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Abstract—This work evaluates to what degree AI-based model-
driven software development approaches may unintentionally
alter parts of a model, potentially affecting its semantics,
particularly when the model is defined in a domain-specific
language unfamiliar to the LLM, and discusses to what degree
the perplexity metric can be used to indicate susceptible modeling
languages. Although much work has focused on evaluating the
correctness of AI-based model creation, it remains important to
assess whether and to what extent LLMs introduce unintended
modifications in parts of the input model that they are merely
expected to reproduce. Previous research has primarily focused
on the success of programming and modeling tasks using AI, such
as achieving syntactic and semantic correctness. In contrast, this
work investigates the side effects of AI usage, specifically the in-
troduction of unintended modifications during iterative modeling
processes. We evaluate the likelihood of error introduction in an
AI-based modeling approach for uncommon DSLs and use the
perplexity-metric to identify error prone elements in the model.
We use our own modeling language for class diagrams CD4A,
an LLM that is not trained on this DSL and prompt it with
simple modeling tasks. Next, we measure additional changes to
the model that are not related to the given modeling task. We
show that AI-driven Modeling approaches need to also focus on
side effects of iterative LLM usage with unfamiliar modeling
languages, and demonstrate how these risks can be identified.

Index Terms—LLM, MDE, AI4SE, DSL

I. INTRODUCTION

Large Language Models (LLMs) have gained recognition
for their capability to synthesize and edit source code [1]–[4].
Additionally, LLMs have been successfully applied to various
modeling tasks [5]–[8] as well as low resource program-
ming tasks [9]. Their effectiveness in these tasks primarily
comes from extensive training data and the similarity between
the targeted programming or modeling languages and the
examples included within their training corpus [10], [11].
However, LLMs are also known for their unreliability due to
hallucinations [12]. In addition they can exhibit biases and
conformity issues in these programming and modeling tasks
[13]. When the correct response differs even slightly from the
dominant patterns in their training data, LLMs tend to provide

incorrect responses by conforming to the prevalent data from
their training [14]. This bias creates specific challenges [15],
especially when the targeted modeling language is either
absent or minimally represented in the training data, yet
shares concepts with a more familiar language included in
the training set. This property can apply to many domain-
specific languages (DSLs) that are not public or are only
available with a small data sets in the public domain. In
particular, modeling languages that are developed within a
company or as part of scientific work (low-resource languages
[9]). In this work, we evaluate how LLMs display bias toward
frequently encountered training data in model generation tasks.
Although it is already well-known that LLMs exhibit various
forms of bias, we specifically investigate how these known
biases affect modeling tasks. We focus on instances where the
LLM incorrectly introduces modifications based on familiar
concepts into sections of code from a less common DSL, even
when those sections were not directly targeted by the provided
prompt. We pose the following as our first research question:

RQ 1: In LLM-based modeling approaches, to what extent
do unintended changes occur in parts of the model that are
unrelated to the prompt or the modeler’s intended customiza-
tion?

Perplexity can be used as a metric to assess an LLM’s ability
to comprehend a given input language [16]. Assuming that
an LLM is more likely to introduce errors when it encounters
unfamiliar input it was not trained on, perplexity may correlate
with the frequency of such errors. Thus we define the second
research question as follows:

RQ 2: Can the perplexity metric serve as an indicator of a
modeling language’s susceptibility to unintended adaptations
in LLM-based modeling approaches?

636

2025 ACM/IEEE 28th International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-
C)

979-8-3315-7990-6/25/$31.00 ©2025 IEEE
DOI 10.1109/MODELS-C68889.2025.00087

[NKR+25] L. Netz, F. Kampe, J. Reimer, B. Rumpe: 
Unintended Changes: How LLMs Corrupt and Correct Textual Models. 
In: 2025 ACM/IEEE 28th International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), 
pp. 636-645, DOI 10.1109/MODELS-C68889.2025.00087, IEEE, Oct. 2025. 



II. RELATED WORK

Generative AI, particularly in the area of Large Language
Models, is a rapidly evolving research field. New findings are
published within months or weeks [17]–[20]. While LLMs are
extensively utilized for code generation tasks, there is currently
limited research exploring their application and evaluation
specifically for generating domain-specific language source
code or the usage of LLMs in modeling tasks.

In their work [21] Kammakomati et al. focus on assessing
the performance of LLMs in generating code for domain-
specific languages. It emphasizes the unique challenges posed
by DSLs, which often have specific syntax and semantic
constraints that differ from general-purpose programming lan-
guages. The evaluation framework ConCodeEval proposed in
the paper aims to measure how well LLMs adhere to these
constraints while generating code, which is crucial for ensuring
the correctness and functionality of the generated outputs.

