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Abstract—Logging still is a core functionality used to under-
stand the behavior of programs and executable models. Yet,
modeling languages rarely consider logging as a first-level activity
that is manifested in the language through modeling elements or
their behavior. When logging is part of the code generated for
the respective models or the corresponding runtime environment
only, it must be generic, as the modeler cannot influence, through
the models, what and when logging takes place. To enable
modelers to log model behavior, we devised a method based on
language extension and smart code generation that can integrate
logging into arbitrary textual modeling languages. Based on this
method, log entries can be produced, traced, and presented
through a web application. This method and its infrastructure
can facilitate lifting logging to the model level and, hence, improve
the understanding of executable models.

Index Terms—Software Engineering, Model-Driven Develop-
ment, Internet of Things

I. INTRODUCTION

Logging is a core functionality used to understand the
behavior of programs [1] and executable models. Logs are
used by software developers “to locate the sources of errors
and problems in [running] software systems” [2], and enables
system administrators and operators to understand the actual
use of software systems in the normal operation of the same
system. In this paper, we use the term logging to refer to the
production of log messages and the term tracing to refer to the
process of locating the root cause of a particular behavior or
condition. Logging in combination with model-driven software
engineering (MDSE) is challenging, as modeling languages
rarely consider logging as a first-level activity. MDSE treats
models equal to code and, thus, leads to increased productivity,
quality and maintainability [3].

Existing approaches in research and practice lack compre-
hensive user support for the combined tracing and filtering of
logs (cf. Sec. V). The tracing of execution flows is common in
microservices infrastructures, where requests are tagged with
meta-data and handled in a central instance to visualize the
traces. Major cloud providers provide systems for logging and
filtering but leave the implementation of the logs themselves
up to the developers. Other approaches, e.g., [4] consider
offline analysis: They analyze log files and provide visual-
izations together with additional functionality such as filtering
or querying. Languages such as ThingML [5] or MoniLog [6]
include concepts for logging, whereas the first does not put

logs in relation to each other which makes tracing a time-
consuming task and the second one has no focus on traceability
and filterability.

This paper discusses what is needed in modeling languages
to support web-based debugging. The main contribution of
this paper is a method based on language extension and
smart code generation that can integrate logging into arbitrary
textual behavior modeling languages. Based on this method,
log entries can be produced, traced, and presented in a web
application. Our approach eliminates the need for developers
to search for semantically related log messages in very long
log files.

The paper is structured as follows: Sec. II presents back-
ground technologies and concepts. Sec. III introduces our
approach to integrate logging capabilities into base modeling
languages, which is evaluated in Sec. IV using the Mon-
tiThings language. In Sec. V, we show related work and
discuss our approach in Sec. VI. The last section concludes.

II. BACKGROUND

A. MontiCore

MontiCore [7] is a language workbench [8] for the engi-
neering of compositional modeling languages. Its languages
are based on a context-free grammars (CFGs) that define
both concrete and abstract syntax of the language under
development. Based on this CFG, it generates abstract syntax
classes as well as infrastructure for parsing, model checking,
code generation, and more to efficiently engineer and compose
modeling languages. After parsing, the models are translated
into instances of abstract syntax trees (ASTs), processed by
MontiCore’s extensional function library, checked for well-
formedness and other properties, transformed, and ultimately
translated into other models, reports, source code, or other
target representations. MontiCore also supports the definition
of symbols–meaningfully abstracted model parts–based on
grammar rules. Symbols are stored in symbol tables and can be
resolved within a language as well as by other languages, thus
enabling efficient forms of language composition [9]. Monti-
Core languages, documentation, and tutorials are available1

online.

1MontiCore website: http://www.monticore.de
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Fig. 1. Exemplary smart home application modeled using MontiThings (taken
from [10]).

