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Abstract
This paper presents two solutions to the TTC 2025 "UVL to Dot" case using the MontiCore language workbench,
applying either a handwritten string construction using the visitor design pattern or pattern matching using the
concrete syntax within templates.
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1. Introduction

As generative AI continues to advance rapidly, it is increasingly being considered for supporting—or
even fully automating—a wide range of tasks, including model transformations. However, due to the
specialized nature of dedicated model transformation languages, there are few examples that large
language models can use to learn. As a result, large language models tend to perform better when
generating transformation code in general-purpose programming languages than for specialized model
transformation languages.

The Universal Variability to Dot [1] case of the Transformation Tool Contest (TTC) 2025 aims to
make a contribution to this by explicitly implementing the transformation from the textual Universal
Variability Language (UVL, [2]) to the textual domain-specific language (DSL) DOT. The focus on textual
modeling languages should therefore enable a comparison between well-known transformation tools
and large language models (LLMs).

In this paper, we present two solutions using the language workbench MontiCore [3] and its extension
MontiTrans [4]. MontiCore enables the definition of the UVL grammar for parsing existing models.
The first solution then uses visitors to build a textual DOT representation, while the second solution
uses MontiTrans’ pattern matching to create DOT models from FreeMarker templates.

2. MontiCore

MontiCore [3] is a language workbench for the development and composition of textual DSLs. Starting
with a context-free grammar, MontiCore generates a variety of infrastructure to parse, represent, and
process models. This includes a parser, symbol tables, and visitors, as well as frameworks for model
checking and code generation. The parsing process is done in two stages. At first, the underlying ANTLR
parser constructs the parse tree, that is transformed to a language-specific internal representation of
the Abstract Syntax Tree (AST) afterwards. This AST can then be navigated using MontiCore’s visitor
infrastructure. Although MontiCore uses various text-to-model, model-to-model, and model-to-text
transformations, all of these are implemented exclusively through specific Java code. Language-specific
support for external graph or model transformations is not provided.

MontiTrans [4] extends MontiCore with support for the development of domain-specific transforma-
tions via derived domain-specific transformation languages (DSTLs). DSTLs enable the definition of
transformations within modeling languages by extending their concrete syntax with transformation
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directives. This enables modelers and domain experts to describe transformations using the syntax
of their familiar modeling language without having to learn an additional general transformation
language. However, while general transformation languages only have to be developed once, DSTLs
have to be developed separately for each modeling language. MontiTrans can therefore automatically
derive and generate DSTLs from given modeling languages. MontiTrans uses a model sensitive, search
plan-driven local search for pattern matching when executing a transformation, regardless of whether
the transformation is interpreted or executed as generated code. The search plan is therefore influenced
both by the information of a pattern and by the information on the model to be searched. Finally,
backtracking is used to reduce the candidate sets as much as possible.

3. Solution Overview

3.1. Domain-Specific Language

The challenge provides ANTLR and TreeSitter grammars, as well as models conforming to an Ecore
metamodel. Since MontiCore uses its own grammar format, we must first create a MontiCore grammar
for the Universal Variability Language.

Our UVL grammar uses two component grammars from the MontiCore library: MCCommonLiterals
provides literals and ExpressionsBasis provides the expressions used within the constraints. Further
component grammars are used transitively.

MG UVL1 grammar UVL extends
2 de.monticore.literals.MCCommonLiterals,
3 de.monticore.expressions.ExpressionsBasis {
4 ...
5 interface Attribute;
6 ValueAttribute implements Attribute = key:Name value:Value?;
7 SingleConstraintAttribute implements Attribute = "constraint" Constraint;
8 ListConstraintAttribute implements Attribute = "constraints" "[" (LINEBREAK

BLOCK_START Constraint LINEBREAK BLOCK_END)* "]";

We demonstrate language composition using UVL attributes as an example. UVL attributes
are defined using a nonterminal interface. Then, we define three implementations of an at-
tribute: ValueAttribute, SingleConstraintAttribute, and ListConstraintAttribute, all
implementing the Attribute nonterminal interface. In terms of concrete syntax, these three im-
plementations are all valid alternatives for an Attribute. Although this case’s UVL language is not
intended for reuse in other languages, interface productions enable the black-box reuse or refinement
of a language’s elements. We opted not to define the symbols and scopes of the language, which would
turn the AST into a graph. MontiCore’s language library is tailored for Java-like languages, resulting in
the need for a preprocessing step converting changes in the indentation level into BLOCK_START and
BLOCK_END tokens.