In their work [22], Bassamzadeh and Methani investigate
the challenges faced by LLMs in generating code for Domain-
Specific Languages, particularly when dealing with custom
function names. It highlights that LLMs often produce higher
rates of hallucinations and syntax errors in DSLs due to
the complexity and frequent updates of function names. The
study presents optimizations for using Retrieval Augmented
Generation in DSL code generation and includes an ablation
study comparing RAG with fine-tuning methods. A dataset
representing automation tasks across approximately 700 APIs
was created for training and testing. The findings indicate that
while fine-tuning a Codex model yielded the best results in
code similarity metrics, RAG optimizations achieved compa-
rable performance. However, both methods still struggled with
syntax errors, with RAG performing slightly better. The paper
concludes that an optimized RAG model can match the quality
of fine-tuned models while offering advantages for handling
new, unseen APIs.

The work by Xiaodong et al. [23] investigates the perfor-
mance of large language models like ChatGPT in generating
code tailored to specific domains, such as web development
or game programming. The authors highlight that while LLMs
have shown impressive capabilities in general code generation,
they often struggle with domain-specific tasks due to limited
proficiency in utilizing specialized libraries and APIs. The
study explores various strategies to enhance LLM perfor-
mance in this area, including: External Knowledge Inquirer:
Integrating external API knowledge into the generation pro-
cess. Chain-of-Thought Prompting: Encouraging the model to
reason through the code generation step-by-step. Chain-of-
Thought Fine-Tuning: Adjusting the model’s training to better
handle domain-specific tasks. The results indicate that these
strategies, collectively referred to as DomCoder, significantly
improve the effectiveness of domain-specific code generation
under certain conditions, suggesting that targeted approaches
can enhance LLM capabilities in specialized contexts.

III. FUNDAMENTALS

A. Large Language Models

A Large Language Model (cf. Figure 1) is a deep learning-
based artificial neural network trained to generate coherent
and contextually relevant text by predicting subsequent tokens
given an input sequence.

LLMs are commonly pretrained on extensive datasets and
subsequently refined through methods such as Fine-Tuning,
where the entire model or select layers are further trained on
task-specific data. Low-Rank Adaptation (LoRa) [24] repre-
sents an efficient fine-tuning alternative, modifying only low-
rank matrices in the model to adapt rapidly to new tasks while
maintaining computational efficiency.

Additionally, LLMs leverage In-context Learning, including
Few-Shot Learning (FSL) [25], where models perform tasks
by generalizing from limited examples provided at inference
time. Advanced prompting techniques, such as Chain-of-
Thought (CoT), guide models through step-by-step reasoning,
enhancing accuracy on complex tasks. Prompt Tuning further
adjusts input prompts without altering model weights, allowing
efficient adaptation. Another important technique is Retrieval-
Augmented Generation (RAG) [26], which integrates external
knowledge retrieved from a vector database (cf. Figure 1)
containing embeddings of documents. This approach enables
LLMs to dynamically incorporate context-specific informa-
tion, improving response accuracy and relevance.

Specialized systems like GitHub Copilot1 or Cursor2 utilize
LLMs specifically trained and fine-tuned on code repositories,
focusing on software development tasks, thereby enhancing
code completion accuracy and contextual relevance compared
to generic LLMs. Often especially in code or model generation
a post processing step is added to verify syntactic correctness
of the approach [27].

B. Domain Specific Languages

MontiCore [28] is a language workbench designed for the
efficient development and maintenance of DSLs. It was used
to develop several DSLs covering UML and other modeling
languages3. One of those is CD4A4 (Class Diagrams for Anal-
ysis) [29]–[31]: A domain-specific language designed to sup-
port the conceptual analysis phase and generative approaches
in software engineering. CD4A provides tailored features
specifically for creating and managing class diagrams during
early software analysis. CD4A employs a Java-like syntax,
making it intuitive for users familiar with Java and easing the
transition from conceptual analysis to implementation.

CD4A allows software architects and developers to clearly
express the structural aspects of a system by defining entities,
their attributes, associations, multiplicities, and inheritance
hierarchies [31].

1https://github.com/features/copilot
2https://www.cursor.com
3https://monticore.github.io/monticore/docs/DevelopedLanguages/
4https://github.com/MontiCore/cd4analysis
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Fig. 1. Usage of an LLM to adapt a textual model. Input Artifact (Input Model) is provided together with a prompt, that define the intended changes. The
input is embedded and further prompt optimizations are performed (FSL, RAG, etc.) this input is provided to the LLM. The output is post processed (e.g.
parsed) and provided to the user.

1 classdiagram MyClassDiagram {
2 class Person {
3 String name;
4 Date dateOfBirth;
5 /Integer age; //derived parameter
6 }
7 class Home {
8 String Address;
9 }

10 association Person <-> Home;
11 }

Listing 1. Class Diagram in CD4A syntax, containing a derived
parameter in line 5.