B. MontiThings

MontiThings is an architecture description language (ADL)
for the model-driven development of Internet of Things (IoT)
applications [11]. Fig. 1 shows an example of a MontiThings
application. Being a component and connector (C&C) ADL,
applications consist of components that exchange data by
connecting their (typed and directed) ports. Ports are also
used to communicate with the outside world, e.g., sensors and
actuators. This is denoted by ports having a black filling. The
data types used by ports can be defined using class diagrams.
Components can be either composed, i.e., define their behavior
by instantiating and connecting subcomponents, or atomic,
i.e., define their behavior directly using statecharts, a behavior
language, or handwritten C++ code.

MontiThings generates distributed applications in the form
of C++ code from the models. The generated partial appli-
cations communicate using standard message broking proto-
cols, i.e., message queue telemetry transport (MQTT) or data
distribution service (DDS). Using a configuration language,
MontiThings models can be adapted to different platforms
and connected to their respective hardware components, e.g.,
sensors and actuators. Regarding this, it is also possible to con-
nect to hardware whose drivers are written in other languages,
e.g., Python, as long as the language supports MQTT. The
generated code can be automatically packaged into container
images and (cross-)compiled for different platforms.

III. CONCEPT

We use logging as the basis for tracing. This section presents
the concepts for the syntactic integration of logging through
language extension, for the integration of logging behavior,
and for the tracing of logs.

A. Logging Syntax

Integrating logging capabilities into arbitrary base modeling
languages, leverages language extension [12] and reuses a li-
brary of language components [13], including components for
common expressions and statements, to express the concrete
syntax and abstract syntax of the logging language elements
to be integrated. The language extension produces a new,

looging-aware, language inheriting from the base modeling
language and extends it with language elements intended for
logging. Our concept to extend an arbitrary textual modeling
language with logging capabilities, thus, demands to create
a new language that inherits from both the base language
and a language (component) providing the language elements
related to logging. In this new inheriting language, the lan-
guage designer makes the design choices of adding logging
capabilities to specific parts of the language to be extended,
e.g., for transitions in statecharts or ports of a C&C ADL. The
integration of logging behavior then follows the newly added
syntax (cf. Sec. III-B).

Leveraging the wealth of language components avail-
able in the technological space of MontiCore, we inte-
grate logging into a base language by extending from the
CommonStatements [13] language component. The latter
is a language component in the sense that it is not meant to
be used a stand-alone language but comprises concepts related
to statements (such as method calls) to be reused by other
languages [12]. The logging-capable extension of the base lan-
guage then inherits from CommonStatements. However, if
the base language already features language elements that can
be use for logging, this additional extension is not necessary.
And in the new language, the language designer integrates
concepts from CommonStatements to enable logging by
extending production rules of the language elements that
should support logging. Through our notion of language
extension [12] this amounts to introducing new alternatives for
production of the base language, such that logging of extended
elements is optional. Moreover, as a language can extend
multiple other languages, the base modeling language can
extend from other languages to integrate modeling constructs
of arbitrary complexity, e.g., to introduce new data structures,
conditional logging, of even complete logging programs.

Following our concept, the extension made to a base model-
ing language to support logging is access-conservative [7] on
the abstract syntax, i.e., the AST of models of the inheriting
language are still valid ASTs with respect to the base language.
Hence, tooling such as model analyses operating on the AST
can understand models of the new language but will not be
able to process its new elements. The extension further may
be concrete syntax conservative [7], i.e., tools operating on
the concrete syntax, such as parsers, may be able to process
models of the inheriting language unless new, mandatory,
keywords are enforced. This can be achieved if logging model
elements reuse syntax available in the base language.

