
Towards a Systematic Engineering of
Industrial Domain-Specific Languages

Rohit Gupta∗, Sieglinde Kranz∗, Nikolaus Regnat∗, Bernhard Rumpe† and Andreas Wortmann‡
∗ Siemens AG, Munich, Germany

Email: rg.gupta@siemens.com, sieglinde.kranz@siemens.com, nikolaus.regnat@siemens.com
†Software Engineering, RWTH Aachen University, Aachen, Germany

Email: rumpe@se-rwth.de
‡Institute for Control Engineering of Machine Tools and Manufacturing Units, University of Stuttgart, Stuttgart, Germany

Email: andreas@wortmann.ac

Abstract—Domain-Specific Languages (DSLs) help practition-
ers in contributing solutions to challenges of specific domains. The
efficient development of user-friendly DSLs suitable for industrial
practitioners with little expertise in modelling still is challenging.
For such practitioners, who often do not model on a daily basis,
there is a need to foster reduction of repetitive modelling tasks
and providing simplified visual representations of DSL parts. For
industrial language engineers, there is no methodical support for
providing such guidelines or documentation as part of reusable
language modules. Previous research either addresses the reuse
of languages or guidelines for modelling. For the efficient
industrial deployment of DSLs, their combination is essential:
the efficient engineering of DSLs from reusable modules that
feature integrated documentation and guidelines for industrial
practitioners. To solve these challenges, we propose a systematic
approach for the industrial engineering of DSLs based on the
concept of reusable DSL Building Blocks, which rests on several
years of experience in the industrial engineering of DSLs and
their deployment to various organizations. We investigated our
approach via focus group methods consisting of five participants
from industry and research qualitatively. Ultimately, DSL Build-
ing Blocks support industrial language engineers in developing
better usable DSLs and industrial practitioners in more efficiently
achieving their modelling.

Index Terms—Domain-Specific Languages, Model-Based Sys-
tems Engineering, Industrial Language Engineering

I. INTRODUCTION
There is a conceptual gap [1] in the systems engineering

domain between the expertise of participating domain experts
(biologists, chemists, mechanical engineers, etc.) and the chal-
lenges of systems engineering. Consequently, with the advance
of various systems engineering domains from documents to
models, we are seeing a shift in the way modelling is intro-
duced at early stages of the systems engineering processes.
The ubiquitous General-Purpose Languages (GPLs) used for
software development present difficulties in system modelling
[2] as they focus on technical implementation details, aggra-
vate analysing the systems under development holistically, and
prevent domain experts from contributing solutions directly.
Domain-Specific Languages (DSLs) [3] instead aim to reduce
the gap by being aimed at a particular domain, supporting
domain-specific abstractions, and are better accessible to anal-
ysis and synthesis of systems and their parts. In the context
of this paper, we use the term developer to refer to industrial
language engineers and user to refer to industrial practitioners
and domain experts.

Various graphical DSLs have been developed to sup-
port modelling in different domains, such as MATLAB
Simulink [4] or SysML [5]. Yet, these are still overly generic
and do not reflect domain concepts. However, systematically
developing truly domain specific languages, e.g., a systems
engineering language for the Italian railway system [6], that
captures this particular domain’s terminology (syntax), rules
(well-formedness constraints), and meaning (semantics) is
complicated. Reusing encapsulated DSL parts systematically
can facilitate engineering new DSLs and ultimately foster truly
domain-specific systems modelling. Additionally, the deploy-
ment of such DSLs to their users can be challenging. Often,
the users the DSLs are developed for, model quite rarely,
maybe once a week or less. Another challenge of graphical
DSLs is to effectively represent DSL elements visually [7],
[8] that improves usability heuristics and aids users in deriving
hints to the meaning of such elements with the use of icons,
colours and appearances. Hence, despite employing domain
terminology, concepts, rules, and meaning, modelling with
many DSLs can be less effective than expected. Industrial DSL
engineering, therefore, needs to consider that users are perhaps
modelling less often than expected and integrate modelling
support and usability considerations into reusable language
components, the DSL Building Blocks.