Listing 1 shows a simple example of a Class Diagram defined
in the Java-like CD4A DSL. The diagram defines two classes:
Person and Home, as well as abidirectional association be-
tween both. Note in line 5 the deviation to known syntax from
Java: a derived attribute [32] /Integer age;. Derived
attributes can only be associated with a type and a name,
and they cannot be modified directly, which implies that they
do not have corresponding mutable variables in the generated
code. As such, when implementing these derived attributes in a
programming language like Java, they are typically represented
as accessors that provide read-only access to the computed
value. The derived attribute in Listing 1 provides the age of
Person. The age itself is not defined as a member variable of
the Person, but is rather computed based on other parameters,
such as dateOfBirth. This specific method of computation
is not part of the CD4A model.

PlantUML [33] is a Modeling Language that is well
known to common LLMs [34] (such as GPT-3.5, GPT-4o or
deepSeek). It allows users to create UML diagrams using a
simple and human-readable text description. In the case of
class diagrams, PlantUML supports the definition of classes
with attributes and methods, as well as relationships such as

inheritance, associations, and dependencies. The PlantUML
class diagram defined in Listing 2 defines the same use case as
Listing 1: Two classes, Person and Home, each with their
respective attributes, and models a bidirectional association
between them.

1 @startuml
2 class Person {
3 String name
4 Date dateOfBirth
5 Integer age
6 }
7 class Home {
8 String Address
9 }

10 Person -- Home
11 @enduml

Listing 2. Class Diagram in PlantUML syntax.

IV. METHODOLOGY

In this section, we discuss our approach for measuring the
extent to which LLMs either correct or corrupt textual models.
As an example, we take a closer look at the derived attribute
notation in CD4A and to what extent it is preserved throughout
an AI-based modeling process.

A. Perplexity

A DSL has a well-defined syntax, often described using a
context-free grammar (CFG), which defines the valid structure
of expressions in that language. In contrast, the syntactic
fluency [35] of a LLM refers to its ability to generate text that
conforms to grammatical rules, whether in natural language
or a DSL. DSLs are highly structured and follow strict formal
rules, typically defined using grammars such as BNF (Backus-
Naur Form) or PEG (Parsing Expression Grammar). They
allow little tolerance for syntactic variation; a small syntax
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error (e.g., a missing semicolon) can make an entire statement
invalid. Natural languages, in contrast, have a tendency to be
more probabilistic and flexible, allowing for more ways to
express the same idea. A sentence with spelling errors will still
be interpretable by an LLM, however, a parser will not parse
code with syntax errors. A Large Language Model trained on
a DSL should ideally recognize syntactic violations.

To measure how well an LLM understands the syntax of a
DSL, perplexity (PPL) is a useful metric. PPL is a common
metric to identify if a text is created by an LLM or not [36],
[37]. It quantifies how well the model predicts the next token
in a sequence and is defined as:

PPL = exp

(
− 1

N

N∑
i=1

log p(wi|w1, ..., wi−1)

)
where N is the number of tokens in the sequence, and
p(wi|w1, ..., wi−1) is the probability assigned by the model
to token wi.

In our implementation, we calculate these probabilities by
extracting the raw logits li ∈ RV (where V is vocabulary size)
at each position and applying softmax normalization:

p(v|t1, ..., ti) =
exp(li,v −max(li))∑V
j=1 exp(li,j −max(li))

The subtraction of max(li) ensures numerical stability.
We then accumulate the negative log-likelihood − log(pi) for
each predicted token to compute the final perplexity. For
longer sequences, we also calculate chunk-level perplexity
over windows of 512 tokens to identify regions of varying
model confidence.

Lower perplexity indicates that the model assigns high
probability to syntactically correct sequences, meaning it has
learned the patterns well, whereas higher perplexity suggests
that the model is uncertain or struggles to predict correct struc-
tures. Perplexity is primarily a local feature: it measures token-
by-token prediction accuracy but does not directly indicate if
an LLM understands long-range dependencies [16].

Similarly, for a DSL, incorrectly structured definitions
should contribute to increased perplexity, while syntactically
valid definitions should lower perplexity. If an LLM is success-
fully trained on a DSL, we expect a sharp contrast in perplexity
values between well-formed and malformed expressions.

Perplexity can be used to identify tokens in an input artifact
that an LLM is likely to miss or misinterpret due to insufficient
training on the given syntax. The underlying assumption is
that an LLM struggles to reproduce unfamiliar syntax (high
perplexity) more than familiar syntax (low perplexity). As a
result, it may replace the unfamiliar syntax with a well-known
structure from a similar language it has been extensively
trained on. Additionally, we compute a local normalized
probability for each token—the ratio between the actual to-
ken’s probability and the maximum alternative probability—to
assess the model’s relative confidence in its predictions.

While syntactically correct but unusual programs can have
high perplexity, this complexity is not relevant here. We use

Fig. 2. Perplexity measure on CD4A Syntax with the Phi 4 Model using a
GPT2 tokenizer [39] (red = less likely token). The LLM is not only perplexed
by ’novel’ syntax (’/’), but also by irregular naming. E.g. it expects Date-
attribute-names to start with ’date’.

perplexity to identify tokens unfamiliar to the LLM from its
training data. High perplexity indicates constructs the LLM is
likely to misinterpret or replace with familiar patterns, which
is our primary concern when processing unknown DSLs.