3.2. Solution 1: Visitor

The first solution is similar to the example solution in that it traverses the AST and writes the DOT
graph into a string builder using plain old Java. It differs from the example solution by using the
MontiCore AST constructed by our DSL’s parser. We have opted to include this solution as it provides a
baseline for the second, pattern matching, solution. Similarly, it demonstrates the usage of expressions
in constraints from MontiCore’s language component library. Since Java does not offer built-in support
for runtime dispatching, MontiCore’s visitor infrastructure performs a double dispatch to support
language composition. Because we designed the language so that attributes can easily be extended via
language composition, this double dispatch is necessary.

To output the edges of feature groups, we traverse the AST with a custom traversal strategy for the
ASTGroups, of which an excerpt is shown below:



Java1 @Override
2 public void traverse(ASTGroup node) {
3 for (var subFeature : node.getGroupSpec().getFeatureList()) {
4 featureStack.push(subFeature);
5 subFeature.accept(getTraverser()); // continue to traverse the sub feature
6 featureStack.pop();
7 sb.append(featureStack.peek().getRef().asString()); // access parent reference
8 sb.append(" -> ");
9 sb.append(subFeature.getRef().asString()); // access subFeature reference

10 if (node.isAlt())
11 sb.append("[arrowhead=\"none\", arrowtail=\"odot\", dir=\"both\"] \n");
12 else if (node.isOr())
13 sb.append("[arrowhead=\"none\", arrowtail=\"dot\", dir=\"both\"] \n");
14 else if ...
15 }
16 }
17 });

For each group we visit, we push each sub-feature to a stack and traverse the sub-feature’s children
depth-first. Next, we create an edge from the parent feature accessed via the stack to the current
sub-feature. The edge’s style is selected based on the group’s type.

3.3. Domain-Specific Transformation Language

Using a DSTL derived by MontiTrans, model developers are able to describe patterns and integrated
replacements in the already known DSL’s syntax, with minimal additional syntax elements.

Given a production of the UVL grammar like Namespace,
MG UVL1 Namespace = "namespace" Reference;

a production Namespace_Pat is derived which is used to describe the pattern of a namespace.
MG UVLTR1 Namespace_Pat implements ITFNamespace =

2 "namespace" reference:ITFReference || // concrete syntax
3 "Namespace" schemaVar:Name || // capture + abstract syntax
4 // capture + concrete syntax
5 (("Namespace"? schemaVar:Name) | ("Namespace" schemaVar:Name?))
6 "[[" "namespace" reference:ITFReference "]]";

The first option is to match against the concrete syntax of a model element. For example, namespace
... with ... being a pattern for a reference. Any names or identifiers within this concrete syntax can
be generalized using schema variables, which are prefixed with $. The second alternative allows for
matching based on the abstract syntax of a model element, i.e., its the type. In this example, Namespace
$N is a valid capturing pattern. Additionally, the matched model element is captured and made accessible
via a schema variable. The third alternative allows the capture of a model element based on a concrete
syntax pattern. $N [[ namespace ... ]] is a valid example of this alternative.

Further implementations of the ITFNamespace interface production consist of an optional pattern,
a negated pattern, a list of inner patterns, and a replacement operator.