Addressing the above challenges is essential to achieving
modelling goals effectively. Therefore, this paper presents an
approach, DSL Building Blocks, which supports developers
in building better usable graphical DSLs more efficiently and
helps users achieve modelling more efficiently. Our approach,
summarized in Fig. 1, separates the concerns of industrial
engineering and deployment of DSLs along three different
levels that relate to different skill sets and activities: (1) Con-
cept level: in this level, developers define three parts: (i) the
language, where abstract syntax, graphical concrete syntax and
the translational semantic mapping is defined for developers;
(ii) the method, where certain constraints and methodical steps
are described for users to help achieve intended modelling
goals; and (iii) the nucleus, where visual representations and
notations on DSL elements are described by developers to
help users relate to commonly used visual designs; (2) Tool-
specific implementation level: in this level, developers realize
the concepts described in the concept level by developing

49

2021 IEEE/ACM 8th International Workshop on Software Engineering Research and Industrial Practice (SER&IP)

978-1-6654-4476-7/21/$31.00 ©2021 IEEE
DOI 10.1109/SER-IP52554.2021.00016

[GKR+21] R. Gupta, S. Kranz, N. Regnat, B. Rumpe, A. Wortmann:
Towards a Systematic Engineering of Industrial Domain-Specific Languages.
In: 2021 IEEE/ACM 8th International Workshop on Software Engineering Research and Industrial Practice (SER&IP), pp. 49-56, IEEE, May 2021.
www.se-rwth.de/publications/

DSL Building Block Method

Nucleus

Language

111

State Machine Building Block

Traffic Signal Building Block

Traffic Signal DSL
for City X

Traffic Signal DSL
for City Y

... other project specific DSL
Building Blocks

Concept Level

Tool-specific
Implementation

Level

conforms to

Usage Level

based on

consists of

conforms to

Traffic Signal
 Model for City X:

Traffic Signal
 Model for City Y:

Fig. 1. A conceptual model for the development and usage of a graphical DSL
describing the different levels in the development process including defining
the DSL Building Block consisting of the method, language and nucleus at
the concept level. Different traffic signals layouts for City X and City Y are
depicted at the usage level for different cities.

the DSL Building Blocks and the DSLs using a graphical
modelling tool; (3) Usage level: this is the level where users
understand the methodical steps, documentation and visual
representations of DSL elements to achieve their modelling
goals. Leveraging this separation enables a systematic develop-
ment of graphical DSL for developers who can reuse common
parts for similarly structured DSLs. Further, it is beneficial to
users as they can follow methodical steps and derive meaning
from visual representation of DSL elements simplifying their
modelling experience and efficiently reaching their modelling
goals. Our focus on this paper is on the concept level, as
developers could use different graphical modelling tools to
build their DSLs. By defining DSL constraints, steps to reach
a modelling goal, language syntaxes and nucleus nuances, we
separate the language, method and nucleus of a DSL Building
Block enabling developers to re-use these parts during the
development of similarly structured graphical DSLs.

The concept of DSL Building Blocks is supported with a
running example of a state machine and investigated through a
case study and a qualitative focus group research [9]. Overall,
our approach builds on years of experience in developing
graphical DSLs for various industrial projects. By separating
the concerns of industrial DSL engineering across different
levels, developers achieve reuse of encapsulated parts in a
systematic way. Effective visual representation of DSL ele-
ments and a structured guidance to achieving modelling goals
is beneficial for users in optimizing their modelling experience.

In the remainder, II provides some background and related
work, before III presents our approach with a running example.
Afterward, IV describes a case study based on the example and
V describes the evaluation. Finally, VI provides a discussion

of the approach and VII concludes the paper.
II. BACKGROUND

DSLs are software languages and software languages are
software too [10]. Hence, their engineering is subject to
the usual challenges of software engineering in addition to
considering multiple (meta)languages to define the language’s
constituents. Generally, a software language consists of [11],
[12]: (1) an abstract syntax that defines the structure of its
models, e.g., in form of grammars [13] or metamodels [14];
(2) a concrete syntax that defines how the models are pre-
sented, e.g., graphical [15], textual [16], or projectional [17];
and (3) semantics, in the sense of meaning [18], often realized
through model-to-text [16] or model-to-model transforma-
tions [19].

To address this complexity, the research area of Software
Language Engineering (SLE) [20], [21] has emerged and
with it, language workbenches [22], specialized tools for
the creation of software languages. Many of these provide
advanced language engineering support, such as the gener-
ation of debuggers [15], editors [16], or reusable language
modules [13] from abstract syntax descriptions.

