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Abstract
In many applications, the behavior of a component depends on the time when messages

are received. To model these in embedded systems, capabilities to specify time are
required. This includes the capability to react to the absence of input. In this report,
we present an encoding of Focus [BS01b, Bro14, Bro23a, Bro24] in the theorem prover
Isabelle. This implementation extends our previous formalization of untimed streams
[BKR+20]. Similar to the untimed version, concepts such as timed stream bundles, timed
stream processing functions, and corresponding functions and theorems are presented.
The principle idea is to conceptualize the observable flow of messages over a channel as a
stream and the behavior of a component as a stream processing function. A component’s
specification is then given by a set of stream processing functions, allowing for the
modeling of underspecified behavior. Refinement and composition of components are
natural operations in this theory and are compatible. This is a great advantage when
modular reuse, evolutionary optimization, or incremental development are required to
develop highly reliable systems that must be certifiable or even verifiable. The theories
are evaluated by proving the properties of a time-sensitive case study.
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Chapter 1

Introduction to the Timed Stream
Formalization

Software is getting more complex for various reasons, including increased user demands
for more functionality, integration with multiple systems and devices, technological ad-
vancements, and higher security. As software systems evolve and become more sophisti-
cated, developers face the challenge of creating easy-to-use, secure, and reliable applica-
tions while incorporating complex features and functions. This complexity results in an
increase in the size and intricacy of the software systems, making designing, building,
and maintaining them more challenging [Bro06a]. Model-based system development can
help with dealing with this complexity. By modeling a software system as a distributed
system comprising various components communicating with each other, we can analyze
the system and reason about properties such as security and reliability. In many appli-
cations, the behavior of a component depends on the time when messages are received
(e.g., in the case study we considered in this work, see Chapter 6). For instance, the
timely activation of an airbag can be seen as a (critical) functional property. In untimed
streams [BKR+20], an implicit concept of time was present as a total order on the set
of events. The order of incoming messages was modeled, but not the distance in time
between arrivals. It is important to note that timed streams enable a stronger expres-
siveness compared to untimed streams. Timeouts, a very common construct in real-time
embedded systems, can only be modeled by timed streams (through the capability to
react to the absence of input). Furthermore, such properties become quantifiable over
time. We quantify the time of arrival of events or execution of actions. We introduce
a discrete model (and no continuous dense model) [BS01b, Rum96]. Timed modeling
uses, apart from an alphabet M, also a special message

√
, called Tick, in order to model

the passage of time. So, the occurrence of a Tick in a stream models the incrementing
of time by one time unit. Additionally, we assume equality of length of all time units
to avoid Zeno effects. The n-th Tick of a stream models then the end of the n-th time
unit. The only known information about the incoming messages between the n-th and the
n+1-th Tick is their order and occurrence in the time interval [n, n+1]. Similarly to the
untimed streams [BKR+20], one can define timed versions of stream bundles and stream
processing functions. The untimed theory developed in [BKR+20], including composi-
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Chapter 1 Introduction to the Timed Stream Formalization

tion and refinement techniques, can thus be seamlessly transferred. The realizability
of timed stream processing functions is described through strong and weak causality
(see [Rum96]), also known as “pulse-driveness”, and it replaces the previously required
properties of monotonicity and continuity. The model of time in this paper is discrete
and similar to the one proposed in [Ost89]. Section 3.3 discusses further alternatives.
Models of dense time where infinite points between two finite points are used are pre-
sented in [Lyn89]. This is based on the concept of the dense time domain [Bro12].
In [BS01b], timed streams are defined as infinite observations, where a timed stream
has infinitely many Ticks. Several discrete and dense variants of streams are presented
in [RR11]. Dense models of time are usually attractive to specify physical hardware
phenomena, while our discrete time is rather suited for software aspects. The stream
implementation in Isabelle is based on the “Higher-Order Logic of Computable Func-
tions” (HOLCF) [Reg94] extension. Our previous work [GR06] introduced a datatype
for general streams and defined functions over these streams. The current definition
of streams is an optimization of that definition based on the more recent HOLCF’11
[Huf12]. Another approach of a FOCUS formalization in Isabelle is presented in [Spi07].
It is based on Isabelle/HOL instead of Isabelle/HOLCF and uses the list data type.
A detailed discussion of alternatives can be found in Section 3.3. Subsets of the work
presented in this book have been applied to case studies from domains such as automo-
tive and aerospace. In [KRRS19], a time-synchronous model was used and evaluated in
an automotive case study. The Isabelle implementation was connected with the fron-
tend modeling language MontiArc [HRR12]. MontiArc and a time-synchronous model
were used again in [KPRR20b] for proving certain properties of a deterministic pilot
flying system from a NASA case study [CM14]. A nondeterministic variant of the pilot
flying system was refined step-wise and proven correct in [KPRR20a] using MontiArc
and its time-synchronous model. Next, the prominent language SysML was used as the
frontend to specify the pilot flying system using a time-synchronous model [KPRR21],
which is known to be more commonly used for hardware modeling. An event-driven
model, known to be used in distributed software applications, was applied in [KMP+21],
where the pilot flying system was modeled again using the SysML language in Monti-
Core [HKR21, HR17, GKR+06]. Further communication and architectural pattern for
distributed systems are discussed in [BKP+25]. Using the event-driven model, another
case study from the aerospace domain, a data link uplink feed, was modeled with SysML
and verified by a mapping to Isabelle [KPR+22]. Finally, in [KPR+23], the data link
uplink feed case study was also modeled in MontiArc, and the fundament of event-driven
processing using FOCUS was presented.
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1.1 Goals and Results

1.1 Goals and Results
The key contributions of this work are:

• An optimized Isabelle realization of timed streams.

• A library of useful functions on timed streams, bundles, stream processing func-
tions, and specifications.

• A unique implementation of the causality in Isabelle and its corresponding proofs.

• A formalization of realizability constraints for timed modeling of components and
component networks with potential feedback loops.

This technical report is structured as follows. We formally introduce the concepts and
Isabelle-encoding of timed streams in Chapter 3. Several variants of the timed stream,
including the time-synchronous stream, are formally introduced in the same chapter. In
Chapter 4, we then introduce the formalization and the implementation of timed stream
bundle in Isabelle. Based on the timed stream bundle, the formalization of stream-
processing functions and stream processing specifications, as well as the composition in
the timed case, are discussed in Chapter 5. Finally, we employ the above in a timed case
study in Chapter 6.
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Chapter 2

Preliminaries

This chapter introduces preliminaries to the Focus formalism [BS01b] and the theorem
prover Isabelle [NPW02]. It also summarizes related formalisms and theorem provers.

2.1 Focus

In the mathematical framework Focus [BS01b, BR07, RR11, Bro23b, Bro23a, Bro24]
distributed interactive systems are modeled as components communicating via directed
channels with each other. An example component with two input and one output chan-
nels is depicted in Fig. 2.1. Sequences of messages depicting the communication history
of channels are called streams [RR11]. The passing of time in a communications history
can be depicted by adding additional symbols, i.e., a

√
denoting the end of a time slice.

SumUp
c1 : ⟨1, 2,

√
, 3,

√
, . . .⟩

c2 : ⟨4, 5,
√

, 6,
√

, . . .⟩
c3 : ⟨

√
, 12,

√
, 9, . . .⟩

Figure 2.1: Component sums up the inputs from both input streams between consecu-
tive

√
pairs.

Building upon formal specifications in Focus, the considered systems semantics [HR04,
Rum98], even infinite networks of components [Bro87], can be defined and analyzed,
e.g., the correctness can be proven mathematically. Furthermore, the formal basis of
Focus allows underspecification. Thus, the formalism can be used even when the sys-
tem is not fully developed, e.g., to verify strongly underspecified or non-deterministic
systems [Bro86], early in the design phase. In Focus, components can be specified
through relations between inputs and output, state-based, or by composing other com-
ponents. State-based specifications, their behavior, and their refinement properties in
Focus are detailed in [Rum96, Bro23a]. Through behavior refinement, i.e., removing
possible behavior, further development of a verified system is facilitated without proving
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Chapter 2 Preliminaries

the correctness again [BKRW17, BR23]. Each system component can be decomposed
into a subsystem. This allows abstract description of complex systems, while providing
more concrete details over multiple hierarchy levels [MRR13, BR07, Bro10a, RW18] as
depicted in Fig. 2.2. Especially important is the fact that in Focus, behavior refine-
ment of a subcomponent implies behavior refinement of the composed system. Using this,
complex and hierarchically decomposed systems can be verified following the “divide and
conquer” principle, breaking the proof down into simpler proofs over the components.
This also works over multiple hierarchical levels, i.e., the refinement relation is transitive
over architectural decomposition. Additionally, a formal correct architectural refactoring
of a system’s structure is feasible by applying suitable refactoring steps [PR01] leading
to a simplified step-wise refinement of an architecture [PR97, PR99, PR03, FKR+25].
In order to allow the specification and verification of time and time-dependent system,

Figure 2.2: Hierarchical decomposition of a system. From lecture “Innovations in Soft-
ware Engineering” by Prof. Rumpe, 2019

causality is an essential factor for realizability [Bro23b]. An in-depth presentation of
the Focus-calculus is in [Bro24]. It explains how to enables proofs of system properties
through interface assertions and architectures composed of subsystems. It is shown to
be sound and relatively complete, handling specifications with timing properties and
allowing proofs of real-time and causal properties. The calculus supports two types of
logical deductions: classical predicate logic and stronger causality and full realizability
deductions, assuming systems are implemented by generalized Moore machines. This
modular approach aligns with engineering principles like encapsulation and information
hiding. Verification of individual and composed system properties is possible.

In [BS01b], three distinct temporal abstractions are introduced for specifying dis-
tributed systems. The untimed abstraction has no temporal considerations, i.e., nothing
about time is specified. The time-synchronous abstraction enforces strict synchroniza-
tion by allowing exactly one message to be transmitted per discrete time frame. In
contrast, the timed abstraction allows a bounded, finite number of messages within each
time frame. Of the three, the timed abstraction is the most general and expressive,
capable of representing both untimed and time-synchronous specifications.
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2.1 Focus

Each abstraction level is suited to different system requirements and use cases, depend-
ing on the required level of temporal precision. Beside behavior refinement, additional
refinement kinds, including communication history refinement, and interface refinement
are defined in [Bro93b] and provide refinement options for a methodological development
of distributed systems.

Slightly extending Focus by partial communication histories, where the respective
channel can be active or inactive for specific time-slices allows the specification of dis-
crete dynamic distributed systems [Bro14, HRR98]. Thus, components can dynamically
change the systems infrastructure by either using or not using communication chan-
nels for a specific time-frame. This may lead to underspecified behavior when different
components use the same channel in the same time-slice for transmitting messages,
e.g., for some parallel compositions. The resulting dynamic architecture is similar to a
publish/subscribe architecture, where in each time-slot components can either publish or
subscribe to a communication channel. Dynamic interface assertions and state-machines
define the internal behavior of components in a dynamic system. For dynamic state-
machines, a Mealy machine [Mea55] with infinite state-space is extended by allowing
to switch active and inactive channels and changing the state-space structure for each
time-slice. Using interface assertions as a descriptive logical specification instead, the
standard assertions from [BS01b] are extended to allow checking channels activeness sta-
tus and allowing transmitting channels as messages, similar to the π-calculus introduced
Section 2.1.1.

A way to formally specify service oriented system in Focus is presented in [BKM07,
Bro10b]. Services differ from components in that services are partial, i.e., services’ be-
havior is only defined for a subset of input histories. Three techniques are used to
specify services: assumption/commitment specifications, state machines, and composi-
tion of sub-services. Assumption/commitment specifications outline input conditions
(assumptions) for correct service behavior and guarantee outputs (commitments) when
assumptions hold. State transition diagrams [GKRB96, RK96, PR94] represent ser-
vices through states and transitions, where the responses is based on the current state
and input. Composition of sub-services allows complex services to be constructed hi-
erarchically from smaller sub-services, with each fulfilling part of the overall behavior.
This decomposition supports a structured approach to handling the complexity of large,
service-oriented systems [HLMSN+15, KOB+17]. The methodology promotes a service-
oriented view on architectures, emphasizing a hierarchical structure. By breaking down
systems into individual services and components, the approach facilitates modular veri-
fication and scalable design. Combined, these techniques provide a powerful theoretical
foundation for specifying and verifying the behavior of complex service oriented systems.

In [BS24], the Focus formalism provides the formal underpinning for describing lay-
ered architectures. Within this model, lower layers provide functional capabilities (ser-
vices) to upper layers. Lower layers without any service dependencies act as platforms
for the upper layers. Each layer has a required interface representing the needed ser-

7



Chapter 2 Preliminaries

vices and a provided interface representing the provided services. A layer hides internal
communication between its services from other layers. Composing layers together re-
sults again in a layer. Key properties of Focus are retained, e.g., the refinement stays
compositional [Bro97a] over layers. Furthermore, from strong causality requirements, it
can be ensured that as long as required servies of a layer are guaranteed, the provided
services will be delivered. In conclusion, an abstract and high-level specification of lay-
ered architectures with clear semantics but without considering implementation-oriented
details is defined.

The mathematical underpinning of Focus can be extended and tailored to specific
needs, i.e., for defining discrete, continuous, or hybrid systems. In comparison to strictly
discrete streams of data described in [BS01b], continuous streams of data are additionally
modeled in [Bro93a, Bro97b, Bro12]. Here, streams are represented by mapping elements
of a time domain to messages. A time domain is a subset of R+. It is possible to have
discrete streams (e.g., with time domain N0), or dense time (e.g., with time domain
R+). Furthermore, refinement relations between abstract, discrete and concrete contin-
uous components allow easy behavior-specification for hybrid systems by discretizing a
continuous stream to its important events, e.g., the filling quantity of a tank is below
10%. The basic datatypes of Focus are streams, stream bundles (SBs), and stream-
processing functions (SPFs). The communication history of channels is represented by
sequences of messages called streams. The concept of streams and timed streams is
introduced in Chapter 3. Components are represented as SPFs mapping input streams
to output streams. The SB datatype bundles streams of component interfaces together
and is introduced in Chapter 4. Each SPF characterizes one possible behavior of a com-
ponent. Deterministic and non-deterministic components are introduced in Chapter 5.
Focus can be used as a general semantics-giving formal foundation for software and
systems modeling and formal analyses [BHP+98, RKB95, BFH+10]. In [BŞ01a] the for-
mal semantics of data flow networks represented by flownomial expressions are defined
using SPFs and stream processing specifications (SPSs). Verification tools employing
the Focus methodology include the Isabelle-based Focus stream implementation from
[Spi07] and the AutoFOCUS tool [BHS99]. The Isabelle stream implementation merges
four stream types (timed/untimed and finite/infinite), which complicates induction on
general streams since it would require separate inductions for each subtype. Despite this
complexity, [Spi07] successfully defined system components and verified requirements
within Isabelle/Focus. AutoFOCUS, on the other hand, uses Moore machines to define
component interfaces, refinement, and behavior, with a primary emphasis on the graph-
ical representation of systems and components. Basic validation within AutoFOCUS
is achieved via context conditions, ensuring properties like type correctness. Verifica-
tion of refinement relations uses logical implications defined on specification predicates.
AutoFOCUS includes a model-to-code transformation, with a verified C0-code generator
[HST10] that translates models into executable Isabelle theories. The application of Aut-
oFOCUS in the automotive industry is described in [Bro06b] as part of a transformation
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2.1 Focus

for the software and systems engineering for embedded systems in cars. Using Focus to
define the semantics of a language was demonstrated in the telecommunication domain
for the Specification and Description Language (SDL) [Bro91].
Furthermore, Focus is the formal foundation for the SPES methodology and SPESML1

[PHDB16]. SPESML was developed with various industrial partners from the automo-
tive, avionic, and healthcare domain. The goal is to handle the growing complexity
of distributed cyber-phisical systems [BCG12, Bro13, BS14] with model-based systems
engineering and tool support. Building upon SPES and Focus [BKPS07], a verification
framework for avionic systems and a general methodology for modeling and verifying sys-
tems was developed and applied to a Data-Link Uplink Feed case-study [KPR+25b]. The
benefits of the methodology regarding model quality is analyzed in [KPR+24, KPR+25a].
Furthermore, [KKN+24] describes how the implementation in combination with a trans-
formation for models to Isabelle encodings can verify AI generated SysML models.

2.1.1 Alternative Formalisms

Besides Focus, other formalisms for formal specification and verification of distributed
systems exist. Some domains are especially interested in specific kinds of requirements,
e.g., probabilistic requirements [Bir07, ALRL04] for cryptographic systems. The general
formalism Focus is extendable for such cases when necessary, an extension for proba-
bilistic systems is shown in [Neu12]. We now introduce the main alternatives. While all
alternatives offer excellent specifications and some also have great verification properties,
Focus has the same capabilities while also providing important properties for iterative
system development, i.e., the refinement of a subcomponent refines the whole system.

Calculus of Communicating Systems (CCS)

The Calculus of Communicating Systems (CCS) was first introduced by Robin Milner in
his book “A Calculus of Communicating Systems” [Mil80] in the year 1980. It is inspired
by processes, often referred to as agents, that communicate via a medium. Each agent
has ports, called labels, through which communication with the environment is possible.
A label has two complementary parts, one of which is an input label and the other one
is an output label. If l is an arbitrary input label, l is the output label corresponding to
it. CSS provides the following important operators:

• Action-prefixing operator: For an agent P and action α, α.P is the agent that first
executes α and then behaves like the agent P .

• Sum operator: For two agents P and Q, P + Q is the agent, which behaves like
agent P or agent Q.

1https://spesml.github.io. Accessed 22.05.2025
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Chapter 2 Preliminaries

• Composition operator: For two agents P and Q, P |Q defines the agent, which
executes both P and Q simultaneously. This operator enables the processes P and
Q to communicate with each other via shared labels.

• Restriction operator: For the set of labels L = l1, . . . , ln and an agent P , P\L
describes the agent that behaves like P , but all labels in L (including their coun-
terparts) are not usable for communication to the environment.

• Conditional operator: For agents P and Q and expression e, the conditional op-
erator if e then P else Q, describes an agent that behaves like agent P if e
evaluates to true and like Q if e evaluates to false.

• Relabelling operator: For an agent P and a function f , which renames labels to
arbitrary new labels, P [f ] is the agent, which has all labels renamed according to
f .

With those operators, it is possible to specify complex models with multiple pro-
cesses. The calculus is further extended to the π-calculus [Mil99], where components
can communicate names of communication channels to allow dynamic reconfiguration of
distributed systems.

Communicating Sequential Processes (CSP)

Communicating Sequential Processes (CSP) is a formal language introduced by C. A. R.
Hoare in 1978 [Hoa78]. However, CSP has evolved substantially since then. The most
used version of today is explained in A. W. Roscoe’s book “The Theory and Practice of
Concurrency” [Ros97]. Hoare described that processes or programs are fundamentally
based on the primitives of input and output [Hoa78]. Thus, in CSP, processes com-
municate via channels with each other (similar to CCS), and the behavior of parallel
executions is specified by a composition operator. Another important concept is non-
determinism, which can be modeled using the non-deterministic choice operator. CSP
is used as the theoretical foundation for multiple refinement and model checking tools,
e.g., ProB [LF08] and Process Analysis Toolkit [SLD08].

Temporal Logic of Actions (TLA)

In his 1983 paper “The Temporal Logic of Actions” [Lam94], Leslie Lamport formally
specifies the Temporal Logic of Actions (TLA). According to Lamport, using mathemat-
ical logic to specify the behaviors of complex concurrent systems is easier than writing
code. TLA is a logic where safety, liveness, or fairness expressions can be formulated
to define or reason about a specification, which might be a system or properties. A
TLA formula is defined using state functions and special operators ′, □, ∃. [AL95] State
functions assign values to states using boolean known operators ∨, ∧, ⇒, and =. If
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2.2 Domain Theory underlying Focus

a state function is boolean-valued, it is a state predicate. Using variables and primed
′ variables in a state predicate is a so-called action. An action defines possible state
changes in the system. One way to reason and specify over time is to use the temporal
logic operators like □ and ⋄. If a formula f should hold at all times, □f expresses that if
it should hold eventually, write ⋄f . A behavior, then, is an infinite sequence of states. A
system behavior consists of all possible behaviors of the system. A behavior is possible
if and only if an action exists from the old state to the new one for each state change.
Furthermore, the behavior must meet the requirements of the specification, and its ini-
tial state has to fulfill its initial state predicate. So far, specifications can use time only
in a limited form. One could argue that each “step” of a system occurs at some time,
and previous steps occur earlier. Thus a system can “count” time in regards to its own
steps. However, these system steps may take longer or shorter; they are not comparable
to real-time progress, and the system can never really react to the passage of time in the
sense of physical time. The general specification approach of TLA was extended to make
real-time specifications possible. The main idea to be able to reason about real-time and
its progress in discrete systems is to extend the TLA specification by a special variable
known as now. [AL94, Lam99] The specifications of systems work with discrete steps,
as explained above. The discrete “steps” of TLA specifications define the observable
steps of a real physical system and can be seen as “snapshots” of a system’s state. Since
such snapshots define a discrete sequence of a system’s states, the now variable used for
defining the system is observed as a discrete sequence as well. Thus, even though real-
time advances continuously, specifying and reasoning about a system in TLA only needs
discrete time and system steps. Still, some general assumptions for the now variable in
any specification must hold to guarantee time progression. A predicate ensures that the
now variable will eventually go up and thus not infinitely much time passes between two
discrete time steps. Generally, time advancement and system steps are divided such that
they do not happen simultaneously. The extension TLA+ [Lam99] introduces additional
specification operators to aid user specification. The Temporal Logic of Actions Proof
System (TLAPS) [CDL+12] allows behavior verification based on model checker or, for
complex cases, a theorem prover.

2.2 Domain Theory underlying Focus

To formalize the semantics of Focus, one requires a mathematical theory in which the
semantics can be described. For Focus this is domain theory [SK95, Chapter 11]. A
domain is a set of mathematical objects. Employing domain theory, one can formalize the
denotational semantics of programming languages with regards to recursive datatypes
and recursive definitions [AJ95]. In the following, some definitions are introduced, which
are particularly important for the remaining exposition. These definitions are based
on [SK95]. Furthermore, Kleene’s fixed-point theorem [Kle52] is introduced.

11



Chapter 2 Preliminaries

Orders
First, we define the fundamental structural properties of sets using a binary relation
called order.

Definition 2.1 (Partial order). A partial order (po) over a set D is a binary relation ⊑
over D that has the following properties:

• reflexivity: ∀x ∈ D. x ⊑ x

• transitivity: ∀x, y, z ∈ D. x ⊑ y ∧ y ⊑ z =⇒ x ⊑ z

• antisymmetry: ∀x, y ∈ D. x ⊑ y ∧ y ⊑ x =⇒ x = y

The subset relation as an order on the powerset of a set S, i.e., (P(S), ⊆), is a po. In
general, a po is not total, i.e., there may be incomparable elements. Thus, we define
total orders as follows.

Definition 2.2 (Total order). A total order is a po (D, ⊑) with totality, that is, x ⊑ y
or y ⊑ x for all x, y ∈ D.

For instance, the less-than relation on the integers, i.e., (Z, ≤), is a total order. Next,
we define certain special elements of subsets for a given po.

Definition 2.3 (Minimal element). Let (D, ⊑) be a po and X ⊆ D. An element m ∈ X
is called minimal if for all x ∈ X we have

x ⊑ m =⇒ x = m.

In (Z, ≤) there is no minimal element while in (N, ≤) the minimal element is 0. How-
ever, in general, a minimal element is not unique. In (P({0, 1}) \ {∅}, ⊆) for example,
both {0} and {1} are minimal. We thus define the least element as the unique minimal
element.

Definition 2.4 (Least element). Let (D, ⊑) be a po and X ⊆ D. An element l ∈ X is
called least element of X if l ⊑ x for all x ∈ X.

For example, 0 is the unique minimal element and thus the least element in (N, ≤).

Definition 2.5 (Upper bound). Let (D, ⊑) be a po and X ⊆ D. An element b ∈ D is
called upper bound of X if x ⊑ b for all x ∈ X.

As with minimal elements, upper bounds are not unique in general. All finite subsets
of N have infinitely many upper bounds in (N, ≤), namely the maximal element in the
subset and every number greater than that. However, an infinite subset such as N itself
has no upper bound. If an upper bound exists, we are interested in a particular one
called the least upper bound. It has the benefit of being unique.

12
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Definition 2.6 (Least upper bound). Let (D, ⊑) be a po and X ⊆ D. The least upper
bound (lub) of X, which we denote by

⊔
X, is an upper bound of X such that for all

upper bounds b ∈ D of X we have ⊔
X ⊑ b.

The lub is thus the least element in the set of upper bounds and hence unique. Next,
we define a special kind of subset.

Definition 2.7 (Ascending Chain). Let ⊑ be a po on D. A countable non-empty subset
{c1, c2, c3, . . . } of D is called an ascending chain if

c1 ⊑ c2 ⊑ c3 ⊑ · · · .

Note that an ascending chain is a totally ordered subset and has a minimal element,
which is also the least element in that subset due to totality. Generally, the lub of chains
in a po does not exist. For instance, N is an ascending chain in (N, ≤) and has no lub.
However, if we define N∞ = N ∪ {∞} and n ≤ ∞ for all n ∈ N then N is an ascending
chain in (N∞, ≤) and has a lub, namely

⊔
N = ∞.

Definition 2.8 (Complete partial order). A complete partial order (cpo) is a po (D, ⊑)
with the additional property: that for each ascending chain C ⊆ D the lub

⊔
C ∈ D

exists.

A simple case of a po is (D, =) for any set D and equality as the relation. This
construction is referred to as discrete partial order. The discrete partial order over any
set D is even complete. A cpo does not necessarily contain a least element. For instance,
every discrete partial order with at least two elements does not have a least element since
each element is only comparable to itself.

Definition 2.9 (Pointed complete partial order). A pointed complete partial order
(pcpo) is a cpo (D, ⊑) which has a least element in D called bottom denoted by ⊥ ∈ D.

Every cpo can be lifted to a pcpo by introducing a new bottom element. As a result,
combined with the discrete partial order, any set can be lifted to a pcpo.

Functions
Next, we consider functions mapping between two pos and define important properties.

Definition 2.10 (Monotonic functions). A function f : D1 → D2 with pos (D1, ⊑D1)
and (D2, ⊑D2) is monotonic if

x ⊑D1 y =⇒ f(x) ⊑D2 f(y)

for all x, y ∈ D1.

13
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Definition 2.11 (Continuous functions). A function f : D1 → D2 with cpos (D1, ⊑D1)
and (D2, ⊑D2) is continuous if and only if

f
(⊔

C
)

=
⊔

f(C)

for all ascending chains C ⊆ D1.

f(C) is shorthand for the element-wise application of f , i.e. f(C) = {f(c) | c ∈
C}. Note that continuity implies monotonicity. However, the converse does not hold;
monotonicity does not imply continuity. Next, we consider functions mapping a set to
itself and define the notion of a fixed point.

Definition 2.12 (Fixed point). An element d ∈ D for some set D is a fixed point of
the function f : D → D if f(d) = d.

Some functions have no fixed point such as f : N → N, x 7→ x + 1. Others may have a
unique fixed point such as g : N → N, x 7→ 1. And still others have infinitely many fixed
points, e.g., h : N → N, x 7→ x. If a fixed point exists we are often interested in a unique
one called the least fixed point.

Definition 2.13 (Least fixed point). Let (⊑, D) be a po. An element d ∈ D is a least
fixed point (lfp) of the function f : D → D, if it is a fixed point of f and d ⊑ x for all
other fixed points x ∈ D.

The lfp is, thus, the unique least element in the set of fixed points. In general, it is
unclear if the lfp exists for a given function on a po and how to obtain it. However,
monotonic functions always have such a unique least fixpoint [Tar55]. In the special case
of a continuous function mapping a pcpo to itself, the lfp can even be constructed by
the so-called bottom iteration as the following theorem shows.

Theorem 1 (Kleene Fixed-Point Theorem [Kle52]). Let (D, ⊑) be a pcpo and f : D →
D a continuous function. Then f has an lfp given by

lfp(f) =
⊔

{fn(⊥) | n ∈ N}.

Proof. This proof can be found in [SHLG94, p. 24]. It is repeated here for its elegancy.
First, we show that fn(⊥) ⊑ fn+1(⊥) for all n ∈ N using induction. For the base case,
let n = 0. Then ⊥ = f0(⊥) ⊑ f(⊥) since ⊥ is the least element of D. Henceforth,
we may assume fn−1(⊥) ⊑ fn(⊥) for n > 0. As f is continuous, it is also monotonic.
Thus, we find f(fn−1(⊥)) ⊑ f(fn(⊥)). Rearranging yields fn(⊥) ⊑ fn+1(⊥) which
concludes the induction. It follows that {fn(⊥) | n ∈ N} is an ascending chain with
least element ⊥ in D. As D is a pcpo the lub of the chain must exist. Next, we prove
that

⊔
{fn(⊥) | n ∈ N} is a fixed point of f . Note that removing f0(⊥) from the chain

14



2.3 Isabelle/HOL

does not influence its lub since
⊔

{fn(⊥) | n ∈ N} =
⊔

{fn+1(⊥) | n ∈ N}. Given the
above observation applying the continuous function f to the lub yields

f
(⊔

{fn(⊥) | n ∈ N}
)

=
⊔

f({fn(⊥) | n ∈ N})

=
⊔

{fn+1(⊥) | n ∈ N}

=
⊔

{fn(⊥) | n ∈ N}.