Figure 2 shows the perplexity heatmap for an excerpt of a
CD4A class diagram (The full model can be found at [38]).
The heatmap shows, that the LLM did not predict the class
name to start with ”Auf” and clearly did not expect the first
attribute to be defined with ”/”. In addition it also did not
expect the ZonedDateTime attribute to be named starting
with ”la”, in this case the predicted token is ”datum” as the
LLM expects the Date attribute to be named starting with a
date-like name. In addition we notice that the ’Z’ tokens is
getting more likely with each line of code. This beautifully
visualizes the in-context-learning methodology: The LLM
adapts to patterns, and starts to predict repeated tokens.

We can use this metric to identify tokens that perplex the
LLM and thus are likely to be badly reproduced by it.

B. Input Output Comparison

In order to assess whether, and to what extent, an LLM-
based approach introduces unintended changes into the mod-
eling process, e.g. by badly reproducing tokens, we define the
following experimental setup (cf. Figure 1): We begin with an
artifact expressed in a DSL that is unlikely to be significantly
represented within the training data of the employed LLM,
yet closely resembles another language the LLM was likely
trained on. This applies to modeling language variants that
were developed internally, or modeling languages that are
strongly oriented towards well-known GPLs. Next, we prompt
the LLM to perform a minor modification on this artifact. This
modification must be defined in such a way that it can be
recognized in a later analysis of the finished artifact, e.g. by
adding a specific component or wording. After completion,
we compare the resulting artifact with the original version,
specifically examining alterations unrelated to the task defined
in the input prompt. Following the conformity hypothesis (cf.
section I), we expect that deviations from the original artifact
will predominantly occur in lines where the DSL syntax
slightly differs from the syntax of the dominant language
present within the LLM training data. In our approach, we
use a foundational model (gpt-3.5-turbo (Version 0125), gpt-
4o mini (Version 2024-07-18), o1-mini (Version 2024-09-12),
deepseek R1 (Version 2025-01-20)) and extend it with an in-
context-learning approach (cf. Figure 1) in order to prime
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the LLM with prompts to produce the targeted syntax. In
our experimental setup, we did not include methods such as
constrained decoding [6] or LoRa, however, we used a vector
database to provide fitting examples to the FSL-approach [5].

V. RESULTS

For the evaluation, we use the CD4A class diagram of a
model-driven information system called MaCoCo [31], [40].
The model from this real-world application defines the core
data structure of the data-centric web application and is used
to generate the application. It contains 38 enumerations, 72
classes, 63 associations, and 368 attributes, 13 of which have
the ’derived’ modifier introduced in section III. The text
included in the model is in German. The model was chosen
for its complexity and its origin in an industrial use case. The
modeling language CD4A was chosen because it represents a
language whose concepts (class diagrams) are familiar to the
LLM, while its syntax is not. For PlantUML, the MaCoCo
model was converted into PlantUML syntax.

A. Derived Attributes

In this study we focus on derived attributes, as their notation
’\’ is very similar to the notation for a comment ’\\’. We
expect that this similarity will make it particularly likely (c.f.:
Figure 5) that the LLM will adjust the derived attribute to a
comment or delete the notation. The MaCoCo class diagram
[31], [41] contains several derived attributes5. Some of the
attributes directly precede each other in the model, thus they
should be less impacted by perplexity due to the in-context-
learning effects known from few-shot learning. This effect can
be observed in Figure 2: The ’Z’ Token is initially very
unexpected for the LLM, as indicated by the heatmap. With
each new line the model gets used to the pattern until it expects
the new line to start with ’Z’.

1 Add the attribute {attribute_name} to the
2 class {class_name}. Respond with
3 the full updated document.

Listing 3. The LLM was prompted to add an attribute to a given
class and to return the entire modified Class Diagram. The
corresponding change to the class diagram, is excluded from all
preceeding measurements, as we focus on unintended changes.

In order to measure the frequency in which an LLM-Based
modeling approach would change aspects of the provided
model, a very simple modeling task was given to the sys-
tem (cf.: Listing 3). This task requires the addition of one
new attribute in the given class diagram and should in no
circumstance remove or modify any of the existing elements.
Therefore, any changes to other unrelated attributes can be
classified as erroneous or unintended changes.