Yet, methodologies for systematic SLE in the large are
rare. And where studies detail how industrial graphical DSLs
are implemented [23], [24], the reported methodologies are
highly specific to individual departments and require repeated,
time-consuming effort in language engineering. Either cen-
tral research units, such as in Siemens Technology, must
become more common in developing truly domain-specific or
users in companies not having such units, such as Siemens
Healthineers, must be trained with software and language
engineering. Moreover, the language engineering and reuse
methods proposed so far focus solely on technical improve-
ments, such as explicit language interfaces [25], merging
of language parts [15], or language types [26]. Usability
of languages and language parts, in the form of modelling
documentation, guidance, or automated modelling assistants
as part of graphical DSL development are still missing.

In our literature review, we found two aspects that are
often neglected: a systematic approach to developing graphical
DSLs that fosters re-usability of common language elements
combining guidelines for modelling and ways to achieve
efficient user experience (UX) for users of such DSLs. Despite
the efforts in previous research [27], [28], there is a lot to
consider when building DSLs. We have not come across a
methodology for developing graphical DSLs that takes into
consideration how to reach a certain modelling goal and ways
to improve the UX for users. One possible explanation could
be that modelling goals vary for different projects and usability
heuristics are not considered part of the language definition. In
our experience of developing a diverse set of graphical DSLs
for industrial projects, there is a need for a methodology that
can be described independent of a specific implementation or
graphical modelling tool that eventually benefits users.

III. DSL BUILDING BLOCKS

In this section, we introduce the approach and terminology
of a DSL Building Block with the help of a running example

50

of a state machine. A state machine consists of states (the
information of a system at an instant), transitions (translations
from a source to a target state), and triggers (actions or inputs
that hold to enable a transitions). Initial states describe where
the state machine begins its execution or gets reset to. Final
states describe where the state machine ends its execution. All
other states are intermediate states.
A. DSL Building Block Structure

Our approach, summarized in Fig. 1 as a conceptual model,
starts from a classical domain-driven approach where users
define the business requirements such as number of states
and transitions in a state machine. The systematic approach
to developing graphical DSLs is based on domain-driven
design [29], allowing developers to create graphical DSLs
aimed at better modelling software and system architectures.
These business requirements, specific to each project, are first
translated into a DSL Building Block that primarily consists of
three parts: (1) the language, which defines the abstract syntax,
graphical concrete syntax and semantics of the language; (2)
the method, which describes how to reach a modelling goal;
and (3) the nucleus, which describes the visual representations
and notations for better UX on model elements. In our
example, defining these parts leads to a structured definition of
a state machine DSL Building Block, which is then extended to
specific industrial examples such as different traffic signalling
systems, an oven or a heater, or systems that require sequential
control logic. The outcome of this developmental approach is
to prevent the reinvention of the same method, language and
nucleus parts of similar graphical DSLs more than once.

The development and usage of a graphical DSL based on
DSL Building Blocks is segregated into three logical levels
and is performed by three actors whose tasks and activities
are described in Fig. 2. At the concept level, a DSL Building
Block Developer, who is a modelling expert with additional
expertise in UX, and language engineering (such as key expert
engineers in software and systems research units at Siemens),
describes the constraints and method of use of the DSL, the
abstract syntax, the graphical concrete syntax along with a
structured documentation of model elements and the nucleus
consisting of visual notations and representations of the model
elements in accordance with the requirements specified by
users. As well as defining the parts generically, such as for
a state machine, they also identify and define project specific
DSL Building Block requirements, such as for a traffic signal
system. The tool-specific implementation level is where a
DSL Developer, equipped with sufficient programming skills
needed for building graphical DSLs, selects the relevant graph-
ical modelling tool in accordance to their organization and
develops the DSL Building Block and its corresponding DSL.
The usage level is where users understand the steps, documen-
tation and visual representations of DSL elements to ultimately
achieve their modelling goals on the selected graphical mod-
elling tool. This is performed by a DSL User, who does not
need to be proficient in UX, modelling or programming, but
possess expert knowledge in their respective domains. They
also provide subsequent feedback and improved requirements

to DSL Building Block Developers corresponding to agile
principles of immediate feedback and continuous integration
[30]. As DSL Users represent a diverse set of users, it is
important for a DSL Building Block Developer to describe
the parts of a DSL Building Block in a meaningful and easy
to understand manner using appropriate documentation and
visual designs and notations belonging to a particular domain.
While developers could also possess domain expertise, they
are rather uncommon in Siemens.