Hence, the lub is a fixed point of f . At last, we show that
⊔

{fn(⊥) | n ∈ N} is
the least fixed point of f . By definition of the lub, it suffices to prove that the set of
fixed points of f is a subset of the set of upper bounds of {fn(⊥) | n ∈ N}. As the lub
is a fixed point of f as shown above, it must be the least element in the set of upper
bounds as well. More specifically, given a fixed point of f , x ∈ D say, we prove, again
via induction, that fn(⊥) ⊑ x for all n ∈ N. First, let n = 0. Then, ⊥ = f0(⊥) ⊑ x
as ⊥ is the least element of D. Hence, we may assume fn−1(⊥) ⊑ x for n > 0. Again,
f is monotonic as it is continuous. Thus, applying f to the induction hypothesis yields
f(fn−1(⊥)) ⊑ f(x). Since x is a fixed point of f the claim follows, which concludes the
proof.

2.3 Isabelle/HOL
Isabelle is an interactive theorem prover developed at the Technical University Munich
and the University of Cambridge. It combines user-guided proof construction with au-
tomation, allowing for the formal verification of mathematical theorems and software
correctness. Isabelle supports multiple logic systems. Isabelle/HOL (for higher-order
logic) is the most widely used variant. It includes features like the Isar proof language
for readable proofs and Sledgehammer, which integrates external automated provers for
automated proving. Researchers, educational institutions, and industrial institutions
use Isabelle for tasks such as verifying cryptographic protocols, critical systems, the cor-
rectness of an OS-Kernel [KEH+09], and mathematical proofs. The Archive of Formal
Proofs2 is a collection of Isabelle proofs. There are a variety of libraries available that
extend Isabelle’s pretty small logical core. One of the most frequently used libraries
is Isabelle/HOL [NPW02] introduces the concept of higher-order logic as well as data
structures like sets, and lists.

Isabelle’s Type System
In Isabelle, all variables are typed. Polymorphic types can be denoted via formal type
parameters like 'a. Although Isabelle can in most cases automatically determine the
type of a variable or constant x, we can also fix the type to a specific one which is

2https://www.isa-afp.org. Accessed 03.11.2024
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denoted as (x::<typename>). The type of a total function with n input parameters of
types τ1, . . . , τn and return type τ is denoted as τ1 ⇒ τ2 ⇒ · · · ⇒ τn ⇒ τ . As usual, ⇒
associates to the right. For instance, the type of the identity function is 'a ⇒'a. The
Isabelle/HOL theories provide some predefined types used for implementing the Focus
framework in Isabelle, e.g., nat for the natural numbers and bool for Boolean values.
Furthermore, predefined type constructors, i.e., list, set, and prod (tuple type), can
be used in postfix syntax to create composite types, such as nat list or bool set. In
addition to the types, helpful functions are provided. The mapping functions map for
lists, image for sets (e.g, f ` S), and apfst and apsnd for tuples are often used in the
later sections.

Defining Types
We can also create our own data types in Isabelle. A simple data type can be defined
using the syntax shown below:

datatype Operator = Plus | Minus

The statement above declares the new data type Operator with exactly two construc-
tors separated by a | character: Plus and Minus. Both constructors are nullary, i.e.,
they do not have any parameters. Thus, their type is ()⇒ Operator. Note that the
Operator type viewed as a set consists of exactly two elements. However, a datatype
based type definition does not instantiate an order on the data type elements. Data
types can also be parameterized using formal type parameter 'a as follows:

datatype 'a Box = EmptyBox | Wrap 'a

To use this Box data type, the formal type parameter 'a must be instantiated first. For
instance, Wrap (Suc 0) is of type nat Box. Here, EmptyBox is a nullary constructor,
and Wrap is a unary constructor. Note that for a type τ with n values, the type τ Box

has exactly n + 1 values, i.e., bool Box has three. We can declare recursive data types
by using the declared type on the right-hand side of the type definition:

datatype 'a strictlist = Empty | Prepend "'a" "'a strictlist"

Again, this generates two constructors with the following types:
Empty :: () ⇒ 'a strictlist
Prepend :: 'a ⇒ 'a strictlist ⇒ 'a strictlist

To construct instances of custom data types more concisely, we can define constructor
abbreviations in the data type declaration:

datatype 'a strictlist = Empty ("[]") |
Prepend "'a" "'a strictlist" (infixl "@")

This way, we can denote an empty list as [] and write x @ xs instead of Prepend
x xs. Notice that infixl declares @ as a left-associative infix operator, i.e.
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x1 @ x2 @ . . . @ xs = ((x1 @ x2) @ . . . ) @ xs

Lastly, we can name formal constructor parameters such that Isabelle generates selec-
tors for them:

datatype 'a strictlist =
Empty ("[]") |
Prepend (head :: "'a") (tail :: "'a strictlist") (infixl "@")

In this case, Isabelle creates the following two selectors in addition to the infix operator
@:

head :: 'a strictlist ⇒ 'a
tail :: 'a strictlist ⇒ 'a strictlist

So when xs is a non-empty list of type 'a strictlist, we can access the first list
element via head xs and the rest of the list with tail xs.

Function and Class Definitions
To define simple non-recursive functions in Isabelle, we can use the definition com-
mand. For instance, a generic identity function can be defined as shown below:

definition id :: "'a ⇒ 'a" where
"id ≡ (λx. x)"

Alternatively, if we just want to use such a definition to abbreviate a more complex
formula, we can use the abbreviation keyword. On one hand, an abbreviation has the
advantage that it is automatically replaced by its definition and vice versa, if necessary.
On the other hand, this automatic replacement might not always be desired since it can
negatively influence Isabelle’s proof strategies like the simplifier. Recursive or pattern-
matching-based functions can be defined using the fun or primrec command. For
instance, a function that delivers 1 if applied to 0 and otherwise behaves like the identity
function can be formalized as shown below:

fun succ_zero :: "nat ⇒ nat" where
"succ_zero 0 = 1" |
"succ_zero x = x"

As we can see, the syntax of such definitions is similar to Haskell. The same also
holds for class definitions. The important difference is, that classes in Isabelle allow us
to specify properties of functions. A class for types with an equality function can for
example be specified as follows:

class Eq =
fixes myEq :: "'a ⇒ 'a ⇒ bool"
assumes reflexivity: "myEq a a = True"
assumes symmetry: "myEq a b = myEq b a"
assumes transitivity: "myEq a b ∧ myEq b c −→ myEq a c"
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An overview of different classes used is given in Table 2.1
In the following definition isFixpoint the type in the signature of the definition is

restricted to types that have an equality operator.
definition isFixpoint ::"('a::{Eq} => 'a) => 'a => bool" where
"isFixpoint f a ≡ f a = a"

Name Assumptions

enum type can be defined as a distinct, finite list
finite type has only finitely many elements
countable type is countable
po partial order (see Section 2.2)
cpo complete partial order (see Section 2.2)
pcpo pointed complete partial order (see Section 2.2)

Table 2.1: Classes overview

Domains in Isabelle

In the previous sections, we saw how the datatype constructor can be used to define
custom data types. However, such data type definitions have some limitations, i.e., they
only consist of values that can be constructed with finitely many applications of the
constructors. Furthermore, the datatype command does not establish an order on the
data type. However, orders are necessary for inductive reasoning over the data type.
In the following, we will present three ways to overcome these limitations, namely the
lifting of data types, the domain constructor, and subtypes.

Lifting Datatypes to Domains

For any ordinary HOL type, we can define a trivial complete partial order by giving
it a discrete ordering. In Higher Order Logic of Computable Functions (HOLCF) this
construction is formalized using the 'a discr type [Huf12]:

datatype 'a discr = Discr "'a"

To still be able to access the elements of the lifted data type, an inverse of the Discr

constructor is defined as shown below:
definition undiscr :: "'a discr ⇒ 'a" where
"undiscr x ≡ (case x of Discr y ⇒ y)"
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The ordering on 'a discr is defined as a flat ordering, i.e., (x ⊑ y) = (x = y). Thus, 'a
discr is an instance of the discrete_cpo class [Huf12]. It follows straightforwardly by
the corresponding definitions that every function f :: 'a discr ⇒ 'b is continuous
and every predicate P :: 'a discr ⇒ bool is admissible. Furthermore, we can also
lift a given type with a complete partial ordering to a type with a pointed cpo by adding
a new bottom element. Let D be a cpo (which may or may not have a least element),
then the lifted pcpo D⊥ consists of a bottom element ⊥ and wrapped elements of the
original type. In HOLCF, the lifting of cpos to pcpos can be achieved by using the 'a u

type which is also often abbreviated as ′a⊥:
datatype 'a u = lbottom | lup 'a

The order of this data type is defined such that the following holds:

a ⊑ b ⇔ (a = lbottom) ∨ (∃x, y. a = lup x ∧ b = lup y ∧ x ⊑ y)

One can show that the type ′a⊥ is a pcpo, if the type 'a is substituted with, has a
partial order.

The Domain Type-Constructor

In Section 2.2 we already explained how domains can be constructed from simpler do-
mains using domain constructors. To achieve the same in Isabelle, we can use the
domain package [Huf12] which produces data types that are instances of the pcpo class
and hence have a pcpo ordering. The syntax of such a data type definition is similar to a
type definition using the datatype keyword. However, the domain package defines the
data type constructors as strict continuous functions and automatically adds a bottom
element ⊥. An example of such a domain definition is the lazy natural number data
type:

domain 'a lnat = lnsuc (lazy lnpred::"'a list")

As mentioned earlier this also automatically adds a bottom element ⊥ to the data type
and establishes a pointed complete partial order ⊑. Furthermore, the lnpred destructor
is defined which serves as an inverse function of the lnsuc constructor function. The
lazy keyword makes the constructors non-strict in specific arguments.

To facilitate proofs that involve such domain types, Isabelle also adds several rewrite
rules to Isabelle’s simplifier (simp), and generates the necessary theorems and func-
tions for case distinctions and induction proofs. [Huf12] provides a good overview of all
theorems and functions that are automatically generated by the domain package.

CPOs on Subtypes

An even simpler way to create a cpo type is to define it as a subset of an existing cpo
type. Under certain conditions, a subtype can inherit the ordering structure from the
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existing ordering it is based on which means that the subtype is again a member of the
cpo class. In Isabelle, this process can be automated using the pcpodef and cpodef
commands [Huf12]. Both commands are based on the typedef command [NPW02] that
allows defining a new type as an isomorphic and nonempty subset of an existing type.
For example, we can define a new type zeroToFive that is isomorphic to the set of all
integers that are smaller or equal to 5:

typedef zeroToFive = "{x::int. 0 ≤ x ∧ x ≤ 5}"

The proof is necessary since we must prove that the newly created types are non-empty.
After showing the set on the right side of the definition is non-empty, the typedef pack-

Type int

zeroToFive

Type zeroToFive

Abs_zeroToFive

Rep_zeroToFive

Figure 2.3: Graphical representation of the typedef mechanism. [BKR+20]

age automatically creates useful theorems as well as the functions
(Rep_zeroToFive, Abs_zeroToFive) to convert elements of zeroToFive to ele-
ments of the int data type and vice versa. We can then use those functions to define
new functions on zeroToFive based on existing functions on the int type:

definition zeroToFive_add:: "zeroToFive ⇒ zeroToFive
⇒ zeroToFive" where

"zeroToFive_add x y = Abs_zeroToFive (Rep_zeroToFive x
+ Rep_zeroToFive y)"

The newly defined addition operator on the new type relies on (and hides) the prim-
itive + operator on integers. When using list_definition instead of definitions, the
conversion of elements for subtypes can be abstracted away. Instead, an additional
proof obligation must be fulfilled to show that the result is part of the subtype (e.g., is
in-between 0 and 5 for zeroToFive).

lift_definition zeroToFive_cript:: "zeroToFive ⇒ zeroToFive
⇒ zeroToFive" is

"λ x y. x * y mod 6"

Later, this principle helps to reach an important achievement of this work; creating
a high-level API to hide the low-level domain-theoretical concepts from the user. The
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lemmata generated by the typedef package can also be used to show properties like the
commutativity of this function. The cpodef and pcpodef commands, which automat-
ically construct an ordering on the new subtype, have an identical syntax as typedef.
If we want to use cpodef to define the zeroToFive type, we additionally would have
to show that predicate λ x. x ≤ 5 is admissible. In case we want to use pcpodef we
additionally would have to show that the subtype has a least element.

Continuous Functions and Fixed Points

As we already saw in Section 2.2, the concepts of monotonicity and continuity play an
important role in the field of function domains.

Continuous functions in HOLCF are formalized by using the cfun data type which is
instantiated using the cpodef command:

cpodef ('a, 'b) cfun ("(_ →/ _)") =
"{f::'a => 'b. cont f}"

Thus, the type of continuous functions from A to B is denoted as A→B. To automati-
cally lift anonymous functions to their continuous counterparts, the small letter λ in the
definition of such a function can be replaced by Λ. However, such a lifting is of course
only successful if the function that should be lifted is continuous. The representation
of a continuous function is obtained by applying to the lifted function. Based on the
cfun type, functions like the fix operator which calculates the lfp [MNvOS99] can be
defined:

primrec iterate :: "nat ⇒ ('a::cpo → 'a::pcpo) → ('a → 'a)" where
"iterate 0 = (Λ F x. x)" |
"iterate (Suc n) = (Λ F x. F ·(iterate n ·F ·x))"

definition fix :: "('a ::pcpo → 'a) → 'a" where
"fix = (Λ F.

⊔
i. iterate i ·F ·⊥)"

As we can see, this operator is directly based on the fixed point theorem by Kleene
It should also be noted, that the restriction of the type variable 'a to members of the
pcpo class is essential as otherwise the existence of the bottom element that is required
in the definition cannot be guaranteed.

Proofs in Isabelle

Isabelle allows formalizing and proving mathematical statements (lemmata) about types,
functions, and their behavior. Those proofs are then automatically checked by Isabelle.
The following function succ_zero maps an input natural number to a natural number
that is always greater or equal. Specifically, it maps 0 to 1 and any other natural number
to itself.
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fun succ_zero :: "nat ⇒ nat" where
"succ_zero 0 = 1" |
"succ_zero x = x"

The fact that succ_zero’s output is always greater or equal to its input is formalized
an proven:

lemma succ_zero_le: "x ≤ succ_zero x"
apply(cases x)
apply simp
by simp

By successively applying proving rules and methods the claim of the succ_zero_-
le lemma is transformed into a tautology. This proof strategy is also called backward
chaining. The x variable in the lemma is free and there are no assumptions, hence,
the lemma proofs ∀x. x ≤ succ_zero x. Beside the well-known quantifiers ∃ and ∀,
Isabelle provides the universal quantifier

∧
to express the notion of an arbitrary value.

After successfully proving a fact as a lemma, the fact is directly usable in other proofs.
Assumptions can be formalized using the assumes and shows keywords:

lemma succ_zero_eq: assumes "1 ≤ x"
shows "x = succ_zero x"
apply(cases x)
using assms apply auto[1]
by simp

The shows keyword separates the actual claim from the assumptions. In proofs,
assumptions can then be referenced using assms keyword.

Apply-script proofs as shown above are in general not easily readable, since inter-
mediate steps are not explicitly visible. Backward reasoning may complicate under-
standing proofs further. To overcome these issues, the proof language Isar [Wen02] was
introduced, which allows formalizing more human-readable proofs. For instance, the
succ_zero_le can be proven with Isar as shown below:

lemma succ_zero_ge: "x ≤ succ_zero x"
proof(cases "x = 0")

case True
thus ?thesis

by simp
next

case False
thus ?thesis

by (metis False eq_iff succ_zero.elims)
qed

Isar provides the means to efficiently structure and implement large proofs.
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2.3.1 Alternative Theorem Provers

Today, there exist a variety of theorem provers. Generally, they are divided into in-
teractive and non-interactive theorem provers. While interactive theorem provers often
perform better with regard to automated verification, they have some limitations con-
cerning specification options or verification emphasis’ (e.g., verification of termination).
Theorem provers also differentiate each other with regard to type systems and theoretical
foundations/logic.

Karlsruhe Interactive Verifier (KIV)

The KIV [Rei95] is a theorem prover with algebraic specification capabilities. KIV pri-
marily focuses on the refinement-based development of both sequential and concurrent
software systems. Recent advancements include support for polymorphism and excep-
tions in programs. It also showcases the proof engineering support utilizing a graph-
ical user interface and explicit proof trees, along with KIV’s assistance in developing
large-scale software systems through modular components and verifying concurrent al-
gorithms using a assumption-guarantee calculus. KIV offsprings are further developed,
e.g., [SBBR22] based on first-order dynamic logic and the successor KeY [ABB+16] is
actively developed with the ambition to integrate the formal software development for
Java into industry.

F*

F* is a functional programming language with dependent types and a Theorem Prover
developed by Microsoft Research and Inria [SCF+11]. It is in general an automated
theorem prover, but extensions allow interactive theorem proving [MAD+19]. F* code
can be exported to OCaml, F#, C, WASM, and ASM code [SMR23]. Like Isabelle, F*
code is organized in modules, which can be imported. F* is a dependently typed language
that has a pure type system, i.e., it treats programs and their types within a single
syntactic class. Project Everest is a project to develop a formally verified HTTPS stack
driven by Microsoft, Irinia Research, and Carnegie Mellon University. It is composed
of various sub-projects including a High-Assurance Cryptographic Library [ZBPB17],
a verified cryptographic communication protocol Signal* [PBMB19], and a parser that
generates C code from formally proven F* code [RDLF+19].

Dafny

Dafny is a programming language and a static program verifier [Lei10], originally devel-
oped by Leino at Microsoft Research in 2008, with its first stable release in 2022. Unlike
Isabelle, which uses a different language for proofs than for executable code (physical
code), the Dafny language is used for both. Dafny code is only used for proofs (ghost
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code) and ghost variables are simply ignored at the code generation phase by the com-
piler. Fining counterexamples is also possible, using the SMT solver Z3. Intermediary
verification code is generated in the language Boogie 2 [BCD+06]. The Ironclad Apps
project utilizes Trusted Computing and Dafny for verification to provide a framework
in which the user can verify that servers adhere to a high-level specification. A main
drawback for Dafny is the requirement of termination. This is not suitable when proving
properties for potentially non-terminating functions, e.g., fixpoints.

Coq

Coq is a well-established interactive theorem prover based on the calculus of inductive
construction [BC10] which allows for a dependent type system. It is possible to correct
by construction code from proofs, and the calculus of inductive construction can be ex-
tended to classical logic by the law of excluded middle. Nevertheless, Isabelle offers more
readable proof using the Isar language, can export code, and provides a powerful and
general proof finder. The most prominent successful application is the formal verification
of a C compiler [Ler09].

Lean

Another rather young theorem prover, which also serves as a functional programming
language, is Lean [dMKA+15]. It is based on a calculus of inductive construction vari-
ant and offers interactive proving as well as automated proving tools. The language
emphasizes the compactness and the definition of types and functions. Lean allows for
dependent types that are not allowed in Isabelle. In dependent type theory, types can
depend on parameters. It is also possible to export Lean proofs to theorem provers with
the same theoretical foundation, e.g., Coq. So far, Lean is mainly used for implement-
ing and verifying mathematical theory, e.g., the theorem of liquid modules [Sch22] or
topology theorems for perfectoid spaces [BCM20].

Proof Verification System (PVS)

PVS was developed at SRI International Computer and the first version was available
in 1993 [ORS92]. PVS implements typed higher-order logic. It comes with many of the
standard types like reals, integers, rationals, booleans, or lists. To build more advanced
types like records, recursive data types, or function types, you can use type constructors.
PVS also gets extended with predicate subtypes and dependent types. A predicate
subtype is a new type that gets constructed based on an existing type. With the help
of a predicate, you can filter the elements that satisfy the predicate from all elements
of the basis type. PVS’ syntax is not extendable. You get a predefined, not changeable
set of symbols that are usable as infix operators. An automatic prover tool similar to
sledgehammer in Isabelle is so far not available for PVS. The NASA Langley Formal

24



2.3 Isabelle/HOL

Methods Research Program uses PVS in several project areas for air traffic management
[DM07], and formal methods for certification research [CM14].

The implementation of the mathematical framework Focus in Isabelle is presented in
the next chapters. We start with the most fundamental type in Focus, i.e., the type of
streams.
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Chapter 3

Timed Streams and Their Encoding

A stream is an observation of transmitted messages over a communication channel. This
observation is either a finite or infinite sequence of messages. A timed stream extends
the observation by including information on the progression of time. Streams are a
fundamental building block of Focus components. Chapter 5 utilizes streams to define
the semantics of components.

In Section 3.1 we give a mathematical definition of streams. Then the definition of
stream in the theorem prover Isabelle is presented. Following, different kinds of timed
streams are introduced. We present in Section 3.2 functions over timed streams. A
developer can reuse these functions to quickly define their own properties or lemmata.
The chapter ends in Section 3.3 with a discussion of alternatives and related work.

3.1 Datatype Definitions
Every stream possesses a specific domain i.e. the set of events or messages possible
in that observation that the stream denotes. For instance, the domain would be N if
natural numbers are being transmitted. It is common to use the letter M to represent
an arbitrary yet fixed domain. In the case of components that accept input messages
and generate output messages, the input and output domains are typically denoted as
I and O, respectively. These domains allow us to define the data types of streams. For
the mathematical definition we distinguish between finite and infinite streams.

Definition 3.1 (Finite Stream [BKR+20, RR11, BS01b]). The set of all finite streams
over a domain M is denoted by

M∗ := {⟨m1, m2, . . . , mi⟩ | ∀j ∈ [1, i]. mj ∈ M, i ∈ N}

The empty stream ⟨⟩ is denoted as ϵ.

Definition 3.2 (Infinite Stream [BKR+20, RR11, BS01b]). The set of all infinite streams
over M is defined as

M∞ := {⟨m1, m2, . . .⟩ | mi ∈ M, i ∈ N}
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Definition 3.3 (Stream). The set of all streams over M is written as

Mω := M∗ ∪ M∞

Streams can be combined using the infix concatenation operator (^).

Definition 3.4 (Concatenation). Given two stream s1, s2 ∈ Mω the concatenation
s1^s2 is defined as

s1^s2 :=



⟨m1, m2, . . . , mi, n1, n2, . . . , nj⟩ if s1 ∈ M∗ and s1 = ⟨m1, m2, . . . , mi⟩
and s2 ∈ M∗ and s2 = ⟨n1, n2, . . . , nj⟩

⟨m1, m2, . . . , mi, n1, n2, . . .⟩ if s1 ∈ M∗ and s1 = ⟨m1, m2, . . . , mi⟩
and s2 ∈ M∞ and s2 = ⟨n1, n2, . . .⟩

s1 if s1 ∈ M∞

Example 3.1 (Concatenation). The following examples show usages of the concatena-
tion operator:

• ⟨1, 2, 3⟩^⟨4, 5⟩ = ⟨1, 2, 3, 4, 5⟩

• ∀s ∈ Mω. s^ϵ = s

• ∀s ∈ Mω. ϵ^s = s

• ∀x∞ ∈ M∞.∀s ∈ Mω. x∞^s = x∞

The concatenation operator is used to define the prefix order on streams.

Definition 3.5 (Prefix Order [BKR+20]). The prefix ordering [Rum96] on streams (⊑)
is defined as:

∀x, y ∈ Mω. (x ⊑ y ⇔ (∃s ∈ Mω. x^s = y))

Example 3.2 (Prefix Order). The following order relations hold on streams:

• ⟨1, 2, 3⟩ ⊑ ⟨1, 2, 3, 4, 5⟩

• ⟨1, 2, 3⟩ ̸⊑ ⟨1, 2, 99⟩

• ∀s ∈ Mω. s ⊑ s

• ∀s ∈ Mω. ϵ ⊑ s

• ∀x∞ ∈ M∞.∀s ∈ Mω.x∞ ⊑ s ⇔ x∞ = s

The order ⊑ is a pcpo on streams. The empty stream ϵ is the bottom element.
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Isabelle Definition The stream definition in Isabelle uses the HOLCF [Reg94] exten-
sion. With the keyword domain a new pcpo is created. We first show the complete
definition and then explain each element in more detail.

domain 'm::countable stream = lscons (lshd::"'m discr u")
(lazy srt::"'m stream") (infixr "&&" 65)

The type parameter 'm corresponds to the previously introduced domain M of the
stream. For example, a stream over natural numbers has the type nat stream. An ad-
ditional condition of the Isabelle implementation is the countability of 'm. This is due to
restrictions in HOLCF’11 [Huf12], which internally maps the new datatype to a univer-
sal domain. Previous versions of HOLCF [MNvOS99] used axioms to define the domain
datatype. However, these axioms can lead to paradoxes, as shown in [Huf12]. The
stream datatype consists of two constructors. A bottom-constructor (⊥::'m stream)
is automatically added to each domain datatype and hence not explicitly defined. This
constructor creates the least element. For streams, we also abbreviate this element with
ϵ. The second constructor is explicitly defined. It prepends an element to a given stream.
Due to conditions in HOLCF, the element must first be converted into a pcpo. This
is assured with the type 'm discr u. To convert the value x::'m the constructors
up and Discr are used, e.g, up·(Discr msg)::'m discr u. The full signature of the
second constructor is lscons::'m discr u →'m stream →'m stream. The lscons

constructor can be abbreviated as infix &&. The domain datatype also introduces the se-
lectors lshd::'m stream →'m discr u and srt:: 'm stream →'m stream. The
lscons constructor is strict on the first argument but lazy on the second argument.
The strictness of the first argument ensures that the message is not ⊥ while the laziness
of the second argument enables infinite streams.

lemma "⊥ && s = ϵ" (* first argument of lscons is strict *)
and "msg ̸= ⊥ =⇒ msg && ϵ ̸= ϵ" (* second argument is lazy *)

Instead of up and &&, we often construct streams from lists. This is abbreviated as
<ls> where ls is a list:

lemma "<[1,2]> = up ·(Discr 1) && up ·(Discr 2) && ϵ"

We encode time progression information in the stream via the 'm type parameter.
For example, nat event stream is the stream over natural numbers with event tim-
ing [RR11]. This way, different kinds of timed streams are typed differently and the
type-checker can aid development, e.g., by ensuring that a timed stream cannot be con-
catenated with an untimed stream. Furthermore, general functions over 'm stream can
directly be used over 'm event stream, and don’t have to be newly defined.

3.1.1 Event Streams as General Form of Timed Streams
The most general timed stream is the event stream. Like an untimed stream an event
stream is also an observation of transmitted messages over a communication channel.
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Additionally, event streams contain information about time. For event streams this
timing information is encoded using the additional message Tick. A Tick observation
means a time slice has ended. The duration of a time slice has to be globally defined
outside the stream itself, e.g., a time slice could equal one minute or a nanosecond. The
messages in a time slice are ordered, but the exact timing of the message is not part of
the event stream. An event observation is encoded in the datatype event

datatype 'm event = EventMsg 'm | Tick ("
√
")

The timeline in Fig. 3.1 shows an example of the event stream 〈EventMsg A,
EventMsg B, Tick, EventMsg C, Tick, Tick〉. The first time slice contains
the messages A and B, the second time slice only the message C, and the third time
slice is empty. As an abbreviated notation we omit the constructor EventMsg when the
datatype is clear from the context. In abbreviated notation the stream from Fig. 3.1 is
written as ⟨A, B,

√
, C,

√
⟩.

1 2 3

A B C

Figure 3.1: Overlaying real-world communication events A, B, and C over three discrete
time slices. The event stream representation of this communication history
is 〈EventMsg A, EventMsg B, Tick, EventMsg C, Tick, Tick〉.

Event streams are capable of representing incomplete time slices. Take for example the
stream 〈EventMsg 1〉. It consists of an incomplete time slice, since no Tick occurs.
Incomplete time slices can be used to get a more fine grained view of the processing of
components. However, there is a downside. A stream without time but with infinite
events can be represented, e.g., the infinite repetition of 〈EventMsg 1〉. Such streams
are not valid observations of inter-components communication and lead to problems
when describing components. We thus prohibit event streams from containing infinitely
many messages within a single time slice. This so called wellformedness property will
be further discussed in Section 3.2.1.

Note that time progression in event streams is only as granular as the chosen time
interval between Ticks. While the order of messages within a time slice is known, the
exact time-stamps are not. The timeline in Fig. 3.2 shows three time slices, all with the
events A and B. Each time slice’s representation as event stream is 〈EventMsg A,
EventMsg B, Tick〉. While the event stream represetations are equal however, the
time slices in the physical world are different due to the different real-world timing of
the events.

If a more fine granular view with more information is required, the time slice-duration
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1 2 3

A B A B A B

Figure 3.2: Overlaying repeated communication events A and B with different real-
world timing over discrete time slices. The event stream representation
is 〈EventMsg A, EventMsg B, Tick, EventMsg A, EventMsg B,
Tick, EventMsg A, EventMsg B, Tick〉

can be modified. Figure 3.3 displays the same messages as before, but on a 10-times
finer timescale. Now there is at most one message in each time slice.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A B AB A B

Figure 3.3: Overlaying the events of Fig. 3.2 over a 10-times finer timescale. The event
stream representation is 〈Tick, EventMsg A, Tick, EventMsg B,
Tick, Tick, Tick, Tick, Tick, Tick, Tick, Tick, Tick, Tick,
Tick, Tick, Tick, Tick, Tick, EventMsg A, Tick, EventMsg
B, Tick, Tick, Tick, Tick, EventMsg A, Tick, Tick, Tick,
Tick, Tick, Tick, EventMsg B, Tick, Tick〉

3.1.2 Time Synchronous Streams

Time synchronous (TSyn) streams are more restrictive than event streams. There is at
most one message in each time slice of a time synchronous stream. Hence, a time slice
either contains a message or is empty.

datatype 'm tsyn = TSynMsg 'm | Eps ("∽")

Figure 3.4 shows an example of a time synchronous Stream. A common application
area for time synchronous streams are hardware components, e.g., a computer processor.
There a message is not a discrete digital event, instead it is a signal with a duration
of one or multiple time slices. It is important to note that the time slice duration and
signal duration are synchronized, and a signal over several time slices is to be encoded
as multiple messages. Figure 3.5 shows a time synchronous stream with signals. In
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1 2 3

A B

Figure 3.4: Example of time synchronus stream 〈TSynMsg A, TSynMsg B, Eps〉

the entire first time slice the signal A is transmitted. For the mathematical interpreta-
tion this difference between discrete message and analog signal is not important. Both
observations are represented in the same stream 〈TSynMsg A, TSynMsg B, Eps〉.
The main difference is that synchronous hardware has usually no delay between input
and output except when used with feedback, while event-based specifications are often
delayed, because one doesn’t know how late a message arrives in a time slice.