For the example of extending the IOAutomata lan-
guage of Fig. 2 (1st listing) with logging capabili-
ties, the language designer creates the new language
LoggingIOAutomata, which inherits from IOAutomata
and from CommonStatements (2nd listing, l. 1). In this
new language, the designer choses which elements of the
base language IOAutomata should support logging. In this
case, she decides that transitions and final states should
support logging. To this end, she introduces new produc-
tions LogTransition and LogFinalState (2nd list-



grammar IOAutomata extends CommonExpressions {
IOAutomaton = "automaton" Name Body;
Body        = "{" States Variable* Transition* "}";
Variable    = "var" Type Name ("=" Value)?; 
States      = "states" (State || ",")* ";"; 
State       = ("initial" | "final") Name;
Transition  = src:Name@State

Guard? ("/" Action)?
"->" tgt:Name@State ";";

Guard       = "[" Expression "]";   
Action = "/" Name "=" Value;  

}               grammar LoggingIOAutomata extends IOAutomata, CommonStatements {
LogTransition extends Transition = src:Name@State

Guard? ("/" Action)?
"->" tgt:Name@State
">>" MethodCall ";";

LogFinalState extends State = ("initial" | "final") Name 
">>" MethodCall; 

} 
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Fig. 2. Concept and example of integrating logging capabilities into arbitrary
languages.

ing, ll. 2-6) that extend Transition and State of the
IOAutomata base language (1st listing, ll. 5-9) respec-
tively. Each new production reuses the syntax of its base
production but adds a MethodCall, which is a production
provided by the CommonStatements language component.
The extensions LogTransition and LogFinalState of
Transition and State ultimately introduce new alterna-
tives for their base productions but do not enforce their use.
This means that models of the IOAutomata base language
can be processed with the tooling for the new, logging-aware,
language, i.e., changes are concrete syntax conservative and
that tooling for the base language (e.g., model checkers) can
be used with the abstract syntax of the new language, i.e.,
the changes are access conservative. Modelers, hence, can use
logging in final states and transitions as required but are not
forced to use logging on each transition or final state.

The RoboVac model (3rd listing of Fig. 2) illustrates the
resulting language and its logging capabilities. To this end, it
introduces five states (ll. 2-3) out of which the state error

(l. 3) uses the new, optional, production LogFinalState
and its language elements to log a message about erro-
neous termination of the cleaning process. Moreover, the
2nd and 3rd transition each use the optional production
to log when the respective transition is fired. Hence, e.g.,
a deadlock checking algorithm for the IOAutomata base
language, that does not care about logging, still can per-
form its computations against the concrete and abstract syn-
tax of LoggingIOAutomata, by ignoring the alternatives
LogTransition and LogFinalState. Also, a model of
LoggingIOAutomata that does not use the new production
still is a valid model of the IOAutomata base language.
Both conservations enable reusing tooling and models related
to these languages.

While these language components of this example are spe-
cific to the technological space of MontiCore [7], the concepts
presented in the following can be applied to any technological
spaces of language engineering that support reusing multiple
languages by another language and extending its abstract
syntax rules or classes, such as GEMOC Studio [14], MPS [15]
or Neverlang [16].

B. Logging Behavior

Models of the extended modeling language then are trans-
lated to logging-aware code. To this end, the generator can
translate the method calls, and especially log statements, into
code by simply printing a corresponding method call in the
target language. The generator is unaware of the fact that
it generates code for a log statement. It only knows how
to generate code for method calls. The runtime environment
of the generated code is then responsible for providing a
suitable implementation. Thereby, the generated code can be
flexibly, i.e., without modifying the generator, linked against
different log implementations. It is also possible to add further
functionality in the course of the implementation of the log
function, which goes beyond the actual writing of the log. For
tracing the logs using a web application, additional information
about the log entry can be tracked to be able to link different
logs together later. Also, additional data about the state of the
system can be logged that was not specified by the developer
in the log message. For example, the generator can store all
variable assignments so that they become available in the log
as if the developer had also set a breakpoint at the time of the
log call and examined the state of the system with a debugger.