DSL Building Block Developer

Describes the constraints
and methodical steps

(Method part)

Describes visual notations
and representations for

model elements (Nucleus
Part)

Defines the abstract
syntax, graphical

concrete syntax and
translational semantics

(Language part)

DSL
requirements

DSL Building Block
definition (Language)

DSL Building Block
definition (Language,

Method)

DSL Developer

Selects the graphical
modelling tool in

accordance to their
organization needs

Goes through the DSL
Building Block definition

Develops the DSL
Building Block using the

selected tool

DSL Building Block definition
(Language, Method,

Nucleus)

DSL Building
Block definition

Develops the DSL
based on the DSL

Building Block using
the selected tool

DSL Building
Block

DSL User

Starts the graphical
modelling tool

Installs the DSL

Understands the methodical
steps, structured

documentation and the list of
visual representations of

DSL elements.

DSL

[Suggest
improved

requirements
and feedback]

No

Identifies requirements for
a project specific DSL

Building Block

Yes

Gathers requirements in
accordance with the DSL

User

Generates models and
achieves modelling goals

using the DSL

No

Yes

[Is a Project
Specific DSL

Building Block
needed]

Fig. 2. An activity diagram describing the tasks and activities of the three
actors in the DSL Building Block approach.

We now describe each of the parts based on the state
machine example. It is worth mentioning that we represent
the state machine model elements within square brackets such
as [State: X], [Transition: y]. X and y are the names or
an identification number for the respective model element in
a derived DSL Building Block. For a state machine DSL
Building Block the main model elements are defined as [State],
[Transition] and [Trigger].
B. The Language

The language part of the DSL Building Block describes
the abstract syntax, the graphical concrete syntax and the
translational semantic mapping for the language. Fig. 3 shows
the abstract syntax of a state machine describing the nec-
essary concepts and structure of the language. The model
elements [State Machine], [State], [Transition], [Trigger] and
the [StateType] are defined along with the list of attributes.
In our example, the method list is left empty for the class
diagram, but can be modified later to allow for specific
business requirements. The DSL Building Block Developer
initially defines a default graphical form without any specific
visualization properties, for each model element as part of
the concrete syntax. E.g., a state is defined to be a rectangle
corresponding to a UML object and a transition is defined to be

51

a straight line. These model elements are visually defined and
improved later in the nucleus to complete a better graphical
concrete syntax aimed for a more visually understandable
and easy to use DSL. The structured documentation from the
defined model elements to the semantic domain essentially
provides meanings to those model elements. For the state
machine, a structured documentation of the model elements
and their attributes along with detailed description is shown
in Table I, for DSL Users to easily understand and relate each
model element.

State

name: String

type: StateType [1]

* *

1

Transition

source: State

target: State

action: Trigger

Trigger

condition: String

source

target

1 0..*

1 0..*

<<enumeration>>
StateType

Initial

Final

State Machine

name: String

Fig. 3. A class diagram showing the abstract syntax of a state machine DSL
Building Block as well as the relationships between them.

C. The Method
The method part of the DSL Building Block describes the

modelling goal for a business use case, which serves as a
guide to a DSL User, and addresses the question ”how-to”
reach that goal. Modelling goals vary for DSL Users and
include representations of target systems and their behaviour,
ideas, simulations as well as specific business requirements
for a wide variety of projects. An example of a business use-
case would be to design a traffic signal system that follows
a sequential control logic. Given the variety of domains and
projects, there is a need for a comprehensive guide for DSL
Users to reach their goals in an effortless manner. The DSL
Building Block Developer describes a suitable approach to
reach these modelling goals using a sequence of methodical
steps, specified textually and using an activity diagram. The in-
puts and outputs at each step consists of an actual model, parts
of a model or trivial and non-trivial business requirements in
relation to the composition of the system in consideration. In
addition, a list of constraints is defined for the DSL Developer
to ensure that the basic, yet critical, conditions for a DSL
Building Block, that may otherwise be overlooked, are pre-
checked and validated. The methodical steps provide a helping
guide to DSL Users in reaching their modelling goals.

The list of constraints for a finite state machine, which
consists of a finite number of [State]s and [Transition]s, are
described as follows by the DSL Building Block Developer.
Constraint 1: All the [State]s described in the State Machine
DSL Building Block must be reachable by [Transition]s, ex-
cept the initial [State] which may or may not be reachable by a
[Transition] but is the starting point of the machine. Constraint
2: A [State] can have more than one incoming [Transition]s,

each from different [State]s. Similarly, a [State] can have more
than one outgoing [Transition]s, each to different [State]s.
Constraint 3: The initial [State] has either zero or one in-
coming [Transition] from an intermediate [State] and the final
[State]s will not have any outgoing [Transition]s. Constraint
4: A [Transition] between two [State]s must execute within a
defined time frame.