1 2 3

A B

Figure 3.5: Stream from Fig. 3.4 with periods instead of discrete events

Similar to event streams it is possible to increase the granularity of observation. In
this case, empty observations Eps are added, see Fig. 3.6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A B

Figure 3.6: Stream from Fig. 3.4 on a 10-times finer time-view

For streams refining the time granularity to smaller time slices is possible, while making
it more coarse in general may introduce invalidity. When two consecutive time slices
both contain a message, it is impossible to combine them into one time slice since only
one message per time slice is allowed.

3.1.3 TOne Streams
If a time synchronous stream always contains a message, the datatype to model such a
stream becomes even simpler. TOne streams model a stream where the basic assumption
is that we observe exactly one message per unit of time.
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datatype 'm tone = TOneMsg 'm

For technical reasons and to simplify the modeling, the knowledge that it is a TOne
stream was encoded in the messages, as with previous stream forms, but not in the
stream, by defining an essentially empty wrapper tone. This encoding is necessary
because otherwise untimed streams like nat stream and TOne streams such as nat

tone stream would not be distinguishable. Technically, it is easier to pack this encoding
into the messages (here using the otherwise empty encoding tone) than into the streams,
because this way we only need a single stream theory. However, we are aware that this
is somewhat unintuitive.

1 2 3

A B C

Figure 3.7: TOne Stream 〈TOneMsg A, TOneMsg B, TOneMsg C〉

Similar to the previous time synchronous streams, TOne streams are often used to
represent signals with duration instead of digital messages. Figure 3.8 shows an example
of such a stream.

1 2 3

A B C

Figure 3.8: Stream from Fig. 3.7 with periods instead of discrete events

Neither increasing nor decreasing time granularity is generally possible for TOne
Streams. Similar to time synchronous streams, decreasing the granularity could lead
to multiple messages in one time slice, which is not allowed in TOne streams. Increasing
the time granularity would lead to empty time slices, which is also not supported by
TOne stream.

3.1.4 Comparison of Timed Stream Types

After introducing three different kinds of timed streams, we compare benefits and down-
sides of each kind. Table 3.2 given an overview of the relevant properties.
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Abbrev Isabelle Type Description See Page

B bool {True, False}
N nat {0, 1, 2, 3, . . . }
N∞ lnat N ∪ {∞}
A × B (A,B) prod tuple of elements
P(I) I set set
M⊥ M discr u lift to pcpo
Mev M event event datatype: M ∪ {

√
} 30

M? M tsyn tsyn datatype: M ∪ {∼} 31
M tone M tone tone datatype: M 33
M∗ M list finite list
Mω M::{countable} stream general stream 29
Mω M::{countable,tlen} stream general timed stream
M∗ω M::{countable} event stream event stream 30
M?ω M::{countable} tsyn stream time-synchronus stream 31
M1ω M::{countable} tone stream tone stream 33
M [ω] M::{countable} list stream tsliced stream 51
M∪ω M::{countable} combinedstream combined stream 52
IΩ I::{chan} sb general bundle 60
IΩ I::{tchan} sb general timed bundle 60
I ⇒ O (I,O) fun function
I → O (I::cpo,O::cpo) cfun continuous function
I −� O (I::chan sb,O::chan sb) cfun deterministic component
I −�t O (I::tchan sb,O::tchan sb) cfun deterministic, timed com-

ponent
I −�t

w O (I::tchan sb,O::tchan sb) tspfw weakly causal component 77
I −�t

s O (I::tchan sb,O::tchan sb) tspfs strongly causal component 77
I ▷ O (I::chan sb ,O::chan sb) cfun set underspecified component
I ▷t O (I::tchan sb ,O::tchan sb) cfun set underspecified, timed com-

ponent
I ▷t

w O (I::tchan sb ,O::tchan sb) tspfw set underspecified, weakly
causal component

87

I ▷t
s O (I::tchan sb ,O::tchan sb) tspfs set underspecified, strongly

causal component
87

I ∪ J (I::chan,J::chan) union set-union of channels
I − J (I::chan,J::chan) minus set-minus of channels

Table 3.1: Type-abbreviations
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#Messages Incomplete Per construction Finer Rougher
in time slice time slice wellformed time time

Event 0 − ∞ ✓ ✗ ✓ ✓

TSyn 0 − 1 ✗ ✓ ✓ ✗

TOne 1 ✗ ✓ ✗ ✗

Table 3.2: Comparison of different stream kinds

0-∞ in Table 3.2 means that the number of messages in a time slice is unbounded, but
it may not be infinite. During the design and implementation phases for time-sensitive
systems, event streams prove highly advantageous. They ensure maximum freedom and
defer premature decisions. As event stream are incrementally constructed, the induction
principle becomes particularly useful in proving properties over it, enabling a more com-
prehensive characterization of components. However, the wellformedness property has
to be kept in mind since not every event stream is wellformed by construction. This will
be further discussed in Section 3.2.1. We will present a method to prove wellformedness
for all interesting components in Section 5.1.3. In this paper we will focus on event
timing and present these functions in more detail. TSyn and TOne timing can be used
for later stages of development, when the maximal frequency of messages is known. An
example are hardware circuits where exactly one signal per time slice occurs.

3.2 Important Stream Datatype Functions
In this section we present important mathematical functions over timed streams and
the most relevant basic lemmata about these functions. We start with universal defini-
tions, i.e., for any of timing. Then we show timing-specific definitions, per timing type.
The definitions for timed streams build upon the definitions for untimed streams from
[BKR+20]. An overview of the untimed definitions is given in Table 3.3.

3.2.1 Important Functions over All Timed Streams
The functions described in this section work over all kinds of timed streams. Table 3.4
lists all functions which work over all kinds of timed streams and are independent of the
specific type of timing.

Get Number of Time Slices (i.e. the observation duration) To get the number of
time slices in a given stream is helpful, e.g., to define wellformedness (Section 3.2.1) and
causality (Section 5.1.1). Because getting the number of time slices is also required for
bundles (Section 4.3), we define a new class with a function tlen. This function takes
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Signature Description

ε sbot: Mω empty stream
m&&s lscons: M⊥ → Mω → Mω append first element
s ⊑ l below: Mω ⇒ Mω ⇒ B prefix relation
↑ sup’: M ⇒ Mω construct stream from an element
s|n stake: N ⇒ Mω → Mω retrieve the first n elements
s^s′ sconc: Mω ⇒ Mω → Mω concatenation of streams

sValues: Mω → P(M) the set of all messages in stream
shd: Mω ⇒ M first element of stream
srt: Mω → Mω stream without first element

#s slen: Mω → N∞ length of stream
sdrop: N ⇒ Mω → Mω remove first n elements

s.n snth: N ⇒ Mω ⇒ M nth element of stream
s · n sntimes: N∞ ⇒ Mω ⇒ Mω stream iterated n times
s · ∞ sinftimes: Mω ⇒ Mω stream iterated ∞ times

smap: (I ⇒ O) ⇒ Iω → Oω element-wise function application
siterate: (M ⇒ M) ⇒ M ⇒ Mω infinite iteration of function

A ⊖ s sfilter: P(M) ⇒ Mω → Mω filtering function
stakewhile: (M ⇒ B) ⇒ Mω → Mω prefix where predicate holds
sdropwhile: (M ⇒ B) ⇒ Mω → Mω drop prefix while predicate holds
szip: Iω → Oω → (I × O)ω zip two streams into one stream

α.s srcdups: Mω → Mω remove consecutive duplicates
slookahd: Iω → (I ⇒ O) → O apply function to head of stream
sfoot: Mω ⇒ M last elem. of not empty, finite stream
sprojfst: (I × O)ω → Iω projects the first stream
sprojsnd: (I × O)ω → Oω projects the second stream
stwbl: (M ⇒ B) ⇒ Mω → Mω stakewhile + first violating element
srtdw: (M ⇒ B) ⇒ Mω → Mω dropwhile and then remove head
sscanl: (O ⇒ I ⇒ O) ⇒ O ⇒ (Iω → Oω) state-based specifications

Table 3.3: Definitions on all kinds of streams including the untimed streams; all are
explained in the first book [BKR+20]. Type-abbreviations are explained in
Table 3.1
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an element of its class, i.e., tlen, and returns its number of time slices as a lazy natural
number, lnat. Additionally, we require that the function tlen is monotonic and that
there exists an element a whose length is greater than zero, i.e., tlen a ̸= 0.

class tlen = po +
fixes tlen :: "'a::po ⇒ lnat"
assumes len_mono: "monofun tlen"
assumes tlen_notzero: "∃a. tlen a ̸= 0"

The tlen operator is abbreviated as #√.
Instantiating this class is similar for the TSyn and TOne datatype. In both the TSyn

and TOne type a message is equivalent to exactly one time slice. Hence, the tlen is
always 1.

instantiation tsyn:: (type) tlen
begin

fun tlen_tsyn:: "'a tsyn ⇒ lnat" where
"tlen_tsyn _ = 1"

(* [...] *)

For event streams only Tick messages represent a time slice. Other message do not
progress time. Thus, Tick messages have the tlen of 1, and EventMsg the tlen of
0.

instantiation event::(type) tlen
begin

fun tlen_event::"'a::type event ⇒ lnat" where
"tlen_event Tick = 1" |
"tlen_event (EventMsg _)= 0"

(* [...] *)

Now that the time-datatypes are all instances of the tlen class, we can define the
tlen functions over streams. The number of time slices is defined by recursively adding
the tlen of all elements in the stream.

instantiation stream::("{tlen, countable}") tlen
begin

fixrec tlen_h::"'a::{tlen, countable} stream → lnat" where
"tlen_h · ϵ = ⊥" |
"tlen_h ·(up ·msg&&xs) = lAdd ·(tlen (undiscr msg)) ·(tlen_h ·xs)"

definition tlen_stream::"'a::{tlen, countable} stream ⇒ lnat"
where

"tlen_stream = Rep_cfun tlen_h"

(* [...] *)
end
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The definition uses ladd, which adds two lazy natural numbers (lNats). The function
undiscr is the inverse of Discr. Since Discr is bijective, undiscr is always defined.
With Rep_cfun a continuous function is converted into a normal function. Since the
instantiation assumes that the message is of class tlen, the tlen function can only be
called on timed streams. Trying to call the tlen function with an untimed stream as
an argument leads to a type error.

Signature Description See Page

#√ tlen: Mω → N∞ get number of time slices 37
tsrt: Mω → Mω remove the first time slice 38
tsdrop: N ⇒ Mω → Mω remove first n time slices 38
tshd: Mω → Mω get the first time slices 39
tstake: N ⇒ Mω → Mω take first n time slices 39
tsnth: N ⇒ Mω → Mω get only the nth time slices 39
wellformed: Mω ⇒ B infinitely many messages require infinite time 40

Table 3.4: Definitions on all kinds of timed streams. Type-abbreviations are explained
in Table 3.1

Using the tlen function we can define the functions take, drop and snth over time
slices. To define these functions we use general functions over streams.

Drop first N-time slices The sdrop function from general streams drops the first n
message. Hence, we define a new drop-function for time slices. We employ a helper
function called tsrt. The helper function drops the first time slice by using srtdw.
The function srtdw takes as first parameter a predicate to indicate what messages shall
be dropped. Precisely, it drops all messages that fullfil the predicate and also drops the
one message after.

definition tsrt::"'a::{tlen,countable} stream → 'a stream" where
"tsrt = srtdw (λmsg. #√msg = 0)"

To drop multiple time slices tsrt is applied multiple times with iterate:
definition tsdrop:: "nat ⇒ 'a::{tlen,countable} stream →

'a::{tlen,countable} stream" where
"tsdrop n ≡ Fix.iterate n ·tsrt"

Take first N-time slices The counterpart to dropping time slices is taking time slices.
To get the first time slice we use stwbl. The function stwbl takes the first messages
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which fulfill the provided predicate and the first message which does not fulfills the
predicate. All subsequent messages are dropped.

definition tshd:: "'a::{tlen,countable} stream → 'a stream" where
"tshd = stwbl (λe. #√e = 0)"

For tsdrop we applied tsrt n-times. This does not work for the tstake operator,
since taking the first time slice of the first time slice doesn’t change anything. Instead,
tsrt is used in the recursive call.

primrec tstake_nc:: "nat ⇒ 'a::{countable,tlen} stream
⇒ 'a stream" where

"tstake_nc 0 _ = ϵ" |
"tstake_nc (Suc n) s = (tshd ·s) ^ tstake_nc n (tsrt ·s)"

The type of the function tstake_nc is not continuous because defining a recursive
function and proving continuity at the same time is complicated. Instead, we lift the
function tstake_nc to the continuous function tstake in a separate step.

definition tstake:: "nat ⇒ 'a::{countable,tlen} stream
→ 'a stream" where

"tstake n = Abs_cfun (tstake_nc n)"

Take Nth time slice The function tsnth is designed to retrieve the N-th time slice
from a stream of time slices. This operation combines both dropping and taking func-
tionalities to return the desired time slice.

definition tsnth :: "nat ⇒ 'a::{tlen,countable} stream
→ 'a stream" where

"tsnth n ≡ tshd oo (tsdrop n)"

Wellformedness Event streams require a wellformedness predicate to restrict impossi-
ble observations. This removes zeno behavior where an infinite number of messages is
sent in a finite amount of time. The other variants of timed streams are by definition
free of zeno problems. For instance, the time synchronous stream has only finite time
slices. We define a class of wellformedness over len and tlen types:

class wellformed = tlen + len +
fixes wellformed::"'a::{tlen,len} ⇒ bool"
(* [...] *)

We then instantiate the stream type to be wellformed and defined its wellformedness
as follows. Every stream that has infinitely many message must have infinitely many
time slices.
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instantiation stream ::("{tlen, countable}") wellformed
begin

definition wellformed_stream::"'a stream ⇒ bool" where
"wellformed_stream s = (#s = ∞ −→ #√s = ∞)"

(* [...] *)
end

3.2.2 Functions over Event Streams

Most functions over event streams are defined by internally calling a function over general
streams, with Ticks requiring particular attention. When calling a function over general
streams, the already proven lemmata over this function directly follow. Defining a
completely new function, e.g., as a fixpoint-equation, is more effort and thus seldomly
done. All functions over event streams are listed Table 3.5.

Induction Event Streams have two relevant induction methods. The first one is similar
to the untimed induction as it inducts over individual messages. The empty stream
serves as the base case and in the induction step either Events or Ticks are prepended.

lemma eind:
assumes "adm P"

and "P ϵ"
and "

∧
msg s. P s =⇒ P (↑(EventMsg msg) ^ s)"

and "
∧
s. P s =⇒ P (↑(Tick) ^ s)"

shows "P x"

The second induction method inducts over time slices. Here the base case are all finite
time slices ls, which only contain Events and no Ticks. The time slices are typed as
lists and thus need conversion to streams using the angled brackets operator. In the
induction step a complete time slice is concatenated. This time slice consists of a finite
number of events and a Tick.

lemma tslice_ind:
assumes "adm P"

and "
∧
ls. P (smap EventMsg ·(<ls>))"

and "
∧
ls s. P s =⇒ P (smap EventMsg ·(<ls>) ^ ↑Tick ^ s)"

shows "P s"

Remove Time Information The function e2ustream removes all time information of
an event stream and returns an untimed stream. This method is often used to define
and prove untimed properties over timed streams. First, all Ticks are removed from the
event stream. Then, the event datatype is removed by applying (inv EventMsg) to
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Signature Description See Page

EventMsg: M ⇒ M ev convert message to event message 30
Tick: M ev end of time slice 30
e2ustream: M∗ω → Mω convert to untimed stream 41
eValues: M∗ω → P(M) set of all messages in the stream 42
emap: (I ⇒ O) ⇒ I∗ω → O∗ω element-wise function application 43
efilter: (M ⇒ B) ⇒ M∗ω ⇒ M∗ω events filter with given predicate 43
eshdts: M∗ω → Mω retrieve the first time slice 42
esnth: N ⇒ M∗ω → Mω retrieve the nth-time slice 42
elenMsg: M∗ω → N∞ number of events 42
escanlMsg: (S ⇒ I ⇒ S × Oω) ⇒ S

⇒ I∗ω → O∗ω
state-based specification ignoring
ticks

43

e2rougherTime: N ⇒ M∗ω → M∗ω keep only every nth tick 43
e2finerTime: N ⇒ M∗ω → P(M∗ω) to finer time, introducing under-

specification
44

etakeMsg: N ⇒ M∗ω → M∗ω take first n events, keep all Ticks be-
tween

44

edropMsg: N ⇒ M∗ω → M∗ω drop first n events, keep all Ticks
after

44

etakewhile: (M ⇒ B) ⇒ M∗ω → M∗ω take while condition holds 45
edropwhile: (M ⇒ B) ⇒ M∗ω → M∗ω drop while condition holds 45
eprojFst: (A × B)∗ω → A∗ω get first element of tuple stream 45
eprojSnd: (A × B)∗ω → B∗ω get second element of tuple stream 45
ezip: A∗ω → B∗ω → (A × B)∗ω zip streams. Drops messages when

number of elements in time slice not
equal

46

Table 3.5: Definitions on event streams. Type-abbreviations are explained in Table 3.1

all elements. Since the Ticks are already removed, this inverse function is well defined.

definition e2ustream::"'a event stream → 'a stream" where
"e2ustream = smap (inv EventMsg) oo sfilter (UNIV -{Tick})"
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Number of Events To get the number of events, the event stream is first converted
into an untimed streams where all messages are events. Then the number of messages
is counted with the normal length-operator (#) on general streams.

definition elenMsg::"'msg event stream → lnat" where
"elenMsg = (Λ s. #(e2ustream ·s))"

First Time Slice While the function tshd works over all timed streams, there exists
an event-specific version. When viewing a single time slice, additional time information
is not required. Hence, the single time slice can be an untimed stream. The signature of
tshd applied on event streams is 'm event stream →'m event stream. The result
is a timed stream. Thus, we define new function over event streams, which returns the
first time slice as an untimed stream.

definition eshdts::"'a event stream → 'a stream"where
"eshdts = e2ustream oo tshd"

Nth Time Slice Same as the first time slice, the nth time slice can also be untimed.
To get the nth-time slice, the first n-time slices are dropped and the first time slice of
the rest returned. As usual, counting the time slices starts with zero.

definition esnth::"nat ⇒ 'a event stream → 'a stream" where
"esnth n = eshdts oo (tsdrop n)"

Get Set of Messages Often, only the set of transmitted messages is relevant. For
example to ensure that certain messages are never transmitted. The function eValues
is a continuous functions which returns all messages that occur in the event stream.

definition eValues::"'a event stream → 'a set" where
"eValues = sValues oo e2ustream"

Stream Mapping The general smap applied to timed streams gives access to the timing
information, i.e., allows for Ticks to be mapped. This is turn open up the possibility to
add or remove Ticks. Often, this is not required as only the events should be mapped.
Only being able to map events removes possible error sources and ensures that both
input and output stream have the same number of time slices. First, we define a helper
function which applies a function f to EventMsg without modifying Tick messages.

fun map_event::"('a ⇒ 'b) ⇒ 'a event ⇒ 'b event" where
"map_event _ Tick = Tick " |
"map_event f (EventMsg a) = EventMsg (f a)"

Then the mapping over event streams can be defined using smap.
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definition emap::"('a ⇒ 'b) ⇒ 'a event stream → 'b event stream"
where

"emap f = smap (map_event f)"

Filter Elements Similar to mapping, a dedicated filter operator for event streams
should not alter Ticks. This ensures that the number of time slices is not modified.

definition efilter::"('a ⇒ bool) ⇒ 'a event stream → 'a event
stream" where

"efilter P = sfilter (insert Tick {EventMsg a | a. P a})"

State-Based Message Handling This function implements a state-based specification
that processes an incoming event stream while ignoring Ticks. The function escanlMsg

takes three parameters: a function f that defines the state transition, an initial state,
and an event stream of messages.

definition escanlMsg::
"('state ⇒ 'msg ⇒ ('state × 'out stream))

⇒ 'state ⇒ 'msg event stream → 'out event stream"

The core operation of escanlMsg utilizes sscanlA, which applies the provided func-
tion f to each message in the stream, updating the state accordingly. If a Tick is pro-
cessed, it produces a corresponding Tick in the output without altering the state. For
events, it calls the function f with the current state and the event, producing a new
state and an output stream. In essence, escanlMsg allows for state-based behavior
definition while ensuring that Ticks are propagated through the output stream without
affecting the underlying state transitions.

Convert to Rougher Time Format The function e2rougherTime has the following
signature:

definition e2rougherTime::
"nat ⇒ 'msg event stream → 'msg event stream"

This function is designed to keep only every nth Tick from an incoming event stream.
It takes a natural number n as its parameter, which specifies the interval at which Ticks
should be retained. In the implementation of e2rougherTime, each Tick is counted.
If the current count reaches zero, that Tick is preserved in the output stream, and the
count resets to n. If the count has not reached zero, that Tick is ignored and not included
in the output. In summary, e2rougherTime filters the event stream by retaining only
those Ticks that occur at specified intervals while discarding others, thereby providing
rougher time-representation.
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Convert to Finer Time Format The function e2finerTime is defined as follows:
definition e2finerTime::

"nat ⇒ 'msg event stream ⇒ 'msg event stream set"

This function returns a set of event streams that correspond to a finer time resolution
based on the specified natural number n. It takes an incoming event stream as its second
parameter and produces all possible event streams that, when processed through the
e2rougherTime function with the same n, yield the original stream. The key aspect
of e2finerTime is that it introduces underspecification regarding where new Ticks
may be inserted within the time-slices of the input event stream. Thus, the function
returns a set of all possible finer event streams.

Extract First n Events and Preserve Ticks The function etakeMsg is defined as
follows:

definition etakeMsg::
"nat ⇒ 'msg event stream → 'msg event stream"

This function is designed to take the first n events from an incoming event stream
while preserving all Ticks that occur between those events. It takes a natural number
n as its parameter, which specifies the maximum number of events to retain. In the
implementation of etakeMsg, the function processes the event stream by counting the
number of events encountered. Once n events have been captured, any subsequent events
are ignored. Each Tick that appears in the stream is retained. In summary, etakeMsg
effectively extracts a specified number of events from an event stream while ensuring
that all Ticks are maintained.

Drop First n Events and Preserve Ticks The function edropMsg is defined as follows:

definition edropMsg::
"nat ⇒ 'msg event stream → 'msg event stream"

This function is designed to drop the first nevents from an incoming event stream
while retaining all Ticks that occur after those events. It takes a natural number n
as its parameter, which specifies the number of initial events to be discarded. In the
implementation of edropMsg, the function processes the event stream by counting the
number of events encountered. Once n events have been skipped, all subsequent events
are included in the resulting stream. Each Tick that appears in the stream is retained.
In summary, edropMsg effectively removes a specified number of initial events from an
event stream while ensuring that all Ticks are maintained.
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Take While Condition Holds The function etakewhile is defined as follows:

definition etakewhile::
"('msg ⇒ bool) ⇒ 'msg event stream → 'msg event stream"

This function is designed to take elements from an incoming event stream as long as a
specified condition holds true. It accepts a predicate function f that determines whether
each element should be retained. In the implementation of etakewhile, the function
processes the event stream by evaluating each event against the provided condition. If
an event meets the condition it is included in the output stream. However, once the
condition evaluates to false for any event, no further output is produced. In summary,
etakewhile extracts elements from an event stream based until the condition fails.

Drop While Condition Holds The function edropwhile is defined as follows:

definition edropwhile::
"('msg ⇒ bool) ⇒ 'msg event stream → 'msg event stream"

This function is designed to drop elements from an event stream as long as a specified
condition holds true. It accepts a predicate function f that determines whether each
element should be discarded. In the implementation of edropwhile, the function
processes the event stream by evaluating each event against the provided condition. If
an event meets the condition, it is dropped from the output stream. However, once an
event does not meet the condition, all subsequent elements are retained in the output.
In summary, edropwhile removes elements from an event stream based on a specified
condition until that condition fails.

Project First Event The function eprojFst is defined as follows:

definition eprojFst:: "('a×'b) event stream → 'a event stream"

In the implementation of eprojFst, the function processes the event stream by ap-
plying a mapping operation that retrieves the first component of each tuple. In summary,
eprojFst retrieves the first tuple-element of an event stream with tuple-messages.

Project Second Event The function eprojSnd is defined as follows:

definition eprojSnd:: "('a×'b) event stream → 'b event stream"

In the implementation of eprojSnd, the function processes the event stream by
applying a mapping operation that retrieves the second component of each tuple. In
summary, eprojSnd retrieves the second tuple-element of an event stream with tuple-
messages.

45



Chapter 3 Timed Streams and Their Encoding

Zip Two Event Streams The function ezip is defined as follows:
definition ezip:: "'a event stream → 'b event stream

→ ('a×'b) event stream"

This function is designed to combine two incoming event streams into a single stream
of pairs. In the implementation of ezip, the function processes both input streams
concurrently and produces pairs of corresponding elements. It requires that the number
of messages in each time slice must match; if they do not, events from the longer time
slice are dropped to ensure that only complete pairs are produced.

3.2.3 Functions over TSyn Streams
TSyn streams have similar functions to event streams. Functions over TSyn are listed
in Table 3.6.

Signature Description See Page

TSynMsg: M ⇒ M? convert message to tsyn message 31
Eps: M? empty time slice 31
tsyn2ustream: M?ω → Mω convert to untimed stream 47
tsynMap: (I ⇒ O) ⇒ I?ω → O?ω element-wise function application 47
tsynFilter: P(M) ⇒ M?ω → M?ω tsyn filter with given predicate 47
snthTsyn: N ⇒ M?ω → Mω retrieve the n-th time slices 47
tsyn2event: M?ω → M∗ω convert tsyn stream to event stream 47
tsynEps: M?ω → N∞ number of empty time slices 48
tsynLen: M?ω → N∞ number of messages 48
tsyntakewhile: (M ⇒ B) ⇒ M?ω → M?ω prefix where predicate holds 48
tsyndropwhile: (M ⇒ B) ⇒ M?ω → M?ω drop prefix while predicate holds 48
tsynProjFst: (A × B)?ω → A?ω get first element of tuple stream 48
tsynProjSnd: (A × B)?ω → B?ω get second element of tuple stream 48
tsynZip: A?ω → B?ω → (A × B)?ω zip two streams into one stream 49

Table 3.6: Definitions on TSyn Streams. Type-abbreviations are explained in Table 3.1

Remove Time Information tsyn2ustream converts a timed synchronic stream into
an untimed stream by removing all empty time slices (Eps) and retaining only the ac-
tual message elements. This transformation is essential for analyzing the content of the
stream without considering timing information. The function first filters out any occur-
rences of Eps from the stream, then applies the helper function tsyn2ustreamElem to
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extract the messages from the remaining time slices. The resulting output is an untimed
stream consisting solely of relevant messages.

definition tsyn2ustream:: "'a tsyn stream → 'a stream"

Stream Mapping The function tsynMap has the following signature:

definition tsynMap:: "('a ⇒ 'b) ⇒ 'a tsyn stream → 'b tsyn stream"

This function is designed to apply a given mapping function f to each element of an
incoming timed stream while preserving the timing information. Empty time slices are
not modified.

Filter Elements The function tsynFilter has the following signature:

definition tsynFilter:: "'a set ⇒ 'a tsyn stream → 'a tsyn stream"

This function is designed to filter elements from an incoming timed stream based on
a specified predicate, represented as a set. In the implementation of tsynFilter, the
function processes each element in the timed stream and removes those that are not
included in the given set. Empty time slices are maintained.

Nth Time Slice The function snthTsyn retrieves the N-th time slice from a tsyn
stream.

definition snthTsyn:: "nat ⇒ 'a tsyn stream → 'a stream"

Convert to Event Stream Any tsyn streams can be converted to event streams. An
empty time slice (Eps) is directly mapped to the Tick. But TSynMsg elements must
be mapped to two elements in the event stream. The first elements contains the message
EventMsg m and the second element the time information Tick. We first introduce a
helper function that converts individual elements:

fun tsyn2eventElem:: "'a tsyn ⇒ 'a event stream" where
"tsyn2eventElem Eps = ↑Tick"
"tsyn2eventElem (TSynMsg m) = <[(EventMsg m),Tick]>" |

Then we apply this helper using an altered version of smap. We cannot use smap
directly as it can only map to single elements. With smapAlt it is possible to map a
single element in the input stream to multiple elements in the output stream.

definition tsyn2event::"'a tsyn stream → 'a event stream" where
"tsyn2event ≡ smapAlt tsyn2eventElem"
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Counting Empty Time slices The function tsynEps returns the number of empty
time slices:

definition tsynEps :: "'a tsyn stream → lnat"

Counting Messages The function tsynLen returns the number of messages:
definition tsynLen:: "'a tsyn stream → lnat"

Take While Condition Holds The function tsyntakewhile is defined as follows:
definition tsyntakewhile::

"('a ⇒ bool) ⇒ 'a tsyn stream → 'a tsyn stream"

This function is designed to take elements from an incoming tsyn stream as long
as a specified condition holds true. It accepts a predicate function f that determines
whether each element should be retained. In the implementation of tsyntakewhile,
the function processes the tsyn stream by evaluating each message against the provided
condition. If a message meets the condition it is included in the output stream. However,
once the condition evaluates to false for any message, no further output is produced.