MG UVLTR1 Namespace_Opt implements ITFNamespace =
2 "opt" "[[" namespace:ITFNamespace "]]";

All implementations of an interface are valid alternatives when it comes to the concrete syntax. For
this case, only the pattern and optional pattern derivations are used. By its nature, a DSTL only
supports homogeneous transformations of models of its DSL. To achieve heterogeneous model-to-model



transformations, the original and target DSLs must be composed and the transformations be described
using the composed DSTL. Instead, our solution relies on MontiCore’s templating engine, which uses
FreeMarker, to achieve a UVL-model-to-DOT-text transformation.

3.3.1. Template 1: Creating the DOT Graph

The first template and our de facto entry point prints the properties of the graph and includes the next
three templates.

FTL 01CreateDot1 digraph FeatureModel {
2 rankdir="TB"
3 ...
4 ${tc.include("templates.02CreateNodes")};
5 ${tc.include("templates.03Groups")};
6 ${tc.include("templates.04Constraints")};
7 }

MontiCore’s templating engine supports tracing of model elements and the templates used for generation.
These features serves as building blocks for supporting incremental builds.

3.3.2. Template 2: Creating Nodes from Features

The second template creates a box node for each feature. Abstract features result in an invhouse
shape. Although the special shape for abstract features was not described in the case description, we
have opted to follow the reference implementation in this regard. This also showcases the optional
directive embedded within the DSTL.

To develop a pattern, one usually starts from a concrete example model [4]. In our case, we want to
match a feature that may or may not have the abstract value-attribute. An example of such a feature
can be seen below:

Feature⏞  ⏟  
Reference⏞  ⏟  

. . .⏞  ⏟  
"N_100002__F_100014_xor"

ASTAttributes⏞  ⏟  
{
ValueAttribute⏞  ⏟  
abstract } <LB>

To increase readability, a partial parse tree is added to this example. Next, the pattern is generalized by
replacing concrete names with schema variables and, in our case, marking the attributes as optional.
This generalized pattern can then be used within a template:

FTL 02CreateNotes

1 <#list pm.match("Reference $FName opt[[$A[[{abstract}]] ]]<LB>",ast) as match>
2 ${match[’$FName’].get().asString()}
3 [fillcolor="#ABACEA" tooltip="Cardinality: None" shape="${match[’$A’].isPresent()?

then("invhouse","box")}"]
4 </#list>

The template uses the pm.match(String pattern) utility method to define and use a pattern
during template generation.

Feature pattern⏞  ⏟  
Reference abstract pattern⏞  ⏟  
Reference $FName

optional Attributes⏞  ⏟  
opt [[

Attributes captured in $A⏞  ⏟  
$A [[ {abstract} ]] ]] <LB>

The pattern matches a feature based on the feature’s concrete syntax. First, the feature’s reference
is captured in the schema variable $FName. This schema variable is later used to print the feature’s



name again. While we could capture the individual parts of the reference, we chose this alternative
for performance reasons. Next, an optional value attribute with the key abstract is matched and
captured in the $A schema variable. If this schema variable contains a matched model element - that is,
if the feature was marked as abstract - we select another shape for the node. Behind the scenes, the
pattern, which is a textual model of the DSTL, is parsed and converted to an object diagram, as can be
seen in Figure 1.

Figure 1: The pattern of the node creating template in object diagram notation.

From this pattern, a search plan is calculated: Starting with finding a possible candidate for
feature_1, i.e., all existing features, the candidate’s ref is used as a candidate for $FName. Next, the
engine attempts an optional match: A candidate for the ASTAttributes object $A is selected from the
feature candidate’s attributes and an ASTValueAttribute with abstract as its key matched. If no
candidates can be found for the attribute, the engine performs backtracking until no more candidates
can be found or until the backtracking reaches the optional step. In case no model element matches the
optional pattern, the engine continues without a match for the schema variable $A.

3.3.3. Template 3: Creating Edges from Groups

The third template translates feature groups into edges by matching an outer feature, its group, as well
as an inner feature. We capture the outer feature’s reference in FRef. Next, we match and capture
any kind of group. The tokens <LB>, <BS>, and <BE> are used to describe line breaks and indentation
changes in the model.