C. Log Tracing

If the logs shall be traceable, they must be relatable to
each other. For this purpose, the implementation against which
the generated log method call is linked provides each log
entry with additional information. Each log entry is assigned a
unique identifier and a timestamp. Furthermore, the developers
of the generator and the logging web app decide the granularity
with which model elements belong together in the logging web
app. The log entries are then grouped according to the model
elements in whose context they were created. For example, if
a log is created as part of an entry action of a state in a UML
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statechart, this log can considered to be in the context of the
state instead of considering the entry action an independent
model element. A new log group is created with each use of
a model element. For example, in the case of a statechart or
automaton, logs can be grouped for the states, or in the case of
an activity diagram, the activities. If a state is entered several
times in a statechart, several log groups are created.

Each such group of log entries can then be assigned a
predecessor group. This creates a concatenated list of log
groups over time. If, in the case of a distributed system, the
logs of different devices are to be related, the devices can
communicate the unique ID of their respective log group to
each other. In this way, devices can also tell other devices the
ID of their log groups to use them as predecessors without
having to exchange the concrete log messages.

At runtime, developers should now be able to track the logs
of their models through a web application (cf. Fig. 3). In the
runtime environment of the generated code, a logging module
is built in, which is able to answer requests for logs or log
groups. The web application in turn can use these logging
modules to request logs. The web application exposes the
models and allows developers to select model elements. When
a model element is selected, the web application requests
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the necessary logs from the devices and presents them to
the developer. If the developer now selects one of the log
entries, the web application can request the predecessors of
these logs. Thereby, a trace of the requested log entries is
created, similar to a stacktrace. In contrast to the classic stack
traces of a debugger, traces can thus also be shown across
multiple devices of a distributed device. Through this tracing
mechanism, only the logs relevant to a developer’s request in
each case are displayed, as only the specifically requested logs
are shown. This eliminates the need for developers to search
for semantically related log messages in very long log files.

IV. EVALUATION

To validate our approach, we implemented web-based trac-
ing functionality for the MontiThings language. In the fol-
lowing, we first present how we integrate the tracing into
MontiThings and then evaluate the overhead caused by the
tracing on the IoT devices.

A. Evaluation Setup

IoT applications are inherently hard to trace as they are not
only distributed systems but also depend on a large number
of external influences such as sensor inputs and might be
deployed to unreliable hardware. As a result, tracing IoT
applications often requires developers to manually analyze a
large number of log messages. In addition, imperfect synchro-
nization of the IoT devices’ clocks, and the wrong timestamps
caused by this in the log message, might lead developers
to draw wrong conclusions and search the root cause of a
particular behavior in the wrong places of the code base or
logs. Overall, the understanding of IoT applications based on
their logs is error-prone and time-consuming.

In MontiThings, components exchange data via ports. The
connectors between the components’ ports define which com-
ponents interact with which other components. Implicitly,
these connectors also tell us how the components could
influence each other. If data flows from component A to



Fig. 5. Screenshot of the tracing web application user interface. Developers can select a component in the menu on the left. In the middle, the application
shows the component’s (filtered) log messages. On the right, the application shows a visual trace of the currently selected log message through the architecture.

component B, component B might be influenced by component
A. In contrast, if the components do not even exchange data
indirectly, i.e., there is no path from component A to compo-
nent B when viewing the components and their connectors as
a directed graph, then they do not influence each other2.

Fig. 4 gives an overview of how MontiThings provides
tracing of log messages. As ports and the connections be-
tween them define a dependency relationship between the
components, we group log messages based on the messages
a component exchanges with other components. Whenever a
component receives a message on one or more of its incoming
ports, we create a new input log group. An input log group
is an ordered list of log messages. Unfortunately, developers
sometimes forget to log values, such as a variable, that they
need to later understand the system. To mitigate this, input log
groups also implicitly log a snapshot of the component upon
creation. This snapshot contains the values of all variables
and messages. To avoid creating full snapshots every time
a log statement is called, snapshots are reconstructed based
on historical change logs of individual variables. Each time
a variable is changed, a new time slice is created for the
variable and the previous value is considered invalid. In this
way, previous variable states can be reconstructed based on the

2From a data flow perspective. From a technical point of view, components
deployed on the same device can influence each other, e.g., by each accessing
the network and thus lowering the data rate available per component. Our
approach to tracing such technical issues is described in [10].

closest previous time slice in which a value was valid when
the log statement was invoked.