Drop While Condition Holds The function tsyndropwhile is defined as follows:
definition tsyndropwhile::

"('a ⇒ bool) ⇒ 'a tsyn stream → 'a tsyn stream"

This function is designed to drop elements from an tsyn stream as long as a specified
condition holds true. It accepts a predicate function f that determines whether each
element should be discarded. In the implementation of tsyndropwhile, the function
processes the tsyn stream by evaluating each message against the provided condition. If
a message meets the condition, it is dropped from the output stream. However, once an
event does not meet the condition, all subsequent messages are retained in the output.

Project First Tsyn The function tsynProjFst is defined as follows:
definition tsynProjFst:: "('a × 'b) tsyn stream → 'a tsyn stream"

In the implementation of tsynProjFst, the function processes the tsyn stream by
applying a mapping operation that retrieves the first component of each tuple.

Project Second Tsyn The function tsynProjSnd is defined as follows:
definition tsynProjSnd::"('a×'b) tsyn stream → 'b tsyn stream"

In the implementation of tsynProjSnd, the function processes the tsyn stream by
applying a mapping operation that retrieves the second component of each tuple.
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Zip Two Tsyn Streams The function tsynZip is defined as follows:
definition tsynZip::

"'a tsyn stream → 'b tsyn stream → ('a × 'b) tsyn stream"

This function is designed to combine two incoming tsyn streams into a single stream of
pairs. It requires that the number of messages in each time slice must match; if they do
not, Eps is produced.

3.2.4 Functions over TOne Streams
Functions over TOne are listed in Table 3.7.

Signature Description See Page

ToneMsg: M ⇒ M tone convert message to tone message 33
tone2ustream: M1ω → Mω convert to untimed stream 49
toneMap: (I ⇒ O) ⇒ I1ω → O1ω element-wise function application 49
toneFilter: P(M) ⇒ M1ω → M1ω filter with given predicate 50
snthTone: N ⇒ M1ω → M1ω retrieve the nth time slice 50
tone2event: M1ω → M∗ω convert tone stream to event stream 50
tone2tsyn: M1ω → M?ω convert tone stream to tsyn stream 50
tonetakewhile: (M ⇒ B) ⇒ M1ω → M1ω prefix where predicate holds 50
tonedropwhile: (M ⇒ B) ⇒ M1ω → M1ω drop prefix while predicate holds 51
tonezip: A1ω → B1ω → (A × B)1ω zip two streams into one stream 51
toneprojFst: (A × B)1ω → A1ω get first element of tuple stream 51
toneprojSnd: (A × B)1ω → B1ω get second element of tuple stream 51
tonescanl: (S ⇒ I ⇒ S × O1ω) ⇒ S

⇒ I1ω → O1ω
state-based specification 51

Table 3.7: Definitions on TOne streams. Type-abbreviations are explained in Table 3.1

Remove Time Information tone2ustream converts a tone stream into an untimed
stream by retaining only the actual message elements. This transformation is essential
for analyzing the content of the stream without considering timing information.

definition tone2ustream:: "'a tone stream → 'a stream"

Stream Mapping The function toneMap has the following signature:
definition toneMap:: "('a ⇒ 'b) ⇒ 'a tone stream → 'b tone stream"
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This function is designed to apply a given mapping function f to each element of an
incoming timed stream while preserving the timing information.

Filter Elements The function toneFilter has the following signature:

definition toneFilter:: "'a set ⇒ 'a tone stream → 'a tone stream"

This function is designed to filter elements from an incoming timed stream based on
a specified predicate, represented as a set. In the implementation of toneFilter, the
function processes each element in the timed stream and removes those that are not
included in the given set.

Nth Time Slice The function snthTOne retrieves the N-th time slice from a tone
stream.

definition snthTOne:: "nat ⇒ 'a tone stream → 'a stream"

Convert to Event Stream Any tone stream can be converted to event streams.

definition tone2event::"'a tone stream → 'a event stream"

Convert to Tsyn Stream Any tone stream can be converted to tsyn streams.

definition tone2tsyn::"'a tone stream → 'a tsyn stream"

Take While Condition Holds The function tonetakewhile is defined as follows:

definition tonetakewhile::
"('a ⇒ bool) ⇒ 'a tone stream → 'a tone stream"

This function is designed to take elements from an incoming tone stream as long as a
specified condition holds true. It accepts a predicate function f that determines whether
each element should be retained. In the implementation of tonetakewhile, the func-
tion processes the stream by evaluating each message against the provided condition. If
a message meets the condition it is included in the output stream. However, once the
condition evaluates to false for any message, no further output is produced.

Drop While Condition Holds The function tonedropwhile is defined as follows:

definition tonedropwhile::
"('a ⇒ bool) ⇒ 'a tone stream → 'a tone stream"
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This function is designed to drop elements from an tone stream as long as a specified
condition holds true. It accepts a predicate function f that determines whether each
element should be discarded. In the implementation of tonedropwhile, the function
processes the stream by evaluating each message against the provided condition. If a
message meets the condition, it is dropped from the output stream. However, once a
message does not meet the condition, all subsequent messages are retained in the output.

Project First TOne The function toneProjFst is defined as follows:
definition toneprojFst:: "('a × 'b) tone stream → 'a tone stream"

In the implementation of toneProjFst, the function processes the stream by apply-
ing a mapping operation that retrieves the first component of each tuple.

Project Second TOne The function toneProjSnd is defined as follows:
definition toneprojSnd:: "('a×'b) tone stream → 'b tone stream"

In the implementation of toneProjSnd, the function processes the stream by applying
a mapping operation that retrieves the second component of each tuple.

Zip Two TOne Streams The function toneZip is defined as follows:
definition tonezip::

"'a tone stream → 'b tone stream → ('a × 'b) tone stream"

This function is designed to combine two incoming tone streams into a single stream of
pairs.

State-Based Message Handling This function implements a state-based specification
that processes a tone stream. The function tonescanl takes three parameters: a func-
tion f that defines the state transition, an initial state, and a tone stream of messages.

definition tonescanl::
"('state ⇒ 'msg ⇒ ('state × 'out tone stream))

⇒ 'state ⇒ 'msg tone stream → 'out tone stream"

3.2.5 Complete Time Slices

Another alternative to event stream is a timed stream where each time slice is com-
plete. Multiple messages in a time slice are also supported.

The datatype list stream has these properties. Since lists are always finite in
Isabelle, each time slice is also finite. No additional wellformedness property is required.
An example is shown in Fig. 3.9.
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1 2 3

A B C

Figure 3.9: Example of List Stream 〈[A,B],[C],[]〉

It is possible to convert list stream to event stream and vice versa. Event
streams are more fine grained than list stream since they can encode incomplete time
slices. Thus the mapping from list stream to event stream is only surjective and not
injective. Since incomplete time slices are interesting when modeling components we
focus on event stream in this work.

3.2.6 Combined Stream
An additional stream type combining the possible timed stream representations is in-
troduced to allow a parametric channel type for stream bundles in Chapter 4 while still
enabling the channel-specific restriction of messages and different time modes.

datatype 'm combinedstream = TEVENT "'m event stream" |
TSYN "'m tsyn stream" |
TONE "'m tone stream" |
TSLICED "'m list stream" |
UNTIMED "'m stream"

The previous prefix order over streams is lifted to the combinedstream type. Since
there are multiple least elements, e.g., UNTIMED ϵ and TEVENT ϵ, the combined stream
type is only a cpo, and not a pcpo. To reuse existing functions specific to each time
mode, the combStreamCases function lifting the time mode specific functions to a
function over combinedstream is defined with the following behavior:

lemma "combStreamCases f1 f2 f3 f4 f5 ·(TEVENT s1) = f1 ·s1"
and "combStreamCases f1 f2 f3 f4 f5 ·(TSYN s2) = f2 ·s2"
and "combStreamCases f1 f2 f3 f4 f5 ·(TONE s3) = f3 ·s3"
and "combStreamCases f1 f2 f3 f4 f5 ·(TSLICED s4) = f4 ·s4"
and "combStreamCases f1 f2 f3 f4 f5 ·(UNTIMED s5) = f5 ·s5"

Depending on the time mode, the correct function is applied to the stream. This fa-
cilitates simple definitions of the combValues function, which gets all messages in a
combinedstream.

definition combValues:: "'m::countable combinedstream → 'm set"
where

"combValues = combStreamCases eValues tsynValues toneValues
tslicedValues sValues"
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The enum timeType represents the possible time modes:
datatype timeType = TTLive | TTsyn | TTOne | TTFin | TUntimed

The straightforward TUntimed defines the untimed option, TTOne represents the case
where there is exactly one message per time slice, TTsyn the case with a maximum of
one message per time slice, TTFin the case with finitely many messages in each time
slice and only complete time slices, and TTLive the case with arbitrarily many messages
in each time slice and possible incomplete time slices.

The timeType of a combinedstream is obtained using the combGetTime function:

fun combGetTime::"'m::countable combinedstream ⇒ timeType" where
"combGetTime (UNTIMED s) = TUntimed" |
"combGetTime (TEVENT s) = TTLive" |
"combGetTime (TSLICED s) = TTFin" |
"combGetTime (TONE s) = TTOne" |
"combGetTime (TSYN s) = TTsyn"

Finally, the least combined stream of a timing mode is defined as the empty stream
with the associated constructor:

fun combLeast::"timeType ⇒ 'm::countable combinedstream" where
"combLeast TUntimed = UNTIMED ϵ" |
"combLeast TTOne = TONE ϵ" |
"combLeast TTFin = TSLICED ϵ" |
"combLeast TTLive = TEVENT ϵ" |
"combLeast TTsyn = TSYN ϵ"

The timed length of a combined stream depends on its time representation. The
Isabelle implementation uses the combStreamCases function internally to apply the
correct tlen function to the stream.

definition tlen_combinedstream::"'m combinedstream ⇒ lnat" where
"tlen_combinedstream = Rep_cfun (combStreamCases (Abs_cfun tlen)

(Abs_cfun tlen) (Abs_cfun tlen) (Abs_cfun len) undefined)"

The tlen_combinedstream function applies the correct tlen function for the dif-
ferent time modes and is undefined for untimed streams. Similar to the other timed
length functions over streams, tlen_combinedstream is abbreviated as #√.

Wellformedness of combined streams is important, since they can be event streams:

fun wellformed_combstream::"'msg combinedstream ⇒ bool" where
"wellformed_combstream (TEVENT s) = wellformed s" |
"wellformed_combstream _ = True"

For all other timed or untimed cases, the combined stream is automatically wellformed.
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3.3 Alternative Definitions and Discussion
This section shows alternatives to event streams and discusses benefits and downsides.

Infinite Timed Streams by Manfred Broy
Broy [BS01b] defines timed streams as infinite observations. Thus every timed stream
has infinitely many ticks. Mathematically, this kind of stream is defined as a function:

M
∞
Broy := P(N → M∗)

For f ∈ M
∞
Broy the result of f(n) is the list of messages in the n-th time slice. Since

all time slices are infinite, there exists neither prefix order nor directly induction. In
comparison, our event stream additionally also models finite and even incomplete
timeslices. To define certain properties over components, Broy later also introduces
finite timed streams, but only as auxiliary structure. This is discussed in more detail in
Section 5.1.1. Both forms of models have their individual benefits. For our purposes,
we found that a single datatype for both finite and infinite streams is preferable. For
one, we frequently use induction over our streams to prove properties, which needs finite
prefixes for the induction principle. Furthermore, functions only have to be defined once
over our streams, and work both for finite and infinite streams.

Dense Stream by Manfred Broy
All of the previously discussed timings are discrete. Furthermore, the exact time of a
message is lost in the encoding and only a finite number of messages is allowed in a
time slice. These assumptions are adequate when modeling the interactions between
computer systems or transmitting concrete items, since these interactions are discrete.
To fully model analogue continuous behavior, e.g., for cyber physical systems, a different
kind of stream is required.
Definition 3.6 (Dense Time Domain [Bro12]). TD is a dense time domain iff TD ⊆ R+
and

∀x, y ∈ TD.x < y =⇒ ∃z ∈ TD.x < z < y

Definition 3.7 (Dense Timed Stream [Bro12]). A dense timed stream over a message
domain M and a time domain TD ⊆ R+ is the total function s : TD → M .

Cauchy continuity is used to ensure that small variations in the time lead to small
variation in the message. This requires that the messages are a metric space.
Definition 3.8 (Cauchy Continuous Dense Timed Stream [Bro12]). A dense timed
stream s : TD → M is cauchy continuous iff M is a metric space with distance function
d and

∀ϵ ∈ R>0.∃δ ∈ R>0.∀x, x′ ∈ TD.|x − x′| < δ =⇒ d(s(x), s(x′)) < ϵ
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Hybrid State Machines [Hen96, LSVW96] can define behavior over dense streams.
Furthermore, the analog stream can be discretized to an event stream. While information
is lost during discretization, for many applications the digital approximation of the
analog signals is sufficient. Different kinds of discrete, dense and super dense streams
are listed in [RR11, SRS99].

Other Isabelle Streams

[GR06] also introduces a datatype for general streams and defines functions over these
streams. Our definition of streams is an optimization of this definition for the newer
HOLCF’11 [Huf12].

An alternative formalization of Focus in Isabelle is given in [Spi07]. This formaliza-
tion uses Isabelle/HOL instead of Isabelle/HOLCF. Hence, it heavily relies on the finite
list datatype. The stream datatype is defined using four constructors. One for finite
timed streams (FinT), one for finite untimed streams (FinU), one for infinite timed
streams (InfT), and one for infinite untimed streams (InfU):

datatype 'a streamSpichkova = FinT "'a list list" |
FinU "'a list" |
InfT "nat ⇒ 'a list" |
InfU "nat ⇒ 'a"

This definition of streams has the downside that the kind of timing is not visible from the
signature of a function. Thus, the type-checker cannot prevent the user from concatenat-
ing an untimed stream with a timed stream. Furthermore, having four constructors leads
to many case-distinctions in definitions and lemmata. Using datatypes like event our
general stream datatype can encode timing information without changing the definition
of the general stream. This was demonstrated with event, time synchronous, and tone
streams. Changing the stream-datatype for each kind of timing would bring additional
overhead. Lastly, the HOLCF domain keyword brings many helpful properties like the
prefix-order and induction out of the box. Especially for induction the cpo properties of
our streams are helpful. With the admissibility it is possible show that a property holds
on an infinite stream using induction.

Ptolemy II - Lee

Ptolemy II [Cla14] is a modeling and simulation framework for system design developed
by UC Berkeley. The code is available under an open-source license. The frameworks
include a graphical modeling tool named “Vergil”. It is similar to other Component
& Connector modeling languages like SysML [JPR+22] or UML [EBF+98, CKM+99,
KER99, BC11, Rum16]. But Ptolemy focuses on the semantics of the models, the ren-
dering of the visualization is only “incidental” [Cla14] as there may be multiple different
visualizations.
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Ptolemy is using superdense time. Every time information is encoded as (t, n) ∈
(R × N). The macrostep t denotes the time of the event. Since it is a real number,
continuous processes can be described. The microstep n is used to create a well-defined
sequential order of “simultaneous” events. An example where micro steps are used are
inelastic collisions such as in Newtons Cradle. The force is transmitted instantaneously
through multiple spheres. A detailed explanation is given in [Lee17].

Microsteps are progress without the passing of time. Hence, it is possible to run into
Zeno conditions, where only microsteps are increased, but no macrostep occurs. It is
hard to statically analyze a model, whether it is zeno or not. [Lee17] shows a system
which is zeno if the Collatz conjecture is false. Also seemingly simple systems can be
zeno, for example a ball bouncing on the ground [Lee17]. Mathematically, a observation
is encoded as p : R×N → S where S is the set of all possible signals. However, Ptolemy
is using a different internal implementation of time. The macrostep is split up into two
parts: One global floating-point constant resolution (r) and a natural number for the
time slice (m). The time slice is saved as a Java BigInteger and is not susceptible
to overflows. The time (t) is calculated from these values as t = m ∗ r. An arbitrary
large microstep would only lead to zeno-conditions, hence the microstep is encoded as a
32-bit integers. In most cases a overflow is caused by a zeno-condition.

With this implementation, the practical requirements from [BGL+15] are fulfilled.
The precision can be set according to the requirements of the system. For example a
high-speed processor could be simulated with a different precision than an clock. For
continuous systems, the precision must be sufficiently fine to capture all relevant events
(e.g. using Nyquist–Shannon sampling [Sha49]).

Ptolemy encourages the developer to create deterministic models. If a pseudo random
number is required (e.g. for a Monte Carlo experiment [PCB+01]) the seed is managed
by Ptolemy to achieve reproducibility. Since temporal semantics are an important part
of Ptolemy, the timing properties are also handled deterministically. In a simulation
this is relatively easy to achieve, since a global clock exists and one can “freeze” time if
necessary. For an implementation in a real-life distributed system, the temporal proper-
ties are challenging to realize, as current hardware does not provide deterministic timing
behavior. The PTIDES Model is addressing this issue [DFL+08].

Since Ptolemy models have a clearly defined semantic, it is possible to formally verify
the models. In [CFL08] a transformation into Kripke structures is presented. [BÖFT09]
used real-time maude [ÖM07] to verify liveness properties of Ptolemy models. Verifica-
tion is also integrated into the visual editor.
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Timed Stream Bundles

Components in a distributed system communicate with other components via directed
channels. Communication may occur on multiple input and output channels. Bundling
the input or output streams together is therefore necessary. The concept of stream
bundle (SB) is introduced as a function mapping channels to streams. General bundles
extended to timed stream bundle (TSB) that are represented by a function mapping
channels to timed streams. This chapter introduces an implementation of SBs in Isabelle
as an extension of the implementation in [BKR+20]. The new implementation allows
different timing modes and additional functions, allowing reuse of types, definitions, and
theorems across timing modes.

4.1 Datatype Definition
This section presents the required definitions for introducing timed stream bundles
(TSBs). Formally, an SB is a function that maps channels to streams, i.e., it associates
channels with their communication history. Depending on the channel, its communica-
tion history can contain time information. To allow different abstract time information in
communication histories, the combinedStream type (M∪ω) introduced in Section 3.2.6
is used.

Definition 4.1 (Stream bundle (SB)). Let C be a set of channel names, Tc the time-
type, Mc the set of allowed messages for a channel c ∈ C, and M =

⋃
c∈C

Mc. The stream

bundle type is then defined as:

SBC := {sb ∈ (C → M∪ω) | ∀c ∈ C. combValues(sb(c)) ⊆ Mc

∧ combGetTime(sb(c)) = Tc}

with
Tc = event | tsyn | tone | tsliced | untimed

A TSB is then simply a subtype of SB, where all channel histories are timed, i.e.,
∀c. combGetTime (sb(c)) ̸= untimed holds additionally. Depicting complete timed
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communication histories over an infinite sequence of time intervals always results in in-
finitely long timed streams with infinite time progression on all channels. The time-
mode of a stream in a bundle must be equal to its channel’s time-mode. An un-
timed stream on a timed channel is not allowed. The correct time-mode is enforced
by combGetTime(sb(c)) = Tc. An example of an correct bundle with different time-
modes for its channels is shown in Fig. 4.1. On the first input channel of the TSB the
channel’s history is represented by a bool event stream. The second channel’s his-
tory is depicted as a nat tsyn stream. In the following, CΩ is the abbreviation for
SBs, CΩ for TSBs, and C∗Ω for bundles containing only event streams corresponding to
channel set C.

Multiple Types
c1 : ⟨T, T,

√
, F,

√
, . . .⟩

c2 : ⟨ 1 , ∼, . . . ⟩
c3 : ⟨T,

√
, . . .⟩

Figure 4.1: Component with two input streams of different timing and message types

After this short theoretical introduction, the implementation in Isabelle is presented
next.

Message Definition

To define SBs, channels and message types are introduced first. A datatype defining a
superset of allowed messages exists similar to the untimed case:

datatype msg = NAT "nat" | BOOL "bool" | STRING "string" |
INT "int" | RAT "rat"

Custom datatypes can be used by adding them to the msg type in Isabelle. This can
be done manually, or by generating. This is especially relevant for message types that
are defined, e.g., in Architecture Description Languages (ADLs) like MontiArc or SysML
[KMP+21].

Timed Channel Definition

The timeType datatype (see Section 3.2.6) is necessary to support one the one hand
TSBs where all channels have the same specific time-type, e.g., an event TSB or a sync
TSB, and on the other hand TSBs where channels have different time-types as shown in
Fig. 4.1.

The global datatype msg defines every message on every channel of a distributed
system. Each channel restricts the possible messages to a subset of msg. As a result,
the Isabelle encoding of channels is defined not only by a name but also by a timeType
and a set of messages from msg.
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datatype channel = CH (* name : *) string
(* time type: *) timeType
(* messages : *) "msg set"

Simple functions for obtaining the time type or the allowed pure messages of a channel
are defined:

fun cTime :: "channel ⇒ timeType" where
"cTime (CH _ tt _) = tt"

The function cMsg returns the set of all permitted messages of the given channel. It
is independent from the time-type of the channel.

fun cMsg :: "channel ⇒ msg set" where
"cMsg (CH _ _ S) = S"

The domain of an SB is subject to a few assumptions. First and foremost, the do-
main must constitute a subset of the global channel type channel. A Representation
(Rep) and Abstraction (Abs) function between the domain and the global channel type
must be given, similar to the definition of a subtype in Isabelle. The Representation
maps a domain element to the corresponding channel in the global channel type. The
Abstraction function maps a global channel to its corresponding domain element, if it
exists. Additionally, it must hold, that Abs (Rep c) = c holds. Additionally, the
challenge of representing empty domains for SBs without any channels must be dealt
with. Since Isabelle does not support empty types, the global channel type contains
“empty” channels (cEmpty is the set of all empty channels). This allows defining empty
domains with necessarily non-empty Isabelle types. Mapping some elements in a domain
to an empty channel and others to non-empty channels is prohibited. The chan class
defines an interface channel types using the assumptions discussed above. Furthermore,
the channel set of a domain type chanDom is defined as all non-empty channels.:

class chan =
fixes Rep :: "'a::type ⇒ channel"
fixes Abs :: "channel ⇒ 'a"
assumes abs_rep_id:"Abs (Rep a) = a"
assumes chan_well:

"range Rep ⊆ cEmpty ∨
range Rep ∩ cEmpty = {}"

begin
definition chanDom "'a itself => channel set" where
"chanDom a = range Rep - cEmpty"
...

end

Through the mappings Rep and Abs, a subtype relation to the channel datatype is
created. Together with the abs_rep_id assumption, each element of the type incar-
nates exactly one channel of the channel type. The second assumption chan_well
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forces the type to represent either only existing channels or only contain channels in
cEmpty. Furthermore, the domain of the type that only contains existing channels is
defined as the range of Rep without any empty channels. Alternatively, defining the
Rep function as an optional function removes the need for the second class assumption
and makes cEmpty superfluous. However, it introduces additional checks whether Rep
is a function or None. The intrinsic problem that types must be non-empty remains
nonetheless.

Further subclasses of chan with additional assumptions for different time abstractions
and timed channels, in general, are introduced hereafter.

Timed Classes for sets of channels are defined as follows. If a set of channels contains

• no untimed channel, it is in the class tchan.

• only untimed channel, it is in the class uchan.

• only timed event channels, it is in the class echan.

• only timed synchronous or time slice channels, it is in the class tschan.

• only timed channels with one message per time slice, it is in the class tonechan.

• only channels allowing multiple messages per time slice, it is in the class
mult_msg_chan.

• only timed channels of the same timing mode, it is in the class one_chan.

Timed Bundle Definition in Isabelle

TSBs are a sub-domain of functions mapping channels (chan) to streams. The sb_-
well predicate restricts the messages on the streams to the allowed, i.e., correctly typed,
messages of their corresponding channel using cMsg. Additionally, the time mode of the
channel (cTime) must align with the combined stream type (combGetTime). Finally,
to also allow definitions of functions without input or output channels, empty bundles
must be supported. To define empty bundles as ⊥, the necessarily existing element in
the channel type must always map to the corresponding least stream (combLeast).

definition sb_well::"('c::chan ⇒ msg combinedstream) ⇒ bool" where
"sb_well f ≡ (∀c. combValues ·(f c) ⊆ cMsg (Rep c))

∧ (∀c. combGetTime (f c) = (cTime (Rep c)))
∧ (∀c. cMsg (Rep c) = {} −→ (f c) = combLeast c)"

With this predicate, the SB type can be defined as the set of all functions from channels
to streams that fulfill sb_well.
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cpodef 'c::chan sb
= "{f::('c::chan ⇒ msg combinedstream). sb_well f}"

Since the combinedstream type allows time-denoting messages for timed channels,
the sb type in Isabelle also contains all TSBs. Additional types for timed and untimed
bundles are not necessary.

When lifting the prefix order over combined streams to SBs, the bundle type auto-
matically forms a pcpo. Different least bundles are not possible since sb_well allows
exactly one empty stream per channel. Which empty stream is allowed depending on
the channel’s timeType.

In conclusion, a bundle type representing timed communication input or output his-
tories was defined. This opens the door for the specification of timed components in
distributed systems. Decoupling time abstractions and the bundle type definition en-
ables extending the framework with additional time-modes. In later sections, the main
focus lies in the general time abstraction using the event type, which is powerful enough
to include the other introduced timing modes. A way to switch bundles from other time-
types to event-time is given next. An overview for general timed and untimed bundle
processing functions is given in Table 4.1. These functions ease defining components or
systems presented in Chapter 5.

4.2 Changing Time Modes

Composing components with different time abstractions is not straightforward. Not only
the channel’s name but also the timeType must match. Hence, timed specifications and
even different time abstractions lead to the necessity of converting bundles to other time
abstractions. It allows abstraction changes in distributed systems and specifications.
For this, time converter functions over bundles are implemented in Isabelle. The time
converter functions allow mapping any bundle to an event-timed bundle and any bundle
to an untimed bundle, i.e., they remove all timing information from a bundle. Using
only these two converters, a user can define components of a timed system on different
time abstraction levels and still compose them in the end without any loss of timing
information. Furthermore, a time-independent system or component defined in a timed
setting can be (re)used in an entirely untimed system and still behave correctly.

Conversion to Event Bundles

First, a function to change any channel’s timeType is defined. This is used for con-
verting the channels of bundles later on.

fun changeTimeType :: "timeType ⇒ channel ⇒ channel" where
"changeTimeType newTT (CH name _ P) = CH name newTT P"
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Signature Description See

Abs_sb: (cs ⇒ msg∪ω) ⇒ csΩ lift a function to a SB 61
Rep_sb: csΩ ⇒ (cs ⇒ msg∪ω) represents SB as function 61

⊥ bottom: csΩ least stream bundle [BKR+20]
▶ sbGetCh: csΩ ⇒ csΩ → msg∪ω get the stream on channel [BKR+20]
^Ω sbConc: csΩ ⇒ csΩ → csΩ concatenation of bundles [BKR+20]

sbDrop: N ⇒ csΩ → csΩ drops the first n elements [BKR+20]
sbTake: N ⇒ csΩ → csΩ takes the first n elements [BKR+20]

⋆ sbTypeCast: csΩ → dsΩ type conversion [BKR+20]
⊎ sbUnion: csΩ → dsΩ → (cs ∪ ds)Ω merges two SBs together [BKR+20]

sbTakeWhile: (msg ⇒ B) ⇒ csΩ → csΩ prefix while predicate holds [BKR+20]
sbDropWhile: (msg ⇒ B) ⇒ csΩ → csΩ suffix while predicate holds [BKR+20]
sbNTimes: N ⇒ csΩ ⇒ csΩ iterate each stream n times [BKR+20]

# sbLen: csΩ → N∞ length of the SB [BKR+20]
#√ sbTLen: csΩ → N∞ complete time intervals 64

sbTick: csΩ one time interval 67
tsbDrop: N ⇒ csΩ → csΩ cut off first n time slices 66
tsbRt: csΩ → csΩ cut off first time slice 66
tsbTake: N ⇒ csΩ → csΩ take n first times slices 66
convUntimed: csΩ → csΩ convert TSB to untimed SB 63
tsbNth: N ⇒ csΩ → csΩ nth time slice 66
tsbDelay: N ⇒ csΩ → csΩ delay TSB by n time slices 67
convEvent: csΩ → cs∗Ω convert TSB to event TSB 63
convTimed: csΩ → cs∗Ω convert untimed SB to an

event TSB
63

Table 4.1: Definitions on TSB. Type-abbreviations are explained in Table 3.1

For changing the time type of the whole channel set ’cs to the event type, the
constructor TLIVED is defined.

datatype 'cs::one_chan tlived = TLIVED "'cs"

To be usable in the context of bundles, the tlived type has to be in the chan
class. Representation, abstraction, and the channel domain are defined to correctly
map tstimed channels to corresponding channels from the global channel datatype
using changeTimeType. But not only the timeType of channels can change when
converting a bundle. The messages of corresponding streams in the bundle have to
change their time mode as well. A generalized function mapping messages from msg
combinedstream to msg event stream is defined.
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definition toEventS :: "msg combinedstream → msg event stream"
where

"toEventS = combStreamCases ID tsyn2event tone2event
tsliced2event undefined"

As a result, the definition of a time converter mapping for bundles of different time
modes to an event-timed bundle is straightforward. The original stream is obtained and
mapped to the event representation using toEventS for all channels.

definition convEvent::"'cs::{tchan} sb → 'cs tlived sb" where
"convEvent ≡ Λ sb. Abs_sb(λ (TLIVED c).

