this er-
ror and regret any confusion it may
have caused.

Reference
1.	U. Elordi, L. Unzueta, J. Goenetxea,

S. Sanchez-Carballido, I. Arganda-

Carreras, and O. Otaegui, “Bench-

marking deep neural network

inference performance on server-

less environments with MLPerf,”

IEEE Softw., vol. 38, no. 1, pp.

81–87, Jan./Feb. 2021. doi: 10.1109/

MS.2020.3030199.
Digital Object Identifier 10.1109/MS.2021.3052061
Date of current version: 11 February 2021

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on March 23,2021 at 12:10:06 UTC from IEEE Xplore. Restrictions apply.