If a component sends a message on one of its outgoing
ports we further create an output log group consisting of all
input log groups created since the last outgoing message. To
relate log groups to each other, each log group also may
reference another log group that serves as its predecessor. To
convey this predecessor relationship across a distributed IoT
application, each log group contains a unique identifier. When
a component sends a message on one of its outgoing ports,
this message includes the identifier of the log group associated
with the message. Thereby, the receiving component can set
the received identifier as the identifier of the predecessor of
the input log group it creates upon receiving the message.

For each component, MontiThings generates a small ap-
plication binary. When enabling tracing, the code generator
injects a communication module into this binary that collects
logs. Furthermore, it answers the requests for these logs. The
logs are requested by a web application developers use to
trace their generated software. Its interface is shown in Fig. 5.
When using the web application, the developer can request
the logs of any component using the menu on the left. After
first requesting the logs from a component, the developer will
receive a list of all log messages. The developer can now click
on one of the log messages to investigate in more detail how
and why it arose.

For this purpose, the web application requests all pre-
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Fig. 6. Performance overhead of the tracing. Each color / stroke type
represents a different component instance. A moving average is calculated
over the last 9 values. This smoothes the trends and makes them more visible.

decessor log groups of the selected log message from the
influencing components. Predecessor log groups occurred on
the timeline immediately before the log statement invocation
and likely influenced the computation containing the original
log message. These log groups may be distributed across
several other components and are visualized in a so-called
trace tree. Developers can further expand the trace by selecting
a relevant log group in the tree. This also gives developers the
option, if a component consists of multiple subcomponents, to
decide whether to continue the trace at a hierarchically lower
level or remain at the current level of abstraction. This can be
useful since components at lower levels are probably not as
relevant as components at higher levels.

Thereby, we reduce the number of logs that the developers
need to inspect to find the log message a log message
originated from. Of course, we are aware that our filtering may
also hide messages that might have been filtered even though
they were relevant to the log message at hand. To mitigate
not being able to further inspect the components’ behavior in
these cases, developers can choose to view all previous logs
regardless of whether our tool considers them relevant and
then continue with the tracing.

B. Performance Evaluation

To evaluate the overhead of our log tracing, we constructed a
heating, ventilation, and air conditioning (HVAC) case study.
This case study has first been used in [10] and provides a
scenario that deterministically stimulates the cyber-physical
system (CPS) with input values for at least one minute. It was
run 100 times and the average value was taken, whereas log
tracing was disabled from the half3. We assessed the overhead
by inspecting the applications’ containers’ performance using
Google’s cAdvisor4. Fig. 6 shows the results of our perfor-
mance evaluation. Each line color and style represents the CPU
time and memory consumed by one of the components.

Processing-wise (Fig. 6(a)), our approach causes almost no
overhead. The difference in total CPU time is less than 1 %.
This expected as the only additional processing caused by our
approach is storing log messages in memory. The difference
between the three groups of lines visible in Fig. 6(a) comes
from the purpose and execution frequency of the components.
Some components needed to be executed every 500 ms while
other components were processing messages every second.
Composed components generally have the lowest CPU re-
quirements as they only forward data to their subcomponents
without doing their own processing.

Memory-wise (Fig. 6(b)) our approach causes a constant
overhead for the log collection module. Additionally, the
memory consumption of the components also gradually in-
creases over time. This is caused by storing log messages.
This overhead could be mitigated by either storing the logs
to a file (optionally in a remote storage) or by discarding
old log messages. The latter, however, could make behavior
impossible to trace if the discarded log messages contain the
predecessor of a log message the developer is interested in.