In the experiment with the derived statement, there is a
high potential for failure, independent of the size of the class
diagram used as input. The data (cf.: Figure 3) shows that
either no statement is changed, an entire block is modified at
once, or all occurrences are changed simultaneously. Table I

5https://zenodo.org/records/6422355

CD4A-Model gpt-3.5-turbo (Version 0125)
Lines ’/’-Notation Runs CDs w. Diff

∑
Changes Error Rate

1135 13 100 N/A (Insufficient context window size)
657 7 100 N/A (Insufficient context window size)
222 6 100 58 315 58%

CD4A-Model gpt-4o mini (Version 2024-07-18)
Lines ’/’-Notation Runs CDs w. Diff

∑
Changes Error Rate

1135 13 100 27 157 27%
657 7 100 24 148 24%
222 6 100 25 78 25%

CD4A-Model o1-mini (Version 2024-09-12)
Lines ’/’-Notation Runs CDs w. Diff

∑
Changes Error Rate

1135 13 100 2 16 2%
657 7 100 3 21 3%
222 6 100 0 0 0%

CD4A-Model deepseek R1 (Version 2025-01-20)
Lines ’/’-Notation Runs CDs w. Diff

∑
Changes Error Rate

1135 13 100 1 1 1%
657 7 100 0 0 0%
222 6 100 0 0 0%

TABLE I
ANALYSIS ON THE FREQUENCY OF UNINTENDED MODIFICATIONS TO A
CD4A MODEL THAT CONTAINS ’/’-NOTATION TO INDICATE DERIVED

ATTRIBUTES (FEWER CHANGES IS BETTER).

examines the model corruption based on different input artifact
sizes and used LLMs. GPT-3.5-turbo can only be applied to
the smaller model variants due to context size limitations.
In the shortest model variant the LLM does only manage to
preserve all attributes in 42 of 100 iterations. Of a total of
600 (6 × 100 runs) derived attributes, 315 have been modified
incidentally. The larger and more capable gpt-4o-mini model
retains more attributes on average. Changing only a third of all
Models. Gpt-4o-mini does not have an issue with fitting larger
models in its context window. o1-mini is a reasoning model,
that excels among others in programming tasks. However, this
model still is not capable to reproduce the complete class
diagram without corrupting some parts of it. In the 657 lines
variant, 3 of 100 files were semantically modified in a sum
of 21 lines. In the 1135 lines variant 2 files were modified
in a total of 16 lines. Using a deepSeek R1 reasoning model,
only one occurrence was unintentionally modified, indicating
that reasoning models perform better at this kind of modeling
tasks.

0 2 3 13
0

50

100

150

Modified Lines, out of 13

1135 LoC

0 2 4 5 7
0

50

100

150

Corrupted Lines

657 LoC

0 2 6
0

50

100

150

Corrupted Lines

222 LoC

Fig. 3. Changed derived attributes in 100 runs with gpt-4o-mini for three
datasets. Most derived attributes are preserved without any changes. In case a
modification occurs either all derived attributes are corrected, or a low amount
is changed. The amount of modified derived attributes is not distributed evenly.

Figure 3 presents the distribution of changes among the
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input artifacts provided. A reliable operating algorithm should
corrupt 0 lines, or change all occurring derived attribute lines
for any artifact size. We notice a tendency for both. Most files
remain unchanged; and we also show a tendency to change
all occurrences: There are 13, 7 and 6 derived attributes in
the respective class diagrams. However there are also files in
which only some of the attributes where changed while others
remain unchanged, indicating an inconsistency in the behavior
of the LLM (gpt-4o-mini).

To minimize the risk that the measurements will be trig-
gered by a certain prompting technique. The experiment was
repeated with a different task. In this case, the LLM should
only add comments. In this case, the same distribution of
changes to the lines could be measured: cf. Figure 4.

In all cases in when a derived attribute was modified, the
notation was either removed, making the attribute a regular
member variable of the class, or another ’/’ was added,
making the attribute a commented line.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Preserved Attributes
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10

20
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40
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60
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eq

ue
nc

y

Attribute Preservation Distribution

Fig. 4. Distribution of derived attribute preservation (out of 13) across 100
regeneration trials when LLMs were tasked with adding comments. The full
CD4A model was used. This measure reflects the results of the findings
presented in Figure 3.

B. Spelling Errors

Following the assumption, that the modifications to the
model occur due to the semantic interpretation of tokens from
the input artifact. We can try to provoke further modifications.
Allamong et al. [42] successfully leverages the corrective
capabilities of LLM to fix spelling mistakes in texts. Al-
though correct spelling in continuous text is a highly desirable
function, adapting individual spellings in textual models can
be very disadvantageous. We introduce spelling errors into
attribute names and class names in the input artifact and
evaluate whether the LLM will preserve these errors. We
expect the LLM to have a tendency to correct spelling mistakes
it encounters, even if it was not explicitly asked to do so.

In the experiment with incorrect spelling, we noticed a
high potential for unintended corrections. A larger input class
diagram seems to yield fewer unintended changes to the
model; in contrast, smaller models seem to be more susceptible
to unintended corrections.