TEVENT (toEventS ·(sb ▶ c)))"

Conversion to Untimed Bundles
Similarly to converting to event bundles and streams, a datatype representing the un-
timed channels set is introduced. This can be helpful when checking an untimed property
of a timed system because, in such cases, timing information is irrelevant and can be
abstracted over.

datatype 'cs::one_chan untimed = UNT "'cs"

Again, not only channels but also messages have to be converted. For this, a function
is defined to convert timed streams to an untimed msg stream.

definition toUntimedS :: "msg combinedstream → msg stream" where
"toUntimedS = combStreamCases e2ustream tsyn2ustream tone2ustream

tsliced2ustream ID"

Then, using the introduced function, a converter removing all timing information from
a bundle is introduced employing the same pattern as for convEvent.

definition convUntimed::"'cs sb → 'cs untimed sb" where
"convUntimed ≡ Λ sb. Abs_sb(λ(UNT c).

UNTIMED( toUntimedS ·(sb ▶ c)))"

Conversion to Timed Bundles
Adding time to an untimed SB is underspecified because timing information is created
from nothing. Hence, the converter is represented by a set of functions to capture all
possible timing information.

definition convTimed::"('cs::uchan sb → 'cs tlived sb) set" where
"convTimed ≡ {f | ∀ sb c. convUntimed (f sb) ▶ c = sb ▶ c}

The converter functions map untimed SBs to an event bundle, maintaining the mes-
sages on each channel. Removing time from the output bundle leads to the input bundle,
i.e., convTimed contains inverse functions of convUntimed.
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Conversion Functions for Alternative Time Representations

It is possible to convert to other timed SBs. Different time converter functions can be
defined following the patterns of the event and untimed converters. But since the event
streams are capable of representing more time information than other time representa-
tions introduced, there might be a loss of (timing) information. For example, consider
a converter from event bundles to time slice bundles. Assume we wanted to keep the
timing information. We thus chose the messages of the time slice stream to be lists.
This enables us to effectively capture finitely many events in a single time slice. This
conversion requires dropping unfinished time slices occurring in the event bundle. This
is because it is impossible to represent unfinished time slices (unfinished lists) in a time
slice stream.

4.3 Important Bundle Datatype Functions

A list of important functions over SBs and TSBs is given in Table 4.1. It extends previ-
ously introduced functions in [BKR+20] by additional operators developed specifically
for timed bundles.

Functions over Timed Stream Bundles

The following sections introduce key TSBs functions.

Timed Length

The timed length of a TSB, i.e., the length of time represented by a TSB, is equivalent to
the smallest number of time intervals of any stream of the TSB. The bundle without any
channel is defined to have infinitely many time slices. The reasoning behind this is the
causal behavior of components and explained in Section 5.1.1. Since the timed length of
TSBs assumes only timed channels, this undefined case never occurs. In the following
definition, the LEAST operator obtains the smallest number from a set containing timed
length for each stream of the TSB.

definition sbTLen :: "'cs::tchanΩ ⇒ lnat" where
"sbTLen sb ≡ if chDomEmpty TYPE('cs) then ∞

else LEAST n. n∈{#√(sb ▶ c) | c. True}"

For time-synchronous bundles, the timed length is equivalent to the regular length.
The continuity of sbTLen behaves analogously to sbLen, i.e. the function is only
continuous for finitely many channels.

lemma sbtlen_cont: "cont (sbTLen::'cs::{finite,tchan}Ω ⇒ lnat)"
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The restriction to finitely many channels is necessary because infinite chains exist
over infinitely many channels, which contradicts the continuity property. Consider the
following chain of bundles with infinitely many channels. The first and lowest element
has an empty stream on every channel. Its timed length is 0. The chain continues by
adding a time slice to one channel in each step. Since there are infinitely many channels,
an empty stream on some channel still exists for each chain element. The following
illustration shows the first three elements of the chain:

⊥ ⊑ [c1 7→ ⟨
√

⟩, c2 7→ ε, . . . ] ⊑ [c1 7→ ⟨
√

⟩, c2 7→ ⟨
√

⟩, c3 7→ ε, . . . ] ⊑ . . .

The timed length sbTlen of each chain element is 0, and so is the least upper bound
of the chain of timed lengths. However, the least upper bound of the chain of TSBs
contains one time slice on every channel; the sbTLen function of this least upper bound
evaluates to 1. Thus, a continuous sbTLen function for TSBs with infinitely many
channels is impossible.

Mapping timed stream functions

One crucial definition over TSBs is a function that maps existing functions over timed
streams, e.g., tsdrop from Table 3.4 to a bundle’s streams. For this, we first introduce
map_combstream which simply applies the correct function to the combined stream

fun map_combstream::"('m event stream → 'm event stream)
⇒ ('m tsyn stream → 'm tsyn stream)
⇒ ('m tone stream → 'm tone stream)
⇒ ('m list stream → 'm list stream)
⇒ ('m stream → 'm stream)
⇒ 'm combinedstream ⇒ 'm combinedstream" where

"map_combstream f _ _ _ _ (TEVENT s) = TEVENT (f ·s)" |
"map_combstream _ f _ _ _ (TSYN s) = TSYN (f ·s)" |
"map_combstream _ _ f _ _ (TONE s) = TONE (f ·s)" |
"map_combstream _ _ _ f _ (TSLICED s) = TSLICED (f ·s)" |
"map_combstream _ _ _ _ f (UNTIMED s) = UNTIMED (f ·s)"

This is then lifted to the bundle level.

definition tsbMap::"(msg event stream → msg event stream)
⇒ (msg tsyn stream → msg tsyn stream)
⇒ (msg tone stream → msg tone stream)
⇒ (msg list stream → msg list stream)
⇒ 'cs::tchan sb → 'cs sb" where

"tsbMap f1 f2 f3 f4 = ( Λ sb. Abs_sb (λc. map_combstream f1 f2 f3
f4 undefined ((Rep_sb sb) c)))"
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Dropping time slices

Time slices at the start of a TSB can be dropped by applying the tsdrop operator to
each stream on every channel. The first parameter is a natural number indicating how
many time slices shall be dropped.

lift_definition tsbDrop::"nat ⇒ 'cs::tchanΩ → 'csΩ" is
"tsbDrop n = tsbMap (tsdrop n) (tsdrop n) (tsdrop n) (tsdrop n)"

The tsbRt function is an abbreviation for tsbDrop 1, i.e., it drops only the first
time slice.

Taking time slices

Time slices at the start of a TSB can be taken by applying the tstake operator to each
stream on every channel. All subsequent time slices are dropped. A natural number is
given to the tsbTake function as a parameter to define how many time slices shall be
taken.

lift_definition tsbTake::"nat ⇒ 'cs::tchanΩ → 'csΩ" is
"tsbTake n = tsbMap (tstake n) (tstake n) (tstake n) (tstake n)"

The tsbHd function is an abbreviation for tsbTake 1, i.e., taking only the first
time slice and dropping the rest. The nth time slice can be obtained by applying the
tsnth function to each stream on every channel. After obtaining the time slice, no
additional timing information remains in the result. The first parameter is a natural
number indicating which time slices shall be taken.

definition tsbNth :: "nat ⇒ 'cs::{tchan}Ω → 'csΩ" where
"tsbDrop n = tsbMap (tsnth n) (tsnth n) (tsnth n) (tsnth n)"

Introducing Delay

A delay is introduced to a TSB by adding a time slice in front of each stream on every
channel. Delaying an empty bundle, i.e., the bundle with an empty stream on all its
channels, results in tsbTick. This bundle contains one empty time slice on all its
streams for all time modes but TOne. A message must be chosen as TOne cannot have
empty time slices.

The helper function OneTLen produces an empty, or, in the case of TOne, random
time slice. Its first parameter indicates the desired timing. The second parameter is
only for TOne type and contains the set of possible messages to choose from.

fun OneTLen::"timeType ⇒ msg set ⇒ msg combinedstream" where
"OneTLen TTOne msgs = TONE (↑(TOneMsg (SOME x. x∈msgs)))" |
"OneTLen TTFin _ = TSLICED (↑[])" |
"OneTLen TTLive _ = TEVENT (↑Tick)"|
"OneTLen TTsyn _ = TSYN (↑Eps)"
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Next, we employ the helper to define tsbTick, a TSB with exactly one time slice on
every channel. On a per-channel basis, the allowed messages and timing are retrieved
using cMsg and cTime. Then OneTLen produces an empty or random time slice.

definition tsbTick :: "'cs::tchanΩ" where
"tsbTick = (if (chDom TYPE('cs) = {}) then ⊥

else Abs_sb (λc. OneTLen (cTime (Rep c)) (cMsg (Rep c))))"

The tsbDelay function adds delay in front of a TSB. For this, the sbTick bundle
is reused. It is delayed by appending the sbTick bundle in front of a TSB. To define
the delay’s length, a natural number is given to the tsbDelay function.

definition tsbDelay :: "nat ⇒ 'cs::{tchan}Ω → 'csΩ" where
"tsbDelay n ≡ sbConc (sbNTimes n tsbTick)"

4.4 Wellformedness

Like timed streams, a TSB is not necessarily wellformed. An event stream in a TSB
may contain infinitely many messages but not infinitely many ticks. Thus, we define
wellformed bundles as bundles that contain only wellformed combined streams.

definition wellformed_sb::"'a::tchan sb ⇒ bool" where
"wellformed_sb sb = (∀c. wellformed (sb ▶ c))"

At first glance, an alternative approach is to define the wellformedness of TSBs analo-
gously to that of streams. Thus, a TSB would be wellformed, if #sb = ∞ −→ #√sb = ∞
holds. But by looking at the following “wellformed” bundle

sb = [c1 7→ ⟨1⟩∞, c2 7→ ϵ]

it becomes apparent that this alternative definition includes undesired bundles where
not all infinite streams necessarily have infinitely many Ticks. This behavior results
from the length definition for stream bundles, which always obtains the length of the
shortest stream. Redefining the length to the maximum leads to analogous problems.
As a result, this approach does not specify the desired wellformedness.

4.5 Characterization of Bundles as Streams

Any TSB with finitely many channels and the same number of time slices can be rep-
resented as an event stream of channel and message pairs. The resulting sequential
representation is especially useful for processing each event individually. For stream
bundles with infinitely many channels or varying numbers of time slices, the stream can
only represent a prefix of the TSB.
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Example 4.1 (Stream defining a TSB). The stream ⟨(c1, 5),
√

, (c2, T rue), (c1, 9),
√

⟩
over channel domain {c1, c2} defines the bundle [c1 7→ ⟨5,

√
, 9,

√
⟩, c2 7→ ⟨

√
, T rue,

√
⟩].

However, these streams must only contain allowed pairs where the messages are allowed
to flow on the accompanying channel. The following predicate well holds for such pairs.
While the predicate well defines a wellformedness property for stream messages, the
wellformed predicate defines a property over the stream’s timing information.

definition well::"('chan::chan × msg) ⇒ bool" where
"well ≡ λ(c,m). (m ∈ cMsg (Rep c))"

A new type containing only the well message and channel pairs is defined. The
“well” pair is undefined for channels without any allowed messages. This is a result of
the inability to define empty types in Isabelle.

typedef ('chan::chan) msgWithChan = "{(chan, msg) | (chan::'chan)
msg::msg. well (chan,msg) }
∪ (if (chDom TYPE('chan) = {}) then {undefined} else {})"

Each time slice of a ’cs msgWithChan event stream contains all messages of
each channel from the corresponding time slice. The result matches the channel’s history
by filtering the stream only to contain messages of a specific channel and Ticks with
eventFilter.

definition eventFilter:: "'cs ⇒ 'cs::{countable,chan} msgWithChan
event stream → msg event stream" where

"eventFilter c = (emap snd) oo (efilter (λ(ch,m). ch=c))
oo (emap Rep_msgWithChan)"

Using eventFilter over all channels to form a SB is done by the uSplit function.
Additionally, it can convert the channel’s history from event stream to another time
mode, with possible information loss. A helper function mapping msg event stream
to msg combinedstream is defined for this.

fun toMsg::"timeType ⇒ msg event stream → msg combinedstream"where
"toMsg TUntimed = (Abs_cfun UNTIMED) oo e2ustream"|
"toMsg TTFin = (Abs_cfun TSLICED) oo sEventToList"|
"toMsg TTLive = Abs_cfun TEVENT" |
"toMsg _ = undefined"

Maintaining the event timing is recommended to avoid information losses. By restrict-
ing the bundle only to contain untimed, event, or time slice streams, the undefined case
in toMsg never occurs in uSplit.

lift_definition uSplit::"'cs::{countable,mult_msg_chan}
msgWithChan event stream → 'cs sb" is

"λ s. if chDom TYPE ('cs) = {}
then ⊥
else Abs_sb(λc. toMsg (cTime (Rep

c)) ·(eventFilter c ·s))"
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This splitting operator is surjective for wellformed SBs with finitely many channels
and the same number of

√
on each channel. The limitation to finitely many channels is

required to prevent infinitely long time slices, as demonstrated by the following example.
Assume an SB with infinitely many channels indexed by the natural numbers. All
channels map to the stream of infinitely many time slices containing a single message, 1
each:

(λn.⟨1,
√

⟩∞)

Representing this TSB as a single event stream is impossible since the first time
slice would contain infinitely many pairs (1, n) without ever reaching the first

√
, thus

contradicting the continuity of time. However, for SBs with finitely many channels,
usually, multiple representations can be defined. Merging all channel histories into one
stream is non-deterministic because the order between two messages of different channels
in the same time slice is underspecified. Any permutation maintaining the internal order
of each channel is acceptable. In conclusion, a merging operator is defined as a set of
continuous functions whose output is a prefix of the input bundle. Equality is not
possible since continuity and unfinished time slices lead to contradictions.

definition mergeGen :: "('cs::{mult_msg_chan,finite} sb → 'cs
msgWithChan event stream) set" where

"mergeGen = {f | f. ∀sb. uSplit ·(f ·sb) ⊑ sb}"

Additional properties restrict the merge specification to mitigate the issue of the out-
put being a prefix of the input. Each merge function should output at least all time
slices of the bundle that are complete in all streams. When merging wellformed infinite
timed streams, the merged stream contains all input elements from all input streams
in the element’s resprective timeslices [Bro88, KPR+25b]. Furthermore, in the case of
the TSB without any channels, only time progression, i.e. the infinite stream of

√
s, is

produced.
definition mergeTimed::"('cs::{tchan,finite,mult_msg_chan} sb →

'cs msgWithChan event stream) set" where
"mergeTimed= mergeGen

∩ {f| f. if chDom TYPE ('cs) = {}
then ∀sb. f ·sb = ((↑Tick)∞)
else ∀sb. #√sb = #√(uSplit ·(f ·sb))}"

Timed merge functions provide a serialization that can be used as input for state-based
components (e.g., automata) with iterative and element-wise processing of bundles while
preserving timing information.
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4.6 Discussion

In this section, a TSB datatype implementation in Isabelle was introduced as an exten-
sion of the previous implementation of SB from [BKR+20]. This implementation offers
differently timed bundles while still supporting composition by adding the timeType to
channels. Moreover, this allows TSB with differently timed channels in the same bundle
and opens the door to composing components with divergent time abstractions. Moving
the timing mode to the message and channel datatypes in the Isabelle implementation
enables further time abstraction extensions.

Separate type definition for TSBs

Introducing a new type for TSBs hinders the re-usage of already defined functions and
proven theorems. This can only be partially mitigated by offering additional lifting for
functions and theorems. Additionally, without special case-by-case composition opera-
tors, it is type-wise not possible to compose functions that have untimed and timed parts,
e.g., a parallel composition of convTimed as seen in Section 4.2 and convUntimed as
seen in Section 4.2

Bundles with equally long streams

Restricting the presented SB type to equally long streams on all bundles regarding time
slices is challenging. On the one hand, the merge function output would always contain
the complete message histories of all channels, and the (timed) length functions would
always be continuous. On the other hand, different channels of one bundle can not be
delayed differently.

Example 4.2 (TSBs with equally long streams). Timed bundles with the same amount
of time slices per channel, e.g., [c1 7→ ⟨5, 3,

√
, 9,

√
⟩, c2 7→ ⟨

√
, T rue,

√
⟩] are TSBs

with equally long streams. A bundle with differently many time slices, e.g., [c1 7→
⟨5, 3,

√
⟩, c2 7→ ⟨

√
, T rue,

√
⟩] is not allowed.

Composing components with different delays generally introduces problems for equally
long streams. Additionally, process iterations of an event-driven automaton would not
necessarily produce an SBs.

Bundles with infinitely long streams

Limitation to only infinitely long histories on all channels fixes the problem of equally
long streams TSBs, similar to [BR07].
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Example 4.3 (TSBs with infinitely longstreams). Timed bundles with infinitely long
streams per channel, e.g., [c1 7→ ⟨5,

√
⟩∞, c2 7→ ⟨

√
, T rue,

√
⟩∞] are TSBs with in-

finitely long streams. A bundle containing a finite stream, e.g., [c1 7→ ⟨5,
√

⟩, c2 7→
⟨
√

, T rue,
√

⟩∞] is not allowed.

However, it hinders iterative processing like fixed point calculations used in Sec-
tion 5.1.4 for composition. Since no actual prefixes of bundles can be obtained, causality
predicates can not be defined over the TSB type. Instead, a different type capable of
representing such prefixes is needed, e.g., finite SBs. In general, a restriction of the TSB
type would reduce the specification options of a user since recursion or iteration is no
longer available.

Streams characterizing TSBs

In Section 4.5, a possibility to represent bundles as streams was introduced. However,
using streams without ever introducing SBs leads to many problems. Firstly, streams
can only represent equally long bundles and thus have the same restrictions. Further-
more, components transmitting messages to different target components in a system
need filters in between to allow only messages from specific channels to go through.
Representing bundles by tuples of streams instead allows accurate capturing of all pos-
sible finite bundles. But again, the composition does not generally work. It would be
necessary to define composition operators for all possible tuple sizes.

Bundles with generic message type

On another note, not supporting generic message types is a necessary drawback of al-
lowing only a subset of messages on channels. A possible workaround is moving the
theoretical concepts into a locale in Isabelle. Such parametric theories can be inter-
preted later by defining parameters and proving their assumptions. A message type and
a mapping of channels to allowed messages could be such parameters. Nevertheless,
since locales do not allow datatype definitions with only locally fixed parameters, e.g.,
the message type, this is not a viable option.

Time granularity

As introduced in Chapter 3, Ticks on different streams are equidistant. Thus, all nth
Ticks occur simultaneously. This can lead to problems concerning the readability and
writability of specifications when dealing with fast and slow-reacting components in the
same system. Choosing a very small time slice length for

√
s to accommodate the fast-

reacting component accurately leads to overcrowding the channel of the slow component
with

√
s. On the other hand, using a very rough time granularity leads to the loss of

information for the fast-reacting component as depicted in Fig. 3.2 when compared to
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Fig. 3.3. Introducing a finer granularity from a rough granularity leads to uncertainty.
It is not clear where (additional) Ticks should be placed.

Example 4.4 (TSBs with different time granularities). The bundle [c1 7→ ⟨1, 1, 1, 1, 1, 1,
1, 1,

√
⟩∞, c2 7→ ⟨

√
,
√

,
√

,
√

, T rue⟩∞] could be equivalent to [(c1, 8) 7→ ⟨1,
√

⟩, (c2, 1
4) 7→

⟨
√

, T rue⟩∞] with granularity factors of 8 for c1 and 1
4 for c2.

Extending our channels with a time granularity factor would allow conversion and
comparison of channel histories and their messages.
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Chapter 5

Timed Component Specifications

This chapter introduces deterministic and non-deterministic components. These compo-
nents can be combined into large systems using composition. Non-deterministic compo-
nents typically appear early in the design process, containing underspecification. Their
behavior can be refined through the addition of constraints.

5.1 Deterministic Component Specifications
This section introduces deterministic components that map each input to exactly one
output. Programs in general programming languages (e.g., Java) are often equivalent to
deterministic functions.

5.1.1 Causality
Untimed deterministic components are defined as continuous functions. However, for
timed deterministic components, additional restrictions are required. The following ex-
ample demonstrates this with a continuous timed function, which is impossible to realize
in practice.

Example 5.1 (Unrealizable Timed Function). The function edrop 1 deletes the first
time slice and returns all subsequent time slices unchanged. The following equation
exemplifies the function edrop:

edrop 1 ⟨Tick, EventMsg 3, Tick⟩ = ⟨EventMsg 3, Tick⟩.
This function is considered an oracle as the first time slice of the output depends on the
second time slice of the input, allowing it to “look into the future”.

To forbid such impossible behavior, causality is introduced. Weak causality ensures
that the n-th time slice of the output depends only on the first n time slices of the
input. Hence the n-th time slice of the output cannot depend on the n+1-th input
time slice. Weakly causal components can act immediately and do not necessarily add
delay. Additionally, strongly causal components always add delay. Strong causality
ensures that the n+1-th time slice of the output depends only on the first n time slices
of the input. Strong causality is thus a further restriction and a special case of general
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(weak) causality. In Section 5.1.4 we will show the particular benefits of strongly causal
functions.

To define causality, we only use the tlen (#√) function, which returns the number
of time slices in a given bundle. Together with monotonicity this ensures the intended
behavior.

definition weak::"('I::{cpo,tlen} → 'O::{cpo,tlen}) ⇒ bool" where
"weak spf ≡ ∀i. #√i ≤ #√(spf ·i)"

The unrealizeable function from example 5.1 does not fulfill the weakness-predicate:

#√⟨Tick, EventMsg 3, Tick⟩ = 2 ̸≤ 1 = #√⟨EventMsg 3, Tick⟩

The definition of strong causality is similar to weak causality, only a ‘+1’ is added on
the left side of the equation to account for the delay:

definition strong::"('I::{cpo,tlen} → 'O::{cpo,tlen}) ⇒ bool"
where

"strong spf ≡ ∀i. (#√i) + 1 ≤ #√(spf ·i)"

It is not possible to define strong causality by replacing the ≤ in the definition of weak
causality with <. The result would be #√i < #√(spf i), and for input i with infinite
time slices this constraint is inconsistent, i.e., cannot be met.

Every strongly causal function is also weakly causal:
lemma assumes "strong spf"
shows "weak spf"

A special case are components without input channels. Since the empty bundle is
interpreted as having infinitely many time slices, components with the empty bundle as
input must produce an output with infinitely many time slices to fulfill the causality
property. Components without output channels are always strongly causal.

Relation between Causality and Continuity

The previous definition of weak causality took a continuous function as input. This
section proves that in certain cases, continuity follows from causality.

lemma weak_mono2cont: (* spf is over tsyn stream! *)
fixes spf::"'in tsyn stream ⇒ 'out tsyn stream"
assumes "

∧
i. #√i ≤ #√(spf i)"

and "monofun spf"
shows "cont spf"

The proof uses the fact that for every infinite chain Y over tsyn stream the length
of the least upper bound is infinite (#√(Lub Y ) = ∞).

For event stream and bundles this property does not hold, as we can construct a
counterexample c_ex:
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definition c_ex::"unit event stream ⇒ unit event stream" where
"c_ex i ≡ if (i = ↑(EventMsg ())∞) then ↑Tick

else sfilter {Tick} ·i"

The counterexample c_ex is a weakly causal and monotonic function:
lemma "#√i ≤ #√ (c_ex i)"

and "monofun c_ex"

But c_ex is not a continuous function. Consider the infinite chain with only EventMsg
messages. The least upper bound of this chain is the not-wellformed stream
(EventMsg ())∞. All elements of the chain are mapped by c_ex to ϵ, but the least upper
bound of the chain is mapped to ↑Tick. Thus, the function c_ex is not continuous.
Hypothetically, with a relaxed definition of continuity, which only considers wellformed
least-upper-bounds, the proof would work similarly to the proof over tsyn stream.

Comparison to the Causality Definition by Broy

Our causality definition differs from the causality definition by Broy [BS01b]. In this
section we will compare the definitions of weak causality and discuss the decisions. For
strong causality the reasoning is analogous and hence omitted for brevity. The causal
functions defined in this section are similar to winning strategies by [BS01b]. A winning
strategy is a function τ which maps an input with infinite time slices to an output with
infinite time slices: τ ∈ I∞ → O∞. Additionally, the following causality constraint must
hold:

∀x, y ∈ I∞; t ∈ N : x ↓t= y ↓t =⇒ τ(x) ↓t= τ(y) ↓t

Here, x ↓t returns the first t time slices of x. Monotonicity is not defined, since I∞ and
O∞ don’t have an prefix order (⊑). From every winning strategy, we can construct a
weakly causal function.

toTSPF :: (I∞ → O∞) → IΩ → OΩ

toTSPF(τ, x) := τ(x^Tick∞) ↓(#√x)

First, the potentially finite input x ∈ IΩ is concatenated with an infinite amount of
Tick messages. The resulting input has infinite ticks1 and is in I∞. Then, τ is applied
and produces an infinite output. This output is restricted to the same number of time
slices as the original input x. The definition toTSPF always produces a weakly causal
function. Since I∞ ⊆ IΩ and weak causality guarantees that infinite inputs produce an
infinite output, converting from TSPF to Broy is simpler:

1We omit wellformedness for the proof sketch.
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toBroy ∈ (IΩ → OΩ) → I∞ → O∞

toBroy(tspf , x) := tspf (x)

IΩ → OΩ contains more information than I∞ → O∞. Take for example:

tspf w ∈ IΩ → OΩ

tspf w(x) := Tick#√x

tspf s ∈ IΩ → OΩ

tspf s(x) := Tick#√x+1

toBroy(tspf s) = toBroy(tspf w) = λ_.Tick∞

toTSPF(toBroy(tspf s)) = tspfw

Generally, the following properties hold:

∀τ ∈ I∞ → O∞ : toBroy(toTSPF(τ)) = τ

∀tspf ∈ IΩ → OΩ : toTSPF(toBroy(tspf )) ⊑ tspf

Causality and Realizability

While causality was introduced to remove unrealizeable behavior, there are still prob-
lematic corner cases regarding time and reaction to time. The following function demon-
strates such a case:

spf ∈ N∗ω → N∗ω

∀ts.spf (EventMsg _^ts) = spf (ts)
∀ts.spf (Tick^ts) = ⟨EventMsg 42, Tick⟩^spf (ts)

All messages are ignored, only Ticks produce output. Every Tick in the input first
leads to the output EventMsg 42 followed by a Tick. So even though the input time
slice is complete (as marked by the input Tick), it is possible to send a message before
the output time slice is complete. Either there is no global time, and the output time is
slightly behind the input time. This would lead to problems in the feedback semantics.
Or alternatively, the component “knows” before the time slice ends that no more input-
messages will arrive. Both explanations are problematic. A clean solution are strongly
causal functions, where this problem does not occur. When selecting a small enough
time-interval all real components are strongly causal. For example, even an optical-wire
has a certain delay due to the speed of light. For I/O automata [Rum96], it is possible to
add conditions over the transition functions, which forbid the behavior described above.
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5.1.2 Datatype for Deterministic Component Specifications
We define a timed stream processing function (TSPF) as a continuous and causal bundle-
to-bundle function with fixed input and output channels [Rum96]. Monotonicity of
the function implies that a component can not take back an already produced output.
Continuity ensures that a component behaves the same on an infinite input as it would
on its finite prefixes. Causality guarantees that the component cannot look into the
future.

Definition 5.1 (timed stream processing functions (TSPFs) based on total functions).
Let C be the set of all possible timed channels and I, O ⊆ C. We can define the timed
stream processing function (TSPF) type TSPFwI,O that includes all continuous and
weakly causal TSPFs with input channels I and output channels O as shown below:

TSPFwI,O := {f ∈ IΩ → OΩ | weak f}

For strongly causal functions the type TSPFsI,O is defined as:

TSPFsI,O := {f ∈ IΩ → OΩ | strong f}

Isabelle Definition

Because Isabelle enforces non-emptiness of datatypes, we introduce an additional class.
This class ensures the existence of an element with infinite ticks.

class tlen_inf = tlen +
assumes tlen_inf: "∃a::'a. #√a = ∞"

begin
definition tlen_inf::"'a" where
"tlen_inf = (SOME a. #√a = ∞)"

end

This element with infinite ticks is used to create a constant, strongly causal function.

lemma strong_tleninf: "strong (Λ _ . tlen_inf)"

Hence, there exists a weakly causal function. The datatype tspfw is defined:
cpodef ('I::"{tlen,cpo}",'O::"{tlen_inf,cpo}") tspfw =

"{f::('I → 'O) . weak f}"

Strongly causal functions are defined as a subset of weakly causal functions:
cpodef ('I::"{tlen,cpo}",'O::"{tlen_inf,cpo}") tspfs =

"{f::('I,'O)tspfw . strong (Rep_tspfw f)}"

The datatypes are abbreviated as →w and →s. For example, the strongly causal
function between input bundle IΩ and output bundle OΩ is written as IΩ →s OΩ.
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5.1.3 Wellformedness of Component Specifications
Proving wellformedness of inputs and outputs can be quite cumbersome and a burden
on users. Thankfully, causality takes care of all wellformedness proofs. Every weakly
causal function with wellformed input always produces a wellformed output.

lemma wellformed_weakI:
fixes spf::"'csIn::wellformed → 'csOut::wellformed"
assumes "weak spf" and "wellformed sb"
shows "wellformed (spf ·sb)"

5.1.4 Composition of Component Specifications
To model complex systems, the complexity can be spread across multiple subsystems.
This process of divide and conquer is also called decomposition. Combining the sub-
systems to form the (complex) system is called composition. Composition uses channel
names to connect output-ports to input ports of components. The result of a composi-
tion is again a TSPF. This allows to hierarchically create large networks able to precisely
model complex behavior while the individual pieces remain easily understandable and
verifiable.

fixrec spfComp::"('I1Ω → 'O1Ω) → ('I2Ω → 'O2Ω)
→ ((('I1 ∪ 'I2) - ('O1 ∪ 'O2))Ω → ('O1 ∪ 'O2)Ω)" where

"spfComp ·spf1 ·spf2 ·sb = spf1 ·((sb ⊎− spfComp ·spf1 ·spf2 ·sb)⋆ 1)
⊎ spf2 ·((sb ⊎− spfComp ·spf1 ·spf2 ·sb)⋆ 2)"

Assuming the output channels are disjoint, the composition is commutative and as-
sociative. This and specific modes of composition are discussed in [BKR+20]. In the
following we will focus on timed properties.