V. RELATED WORK

The idea of tracing execution flows in distributed systems
has been implemented in microservice infrastructures in par-
ticular. The more services collaborate to process a request,
the more difficult it becomes to understand what exactly
is causing undesirably slow response times or anomalous
behavior. Widely used tracing tools include instrumentation
and trace collector tools like OpenTelemetry [17], together
analysis tools such as Jaeger [18], Splunk [19], Dynatrace [20],
and Lightstep [21]. Each request is automatically or manually
tagged with a correlation id, timing information, and custom
tags. It is ensured that the correlation id is maintained during
the propagation of the request through the network. Trace data
is sent to a central instance, which in turn, provides a web
interface where the traces can be visualized, e.g., in the form
of waterfall diagrams or latency plots. In this way, it is possible
to observe the entire flow of individual queries, including time
measurements ranging from microservice processing to time
spent in specific methods to the duration of database queries.

3The benchmark host was a virtual machine running Ubuntu 20.04 on 8
cores of AMD Ryzen 2600X equipped with 10GB physical memory.

4cAdvisor project website. [Online]. Available: https://github.com/google/
cadvisor. Last accessed: 17.01.2022

https://github.com/google/cadvisor
https://github.com/google/cadvisor


Instead of focusing on request-response modeled applica-
tions, ShiViz [4] aims to be a more general solution for all
types of applications. It is an offline tool that processes log
files and outputs a web interface that shows a space-time
graph visualizing the relative order of log entries and com-
munication within the network. It supports filtering, querying
communication patterns, and identifying repetitive patterns.
To mitigate distributed clock shifts, ShiViz provides a library
that intercepts each network call in order to maintain a vector
clock. The clock can then be used to annotate events such as
the creation of log entries or communication with other nodes.

Unfortunately, applications in the CPS domain cannot rely
on these approaches because their communication patterns are
more complex and inconsistent. Events may no longer refer to
a single request, but may even be relevant for much later inputs
to the application. In such a case, the trace grows continuously.
Thus, the main focus should be on the filtering aspect.

ThingML adds logging to its language by extending it with
a tagging mechanism [5]. The tagging mechanism enables
developers to mark model elements that they want to log
information on (using the @monitor annotation). As noted
by the authors of [5], this approach is similar to aspect-
oriented programming, which can likewise be used to annotate
(code) elements. The code generator uses these tags to add log
statements to the generated code whenever the model elements
are modified. For example, if a variable is marked to be logged,
changing its value will cause a new log to be created. The logs
are then sent to a central web application where they can be
inspected. Unlike our approach, however, the individual log
messages are not set in relation to each other. Thus, tracing
errors in the collected logs is still a time-consuming task.

The major cloud providers, i.e., Amazon Web Services
(AWS), Microsoft Azure and Google Cloud Platform (GCP),
all provide systems for logging. Logs are either sent to
the log service using a software development kit (SDK)
provided by the cloud provider or automatically sent from
services offered directly by the cloud provider. This, however,
leaves the burden of implementing such logs completely to
the developers. Unlike our approach, cloud logging services
cannot implicitly log data about the observed system as the
semantics of the system is unknown to the cloud provider
(unless the service is offered by the cloud provider itself).
As cloud providers offer comprehensive suites of interacting
products, inspecting the logs collected by their log services
can be a time-consuming task for developers. Thus, they offer
filtering mechanisms. For example, GCP’s log explorer offers
a logging query language [22] for filtering logs. Azure5 and
AWS6 offer similar languages. The downside of this approach
is that it requires developers to deeply understand all parts
of the system for which they are inspecting the logs. As our

5Azure uses the SQL-like Kusto query language. Log queries in
Azure Monitor [Online]. Available: https://docs.microsoft.com/en-us/azure/
azure-monitor/logs/log-query-overview Last accessed: 26.01.2022

6AWS uses a Bash-like language to pipe the results of query
commands into each other. CLoudWatch Logs Insights query syntax.
[Online]. Available: https://docs.aws.amazon.com/AmazonCloudWatch/latest/
logs/CWL QuerySyntax.html Last accessed: 26.01.2022

approach automatically relates log messages to each other, we
can automatically remove irrelevant logs without needing such
manual filtering rules. However this requires our approach to
understand the semantics of the language to some degree.