FTL 03Groups1 <#list pm.match("
2 Reference $FRef <LB> <BS>
3 Group $G [[ $_ <LB> <BS>
4 Feature [[ Reference $IRef <LB> ]] <BE>
5 ]] <BE> ", ast) as match>
6 ${match[’$FRef’].get().asString()}
7 ->
8 ${match[’$IRef’].get().asString()}
9 <#if match[’$G’].get().isAlt()>

10 [arrowhead="none", arrowtail="odot", dir="forward"]
11 ...



Due to the limited set of feature group kinds, we have opted to use a constant group in our UVL
grammar. Currently, we thus have to extend the group pattern of the UVLTR grammar by allowing the
$_ placeholder in place of the constants, such as alternative, or, etc. This avoids the need to repeat
the pattern search for each kind of group. Using an interface instead of a constant group might have
been the better language design choice, but it would have increased the size of the search plan. The
DSTL derivation process of MontiCore does not support this by default. However, the extensibility of
the derivation process allows us to include hand-written additions to the DSTL.

The final template iterates over the constraints and adds the result of a model-to-text transformation
to the table. This transformation uses an automatically generated pretty printer, reverting the parsing
process.

4. Evaluation

The first solution is comparable to the reference solution, just using language composition for rapid
language engineering and a different programming language. Although a large language model could
generate the model-to-text transformation class, developing it requires knowledge of UVL’s abstract
syntax. The compositional nature of the DSL incurs a performance penalty in comparison [5].
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Figure 2: Benchmark of the initial phase, in which the initial UVL model is processed. The time axis is shown
on a log scale.

One of the strengths of pattern matching using the concrete syntax is that domain experts can
describe patterns and transformations using established vocabulary of their domain and without the
accidental complexity of general transformation languages [6]. However, in the case of UVL, a language
with few keywords and indentation sensitivity, the patterns are difficult to understand. Other languages,
such as a textual notation of UML class diagrams [4], UML statecharts, and MontiArc automata [7],
have shown better results.

A better designed MontiCore UVL grammar or a different way to represent indentation sensitivity
within the UVL-DSTL may contribute to an improved experience. Similarly, supporting transformation



developers with a designated editor should improve the experience. One could experiment if large
language models using a structured output in a DSTL strikes a good middle ground between under-
standable model transformations for domain experts and AI-assisted transformation development. We
initially planned to evaluate LLMs in their ability to write transformation using DSTLs and few-shot
learning. However the surprising complexity of the patterns due to UVL’s context sensitivity made this
infeasible.

MontiTrans only supports pattern matching and homogeneous model-to-model transformations,
i.e. within the same DSL. To achieve heterogeneous transformations (e.g., from UVL to DOT) one
could compose the source and target languages and write transformations within this new composed
language. However, we have opted to use the FreeMarker template engine to create model-to-text
transformations by pattern matching the UVL model and writing DOT models.
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Figure 3: Benchmark of the load phase, in which the models are parsed. The time axis is shown on a log scale.

In regards to performance, the interpretative nature of our second solution is evident in Figure 2,
with the MontiCore-DSTL tool of the second solution taking a much longer time. Although MontiTrans
provides support for pre-compiled, i.e. generated, transformations, we determined that the concept
of interpreted patterns defined within FreeMarker templates was better suited to this challenge. The
pattern matching part of MontiCore [4] has been laying dormant for some time and still offers areas for
performance improvements. This, in combination with the interpreter overhead, results in non-optimal
performance results. Recently, however, we have improved our generated parsers to be able to efficiently
parse transformation rules. Figure 3 shows the time needed for the load phase of both MontiCore
solutions and the NMF reference solution. The slightly longer duration of the DSTL solution is caused
by the initialization of the interpreter. While the transformation engine reports on the model elements
that were matched and modified, incremental transformations are not yet supported.



5. Conclusion

This paper has presented two solutions to the "UVL to Dot Case" [1], both using the MontiCore language
workbench. The first solution is a standard visitor-based string printer and the second solution provides
an example of using domain-specific pattern matching in a templating language without inbuilt pattern
matching support. The case revealed some of the shortcomings of indentation-aware DSTLs and
identified areas for future development.