Composition of Strongly Causal Components

Even in complex composition scenarios as shown in Fig. 5.1, the composition of strongly
causal TSPF always results in a strongly causal TSPF:

lemma spfcomp_causal:
assumes "strong f" and "strong g"
shows "strong (f ⊗ g)"

We introduce a new definition to easily compose strongly causal components. The
signature is similar to the untimed composition, but all components are strongly causal.

definition spfsComp::
"('I1::tchanΩ →s 'O1::tchanΩ) → ('I2::tchanΩ →s 'O2::tchanΩ)

→ ((('I1 ∪ 'I2) - ('O1 ∪ 'O2))Ω →s ('O1 ∪ 'O2)Ω)"
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f (strong)

g (strong)

c3

c4

c5

c1
c0

c0
c6

c7

c8
c2

Figure 5.1: Complex composition scenario [BKR+20]

Composition of Weakly Causal Components

The composition of weakly causal functions is more challenging than composing strongly
causal functions. Figure 5.2 shows the composition of two weakly causal components.
For simplicity we use the TOne time, where each time slice contains exactly one message.
The first component ADD takes two streams of natural numbers and adds them pairwise.
The second component SUC takes a stream of natural numbers and increases each value
by one.

ADD (weak)

SUC (weak)

y
o

x

Figure 5.2: Composition of two weakly causal functions.
Resulting system is not causal.

The recursive equation of the composed system is:

∀y ∈ N1ω.∃x ∈ N1ω. x = map (λ(n, m).1 + n + m)(zip x y)
For the first message x0 the following equation must hold: x0 = 1+x0 +y0. Since y0 ∈

N there exists no x0 which fulfills the condition. Hence the only solution is x = ⊥ and the
composed behavior is not weakly causal. In contrast, sequential and parallel composition
(Fig. 5.3) of weakly causal functions always produce a weakly causal function.

79



Chapter 5 Timed Component Specifications

f (weak) g (weak)
c1

c2

c3
c4

f (weak)

g (weak)

c1

c2

c3

c4

Figure 5.3: Sequential and parallel composition example [BKR+20]

This is proven in the following lemmata. The assumptions ensure that no feedback
channel exists.

lemma spfcomp_nofeed_weak1:
fixes f::"'fIn::tchanΩ → 'fOut::tchanΩ"
and g::"'gIn::tchanΩ → 'gOut::tchanΩ"
(* No self-loops: *)

assumes "chDom TYPE('fOut) ∩ chDom TYPE('fIn) = {}"
and "chDom TYPE('gOut) ∩ chDom TYPE('gIn) = {}"

(* No feedback between components, only sequential allowed: *)
and "chDom TYPE('gOut) ∩ chDom TYPE('fIn) = {}"
and "weak f" and "weak g"

shows "weak (f ⊗ g)"

For weakly-causal parallel and sequential composition specialized definitions exist:
definition spfwCompPar::

"('I::tchanΩ →w 'O::tchanΩ) → ('J::tchanΩ →w 'P::tchanΩ)
→ ('I ∪ 'J)Ω →w ('O ∪ 'P)Ω"

definition spfwCompSeq::
"('I::tchanΩ →w 'L::tchanΩ) → ('LΩ →w 'O::tchanΩ)

→ ('IΩ →w 'OΩ)"

Feedback is also causal, as long as every feedback-circle has at least one strongly causal
component. Figure 5.4 displays such a composition between weakly causal and strongly
causal component.

Notice that no output from g directly goes to the input of g. The following lemma
proves the situation:
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f (strong)

g (weak)

c3

c4

c5

c1
c0

c0
c6

c7c2

Figure 5.4: Composition of a weakly causal functions with a strongly causal function.
The resulting system is weakly causal.

lemma spfcomp_feed_weak1:
fixes f::"'fIn::tchanΩ → 'fOut::tchanΩ"

and g::"'gIn::tchanΩ → 'gOut::tchanΩ"
assumes (* No self-loops for g *)

"chDom TYPE('gOut) ∩ chDom TYPE('gIn) = {}"
and "strong f" and "weak g"

shows "weak (f ⊗ g)"

5.1.5 Key Definitions for Deterministic Components
Table 5.1 lists important function over SPFs and TSPFs. Many functions over TSB
are also TSPFs. An example is the time-converter to event bundles convEvent. It
is weakly causal and thus can be used as TSPF. Hence the Table 4.1 over TSB also
contains some TSPFs especially useful for constructing new TSPFs.

Restrict Channels These functions restrict the channels. Channels not in the set
are excluded from the input/output and contain only the empty stream.

definition spfInputRestrict:: "'I set ⇒ ('IΩ → 'OΩ) → ('IΩ → 'OΩ)"

definition spfOutputRestrict::"'O set ⇒ ('IΩ → 'OΩ) → ('IΩ → 'OΩ)"

The restricting functions allow reusing components, e.g., from a component library, with
different interfaces.

Drop Messages Drop the first n time slices of the input/output.
definition tspfInputDrop:: "nat ⇒ ('IΩ → 'OΩ) → ('IΩ → 'OΩ)"

definition tspfOutputDrop::"nat ⇒ ('IΩ → 'OΩ) → ('IΩ → 'OΩ)"

These dropping functions allow specifying a components execution state, e.g., a water
tank which is already half full.
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Take Messages Take the first n time slices of the input/output.
definition tspfInputTake:: "nat ⇒ ('IΩ → 'OΩ) → ('IΩ → 'OΩ)"

definition tspfOutputTake::"nat ⇒ ('IΩ → 'OΩ) → ('IΩ → 'OΩ)"

These taking functions allow specifying components that only react to a finite input, or
produce only a finite output.

Concatenate Messages Add a prefix to the input/output.
definition spfInputConc:: "'IΩ ⇒ ('IΩ → 'OΩ) ⇒ 'IΩ → 'OΩ"

definition spfOutputConc::"'OΩ ⇒ ('IΩ → 'OΩ) ⇒ 'IΩ → 'OΩ"

These inserting functions allow customizing components to start with in a specific exe-
cution state or to produce an initial output.

Delay Messages Delay the input/output by exactly n time slices.
definition tspfDelayInput:: "nat ⇒ ('IΩ → 'OΩ) ⇒ 'IΩ → 'OΩ"

definition tspfDelayOutput::"nat ⇒ ('IΩ → 'OΩ) ⇒ 'IΩ → 'OΩ"

Delaying functions allow configuration of a component’s timing, e.g., a component that
only starts working after 10 time-slices.

Underspecified Delay Set of TSPFs with the same untimed behavior, but with
variable delays.

definition tspfDelayAtMost:: "nat ⇒ ('IΩ → 'OΩ) ⇒ ('IΩ → 'OΩ) set"

definition tspfDelayAtLeast::"nat ⇒ ('IΩ → 'OΩ) ⇒ ('IΩ → 'OΩ) set"

definition tspfDelayMinMax:: "nat × nat ⇒ ('IΩ → 'OΩ)
⇒ ('IΩ → 'OΩ) set"

Underspecified delaying functions allow checking properties even if the concrete timing
of components is unknown, e.g., if an alarm is risen after at most 3 time-slices.
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5.1.6 Methodology

This chapter discusses different approaches to define the behavior of deterministic com-
ponents.

Lifting of Non-Continuous Functions

A generic way to create an SPF is by using non-continuous functions. Using the Abs_-
cfun and Abs_tspfw operators, these functions can be lifted to a TSPF definition.

definition "liftedTSPF = Abs_tspfw (Λ sb.
if(#√sb < 100) then tsbDelay 100 · ⊥

else tsbDelay 100 · ⊥ ^Ω tsbDrop 100 ·sb)"

The example uses the if-then-else function, which is non-continuous by default.
In order to use the function, continuity and weak causality have to be shown. Proving
causality is straightforward due to the existing proofs over the length of tsbDelay and
tsbDrop. Continuity requires more effort and an additional assumption demanding
that the bundle may only contain a finite amount of channels.

Discussion: This method should be used as last resort when no other approach can
be applied. Proving continuity can be a significant burden and should be avoided if
possible.

Composition of Continuous Functions

All functions in Section 5.1.5 already come with continuity proofs. Using these functions
instead of manually proving continuity allows for simpler definitions. Only a simple
causality proof is required.

definition "liftedTSPF2 = Abs_tspfw (sbConc (tsbDelay 100)
oo tsbDrop 100)"

Discussion: This is one of the easiest and best ways to define behavior. Due to large
number of continuous functions over TSB (see Section 4.3) and SPF (see Section 5.1.5)
it is often applicable.

Recursive Definition

Some of the defined functions internally use recursion. For example, eTake (Suc n) is
defined using eTake n. When the developer has a recursive specification, the definition
can be realized using the least-fixpoint operator. An example are deterministic automata.

definition "liftedTSPF3 = Abs_tspfw (fix ·(Λ tspf sb.

tsbDelay 1 · ⊥ ^Ω tspf ·(tsbRt ·sb)))"
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Discussion: This method should be used if the specification requires recursion and ex-
isting functions over TSB and TSPF are not sufficient. The complexity of the continuity
proof depends on the recursive-specification. This is goes back to defining continuous
functions as described in the previous two paragraphs. But the causality proof is more
difficult, especially when the recursion is not over time slices.

SOME & THE

Compared to the previous approaches, this one is less closely related to normal functional
programming definitions. We only write down the requirements of the component. Then
we say: “Give me some behavior, which fulfills the requirements”. Instead of continuity
and causality, this method requires existence proofs.

definition "liftedTSPF4 = Abs_tspfw (SOME tspf. weak tspf

∧ (∃sb. tspf ·sb = sb ⊥ ^Ω sb)
∧ (∀sb. tspf ·sb ̸= sb))

Discussion: Proving existence of a function is generally significantly more complicated
than proving causality and continuity. Often, existence is proven by constructing a
component using one of the approaches above. Hence this approach is only useful in
very specific situations where proving existence is easy.

Comparison of Methods

Table 5.2 gives a direct comparison of the presented methods.

Prove Prove Prove Difficulty of Expressive-
Name Continuity Weak Existence Definition ness

Non-Continuous hard medium - easy restricted
Comp. Continuous - medium - easy restricted
Recursive Definition easy medium - medium powerful

SOME&THE - - very hard easy powerful

Table 5.2: Comparison of different methods to create deterministic components

The following questions can help when defining a new deterministic component.

1. Is there an existing function? See Section 4.3 and Section 5.1.5

2. Is it possible to continually combine existing function, e.g. using sequential com-
position?
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3. Does the component require recursion, which cannot be handled using existing
functions?

4. Can I lift a non-continuous functions, e.g., if-then-else?

5. Is it possible to prove existence? Then use SOME or THE.

5.2 Underspecified Component Specifications
Early development-phases contain underspecification, for example as a result of incom-
plete or developing requirements. Underspecification can be modeled with the non-
deterministic or underspecified components introduced in this section.

5.2.1 Datatype for Underspecified Component Specifications
We define a timed stream processing specification (TSPS) as a set of TSPFs with fixed
input and output channels [Rum96].

Definition 5.2 (timed stream processing specification (TSPS)). Let C be the set of all
possible channels and I, O ⊆ C. We define the weakly causal TSPS type with input
channels I and output channels O as shown below:

TSPSwI,O
:= P(IΩ →w OΩ)

And strongly causal as:
TSPSsI,O

:= P(IΩ →s OΩ)

In Isabelle, the predefined type set is used. For example, a strongly causal TSPS
between input bundle IΩ and output bundle OΩ has the signature (IΩ →s OΩ) set.

SPS variables always start with an uppercase letter, commonly F, G, S or H. The
lowercase variable denotes an SPF which is contained in the SPS. e.g, f ∈ F . Both
TSPS datatypes contain the empty set {}. This is required to fulfill the lattice-theory
assumptions and brings useful properties, such as a complete minus function and a
lfp operator. However, we often want to ensure that an implementation exists for a
component. A component is called consistent if and only if it is not empty. Contradictory
requirements lead to inconsistent components.
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5.2.2 Composition of Component Specifications
Non-determinisitic components are composed via their determinisitc behaviors. Consider
two non-deterministic components F and G. Both contain exactly two behaviors. Then
the TSPS-composition is the pairwise application of SPF-composition:

F = {f1, f2}
G = {g1, g2}

F
⊗

G = {f1 ⊗ g1, f1 ⊗ g2, f2 ⊗ g1, f2 ⊗ g2}

In Isabelle, composition is abbreviated using
⊗

. The strongly causal composition is
denoted as

⊗
s. The composition is defined as follows:

definition spsComp::
"('I1Ω → 'O1Ω) set ⇒ ('I2Ω → 'O2Ω) set

⇒ ((('I1 ∪ 'I2) - 'O1 ∪ 'O2)Ω → ('O1 ∪ 'O2)Ω) set" where
"spsComp F G = {f ⊗ g | f g. f∈F ∧ g∈G }"

The composition of two strongly-causal components is a strongly-causal component:

definition spssComp::
"('I1Ω →s 'O1Ω) set ⇒ ('I2Ω →s 'O2Ω) set

⇒ ((('I1 ∪ 'I2) - 'O1 ∪ 'O2)Ω →s ('O1 ∪ 'O2)Ω) set" where
"spsComp_strong F G = {f ⊗s g | f g. f∈F ∧ g∈G }"

Composing two consistent components leads to a consistent component. This is im-
portant because, as a result, it suffices to check each atomic component for consistency.
The consistency of the composition follows automatically:

theorem spscomp_consistent:
assumes "F ̸= {}"

and "G ̸= {}"
shows "(F

⊗
G) ̸= {}"

For sequential composition of components the infix-operator ≫ is created. The output
of the left component is fed into the right component.

lemma "sps1 ≫ sps2
= {spf2 oo spf1 | spf1 spf2. spf1 ∈ sps1 ∧ spf2 ∈ sps2}"

5.2.3 Refinement of Component Specifications
In the idealized development process, the first version of a component specification is an
abstract specification with underspecification. In multiple refinement steps this abstract
specification is modified to a concrete specification. Focus [BS01b] defines refinement

89



Chapter 5 Timed Component Specifications

as the subset-relationship (⊆) between components. When a property P holds over
each deterministic-behavior in a component F , then it also holds over each deterministic
behavior in the refinement F_ref :

theorem
assumes "∀f∈F. P f"

and "F_ref ⊆ F"
shows "∀f_ref∈F_ref. P f_ref"

Refinement of a component in a decomposed structure automatically leads to refine-
ment of the composition [BR07].

theorem spscomp_refinement:
assumes "F_ref ⊆ F"

and "G_ref ⊆ G"
shows "(F_ref

⊗
G_ref) ⊆ (F

⊗
G)"

5.2.4 Key Definitions for Underspecified Components

Table 5.3 lists important function over SPS and TSPS.

Convert to Causal Specification These functions take an untimed SPF and return a
weakly/strongly TSPS with the same untimed behavior.

definition spsMakeWeak:: "('a untimedΩ → 'b untimedΩ)
⇒ ('aΩ →w 'bΩ) set"

definition spsMakeStrong:: "('a untimedΩ → 'b untimedΩ)
⇒ ('aΩ →s 'bΩ) set"

5.2.5 Methodology

This section discusses different approaches to defining the behavior of non-deterministic
components.

Listing Deterministic Functions

The simplest variant is to explicitly build the set of SPFs by listing the containing deter-
ministic functions. Different methods to create deterministic functions are presented in
Section 5.1.6. An example is the following TSPS, which is either the identity or delays
the input by one time slice:

definition "tsps = {ID, tspfDelayOutput 1 ID}"
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Discussion: Explicitly listing the behavior is the easiest way to define a non-
deterministic component. Determining whether a deterministic behavior is contained
in the SPS is straightforward. Additionally, one can perform case distinctions to prove
properties over the SPS. The consistency follows directly. But since the underspecifica-
tion is limited, this method is not generally usable in early development stages where
components are often heavily underspecified, i.e., the set of functions is infinitely large.

Set Comprehension

This method allows components with infinite different behaviors. For example, the
following tsps_delay contains functions which delay more than 100 time slices.

definition "tsps_delay = {tspfDelayOutput n ID | n::nat. n>100}"

Here, n is a natural number, hence tsps_delay only contains countably many be-
haviors. When using a larger type, the behavior can have uncountably infinite elements.
The following listings uses N∞:

definition "tsps_ora = {tspfAdd ·oracle
| oracle::nat stream. #oracle = ∞}"

Because the variable can reduce non-determinism in the component, it is also referred
to as an oracle. If the oracle is a stream, it can be viewed as an additional input channel
of the component.

Discussion: Note that the oracle is fully known before any input is passed to the
component. For many behaviors, it is desirable that the non-deterministic choice depends
on previous inputs. Showing consistency is relatively easy, one needs to find a single valid
oracle.

Relational Specification

This variant uses a predicate which restricts the allowed behaviors. This predicate can
be viewed as a relational specification.

definition rel2sps::"('I ⇒ 'O ⇒ bool) ⇒ ('I → 'O) set" where
"rel2sps P = {spf | spf. ∀input. P input (spf ·input)}"

On first glance, this looks similar to the “Set Comprehension” method above. But
here the variable is a function, and not a natural number or a stream. This allows
significantly different ways to define behavior. Hence, it is a separate method. The
following component contains all weakly causal functions, which arbitrarily delay the
input:

definition "tsps = rel2sps (λi out. #√i ≤ #√out
∧ convUntimed ·i ⊑ convUntimed ·out)"
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While the user-supplied specification is relational, the resulting SPS is always a set
of functions. If the user defines a non-continuous predicate, the empty SPS is returned.
An example is:

Pinvalid input output := if (#√input < ∞) then output = ϵ

else output = input

Discussion: Recursive definitions are not possible. Consistency is harder to show than
in the previous methods. To prove consistency, one can manually define a deterministic
behavior and show that the behavior fulfills the predicate.

Recursive Specification

The previous two methods where unable to handle recursive definitions of SPS. An
example of a recursive definition is:

TSPSrec = {tspfInputDrop 1 (tspfOutputDrop 1 tspf)) | tspf ∈ TSPSrec}

The recursive equation has multiple fixpoints. For example, the lfp is the empty set.
To fully capture underspecification, greatest fixpoint (gfp) is used. This ensures that the
most general SPS is returned. To prove the existence of a fixpoint, monotonicity has to
be proven.

definition "tsps_gfp = gfp(λTSPS.
(λtspf. tspfInputDrop 1 ·(tspfOutputDrop 1 ·tspf)) `TSPS)"

Discussion: If recursive specifications are required, then this approach is appropriate.
However, these specifications can be hard to fully understand, because the gfp may
contain unexpected behavior. Lemmata of the form X ⊆ gfp F are generally easier to
show than gfp F ⊆ Y. Proving consistency of the fixpoint works similar to the relational
specification described above.

Set Operators

Set-operators can also be used to specify behavior. For example F ∩ G is the largest
component that both fulfills the requirements of F and G. With the minus-Operator (−)
sets can be inverted and behavior forbidden. When FORBIDDEN is the SPS with unde-
sirable behaviors, UNIV − FORBIDDEN is a new SPS where the undesirable behavior
is forbidden.

Discussion: This method is suitable for combining and modifying existing SPS. How-
ever, it quickly reaches its limits for new requirements. It is a method for combining
existing components, and not creating completely new components.
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Comparison of Methods

Table 5.4 gives a direct comparison of the presented methods.

Prove Prove Difficulty of Expressive- Under-
Name Consistency Mono Definition ness specification

Listing Functions easy - easy limited limited
Set Comprehension medium - medium medium medium

Relational Spec hard - easy limited powerful
Recursive Spec hard medium hard powerful medium
Set Operator medium - easy limited medium

Table 5.4: Comparison of different methods to create non-deterministic components

The following questions guide you to the right specification method:

1. Is the component best described by a finite number of easily definable SPF? Explic-
itly define the individual SPFs and use the method Listing Deterministic Functions.

2. Are there existing SPSs which can be re-used and combined? Use set-operators
like (∪), (∩), or (−) as shown in method Set Operators.

3. Can you use an simple oracle to define the underspecification? Then use the
method Set Comprehension.

4. Is it possible to describe the behavior as relation between inputs and outputs? Use
the method Relational Specification.

5. Do you need recursion to define the specification? Employ the Recursive Specifi-
cation method.
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Timed Case Study in Isabelle

We demonstrate the usefulness of the definitions and proof strategies from the previous
chapters in a comprehensive case study. For this purpose, we chose a road speed moni-
toring system. Speeding has been one of the leading causes of traffic accidents ever since
modern vehicles were brought to practical use. Speed cameras have become a popular
tool for law enforcement to detect and punish speeding. These cameras are typically
mounted over or beside the roads and captures relevant data such as driving speed and
license plates. Posting cameras and processing large amounts of traffic data poses a
great challenge however. One factor are law enforcement human resources, i.e., officers
bound up in photo collection, reviewing potential violations, and following up with traf-
fic citations. Additional factors include storage limitations, the risk of false positives,
data-privacy, and cyber-security. An automated yet safe and secure speed monitoring
system thus is beneficial in ensuring future road safety.

The system is designed to capture speed measurements along with the corresponding
license plate information from traffic data. It will serve as a platform for data retrieval,
enabling law enforcement to issue citations efficiently. As such, it shall provide easy
access to data about speeding incidents. Internally, the system shall use a standard
speed camera component. Furthermore, data collected by the camera shall be preserved
for potential subsequent processing. To this end, a remote database shall be connected
to the camera through wireless data transmission. As traffic data is vast and storage is
limited, not all traffic data but only speeding violations shall be stored in the database.
Law enforcement agents require the violations to be accessible in a straight-forward
way. The database shall therefore be queried through a user-oriented interface without
knowing the internal database structure.

Due to the distributed nature of the case study requirements, the system is specified
as a Focus composition of re-usable components. The overall system takes take two
different inputs. One for the traffic data to be captured by the speed camera. This traffic
data includes both speed and license plate data. The second input is for inquiries into
past violations that are stored in the data base. These inquiries are made in the form of a
license plate. The overall system has a single output for results of violation inquiries. The
form of the results are the retrieved license plate data coupled with potential speeding
violations. Internally, the system is composed of a speed camera, a database, and an
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external Application Programming Interfaces (API). The camera observes traffic data
and sends violations to the database. The database stores violations and provides a
database-specific interface for requesting data. The API takes data inquiry requests from
law enforcement, runs the database-specific requests against the internal database, and
returns the response in the required form. Figure 6.1 gives an overview of the resulting
distributed speed monitoring system, its data channels and internal components.

Figure 6.1: Overview of the Speed Monitoring System: The system observes traffic
(trafficData) and records violations through a speed camera com-
ponent. Law enforcement is able to getRequest past violations via an
external API. As a getResponse to requests, potential violations are
retrieved from the database through internal, database-specific requests
(intGetRequest) and responses (intGetResponse).

In this case study, we specify and verify the speed monitoring system in Isabelle with
the concept of Focus. The formal specification and verification of this system are
critical. Verification ensures correct operation (safety) of the system, i.e., that the data
it captures and stores are accurate and reliable. This is necessary as incorrect data
can result in incorrect citations and unjust penalties. Furthermore, the system shall be
secure against attacks, such as malicious requests. Potentially recorded data of sensitive
vehicles shall not be available for inquiry by untrusted parties as it could lead to the
leak of confidential information. The system is expected to respond with an empty (null)
answer within a fixed time frame. This is necessary for non-malicious users to be able
to distinguish between forbidden requests and responses lost in transmission.

6.1 Channel and Message Datatypes
The speed monitoring system is composed of three components that are interconnected
to each other and the outside world by six channels. To better understand the channels’
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purpose, here is an exhaustive list with additional information about the messages they
carry:

• trafficData: Tuples of license plate data and speed per passing vehicle. Ob-
served by the speed camera;

• storeViolation: License plate data, speed, and photo of speeding vehicles as
determined by the speed camera. Transmitted to the database component;

• getRequest: Law enforcement inquiries into license plates sent to the API;

• intGetRequest: Inquiries forwarded by the API internally to the database;

• intGetResponse: Potential records of speed violations retrieved from the
database, as tuple of license plate, speed, and the photo. Sent to the API;

• getResponse: Potential records of speed violations returned to law enforcement.
Photos are excluded for privacy reasons.

After conceptually laying out the channels and message types, they need to be encoded
in Isabelle. The speed monitoring system requires the following three raw data types:

datatype licensePlate = LicencePlate string
datatype speed = Speed rat
datatype photo = Photo "(char list) list"

License plates are encoded as strings, speeds of a car as rational numbers, and a
photograph is encoded as an two dimensional array containing color values for the pixels.

The message datatype, msg, is the underlying type for all channels communication
messages. It contains no timing information as this kind of information is encoded in the
stream type. The msg type is, in the context of the speed monitoring system, defined
as follows:

datatype msg =
MEASURE "licensePlate × speed" |
STORE "licensePlate × (speed × photo)" |
GET "licensePlate" |
INTERNAL "licensePlate × ((speed × photo) option)" |
RESULT "licensePlate × (speed option)"

The interfaces of the components and the overall speed monitoring system can now
be formally specified in terms of Focus bundles:

• external API: {getRequest, intGetResponse}Ω

→w {intGetRequest, getResponse}Ω;

• speed camera: {trafficData}Ω →w {storeViolation}Ω;
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• database: {intGetRequest, storeViolation}Ω

→w {intGetResponse}Ω;

• speed monitoring system: {getRequest, trafficData}Ω

→w {getResponse}Ω.

The channels are typed, i.e., allow only specific messages to be transmitted:

• cType getRequest = cType intGetRequest ⊆ range GET

• cType intGetResponse ⊆ range INTERNAL

• cType getResponse ⊆ range RESULT

• cType trafficData ⊆ range MEASURE

• cType storeViolation ⊆ range STORE

For each of theses sets we define a new type.

typedef InAPI = "{getRequest, intGetResponse}"
typedef OutAPI = "{getResponse, intGetRequest}"
typedef InCAM = "{trafficData}"
typedef OutCAM = "{storeViolation}"
typedef InDB = "{storeViolation, intGetRequest}"
typedef OutDB = "{intGetResponse}"
typedef InSys = "{getRequest, trafficData}"
typedef OutSys = "{getResponse}"

In this case study, all channels histories are event streams. Thus, we require and
instantiate the newly created types to be in the echan class.

instantiation InAPI :: "{echan}"
...

The stream bundles do not directly map channels to streams of raw data types like
licensePlate, speed, or photo. Instead, they map combined streams of message
type msg. We leverage the getter function to explicitly convert msg combined-
stream to the concrete types, e.g., an licensePlate event stream. This getter
function (and its inverse) are lifted to the SB level and able to get the concrete streams of
a SB and the inverse, i.e., defining a SB by providing the concrete streams instead of msg
combinedstreams. The verification of the system is conducted on the stream level. The
sbsetter and sbgetter functions for each case-study channel domain type abstract
from irrelevant bundling.
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6.2 System Specifications

The speed monitoring system shall be safe (operate according to the wanted behavior)
and secure (does not allow for unwanted behavior). To formally verify these properties,
we begin by encoding them formally. We achieve this via predicates on input/output
streams and on parameters such as allowed speeds and public license plates. We then
also specify the behavior of the subsystems, API, speed camera, and database. Finally,
we’ll demonstrate a successful refinement proof between the safety & security properties
and the composed system of distributed subsystems. This guarantees safety and security
for the composition of subsystems.

Safety and Security Requirements

Based on the informal requirements in the beginning of this chapter, we develop the
following safety and security requirements. For all gathered traffic data, all inquiries,
and all responses of the system, it should hold that:

• safety_1: The response matches the traffic data, i.e., the speed camera captured
the vehicle in question at the indicated speed;

• safety_2: The vehicle in question was speeding;

• safety_3: Each response corresponds to a request, nothing is answered unwar-
rantedly;

• safety_4: Unauthorized requests are responded to by a null reponse within two
time intervals;

• security_1: Only requests for public plates are answered, i.e., responses are
filtered according to a whitelist.