MoniLog [6] provides a language for defining combinations
of monitoring and logging, called moniloggers. Language
engineers define interfaces that enable the interpreter of the
moniloggers to observe certain properties of the system. While
both MoniLog and this paper present techniques for extending
modeling languages with logging capabilities, MoniLog is
more focused on the efficient specification of which logs
to create whereas our method focuses on relating logs to
each other to make them traceable, filterable, and, thus, more
understandable. As both MoniLog and this paper automatically
monitor certain events of the observed system, both methods
are only applicable if the modeling language contains clearly
defined events, e.g., a state change in a statechart.

VI. DISCUSSION

Our concept assumes that language extension considers the
abstract syntaxes and related concrete syntaxes. In grammar-
based technological space of language engineering, consider-
ing both is often part of the extension mechanisms [7], [16],
[23], whereas in metamodel-based approaches, this often de-
mands additional infrastructure to inherit the editing capabili-
ties accordingly. While this limits the immediate application of
our method to language engineering technological spaces with
less powerful extension mechanisms, this is not a limitation
of the presented method itself.

To relate logs to each other, our system assumes that there
are clearly defined events, which in turn are also related.
This relationship is especially of temporal nature, i.e., events
depend only on temporally earlier events and never on future
events. Further, this relationship is also of a contextual nature,
i.e., there can be events that are influenced by other events as
well as events that are completely independent of each other.
Whether and how events depend on each other in terms of
their context is determined by the semantics of the modeling
language. As both MoniLog and this paper automatically
monitor certain events of the observed system, both methods
are only applicable if the modeling language contains clearly
defined events, e.g., a state change in a statechart.

As an application developer, it can sometimes be difficult
to predict at development time what information needs to
be logged to understand an error. By using a model-driven
approach, this problem can be mitigated by having the gen-
erator automatically log the context of each log message,
e.g., variable assignments, CPU load, or (if applicable) sensor
data. The automatically logged information can in some cases
enable the application developer to trace even those errors that
cannot be traced by the content of the log messages alone.

In our prototype implementation, network overhead was
avoided by receiving log messages from IoT devices only
on request. In production use, a tradeoff must be made here,
since the storage of the devices executing the generated code
is not unlimited. One way to handle the limited storage is

https://docs.microsoft.com/en-us/azure/azure-monitor/logs/log-query-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/log-query-overview
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html


to offload log data to cloud storage. However, this creates
network overhead that can be unacceptable, especially in
cellular networks. It is also possible to delete old log data to
make room for new ones. However, this can make the causes
of even current errors untraceable if their causes lie too far
in the past. In practice, therefore, a tradeoff must be made
between hardware and storage costs (storage on devices and in
the cloud), network costs (transfer of log data to the cloud) and
the probability of being able to trace an error. Depending on
the specific IoT system, this can be a serious problem if there
is data to be logged every few milliseconds, but the devices
have very limited memory. During normal execution, a lot
of data may be irrelevant for later troubleshooting. However,
if errors build up gradually, data that was generated during a
normal execution and was considered inconspicuous may later
become more relevant for tracing an error.

VII. CONCLUSION AND FUTURE WORK

Within this paper, we have presented a method based on
language extension and smart code generation that can inte-
grate logging into arbitrary textual modeling languages. The
application of this method allows to produce log entries, trace
them, and visualize them through a web application. We have
shown the applicability of the method for the MontiThings
language. This method eliminates the need for developers to
search for semantically related log messages in very long log
files and improves the understanding of executable models.
As future work, our approach should be evaluated on larger
IoT systems, e.g., to further investigate the impact of limited
memory of IoT devices.

SOURCE CODE

MontiThings is available on GitHub: https://github.com/
MontiCore/montithings
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