Acknowledgments

Funded by the German Federal Ministry of Education and Research - 03G0922A

Declaration on Generative AI

During the preparation of this work, the authors used DeepL in order to: Grammar and spelling check,
Paraphrase and reword. After using this service, the authors reviewed and edited the content as needed
and take full responsibility for the publication’s content.

References

[1] G. Hinkel, S. Greiner, T. le Calvar, Universal Variability to Dot (2025). URL: https:
//github.com/TransformationToolContest/ttc2025-live/blob/main/docs/UVL_to_Dot_TTC_
2025_Live_Contest.pdf.

[2] D. Benavides, C. Sundermann, K. Feichtinger, J. A. Galindo, R. Rabiser, T. Thüm, UVL: feature
modelling with the universal variability language, Journal of Systems and Software 225 (2025)
112326. doi:10.1016/J.JSS.2024.112326.

[3] K. Hölldobler, B. Rumpe, MontiCore 5 Language Workbench Edition 2017, Aachener Informatik-
Berichte, Software Engineering, Band 32, Shaker Verlag, 2017. URL: http://www.se-rwth.de/
publications/MontiCore-5-Language-Workbench-Edition-2017.pdf.

[4] K. Hölldobler, MontiTrans: Agile, modellgetriebene Entwicklung von und mit domänenspezifischen,
kompositionalen Transformationssprachen, Aachener Informatik-Berichte, Software Engineering,
Band 36, Shaker Verlag, 2018. doi:10.18154/RWTH-2019-00468.

[5] N. Jansen, A. Lüpges, B. Rumpe, Lessons Learned from Developing the MontiCore Language
Workbench: Challenges of Modular Language Design, in: Proceedings of the 18th ACM SIGPLAN
International Conference on Software Language Engineering, 2025, pp. 112–127. doi:10.1145/
3732771.3742717.

[6] R. France, B. Rumpe, Model-driven Development of Complex Software: A Research Roadmap,
Future of Software Engineering (FOSE ’07) (2007) 37–54. URL: http://www.se-rwth.de/publications/
Model-driven-Development-of-Complex-Software-A-Research-Roadmap.pdf.

[7] K. Adam, K. Hölldobler, B. Rumpe, A. Wortmann, Modeling Robotics Software Architectures with
Modular Model Transformations, Journal of Software Engineering for Robotics (JOSER) 8 (2017)
3–16. doi:10.1109/IRC.2017.16.

https://github.com/TransformationToolContest/ttc2025-live/blob/main/docs/UVL_to_Dot_TTC_2025_Live_Contest.pdf
https://github.com/TransformationToolContest/ttc2025-live/blob/main/docs/UVL_to_Dot_TTC_2025_Live_Contest.pdf
https://github.com/TransformationToolContest/ttc2025-live/blob/main/docs/UVL_to_Dot_TTC_2025_Live_Contest.pdf
http://dx.doi.org/10.1016/J.JSS.2024.112326
http://www.se-rwth.de/publications/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/publications/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://dx.doi.org/10.18154/RWTH-2019-00468
http://dx.doi.org/10.1145/3732771.3742717
http://dx.doi.org/10.1145/3732771.3742717
http://www.se-rwth.de/publications/Model-driven-Development-of-Complex-Software-A-Research-Roadmap.pdf
http://www.se-rwth.de/publications/Model-driven-Development-of-Complex-Software-A-Research-Roadmap.pdf
http://dx.doi.org/10.1109/IRC.2017.16

	1 Introduction
	2 MontiCore
	3 Solution Overview
	3.1 Domain-Specific Language
	3.2 Solution 1: Visitor
	3.3 Domain-Specific Transformation Language
	3.3.1 Template 1: Creating the DOT Graph
	3.3.2 Template 2: Creating Nodes from Features
	3.3.3 Template 3: Creating Edges from Groups


	4 Evaluation
	5 Conclusion