A possible cause could be that larger input artifacts give
the LLM a larger context due to which the AI locates the

CD4A-Model gpt-4o mini (Version 2024-07-18)
Spelling mistake A: ’Buchung’ → ’Buhung’

Lines Occurrences Runs Corrections by LLM Error rate
222 1 of 17 100 36 36%
657 1 of 13 100 10 10%

1135 1 of 32 100 16 16%
Spelling mistake B: ’Konto’ → ’Kondo’

Lines Occurrences Runs Corrections by LLM Error rate
222 1 of 33 100 40 40%
657 1 of 13 100 34 34%

1135 1 of 52 100 17 17%
CD4AModel deepseek R1 (Version 2025-01-20)

Spelling mistake A: ’Buchung’ → ’Buhung’
Lines Occurrences Runs Corrections by LLM Error rate
222 1 of 17 100 0 0%
657 1 of 13 100 0 0%

1135 1 of 32 100 2 2%
Spelling mistake B: ’Konto’ → ’Kondo’

Lines Occurrences Runs Corrections by LLM Error rate
222 1 of 33 100 5 5%
657 1 of 13 100 1 1%

1135 1 of 52 100 2 2%
PlantUML-Model gpt-4o mini (Version 2024-07-18)

Spelling mistake A: ’Buchung’ → ’Buhung’
Lines Occurrences Runs Corrections by LLM Error rate
222 1 of 17 100 43 43%
657 1 of 13 100 0 0%

1135 1 of 32 100 15 15%
Spelling mistake B: ’Konto’ → ’Kondo’

Lines Occurrences Runs Corrections by LLM Error rate
222 1 of 33 100 28 28%
657 1 of 13 100 2 2%

1135 1 of 52 100 5 5%
TABLE II

ANALYSIS ON THE FREQUENCY OF UNINTENDED MODIFICATIONS
(CHANGING ATTRIBUTE NAMES) TO A CLASS DIAGRAM IN CD4A AND
PLANTUML NOTATION THAT CONTAINS SPELLING MISTAKES (FEWER

CORRECTIONS IS BETTER).

text more strongly in a programming or modeling environment
and therefore refrains more from renaming or places a greater
focus on the accurate reproduction of variable names. Effects
known from few-shot learning could also apply here. Ta-
ble III presents two kinds of changes. In the first modification
the class keyword was changed to its german translation
klasse in one occurrence. In the second modification, all
but one occurrence were changed. This was performed for the
full class diagram, as well as a shortened variant of it. The
MaCoCo class diagram can be divided into semantic blocks (as
shown in [31]), giving us the option to choose smaller models
within the larger one. We observe that in case of the singular
change from class to klasse, in 13 of 100 iterations
the LLM had changed this modification back without being
asked to do so. In case the majority of class keywords were
changed to klasse, the LLM did not change any keyword
back. Note that also the singular remaining class keyword
was not changed by the LLM to match the majority klasse
keywords. This effect was also observed for the smaller class
diagram variant.

The observed effect could be explained in parts by in-
context-learning principles, and with the training data the LLM
is based on: In case only one class keyword is modified, the
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CD4A-Model gpt-4o mini (Version 2024-07-18)
Lines Occurrences Runs klasse → class class → klasse
1135 1 of 71 100 13 0
1135 70 of 71 100 0 0
222 1 of 13 100 13 0
222 12 of 13 100 0 0

PlantUML-Model gpt-4o mini (Version 2024-07-18)
Lines Occurrences Runs klasse → class class → klasse
1135 1 of 71 100 0 0
1135 70 of 71 100 0 0
222 1 of 13 100 0 0
222 12 of 13 100 2 0

TABLE III
ANALYSIS ON THE FREQUENCY OF MODIFICATIONS TO A CLASS

DIAGRAM IN CD4A NOTATION AN PLANTUML NOTATION WITH A
DIFFERENT CLASS KEYWORD (FEWER CORRECTIONS IS BETTER).

Fig. 5. Perplexity heatmap, for a CD4A class definition. The LLM is
’perplexed’ by the added derived attribute notation ’/’ (right image).

LLM is inclined to change it back to the version it was heavily
trained on (class is very dominant within a programming
context in contrast to klasse). Thus it is likely to change the
keyword back. In the second case, this effect is still present;
however, due to the large occurrence of the klasse keyword
within the input artifact, the LLM is inclined to recognize
this anomaly as a pattern and has a stronger tendency to keep
it. Similarly the remaining singular class keyword in the
second case, is still preserved as the LLM is well trained on
this keyword and this is not inclined to change it. These effects
seem to be also applicable to smaller artifacts.

C. Perplexity

As introduced in subsection IV-A, we use PPL as an
indicator to identify if a token is likely to be modified during
a modeling task by the LLM (cf. Figure 5). Therefore we
compare the complexity of modeling tasks in CD4A with
modeling tasks in another DSL. We choose SysML v26 [43]
for this comparison as it has much higher complexity as a
CD4A class diagram. In contrast to CD4A there are more
publicly available data describing the SysML syntax. Thus, we
can assume, that major LLMs are to a certain extent trained on
SysML v2. This can be seen in Table IV: A generic Java file
has a low perplexity of 1.84, whereas a comparable the SysML
v2 model shows a perplexity of 2.10. Although the CD4A

6https://github.com/Systems-Modeling

File Name Overall Perplexity Avg. Chunk Perplexity
GenericJavaFile.java 1.84 2.36
Fischertechnik.sysml 2.10 3.05
MaCoCo.cd 2.88 4.70

TABLE IV
PERPLEXITY FOR DIFFERENT ARTIFACT KINDS. JAVA VS. SYSMLV2 VS.