The first safety requirement is derived directly from the requirement for reliability:
the responses given to law enforcement should match actually captured traffic data. The
system must not create false readings. The formalization below captures safety_1 via
a predicate over the traffic data and responses given by the system. It requires that all
responses of plates and speeds at any point n match a traffic data observation at some
point m. Precisely, it states that for any (∀) plate, speed, and index n such that the
following sub-predicate must hold. The index n being below (<) the number of events
(#) recorded in the stream of responses and ( ∧) the n-th event (snth n) of the response
stream being equal to (=) a message (Event constructor) recording the aforementioned
plate and non-empty (Some constructor of the option datatype) speed implies (−→)
the f following sub-sub-predicate. There exists (∃) an index m such that m is below the
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number of traffic data events and the m-th traffic data element is a message carrying
aforementioned plate and speed:

definition safety_1 :: "(licensePlate × speed) event stream
⇒ (licensePlate × speed option) event stream
⇒ bool" where

"safety_1 trafficData response ≡ ∀plate speed n.
n < #response ∧ snth n response = Event (plate, Some speed)

−→ (∃m. m < #trafficData
∧ snth m trafficData = Event (plate, speed))"

Considering the limited database storage, the system shall only store and thus return
data from speeding violations. The formalization of safety_2 is thus a predicate over
the legal speed limit and responses. It requires all responses of plates and speeds at any
point n to indicate a violation, i.e., the recorded speed to be above the legal speed limit.
Its formalization requires that for any plate, speed, and index n the following must hold.
The index n being below the number of response events and the n-th response being a
message recording plate and non-empty speed implies the recorded speed to be above
(>) the legal speed limit:

definition safety_2 :: "speed
⇒ (licensePlate × speed option) event stream
⇒ bool" where

"safety_2 speedLimit response ≡ ∀plate speed n.
n < #response ∧ snth n response = Event (plate, Some speed)

−→ speed > speedLimit"

The system shall only respond to requests, i.e., not unwarrantedly return traffic vio-
lations. This requirement is vital for preventing information leaks. The formalization of
safety_3 is thus a predicate over the requests and responses. It requires all plates of
all responses at any point n to match the plate of a request. Its formalization requires
that for any plate, optional speed, and index n the following must hold. The index
n being below the number of response events and the n-th response being a message
recording plate and non-empty speed implies the existence of an index m such that m is
below the number of request events and the m-th request being a message recording the
aforementioned plate:

definition safety_3 :: "licensePlate event stream
⇒ (licensePlate × speed option) event stream
⇒ bool" where

"safety_3 request response ≡ ∀n optionalspeed plate.
n < #response ∧ snth n response = Event (plate, optionalspeed)

−→ (∃m. m < #request ∧ snth m request = Event plate)"

As declared before, an empty reply is returned by the system for any non-allowed
inquiries in maximal two time-units after their input. For this additional timed prop-
erty, we again define a predicate in Isabelle over the whitelist of plates, the stream of
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requests, and the stream of responses. It requires that for any index n and any plate,
the following sub-predicate must hold. The plate being part (∈) of the set of distinct
messages (sValues) of the substream at time slice n (esnth n) of the requests and
the plate not being part of ( /∈) the whitelist of public plates implies the existence of
a timeout such that the timeout is below 2 and an empty message (tuple with second
element None) is part of the set of distinct responses at time slice n plus (+) the timeout:

definition safety_4 :: "licensePlate set
⇒ licensePlate event stream
⇒ (licensePlate × speed option) event stream
⇒ bool" where

"safety_4 publicPlates request response ≡
∀n plate.
(plate ∈ sValues ·(esnth n ·request) ∧ plate /∈ publicPlates)

−→ (∃TimeOut. TimeOut <= 2
∧ (plate, None) ∈ sValues ·(esnth (n +

TimeOut) ·response))"

Only plates from the whitelist, i.e., public plates are allowed to be effectively queried.
Other plates may be queried by oblivious agents or malicious third parties, but do not
return any speeding violations. The following security predicate states that any plate
that was returned with any speed at any point n needs to be in the whitelist, i.e., the
publicPlates. It requires that for any index n, any plate, and any speed the following
sub-predicate must hold. The index n being below the number of response events and the
n-th response event being a message recording aforementioned plate and speed implies
that the plate is part of the whitelist of public plates:

definition security_1 :: "licensePlate set
⇒ (licensePlate × speed) event stream
⇒ licensePlate event stream
⇒ (licensePlate × speed option) event stream
⇒ bool" where

"security_1 publicPlates trafficData request response ≡
∀n plate speed.
n < #response ∧ snth n response = Event (plate, Some speed)
−→ plate ∈ publicPlates"

We specify a parameterized SPS to combine the individual safety and security require-
ments. These parameters are the legal speed limit and a whitelist of public license plates.
Then the set of all SPFs with signature (InSysΩ→w OutSysΩ) set is constrained by
applying the individual requirements, i.e., filtering according to the predicates. Addi-
tionally, the SPFs are required to be weakly causal, not only for its realizability. Weak
causality is necessary for correct specification of the speed monitoring system: traffic
data needs to be captured before violations can be recorded, violations in turn need to
be recorded before requests can be made, and finally requests to the database need to
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be made before matching responses to law enforcement can be given. The resulting set
of functions is abstracted to the type of weakly causal functions, TSPF_w:

definition SysReqSPS:: "speed ⇒ licensePlate set
⇒ (InSysΩ →w OutSysΩ) set" where

"SysReqSPS speedLimit publicPlates
= Abs_tspfw ` { f | f. ∀(input::InSysΩ).

let getRequest = fst (bundleInSys.sbgetter ·input)
trafficData = snd (bundleInSys.sbgetter ·input)
getResponse = bundleOutSys.sbgetter ·(f ·input)

in safety_1 trafficData getResponse
∧ safety_2 speedLimit getResponse
∧ safety_3 getRequest getResponse
∧ safety_4 publicPlates getRequest getResponse
∧ security_1 publicPlates trafficData getRequest

getResponse
∧ weak f }"

Note the usage of an all-quantified input. This ensures safety and security under
all possible circumstances. As the input is a bundle, we employ the getter function
bundleInSys.sbgetter to retrieve a tuple of streams. The elements in the tuple
correspond to channels in the bundles domain type, InSys. The first element, retrieved
with fst, is thus the stream of requests and the second, retrieved with snd, the stream
of traffic data. Retrieving the stream of responses requires application of the function
f to the input and usage of the getter function bundleOutSys.sbgetter for output
domain OutSys. To express the causality, we can either simply define the specification
as the set of general continuous functions and then add the logical regulation regarding its
causality into the definition or leverage the specific function type of causal and continuous
functions, namely 'a →w 'b. In this case study, we have defined the stream processing
specification of the individual components in the former manner to reduce the complexity
of low-level verifications. The specification of the system requirements, as well as the
composite of component specifications, is, however, be given as sets of 'a →w 'bs as
above. The abstraction function Abs_tspfw is used to abstract a general continuous
function to a weakly causal function. Vice versa, Rep_tspfw converts a weakly causal
function backwards.

In the following we introduce the individual components that are meant to be com-
posed into a complete functioning system. Then, we need to explicitly verify that the
composition of the components do satisfy the system requirements.

Speed Camera Component
The speed camera serves the purpose to deliver the captured data of speeding vehi-
cles. For a properly functioning camera, we ask that only data from speeding vehicles
be forwarded to the database. Further, it should hold that violations shall not be fa
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transmitted data, i.e., license plate and measured speed, should be previously recorded
from traffic data. The component shall thus obey the following safety, i.e., correctness,
constraints:

• camera_safety_1: Violations shall only record vehicles speeding;

• camera_safety_2: Violations shall be consistent with traffic data factual, i.e.,
may only be issued as a result from previously recorded plates and speeds;

The first safety constraint is formulated as a predicate over the legal speed limit and
the stream of recorded violations. It requires that any index n, plate, speed, and photo
are required to obey the following sub-predicate. The index n being below the number
of Events recorded on the stream of violations and the n-th violation event being equal
to a message recording said plate, speed, and photo implies the recorded speed being
above the legal speed limit:

definition camera_safety_1 ::
"speed ⇒ (licensePlate × (speed × photo)) event stream

⇒ bool" where
"camera_safety_1 speedLimit violation =

∀n plate speed photo.
( n < #violation

∧ snth n violation = Event (plate, (speed, photo)) )
−→ speed > speedLimit"

The second safety constraint is formulated as a predicate over the stream of traffic
data and the stream of violations. It requires that any index, plate, speed, and photo are
required to obey the following predicate. The index being below the number of events
recorded on the stream of violations and the n-th violation being equal to a message
recording said plate, speed, and photo implies the existence of an index m such that the
following holds. The index m must be below the number of events recorded in the stream
of traffic data and the m-th element in the stream of traffic data is equal to a message
carrying said plate and speed:

definition camera_safety_2 ::
"(licensePlate × speed) event stream

⇒ (licensePlate × (speed × photo)) event stream ⇒ bool" where
"camera_safety_2 trafficData violation =

∀n plate speed photo.
n < #violation

∧ snth n violation = Event (plate, (speed,photo))
−→ ∃m.

m < #trafficData
∧ snth m trafficData = Event (plate, speed)"
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We specify the camera as a conjunction of the above safety constraints and additional
weak causality. Similar to the specification of the overall system in Section 6.2, the speed
camera component is thus defined as follows:

definition camSPS :: "speed ⇒ (InCAMΩ →w OutCAMΩ)set" where
"camSPS speedLimit = Abs_tspfw {f | f. ∀(input::InCAMΩ).
let trafficData = bundleInCAM.sbgetter ·input

violation = bundleOutCAM.sbgetter ·(f ·input)
in camera_safety_1 speedLimit violation

∧ camera_safety_2 trafficData violation
∧ weak f }"

Database Component
The database receives and stores the data input from the speed camera, and answers
the incoming inquiries through the user interface either with the stored data or with
an empty reply. We expect the component to respond to inquiries in the same order as
they have arrived. This is essential to ensure the punctuality of data output. Further,
the component should not fabricate data points. Additionally, the component should
immediately return an empty answer to non-allowed inquiries immediately with an empty
answer. This requirement plays a vital role of realizing the timed system requirement
for handling non-allowed inquiries, safety_4. Finally, the database is expected to be
deployed in a feedback loop, i.e., it does not simply forward received data but responds
to incoming inquiries. Feedback requires the introduction of strong causality to establish
well-defined semantics. The security constraints thus are summarized as:

• db_safety_1: The order of responses shall be identical to the order of the re-
quests;

• db_safety_2: The responses shall match a recorded violation;

• db_safety_3: Non-allowed requests shall be responded to immidiately with an
empty answer, i.e., the response shall be sent in the immidiate next time slice
compared to the request;

• db_security_1: Only requests for public plates shall be reponded to with speed-
ing violations, i.e., responses are filtered according to a whitelist.

• causality: The component shall be strong causal, i.e., responses to requests
shall be sent the earliest in the next time slice.

The first safety constraint is formulated as a predicate over the request stream and
the response stream. It requires that at some time in the future and abstracting from
all timing constraints, the responses’ plates element-wise match the plates from the
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requests. Note how there is no limit on the delay the system might produce between
request and response, only that eventually the system produces an answer. This is
formalized by implying (right hand side of the arrow) this match only if infinitely many
time slices (#√) have passed on the stream of requests. The match itself is specified by
removing of all timing information (e2ustream) from the request and response streams
and comparing the requests (carrying license plate data) to the element-wise (smap) first
element (fst) of the responses (carrying tuples of license plate data, optional speed, and
optional photo):

definition db_safety_1 ::
"(licensePlate × speed × photo) event stream
⇒ licensePlate event stream
⇒ (licensePlate × ((speed × photo) option)) event stream ⇒

bool" where
"db_safety_1 request response =
#√request = ∞

−→ e2ustream ·request = smap fst ·(e2ustream ·response)"

The second safety constraint is formulated as a predicate over the violation stream
and the response stream. It requires that any index n, plate, and result are required
to obey the following predicate. The index n being below the number of events in the
response stream and the n-th element of the response being equal to a message carrying
aforementioned plate and non-empty result implies the existence of an index m such that
m is below the number of events in the stream of violations and the m-th element of the
violation stream is a message recording the aforementioned plate and result:

definition db_safety_2 ::
"(licensePlate × speed × photo) event stream

⇒ (licensePlate × ((speed × photo) option)) event stream
⇒ bool" where

"db_safety_2 violation response =
∀n plate result.
( n < #response

∧ snth n response = Event (plate, Some result) )
−→ ( ∃m. m < #violation

∧ snth m violation = Event (plate, result) )"

The third safety constraint is formulated as a predicate over whitelist of public plates,
the stream of requests, and the stream of responses. It requires that for any time slice
t and any plate, the following predicate must hold. The plate not being part of the
whitelist of public plates and the plate being part of the set of distinct elements of the
substream at time slice t implies that an empty response, i.e., a tuple where the first
element is the aforementioned plate and the speed and photo are missing (None) is part
of the set of distinct elements of the substream at time t+1 of the response stream:

definition db_safety_3 :: "licensePlate set
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⇒ licensePlate event stream
⇒ (licensePlate × ((speed × photo) option)) event stream ⇒

bool" where
"db_safety_3 publicPlates request response =

∀t plate. plate /∈ publicPlates ∧ plate ∈ sValues ·(esnth
t ·request)

−→ (plate, None) ∈ sValues ·(esnth (t+1) ·response)))"

The security constraint is formulated as a predicate over whitelist of public plates and
the stream of responses. It requires that for any index n, any plate, and any result,
the following predicate must hold. The index n being below the number of elements
in the response stream and the n-th element in the response stream being equal to a
message carrying aforementioned plate and non-empty result implies the plate being in
the whitelist of public plates:

definition db_security_1 :: "licensePlate set
⇒ (licensePlate × ((speed × photo) option)) event stream ⇒

bool" where
"db_security_1 publicPlates response =
∀n plate result.
n < #response ∧ snth n response = Event (plate, Some result)

−→ plate ∈ publicPlates"

The stream processing specification of the database is then defined as the conjunction
of the above safety and security constraints, as well as the strong causality requirement:

definition dbSPS :: "licensePlate set ⇒ (InDBΩ →s OutDBΩ) set"
where

"dbSPS publicPlates
= Abs_tspfs ` { f | f. ∀(sb::InDBΩ).

let violation = fst (bundleInDB.sbgetter ·input)
getRequest = snd (bundleInDB.sbgetter ·input)
getResponse = bundleOutDB.sbgetter ·(f ·input)

in db_safety_1 getRequest getResponse
∧ db_safety_2 violation getResponse
∧ db_safety_3 publicPlates getRequest getResponse
∧ db_security_1 publicPlates getResponse
∧ strong f }"

External API
The external API abstracts the internal database interface and provides users with means
to request speeding information. It forwards inquiries to the database and translates the
responses of the database back to the user. If a request could not return a license plate,
e.g., if the vehicle did not speed or the plate is not available for inquiry, an empty answer
is returned in a maximum of two units of time. As we recall, the database responds to
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requests with a delay of one unit of time as it is strong causal. We thus ensure the time
constraint by requiring the processing time of empty internal responses to be below two
units of time. The data must also be inquired by users to prevent information leak, and
be given directly from the database without modifications or being created by others.
The security constraints thus are summarized as:

• api_safety_1: Any non-empty responses to the user shall match a request made
by the user;

• api_safety_2: Any non-empty responses to the user shall match an internal
response from the database, i.e., plates and speeds shall not be altered in any way;

• api_safety_3: Any request made by the user shall be forwarded immediately
to the database, i.e, in the same unit of time;

• api_safety_4: Any empty response shall be processed immediately, i.e., the
response sent to the user within the same unit of time.

The first safety constraint is formulated as a predicate over the requests made by and
the response given to the user. It states that any index n, plate, and speed are required
to obey the following sub-predicate. The index n being below the number of events in
the response stream and the n-element of the response stream being equal to a message
carrying aforementioned plate and speed implies the existence of an index m such that m
is below the number of events on the request stream and the m-th element on the request
stream is a message requesting information about aforementioned plate:

definition api_safety_1 :: "licensePlate event stream
⇒ (licensePlate × (speed option)) event stream ⇒ bool" where

"api_safety_1 request response =
∀n plate speed.
n < #response ∧ snth n response = Event (plate, Some speed)

−→ ∃m. m < #request ∧ snth m request = Event plate"

The second safety constraint is formulated as a predicate over the internal responses
from the database, as well as the responses returned to the user. It states that any
index n, plate, and speed are required to obey the following sub-predicate. The index
n being below the number of events in the response stream and the n-element of the
response stream being a message carrying aforementioned plate and speed implies the
existence of an index m and a photo such that m is below the number of elements in
the internal response stream and the m-th element in the internal response stream is a
message recording aforementioned plate and speed with accompanying photo:

definition api_safety_2 ::
"(licensePlate × ((speed × photo) option)) event stream

⇒ (licensePlate × (speed option)) event stream ⇒ bool" where
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"api_safety_2 intGetResponse response =
∀n plate speed.
n < #response ∧ snth n response = Event (plate, Some speed)

−→ ( ∃m.
m < #intGetResponse
∧ snth m intGetResponse = Event (plate, Some (speed,

photo)) )"

The third safety constraint is formulated as a predicate over the requests made by
users and the internal requests forwarded to the database. It states that any index n
and plate to obey the following sub-predicate. A plate being part of the set of requests
received in the n-th time slice implies the plate being part of the set of internal requests
forwarded within the same n-th time slice:

definition api_safety_3 :: "licensePlate event stream
⇒ licensePlate event stream ⇒ bool" where

"api_safety_3 request intGetRequest =
∀n plate. plate ∈ sValues ·(esnth n ·request)

−→ plate ∈ sValues ·(esnth n ·intGetRequest)"

definition api_safety_4 ::
"(licensePlate × ((speed × photo) option)) event stream

⇒ (licensePlate × (speed option)) event stream ⇒ bool" where
"api_safety_4 intGetResponse response =
∀n plate.
(plate, None) ∈ sValues ·(esnth n ·intGetResponse)

−→ ( ∃TimeOut.
TimeOut <= 1
∧ (plate, None) ∈ sValues ·(esnth (n + TimeOut) ·response) )"

The API component is additionally specified to be weak causal, ensuring realizability.
As before, the stream processing specification of the external API is then defined as the
conjunction of the above safety constraints, as well as the weak causality requirement:
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definition exApiSPS :: "(InAPIΩ →w OutAPIΩ) set" where
"exApiSPS = Abs_tspfw `{ f | f. ∀(sb::InAPIΩ).

let request = fst (bundleInAPI.sbgetter ·input)
intGetResponse = snd (bundleInAPI.sbgetter ·input)
intGetRequest = fst (bundleOutAPI.sbgetter ·(f ·input))
getResponse = snd (bundleOutAPI.sbgetter ·(f ·input))

in api_safety_1 request getResponse
∧ api_safety_2 intGetResponse getResponse
∧ api_safety_3 request intGetRequest
∧ api_safety_4 intGetResponse getResponse
∧ weak f}"

6.3 Validity of the Composition
In this section we show the validity of the composition of subsystems wrt. the system
requirements. This means proving a refinement theorem encoded via a subset relation
between the SPS of the overall system, SysReqSPS, and the SPS resulting from com-
posing the three subsystems, speed camera, database, and external API. We thus begin
by defining said composition of exApiSPS, camSPS, and dbSPS as follows:

definition compSPS :: "speed ⇒ licensePlate set
⇒ (InSysΩ ⇒w OutSysΩ) set" where

"compSPS speedLimit publicPlates = Abs_tspfw ` ( spsConvert ·(
exApiSPS

⊗
(camSPS speedLimit)

⊗
(dbSPS publicPlates)

) )"

The function spsConvert is used to convert the direct composite of specifications to
a SPS of the entire system with the signature (InSysΩ →w OutSysΩ) set, in order
to simplify the later verification, where we perform the proof of set inclusion between this
composite and the SysReqSPS. This process also improves the readability and clarity
of the definition, as the application of the composition operator

⊗
to more than two

components results in highly complicated signature.
We continue by showing that the composition, compSPS, adheres to all safety and

security constraints of the overall system. This means that the system requirements are
satisfied by the composite of the subsystems. This is encoded as the following lemma. We
fix an SPF of appropriate signature and assume it to be one of the functions contained
in the set of functions describing the composition. We further assume (and) the names
getRequest, trafficData, and getResponse to refer to the appropriate streams
by employing the bundles getter functions. We then show all four safety and the security
constraint to hold:
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lemma compSPS_def_SysReq:
fixes f :: "InSysΩ ⇒w OutSysΩ"

assumes "f ∈ compSPS speedLimit publicPlates"
and "getRequest = (fst (bundleInSys.sbgetter ·input))"
and "trafficData = (snd (bundleInSys.sbgetter ·input))"
and "getResponse = (bundleOutSys.sbgetter ·(f ·input))"

shows "safety_1 trafficData getResponse
∧ safety_2 speedLimit getResponse
∧ safety_3 getRequest getResponse
∧ safety_4 publicPlates getRequest getResponse
∧ security_1 publicPlates trafficData getRequest

getResponse"

This lemma is ultimately implied by the causation between behavioral predicates of
system requirements and each individual component. Specifically, we have shown that
the safety and security constraints can be implied from a conjunction of all safety and
security constraints of the three subsystems, speed camera, database, and API. Despite
the proof sketch being conceptually easy, technicalities such as low-level details and
intermediate lemmas render the actual proofs in Isabelle more complicated and hard
to follow. Thus, we do not present those proofs here in detail and instead refer the
interested reader to the appendix.

Finally, we show that compSPS is a subset of SysReqSPS, which implies that the
specification composite of the three components, namely speed camera, database, and
user interface, is a valid refinement of the system requirements specification.

theorem correct_refinement: "(compSPS speedLimit publicPlates)
⊆ (SysReqSPS speedLimit publicPlates)"

Thus, we are safe to conclude that the composition of the given components is correctly
designed to fulfill the expectation.
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Conclusion

As highlighted in the introduction, the consideration of time during the specification
and verification of real-time systems is crucial. These systems are often designed to
operate in environments where the timing of events is critical, and even slight devi-
ations from the expected timing can have catastrophic consequences. It is essential
to precisely comprehend the temporal behavior of such systems, emphasizing the need
for formal specification and verification methods that take timing into account. This
work focuses on extending our verification framework for modeling component networks
by incorporating time-based modelization and verification. We have extended existing
implementations to incorporate various timed concepts in Isabelle by introducing new
datatypes and functions based on related concepts. In the second chapter preliminaries
of domain theory and of Isabelle were presented. Alternative formalisms as well as fur-
ther theorem provers were discussed. The third chapter introduced the timed streams as
well as their implementations in Isabelle. Based on timed streams, the fourth chapter fo-
cused on the timed bundles and functions over bundles. In the fifth chapter we presented
deterministic and non-deterministic timed stream processing functions and specification,
including realizability, composition and refinement. The sixth chapter presented a run-
ning example of a distributed speed-monitoring system to demonstrate the capabilities
of our extended verification framework. We used a relevant property describing one
of the temporal behaviors of the system to showcase the capability of our new timed
framework to specify and verify timed systems.

Despite the fact that taking timed concepts into account empowered our verification
framework significantly, this book presented mainly a foundational layer for timed spec-
ifications. It is extremely powerful, but also comes at a cost: It is rather difficult to
use. Therefore, plenty of comfort techniques are needed. We, e.g., plan to incorporate
automata theory into the verification environment in future publications. Specifically,
we plan to focus on the study of event-driven input/output automata, where timing
plays a critical role. In order to cover further aspects of our specification and ver-
ification methodologies, we will work on bringing up a running example focusing on
more complicated industrial use cases, which can also help identify any unnoticed lim-
itations or potential improvements of the framework. Apart from that, we will also
consider deepening the integration of model-driven theory generators [Rum16, Rum17]
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converting models in architecture description languages (e.g., MontiArc [Wor21, Hab16]
or SysML [JPR+22, KPRR21, DRW+20]) to theories in Isabelle with our verification
environment, which helps simplify the system specification process and provides a more
user-friendly front-end.
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Application Programming Interfaces (API) Common interface for communication be-
tween independent applications. 96, 97, 99

Architecture Description Language (ADL) Language to specify and model the struc-
ture and components of software architectures. 58

Bottom Least element in a pointed complete partial order; denoted as ⊥. 21, 28, 29
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74, 76–79, 85
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Channel Asynchronous, point-to-many, instantaneous message-passing method for com-
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bound. 13, 14, 18, 20, 52, 55
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35, 73, 77, 78

Composition Combine components into larger systems. 78
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34, 38, 39, 42, 73–75, 77, 85

Deterministic Behavior is fully determined by input and current state. 73, 85

Event Either a message or a Tick that marks the completion of a time slice. 29–32, 34,
35, 37, 40–42, 51, 52, 81

Feedback Composition Special kind of composition. Output channels are used as input
of the same component. 80

Fixpoint Solution x for a function f where f(x) = x. 92
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greatest fixpoint (gfp) Used to define the semantic of recursive definitions. 92

Higher Order Logic of Computable Functions (HOLCF) Isabelle Library for Contin-
uous Functions. 18, 19, 21, 29

Isar A proof language in Isabelle. Designed to be similar to handwritten proofs. 22

lazy natural number (lNat) Natural numbers extended with infinity. 37, 38

least fixed point (lfp) Used to define the semantic of recursive definitions. 14, 21, 87,
92

least upper bound (lub) The least element in the set of upper bounds. 13–15

Monotonic The order is preserved after application of the function. 13, 37, 74, 75, 77

MontiArc Framework for modeling and simulation of software architectures. 58

Non-Deterministic Behavior is not completely determined by input and current state.
73

partial order (po) A reflexive, transitive and antisymmetric relation. 12–14, 18

pointed complete partial order (pcpo) A complete partial order with a bottom ele-
ment. 13, 14, 18, 21, 28, 29, 34, 52, 61

Prefix Order A stream is considered lesser if it serves as a prefix to another stream. 28,
52, 75

Sequential Composition Special kind of composition. The output of the first compo-
nent is the input of the second component. 79, 80

stream bundle (SB) Combination of multiple streams each identified by a channel. 3,
8, 34, 57–64, 68–71, 98

stream processing specification (SPS) Set of stream-processing functions, used to de-
scribed non-deterministic behavior. 3, 8, 87, 88, 90, 92, 101, 109

stream-processing function (SPF) Continuous function mapping input bundle to out-
put bundle. 3, 8, 81, 85, 87, 89, 90, 93, 101, 109

Strong Causality Property of timed components. Outputs rely solely on past inputs
and introduce delays. 34, 73–78, 80
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Glossary

SysML SysML is a general-purpose modeling language for modeling complex systems
both textually and graphically. 58

Time Slice Represents a specific interval of time during which measurements or obser-
vations occur, often marked by a signal indicating its end. 30–33, 35, 37–40, 42,
43, 47, 48, 52, 73–76, 79, 81, 82, 86

Time Synchronous At most one message per time slice, which can either contain a
message or be empty. 31, 33–35, 37, 39, 46

timed stream bundle (TSB) Combination of multiple timed streams each identified by
a channel. 34, 35, 57, 58, 60–62, 64–72

timed stream processing function (TSPF) Continuous, Deterministic Function over
timed input and output. 77, 78, 81–85, 87

timed stream processing specification (TSPS) Set of timed stream-processing func-
tions, used to described non-deterministic behavior. 87, 90

TOne Exactly one message per time slice. 32–35, 37, 49

Untimed No timing information for messages, focusing solely on the content without
temporal context. 29, 35, 36, 38, 40, 42, 73

Weak Causality Property of timed components. Outputs rely solely on past inputs. 34,
73–75, 77–79, 81, 85

Wellformedness Restrict timed observation by forbidding infinite messages during a
finite duration. 30, 35, 39, 51, 67, 75, 78
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Related Interesting Work from the SE Group, RWTH Aachen

Related Work from the SE Group, RWTH Aachen, June 25
The following section gives an overview of related work done at the SE Group, RWTH Aachen.
More details can be found on the website www.se-rwth.de/topics/ or in [HMR+19]. The
work presented here mainly has been guided by our mission statement:

Our mission is to define, improve, and industrially apply techniques, concepts, and methods
for innovative and efficient development of software and software-intensive systems, such that
high-quality products can be developed in a shorter period of time and with flexible integration
of changing requirements. Furthermore, we demonstrate the applicability of our results in various
domains and potentially refine these results in a domain specific form.

Agile Model Based Software Engineering
Agility and modeling in the same project? This question was raised in [Rum04c]: “Using an
executable, yet abstract and multi-view modeling language for modeling, designing and pro-
gramming still allows to use an agile development process.”, [JWCR18] addresses the question of
how digital and organizational techniques help to cope with the physical distance of developers
and [RRSW17] addresses how to teach agile modeling.

Modeling will increasingly be used in development projects if the benefits become evident
early, e.g with executable UML [Rum02] and tests [Rum03]. In [GKR+06], for example, we
concentrate on the integration of models and ordinary programming code. In [Rum11, Rum12]
and [Rum16, Rum17], the UML/P, a variant of the UML especially designed for programming,
refactoring, and evolution is defined.

The language workbench MontiCore [GKR+06, GKR+08, HKR21] is used to realize the UM-
L/P [Sch12]. Links to further research, e.g., include a general discussion of how to manage and
evolve models [LRSS10], a precise definition for model composition as well as model languages
[HKR+09], and refactoring in various modeling and programming languages [PR03]. To better
understand the effect of an agile evolving design, we discuss the need for semantic differencing
in [MRR10].

In [FHR08] we describe a set of general requirements for model quality. Finally, [KRV06]
discusses the additional roles and activities necessary in a DSL-based software development
project. In [CEG+14] we discuss how to improve the reliability of adaptivity through models
at runtime, which will allow developers to delay design decisions to runtime adaptation. In
[KMA+16] we have also introduced a classification of ways to reuse modeled software components.

Artifacts in Complex Development Projects
Developing modern software solutions has become an increasingly complex and time consuming
process. Managing the complexity, the size, and the number of artifacts developed and used
during a project together with their complex relationships is not trivial [BGRW17].