CD4A

Fig. 6. SysML v2 use case Top Chart: The AI-based modeling task
introduces several changes into the SysML model. Bottom Chart: Filtered
for semantic changes, significantly fewer changes remain.

Fig. 7. CD4A use case Top Chart: The AI-based modeling task introduces
several changes into the CD4A model, some of which are extensive. Bottom
Chart: Filtered for semantic changes, there is still remains a significant
modification to the models.

Class Diagram Syntax is similar to Java is has a higher per-
plexity at 2.88, indicating that the LLM has more difficulties
predicting CD4A code than SysML. Note that programming
languages have on average a lower perplexity than natural
language, as source code is more machine readable. Next
we compare the changes to the models for the different DSLs.
We differentiate into generic and semantic changes. Generic
changes are changes that modify the model but have no impact
on its syntactical interpretation e.g. additional line breaks,
changed comments, formatting. Semantic changes [44], [45],

642



describe changes that result in a different interpretation of the
Model, e.g. additional attributes, name changes or component
removal. Figure 6 shows overall changes and semantic changes
for 100 iterations of a modeling task for a SysML v2 model.
We notice that in general the LLM changes several lines in
the model. This includes updating comments, white spaces,
and formatting. By excluding these changes we notice that
median of 2.5 lines where changed unintentionally in 100
SysML files. Given the complexity of the SysML language
this is a great result. Looking at the chart for CD4A models:
Figure 7 we notice a high level of generic changes, showing
a median on 204 changes. If we focus on semantic changes, a
median of 14 was measured. Note that these changes include
changes to derived attributes, but are not limited to those. We
observe more unintended changes in the CD4A model than
in the SysML v2 model. More errors do not only occur in
absolute numbers, but also in relative ones: In the SysML runs
2.5

86.0
= 2.90% of all changes are unintended modifications of

the model. In Class Diagram modeling runs
14.0

204.0
= 6.86%

of all changes where semantic changes that where not intended
by the modeler, indicating that the LLM is more capable to
retain elements from the SysML model rather than the CD4A
model.

VI. DISCUSSION

RQ1: We observe that LLMs tend to inaccurately reproduce
semantics of a given model. RQ2: This effect increases with
the LLM’s perplexity of the modeling language. LLMs tend
to correct spelling and corrupt unfamiliar syntax of the input
model. We have shown that we can provoke this behavior
by choosing a language that is unknown to the LLM and
contains syntactic elements (derived attributes) that are very
close to very well-known modeling languages. It is very likely
due to the LLMs not having been trained on certain DSL
syntax, thus they frequently alter unfamiliar elements to match
more common language patterns from their training data.
Although these modifications typically appear plausible and
can remain syntactically valid, they unintentionally introduce
semantic changes, altering the meaning of the original textual
model. This issue cannot be resolved by grammar masking
techniques [6], [46], [47], nor can it be reliably detected using
a parser. We can reproduce this effect with natural language.
By introducing spelling errors, the LLM will have a tendency
to interpret the text by its meaning, not by its spelling. If tasked
with reproducing, it has a tendency to reproduce the corrected
version of the word independently of the original with a
spelling error. This can be measured as shown in Table II.
The language choice of the model (German) seemed to have
less impact than the usage of an unknown DSL, as the LLM
correctly represented the German components, and primarily
struggled with specifically introduced challenges, such as
spelling mistakes and uncommon syntax. Perplexity might
serve as an indicator for syntactic elements that are prone
to corruption. Especially in DSLs that share patterns with
languages the LLM is well trained on, unfamiliar elements

will show up as very ’perplexing’ tokens (cf. Figure 5). Note
that the LLM can familiarize itself with the new token within
the context of one large input model, due to in-context-learning
effects, so that not all occurrences of the unfamiliar token are
seen as unfamiliar by the LLM: E.g. the first occurrence might
be unexpected, but with further repetition the LLM can process
the new token as a pattern [25]. The reported systematic
shortcomings of the LLM highly depend on the training and
setup of the used large language model. Thus we expect larger
models to reproduce a provided artifact more accurately in
comparison to a smaller LLM. This could be shown in Table I.
Similarly if the model is trained on the DSL we also expect
it to perform better, as shown in Figure 6 and Figure 7. As
a consequence techniques such as fine-tuning or LoRa [48],
[49] should improve accuracy. More cost-effective and flexible
could be in-context-learning based methods [20] and generic
prompt engineering [50], such as few-shot learning, chain-of-
thought, and function calling. However the effect we measure
here will not be extinguished by these improvements as they
rely on the inherent hallucinations LLMs have. The key prob-
lem that the LLM performs unintended changes might be best
mitigated, by introducing an agent, that instead of reproducing
the entire model, just provides incremental changes to specific
sections of the model. Therefore, a list of dedicated assessable
changes is performed in the model instead of an undefined
generic update. Such a concept, changing components of a
model via a dedicated interface, is already defined for the
SysML v2 API [43], [51]. While explicit prompt hints about
DSL specific syntax (e.g warning about the ’/’ notation in
CD4A) could reduce error rates, we deliberately avoided such
optimizations. Prompt engineering consistently improves LLM
performance, as is well documented in literature. However,
requiring DSL-specific prompt tuning contradicts the approach
of DSL-agnostic modeling. Since time intensive prompt tuning
needs to be done for each encountered DSL. While prompt
engineering can mitigate some issues, it does not eliminate
the fundamental challenge of LLMs misinterpreting unfamiliar
patterns.