To keep track of relevant structures, artifacts, and their relations in order to be able, e.g., to
evolve or adapt models and their implementing code, the artifact model [GHR17, Gre19] was
introduced. [BGRW18] and [HJK+21] explain its applicability in systems engineering based on
MDSE projects and [BHR+18] applies a variant of the artifact model to evolutionary develop-
ment, especially for CPS.
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An artifact model is a meta-data structure that explains which kinds of artifacts, namely code
files, models, requirements files, etc. exist and how these artifacts are related to each other.
The artifact model, therefore, covers the wide range of human activities during the development
down to fully automated, repeatable build scripts. The artifact model can be used to optimize
parallelization during the development and building, but also to identify deviations of the real
architecture and dependencies from the desired, idealistic architecture, for cost estimations, for
requirements and bug tracing, etc. Results can be measured using metrics or visualized as graphs.

Artificial Intelligence in Software Engineering
MontiAnna is a family of explicit domain specific languages for the concise description of the
architecture of (1) a neural network, (2) its training, and (3) the training data [KNP+19].
We have developed a compositional technique to integrate neural networks into larger software
architectures [KRRW17] as standardized machine learning components [KPRS19]. This enables
the compiler to support the systems engineer by automating the lifecycle of such components
including multiple learning approaches such as supervised learning, reinforcement learning, or
generative adversarial networks.

For analysis of MLOps in an agile development, a software 2.0 artifact model distinguishing
different kinds of artifacts is given in [AKK+21].

According to [MRR11g] the semantic difference between two models are the elements contained
in the semantics of the one model that are not elements in the semantics of the other model.
A smart semantic differencing operator is an automatic procedure for computing diff witnesses
for two given models. Such operators have been defined for Activity Diagrams [MRR11d], Class
Diagrams [MRR11b], Feature Models [DKMR19], Statecharts [DEKR19], and Message-Driven
Component and Connector Architectures [BKRW17, BKRW19]. We also developed a modeling
language-independent method for determining syntactic changes that are responsible for the
existence of semantic differences [KR18a].

We apply logic, knowledge representation, and intelligent reasoning to software engineering
to perform correctness proofs, execute symbolic tests, or find counterexamples using a theorem
prover. We have defined a core theory in [BKR+20], which is based on the core concepts of Broy’s
Focus theory [RR11, BR07], and applied it to challenges in intelligent flight control systems and
assistance systems for air or road traffic management [KRRS19, KMP+21, HRR12].

Intelligent testing strategies have been applied to automotive software engineering [EJK+19,
DGH+19, KMS+18], or more generally in systems engineering [DGH+18]. These methods are
realized for a variant of SysML Activity Diagrams (ADs) and Statecharts.

Machine Learning has been applied to the massive amount of observable data in energy man-
agement for buildings [FLP+11, KLPR12] and city quarters [GLPR15] to optimize operational
efficiency and prevent unneeded CO2 emissions or reduce costs. This creates a structural and
behavioral system theoretical view on cyber-physical systems understandable as essential parts
of digital twins [RW18, BDH+20].

Generative Software Engineering
The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound
derivate of the UML designed for product and test code generation. [Sch12] describes a flexible
generator for the UML/P, [Hab16] for MontiArc is used in domains such as cars or robotics
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[HRR12], and [AMN+20a] for enterprise information systems based on the MontiCore language
workbench [KRV10, GKR+06, GKR+08, HKR21].

In [KRV06], we discuss additional roles necessary in a model-based software development
project. [GKR+06, GHK+15, GHK+15a] discuss mechanisms to keep generated and handwrit-
ten code separated. In [Wei12, HRW15, Hoe18], we demonstrate how to systematically derive a
transformation language in concrete syntax and, e.g., in [HHR+15, AHRW17] we have applied
this technique successfully for several UML sub-languages and DSLs.

[HNRW16] presents how to generate extensible and statically type-safe visitors. In [NRR16],
we propose the use of symbols for ensuring the validity of generated source code. [GMR+16]
discusses product lines of template-based code generators. We also developed an approach for
engineering reusable language components [HLN+15, HLN+15a].

To understand the implications of executability for UML, we discuss the needs and the ad-
vantages of executable modeling with UML in agile projects in [Rum04c], how to apply UML for
testing in [Rum03], and the advantages and perils of using modeling languages for programming
in [Rum02].

Unified Modeling Language (UML) & the UML-P Tool
Starting with the early identification of challenges for the standardization of the UML in [KER99]
many of our contributions build on the UML/P variant, which is described in the books [Rum16,
Rum17] and is implemented in [Sch12].

Semantic variation points of the UML are discussed in [GR11]. We discuss formal semantics for
UML [BHP+98] and describe UML semantics using the “System Model” [BCGR09], [BCGR09a],
[BCR07b] and [BCR07a]. Semantic variation points have, e.g., been applied to define class
diagram semantics [CGR08]. A precisely defined semantics for variations is applied when checking
variants of class diagrams [MRR11e] and object diagrams [MRR11c] or the consistency of both
kinds of diagrams [MRR11f]. We also apply these concepts to activity diagrams [MRR11a] which
allows us to check for semantic differences in activity diagrams [MRR11d]. The basic semantics
for ADs and their semantic variation points are given in [GRR10].

We also discuss how to ensure and identify model quality [FHR08], how models, views, and
the system under development correlate to each other [BGH+98b], and how to use modeling in
agile development projects [Rum04c], [Rum03] and [Rum02].

The question of how to adapt and extend the UML is discussed in [PFR02] describing product
line annotations for UML and more general discussions and insights on how to use meta-modeling
for defining and adapting the UML are included in [EFLR99a], [FEL+98] and [SRVK10].

The UML-P tool was conceptually defined in [Rum16, Rum17, Rum12, Rum11], got the first
realization in [Sch12], and is extended in various ways, such as logically or physically distributed
computation [BKRW17a]. Based on a detailed examination [JPR+22], insights are also trans-
ferred to the SysML 2.

Domain Specific Languages (DSLs)
Computer science is about languages. Domain Specific Languages (DSLs) are better to use than
general-purpose programming languages but need appropriate tooling. The MontiCore language
workbench [GKR+06, KRV10, Kra10, GKR+08, HKR21] allows the specification of an integrated
abstract and concrete syntax format [KRV07b, HKR21] for easy development. New languages
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and tools can be defined in modular forms [KRV08, GKR+07, Voe11, HLN+15, HLN+15a,
HRW18, BEK+18b, BEK+19, Sch12] and can, thus, easily be reused. We discuss the roles in
software development using domain specific languages already in [KRV06] and elaborate on the
engineering aspect of DSL development in [CFJ+16].

[Wei12, HRW15, Hoe18] present an approach that allows the creation of transformation rules
tailored to an underlying DSL. Variability in DSL definitions has been examined in [GR11,
GMR+16]. [BDL+18] presents a method to derive internal DSLs from grammars. In [BJRW18],
we discuss the translation from grammars to accurate metamodels. Successful applications have
been carried out in the Air Traffic Management [ZPK+11] and television [DHH+20] domains.
Based on the concepts described above, meta modeling, model analyses, and model evolution
have been discussed in [LRSS10] and [SRVK10]. [BJRW18] describes a mapping bridge between
both. DSL quality in [FHR08], instructions for defining views [GHK+07] and [PFR02], guidelines
to define DSLs [KKP+09], and Eclipse-based tooling for DSLs [KRV07a] complete the collection.

A broader discussion on the global integration of DSMLs is given in [CBCR15] as part of
[CCF+15a], and [TAB+21] discusses the compositionality of analysis techniques for models.

The MontiCore language workbench has been successfully applied to a larger number of do-
mains, resulting in a variety of languages documented, e.g., in [AHRW17, BEH+20, BHR+21,
BPR+20, HHR+15, HJRW20, HMR+19, HRR12, PBI+16, RRW15] and Ph.D. theses like [Ber10,
Gre19, Hab16, Her19, Kus21, Loo17, Pin14, Plo18, Rei16, Rot17, Sch12, Wor16].

Software Language Engineering

For a systematic definition of languages using a composition of reusable and adaptable language
components, we adopt an engineering viewpoint on these techniques. General ideas on how to
engineer a language can be found in the GeMoC initiative [CBCR15, CCF+15a]. As said, the
MontiCore language workbench provides techniques for an integrated definition of languages
[KRV07b, Kra10, KRV10, HR17, HKR21, HRW18, BPR+20, BEK+19].

In [SRVK10] we discuss the possibilities and the challenges of using metamodels for language
definition. Modular composition, however, is a core concept to reuse language components like
in MontiCore for the frontend [Voe11, Naz17, KRV08, HLN+15, HLN+15a, HNRW16, HKR21,
BEK+18b, BEK+19] and the backend [RRRW15b, NRR16, GMR+16, HKR21, BEK+18b,
BBC+18]. In [GHK+15, GHK+15a], we discuss the integration of handwritten and generated
object-oriented code. [KRV10] describes the roles in software development using domain specific
languages.

Language derivation is to our belief a promising technique to develop new languages for a
specific purpose, e.g., model transformation, that relies on existing basic languages [HRW18].

How to automatically derive such a transformation language using a concrete syntax of the
base language is described in [HRW15, Wei12] and successfully applied to various DSLs.

We also applied the language derivation technique to tagging languages that decorate a base
language [GLRR15] and delta languages [HHK+15, HHK+13] that are derived from base lan-
guages to be able to constructively describe differences between model variants usable to build
feature sets.

The derivation of internal DSLs from grammars is discussed in [BDL+18] and a translation
of grammars to accurate metamodels in [BJRW18].
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Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals,
streams of telephone or video data, method invocation, or data structures passed between soft-
ware services.

We use streams, statemachines [GKR+96], and components [BR07] as well as expressive forms
of composition and refinement [PR99, PR97, RW18] for semantics. Furthermore, we built a
concrete tooling infrastructure called MontiArc [HRR10, HRR12] for architecture design and
extensions for states [RRW13c, BKRW17a, RRW14a, Wor16]. In [RRW13], we introduce a code
generation framework for MontiArc. [RRRW15b] describes how the language is composed of
individual sublanguages.

MontiArc was extended to describe variability [HRR+11] using deltas [HRRS11, HKR+11] and
evolution on deltas [HRRS12]. Other extensions are concerned with modeling cloud architectures
[PR13], security in [HHR+15], and the robotics domain [AHRW17, AHRW17b]. Extension
mechanisms for MontiArc are generally discussed in [BHH+17].

[GHK+07] and [GHK+08] close the gap between the requirements and the logical architecture
and [GKPR08] extends it to model variants.

[MRR14b] provides a precise technique for verifying the consistency of architectural views
[Rin14, MRR13] against a complete architecture to increase reusability. We discuss the synthesis
problem for these views in [MRR14a]. An experience report [MRRW16] and a methodological
embedding [DGH+19] complete the core approach.

Extensions for co-evolution of architecture are discussed in [MMR10], for powerful analyses
of software architecture behavior evolution provided in [BKRW19], techniques for understand-
ing semantic differences presented in [BKRW17], and modeling techniques to describe dynamic
architectures shown in [HRR98, HKR+16, BHK+17, KKR19].

Compositionality & Modularity of Models

[HKR+09, TAB+21] motivate the basic mechanisms for modularity and compositionality for
modeling. The mechanisms for distributed systems are shown in [BR07, RW18] and algebraically
grounded in [HKR+07]. Semantic and methodical aspects of model composition [KRV08] led to
the language workbench MontiCore [KRV10, HKR21] that can even be used to develop mod-
eling tools in a compositional form [HKR21, HLN+15, HLN+15a, HNRW16, NRR16, HRW18,
BEK+18b, BEK+19, BPR+20, KRV07b]. A set of DSL design guidelines incorporates reuse
through this form of composition [KKP+09].

[Voe11] examines the composition of context conditions respectively the underlying infras-
tructure of the symbol table. Modular editor generation is discussed in [KRV07a]. [RRRW15b]
applies compositionality to robotics control.

[CBCR15] (published in [CCF+15a]) summarizes our approach to composition and remaining
challenges in form of a conceptual model of the “globalized” use of DSLs. As a new form of
decomposition of model information, we have developed the concept of tagging languages in
[GLRR15, MRRW16]. It allows the description of additional information for model elements in
separated documents, facilitates reuse, and allows typing tags.
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Semantics of Modeling Languages
The meaning of semantics and its principles like underspecification, language precision, and
detailedness is discussed in [HR04]. We defined a semantic domain called “System Model” by
using mathematical theory in [RKB95, BHP+98] and [GKR96, KRB96, RK96]. An extended
version especially suited for the UML is given in [GRR09], [BCGR09a] and in [BCGR09] its
rationale is discussed. [BCR07a, BCR07b] contain detailed versions that are applied to class
diagrams in [CGR08] or sequence diagrams in [BGH+98a].

To better understand the effect of an evolved design, detection of semantic differencing, as
opposed to pure syntactical differences, is needed [MRR10]. [MRR11d, MRR11a] encode a
part of the semantics to handle semantic differences of activity diagrams. [MRR11f, MRR11f]
compare class and object diagrams with regard to their semantics. Furthermore, [BKRW17]
compares component and connector architectures similar to SysML’ block definition diagrams
and [RSR+99] discusses the combination of those architectures with the UML.

In [BR07, RR11], a precise mathematical model for distributed systems based on black-box
behaviors of components is defined and accompanied by automata in [Rum96]. Meta-modeling
semantics is discussed in [EFLR99]. [BGH+97] discusses potential modeling languages for the
description of exemplary object interaction, today called sequence diagram. [BGH+98b] discusses
the relationships between a system, a view, and a complete model in the context of the UML.

[GR11] and [CGR09] discuss general requirements for a framework to describe semantic and
syntactic variations of a modeling language. We apply these to class and object diagrams in
[MRR11f] as well as activity diagrams in [GRR10].

[Rum12] defines the semantics in a variety of code and test case generation, refactoring,
and evolution techniques. [LRSS10] discusses the evolution and related issues in greater de-
tail. [RW18] discusses an elaborated theory for the modeling of underspecification, hierarchical
composition, and refinement that can be practically applied to the development of CPS.

A first encoding of these theories in the Isabelle verification tool is defined in [BKR+20].

Evolution and Transformation of Models
Models are the central artifacts in model driven development, but as code, they are not initially
correct and need to be changed, evolved, and maintained over time. Model transformation is
therefore essential to effectively deal with models [CFJ+16].

Many concrete model transformation problems are discussed: evolution [LRSS10, MMR10,
Rum04c, MRR10], refinement [PR99, PR97, KPR97, PR94], decomposition [PR99, KRW20], syn-
thesis [MRR14a], refactoring [Rum12, PR03], translating models from one language into another
[MRR11e, Rum12], systematic model transformation language development [Wei12, HRW15,
Hoe18, HHR+15], repair of failed model evolution [KR18a].

[Rum04c] describes how comprehensible sets of such transformations support software develop-
ment and maintenance [LRSS10], technologies for evolving models within a language and across
languages, and mapping architecture descriptions to their implementation [MMR10]. Automaton
refinement is discussed in [PR94, KPR97] and refining pipe-and-filter architectures is explained
in [PR99, PR97]. This has e.g. been applied for robotics in [AHRW17, AHRW17b].

Refactorings of models are important for model driven engineering as discussed in [PR01,
PR03, Rum12]. [HRRS11, HRR+11, HRRS12] encode these in constructive Delta transforma-
tions, which are defined in derivable Delta languages [HHK+13].
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Translation between languages, e.g., from class diagrams into Alloy [MRR11e] allows for com-
paring class diagrams on a semantic level. Similarly, semantic differences of evolved activity
diagrams are identified via techniques from [MRR11d] and for Simulink models in [RSW+15].

Variability and Software Product Lines (SPL)
Products often exist in various variants, for example, cars or mobile phones, where one man-
ufacturer develops several products with many similarities but also many variations. Variants
are managed in a Software Product Line (SPL) that captures product commonalities as well as
differences. Feature diagrams describe variability in a top down fashion, e.g., in the automotive
domain [GHK+08, GKPR08] using 150% models. Reducing overhead and associated costs is
discussed in [GRJA12].

Delta modeling is a bottom up technique starting with a small, but complete base variant.
Features are additive, but also can modify the core. A set of commonly applicable deltas
configures a system variant. We discuss the application of this technique to Delta-MontiArc
[HRRS11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can not only describe special
variability but also temporal variability which allows for using them for software product line
evolution [HRRS12]. [HHK+13, HHK+15] and [HRW15] describe an approach to systematically
derive delta languages.

We also apply variability modeling languages to describe syntactic and semantic variation
points, e.g., in UML for frameworks [PFR02] and generators [GMR+16]. Furthermore, we spec-
ified a systematic way to define variants of modeling languages [CGR09], leverage features for
their compositional reuse [BEK+18b, BEK+19], and applied it as a semantic language refinement
on Statecharts in [GR11].

Digital Twins and Digital Shadows in Engineering and Production
The digital transformation of production changes the life cycle of the design, the production,
and the use of products [BDJ+22]. To support this transformation, we can use Digital Twins
(DTs) and Digital Shadows (DSs). In [DMR+20] we define: "A digital twin of a system consists
of a set of models of the system, a set of digital shadows, and provides a set of services to use
the data and models purposefully with respect to the original system."

We have investigated how to synthesize self-adaptive DT architectures with model-driven
methods [BBD+21a] and have applied it e.g. on a digital twin for injection molding [BDH+20].
In [BDR+21] we investigate the economic implications of digital twin services.

Digital twins also need user interaction and visualization, why we have extended the infrastruc-
ture by generating DT cockpits [DMR+20]. To support the DevOps approach in DT engineering,
we have created a generator for low-code development platforms for digital twins [DHM+22] and
sophisticated tool chains to generate process-aware digital twin cockpits that also include con-
densed forms of event logs [BMR+22].

[BBD+21b] describes a conceptual model for digital shadows covering the purpose, relevant
assets, data, and metadata as well as connections to engineering models. These can be used
during the runtime of a DT, e.g. when using process prediction services within DTs [BHK+21].

Integration challenges for digital twin systems-of-systems [MPRW22] include, e.g., the hori-
zontal integration of digital twin parts, the composition of DTs for different perspectives, or how
to handle different lifecycle representations of the original system.
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Modeling for Cyber-Physical Systems (CPS)
Cyber-Physical Systems (CPS) [KRS12, BBR20] are complex, distributed systems that control
physical entities. In [RW18], we discuss how an elaborated theory can be practically applied to
the development of CPS. Contributions for individual aspects range from requirements [GRJA12],
complete product lines [HRRW12], the improvement of engineering for distributed automotive
systems [HRR12, KRRW17], autonomous driving [BR12b, KKR19], and digital twin develop-
ment [BDH+20] to processes and tools to improve the development as well as the product itself
[BBR07].

In the aviation domain, a modeling language for uncertainty and safety events was developed,
which is of interest to European avionics [ZPK+11]. Optimized [KRS+18a] and domain specific
code generation [AHRW17b], and the extension to product lines of CPS [RSW+15, KRR+16,
RRS+16] are key for CPS.

A component and connector architecture description language (ADL) suitable for the specific
challenges in robotics is discussed in [RRW13c, RRW14a, Wor16, RRSW17, Wor21]. In [RRW12],
we use this language for describing requirements and in [RRW13], we describe a code generation
framework for this language. Monitoring for smart and energy efficient buildings is developed as
an Energy Navigator toolset [KPR12, FPPR12, KLPR12].

Model-Driven Systems Engineering (MDSysE)
Applying models during Systems Engineering activities is based on the long tradition of contribut-
ing to systems engineering in automotive [FND+98] and [GHK+08a], which culminated in a new
comprehensive model-driven development process for automotive software [KMS+18, DGH+19].
We leveraged SysML to enable the integrated flow from requirements to implementation to in-
tegration.

To facilitate the modeling of products, resources, and processes in the context of Industry
4.0, we also conceived a multi-level framework for production engineering based on these con-
cepts [BKL+18] and addressed to bridge the gap between functions and the physical product
architecture by modeling mechanical functional architectures in SysML [DRW+20]. For that
purpose, we also did a detailed examination of the upcoming SysML 2.0 standard [JPR+22]
and examined how to extend the SPES/CrEST methodology for a systems engineering approach
[BBR20].

Research within the excellence cluster Internet of Production considers fast decision making
at production time with low latencies using contextual data traces of production systems, also
known as Digital Shadows (DS) [SHH+20]. We have investigated how to derive Digital Twins
(DTs) for injection molding [BDH+20], how to generate interfaces between a cyber-physical
system and its DT [KMR+20], and have proposed model-driven architectures for DT cockpit
engineering [DMR+20].

State Based Modeling (Automata)
Today, many computer science theories are based on statemachines in various forms including
Petri nets or temporal logics. Software engineering is particularly interested in using statema-
chines for modeling systems. Our contributions to state based modeling can currently be split
into three parts: (1) understanding how to model object-oriented and distributed software using
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statemachines resp. Statecharts [GKR96, GKR+96, BCR07b, BCGR09a, BCGR09], (2) under-
standing the refinement [PR94, RK96, Rum96, RW18] and composition [GR95, GKR96, RW18]
of statemachines, and (3) applying statemachines for modeling systems.

In [Rum96, RW18] constructive transformation rules for refining automata behavior are given
and proven correct. This theory is applied to features in [KPR97]. Statemachines are embedded
in the composition and behavioral specification concepts of Focus [GKR96, BR07].

We apply these techniques, e.g., in MontiArcAutomaton [RRW13, RRW14a, RRW13, RW18],
in a robot task modeling language [THR+13], and in building management systems [FLP+11b].

Model-Based Assistance and Information Services (MBAIS)
Assistive systems are a special type of information system: they (1) provide situational support
for human behavior (2) based on information from previously stored and real-time monitored
structural context and behavior data (3) at the time the person needs or asks for it [HMR+19].
To create them, we follow a model centered architecture approach [MMR+17] which defines
systems as a compound of various connected models. Used languages for their definition include
DSLs for behavior and structure such as the human cognitive modeling language [MM13], goal
modeling languages [MRV20, MRZ21] or UML/P based languages [MNRV19]. [MM15] describes
a process of how languages for assistive systems can be created. MontiGem [AMN+20a] is used
as the underlying generator technology.

We have designed a system included in a sensor floor able to monitor elderlies and analyze
impact patterns for emergency events [LMK+11]. We have investigated the modeling of human
contexts for the active assisted living and smart home domain [MS17] and user-centered privacy-
driven systems in the IoT domain in combination with process mining systems [MKM+19],
differential privacy on event logs of handling and treatment of patients at a hospital [MKB+19],
the mark-up of online manuals for devices [SM18a] and websites [SM20], and solutions for privacy-
aware environments for cloud services [ELR+17] and in IoT manufacturing [MNRV19]. The user-
centered view of the system design allows to track who does what, when, why, where, and how
with personal data, makes information about it available via information services and provides
support using assistive services.

Modeling Robotics Architectures and Tasks
Robotics can be considered a special field within Cyber-Physical Systems which is defined by an
inherent heterogeneity of involved domains, relevant platforms, and challenges. The engineer-
ing of robotics applications requires the composition and the interaction of diverse distributed
software modules. This usually leads to complex monolithic software solutions hardly reusable,
maintainable, and comprehensible, which hampers the broad propagation of robotics applica-
tions.

The MontiArcAutomaton language [RRW12, RRW14a] extends the ADL MontiArc and inte-
grates various implemented behavior modeling languages using MontiCore [RRW13c, RRRW15b,
HKR21] that perfectly fit robotic architectural modeling.

The iserveU modeling framework describes domains, actors, goals, and tasks of service robotics
applications [ABH+16, ABH+17] with declarative models. Goals and tasks are translated into
models of the planning domain definition language (PDDL) and then solved [ABK+17]. Thus,
domain experts focus on describing the domain and its properties only.
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The LightRocks [THR+13, BRS+15] framework allows robotics experts and laymen to model
robotic assembly tasks. In [AHRW17, AHRW17b], we define a modular architecture model-
ing method for translating architecture models into modules compatible with different robotics
middleware platforms.

Many of the concepts in robotics were derived from automotive software [BBR07, BR12b].

Automotive, Autonomic Driving & Intelligent Driver Assistance
Introducing and connecting sophisticated driver assistance, infotainment, and communication
systems as well as advanced active and passive safety-systems result in complex embedded sys-
tems. As these feature-driven subsystems may be arbitrarily combined by the customer, a huge
amount of distinct variants needs to be managed, developed, and tested. A consistent require-
ment management connecting requirements with features in all development phases for the au-
tomotive domain is described in [GRJA12].

The conceptual gap between requirements and the logical architecture of a car is closed in
[GHK+07, GHK+08]. A methodical embedding of the resulting function nets and their quality
assurance using automated testing is given in the SMaRDT method [DGH+19, KMS+18].

[HKM+13] describes a tool for delta modeling for Simulink [HKM+13]. [HRRW12] discusses
the means to extract a well-defined Software Product Line from a set of copy and paste variants.

Potential variants of components in product lines can be identified using similarity analysis
of interfaces [KRR+16], or execute tests to identify similar behavior [RRS+16]. [RSW+15]
describes an approach to using model checking techniques to identify behavioral differences of
Simulink models. In [KKR19], we model dynamic reconfiguration of architectures applied to
cooperating vehicles.

Quality assurance, especially of safety-related functions, is a highly important task. In the
Carolo project [BR12b, BR12], we developed a rigorous test infrastructure for intelligent, sensor-
based functions through fully-automatic simulation [BBR07]. This technique allows a dramatic
speedup in the development and the evolution of autonomous car functionality, and thus enables
us to develop software in an agile way [BR12b].

[MMR10] gives an overview of the state-of-the-art in development and evolution on a more
general level by considering any kind of critical system that relies on architectural descriptions.

MontiSim simulates autonomous and cooperative driving behavior [GKR+17] for testing vari-
ous forms of errors as well as spatial distance [FIK+18, KKRZ19]. As tooling infrastructure, the
SSELab storage, versioning, and management services [HKR12] are essential for many projects.

Internet of Things, Industry 4.0 & the MontiThings Tool
The Internet of Things (IoT) requires the development of increasingly complex distributed
systems. The MontiThings ecosystem [KRS+22] provides an end-to-end solution to model-
ing, deploying [KKR+22], and analyzing [KMR21] failure-tolerant [KRS+22] IoT systems and
connecting them to synthesized digital twins [KMR+20]. We have investigated how model-
driven methods can support the development of privacy-aware [ELR+17, HHK+14] cloud sys-
tems [PR13], distributed systems security [HHR+15], privacy-aware process mining [MKM+19],
and distributed robotics applications [RRRW15b].

In the course of Industry 4.0, we have also turned our attention to mechanical or electrical ap-
plications [DRW+20]. We identified the digital representation, integration, and (re-)configuration
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of automation systems as primary Industry 4.0 concerns [WCB17]. Using a multi-level modeling
framework, we support machine as a service approaches [BKL+18].

Smart Energy Management
In the past years, it became more and more evident that saving energy and reducing CO2
emissions are important challenges. Thus, energy management in buildings as well as in neigh-
borhoods becomes equally important to efficiently use the generated energy. Within several
research projects, we developed methodologies and solutions for integrating heterogeneous sys-
tems at different scales.

During the design phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12,
KPR12] is used for the technical specification of building services already.

We adapted the well-known concept of statemachines to be able to describe different states
of a facility and validate it against the monitored values [FLP+11b]. We show how our data
model, the constraint rules, and the evaluation approach to compare sensor data can be applied
[KLPR12].

Cloud Computing and Services
The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-
based application and service architectures with high complexity, criticality, and new application
domains. It promises to enable new business models, facilitate web-based innovations, and
increase the efficiency and cost-effectiveness of web development [KRR14].

Application classes like Cyber-Physical Systems and their privacy [HHK+14, HHK+15a], Big
Data, Apps, and Service Ecosystems bring attention to aspects like responsiveness, privacy, and
open platforms. Regardless of the application domain, developers of such systems need robust
methods and efficient, easy-to-use languages and tools [KRS12].

We tackle these challenges by perusing a model-based, generative approach [PR13]. At the
core of this approach are different modeling languages that describe different aspects of a cloud-
based system in a concise and technology-agnostic way. Software architecture and infrastructure
models describe the system and its physical distribution on a large scale.

We apply cloud technology for the services we develop, e.g., the SSELab [HKR12] and the
Energy Navigator [FPPR12, KPR12] but also for our tool demonstrators and our development
platforms. New services, e.g., for collecting data from temperature sensors, cars, etc. are now
easily developed and deployed, e.g., in production or Internet-of-Things environments.

Security aspects and architectures of cloud services for the digital me in a privacy-aware
environment are addressed in [ELR+17].

Model-Driven Engineering of Information Systems & the MontiGem Tool
Information Systems provide information to different user groups as the main system goal. Using
our experiences in the model-based generation of code with MontiCore [KRV10, HKR21], we
developed several generators for such data-centric information systems.

MontiGem [AMN+20a] is a specific generator framework for data-centric business applica-
tions that uses standard models from UML/P optionally extended by GUI description models
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as sources [GMN+20]. While the standard semantics of these modeling languages remains un-
touched, the generator produces a lot of additional functionality around these models. The
generator is designed flexible, modular, and incremental, handwritten and generated code pieces
are well integrated [GHK+15a, NRR15a], tagging of existing models is possible [GLRR15], e.g.,
for the definition of roles and rights or for testing [DGH+18].

We are using MontiGem for financial management [GHK+20, ANV+18], for creating digital
twin cockpits [DMR+20], and various industrial projects. MontiGem makes it easier to create
low-code development platforms for digital twins [DHM+22]. When using additional DSLs, we
can develop assistive systems providing user support based on goal models [MRV20], privacy-
preserving information systems using privacy models and purpose trees [MNRV19], and process-
aware digital twin cockpits using BPMN models [BMR+22].

We have also developed an architecture of cloud services for the digital me in a privacy-aware
environment [ELR+17] and a method for retrofitting generative aspects into existing applications
[DGM+21].
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