VII. THREATS TO VALIDITY

The reproducibility of evaluations for LLM-based experi-
ments poses a special challenge due to their black-box ar-
chitecture and rapidly evolving nature. We try to tackle this
known aspect by running all experiments repeatedly in order
to enable us to make statistical statements to specific LLM
versions rather than stating claims on the inner workings of
an LLM.

A. Low Sample Size

This analysis focused on a limited set of domain-specific
languages and models, so we cannot generalize the observed
effect to all modeling languages. However, our findings in-
dicate that the effect occurs frequently within the DSLs
examined. Since we have consistently observed this effect in
our examples, it is reasonable to believe it might also show up
in other DSLs with similar features. To better support this idea,
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more tests that involve additional DSLs and a wider range of
models would help. Future research should therefore include
more DSLs and models to better understand how broadly this
effect applies.

B. Large Language Models

The field of research in the context of AI is rapidly evolving
and changing. New LLMs are released in rapid progression.
The effects described above relate to the mentioned versions
of the LLMs. Future versions might be less susceptible to
introduction of semantic changes to the model at hand. Table I
demonstrates that there is a trend of improvement with up-
coming models. However, more complex modeling languages
could pose a harder challenge for even the newest LLM.
Similarly, as shown in the Figure 6 and Figure 7 training
data on which the LLM is trained, has a large impact on its
performance. Although other LLMs are very likely to have
the same effect, they might perform better or worse due to the
data they are trained on. The same holds for modified LLMs
such as quantized foundational models or fine-tuned models.
We only used decoder models for this work because the
available encoder-decoder models (as presented in [52], [53])
are nowhere near as powerful in our computing environment
as the encoder models that are currently available.

C. Link Between Model Corruption and Perplexity

We examined a link between the perplexity metric and the
modification of the tokens identified through this perplexity.
We were unable to prove a causal relationship between in-
creased perplexity and increased susceptibility to errors due to
many mutually influencing factors, such as in-context learning,
but also to the black-box characteristics of the LLM. We
can only point to a statistical anomaly and recommend the
perplexity metric as a helpful tool to analyze how well an
LLM can process a textual model.

VIII. CONCLUSION

In this paper, we highlight the risks associated with using
LLMs for modeling tasks. Beyond the incorrect creation of
new elements within existing models, LLMs may also uninten-
tionally alter previously correct model parts, potentially com-
promising their intended structure or meaning. These changes
are not limited to syntax—they can also be semantic in nature
and thus escape detection by standard parsers. Analyzing token
embeddings using the perplexity metric can provide early
indications that a domain-specific language is vulnerable to
such effects. Moreover, our findings show that LLMs exhibit
a tendency to ”correct” perceived spelling errors even in
modeling contexts. Such automatic renaming of components
can directly impact generated code, particularly in model-
driven engineering projects where consistent naming is crucial.

Larger LLMs can process unknown DSLs better and, there-
fore, perform better in our measurements. However, even with
modern reasoning models (o1, deepseek R1), we were still
able to demonstrate a susceptibility to errors, although those
LLMs performed significantly better.

In addition to the model size, better prompting also has
an effect on the susceptibility to errors. However, both model
size and in-context learning or constrained decoding do not
completely prevent model corruption. We recommend not
adapting the model directly to the textual artifact, but using
an agent system that translates the modeler’s requirements into
concrete, traceable and verifiable changes on an abstract level,
rather than guiding the AI to produce syntax for the entire
model directly, similar to the API-Based modeling approach
proposed by OMG for the SysMLv2 [54].

This work primarily measured changes to class diagrams
that are defined in few DSLs: CD4A and PlantUML. With a
small set of models and LLMs. Experimentation with further
DSLs and also open Source LLMs would support the claim
of the paper and provide further insights to what extent this
problem impacts generic modeling tasks and further determine
what kind of domain-specific languages are especially prone to
this kind of correction and corruption. Further research should
also focus on an approach to efficiently mitigate unintended
changes to unrelated elements of the input model, while still
allowing dedicated modifications to the model as a whole.
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