Fig. 4 describes the steps needed to reach a modelling goal
for a state machine making it beneficial for a DSL User to
easily understand and follow the process needed to reach their
modelling goals.

Identify the various
[State]s of the system.

Identify the various
[Transition]s in the

system.

Model the identified
[State]s. Ensure initial
and final [State]s are

marked.

Verify if all [State]s are
reachable and all the

constraints of the system
are met.

Model each [Transition]
and describe the

[Trigger].

[All Transitions
 modelled]

[All Transitions not
 modelled]

Fig. 4. A method activity diagram that describes the sequence of methodical
steps needed to reach the modelling goal for the state machine DSL Building
Block example.

D. The Nucleus
The nucleus part of the DSL Building Block consists of

various characteristics of model elements for the language,
termed nucleus nuances, that help provide a coherent UX
to users based on context conditions, visual representations,
transformations and validation rules. Context conditions are
boolean predicates on a language’s abstract syntax to checking
its consistency and is used to determine if a model is well-
formed [13]. Visual representations are representations of
model elements in the form of icons, colours, appearance,
dialogs and its properties in relation to shape, size and opacity.
Transformations allow model elements to be automatically
instantiated and validation rules enable better error detection
with model elements, including checking redundant model
elements or misconfigured types that are hard to be detected
manually. Certain studies have explored generating graphical
syntax for better visual representation [31], [32]. A nucleus
nuance is a characteristic of a model element describing the
model element’s intent, motivation and consequences based on
reasoning to enhance UX for DSL Users. The usability aspects
in building graphical DSLs is often neglected which leads to
users struggling in understanding complex DSLs [33], [34].
Therefore, nuances are described by the DSL Building Block
Developer for effective usability and visual notation conven-
tions [35], [36], [7] in making better design decisions with
respect to each individual domain. Each nuance is described
with a reasoning as a textual template, that the DSL Developer
builds into the DSL Building Block and the DSL. Users can
thus easily understand the notations and importance of these
nuances for effectively using a graphical DSL. We now list a
few nucleus nuances for the state machine example.

52

TABLE I
THE STRUCTURED DOCUMENTATION OF SYNTAX ELEMENTS FOR A STATE MACHINE DSL BUILDING BLOCK.

Syntax Element Attribute Description

State Machine A finite state machine with a fixed number of [State]s and [Transition]s.

State Representation of information of a system at a given point.

name Name of the [State].

type Type of a [State]: Initial, Intermediate, Final.

Transition A path between two [State]s based on an action.

source A [Transition] starts at this [State].

target The [State] where the [Transition] ends.

action The [Trigger] that switches the [Transition] from a source to a target [State].

Trigger A logical condition for a [Transition] running for a definite period of time.

condition A string holding the condition requirement.

Nuance 1: On creation of a [State Machine], an initial
[State] is also created automatically on a graphical modelling
tool canvas. Reason: Users often forget to create or mark the
initial state or remove it without marking another initial state
during model creation or refactoring.

Nuance 2: [State]s are oval or circular in shape and
[Transition]s are denoted with curved black arrows. Reason:
Representing different model elements in particular shapes
allows for easy visual identification of model elements on the
graphical modelling tool.

Nuance 3: The initial [State] is marked with an � (alphabet
i) symbol whereas the final [State]s are marked with an g
(alphabet f) symbol. Reason: Visualizations with different
symbols prevent users from creating multiple such [State]s
or confuse them with other [State]s in a complex system with
multiple model elements.

Nuance 4: All instances of a [State] are filled with a
distinct colour, except intermediate [State]s, where two such
intermediate [State]s can be filled with the same colour.
Reason: Visualizations with different colours help distinguish
[StateType]s.

Nuance 5: A [State] without an incoming or outgoing
[Transition]s is marked with a red exclamation mark U at its
top right corner. Reason: Often in complex models, changes
in the model leads to the unwanted removal of model ele-
ments leading to errors in model. This nuance, thus, helps in
validation and error detection.

Nuance 6: A [Transition] between two [State]s is repre-
sented by a curved black line. If a [Transition] does not contain
a [Trigger], the link is coloured red along with an exclamation
mark U. Reason: This nuance also helps in detecting errors and
validates certain rules that may be thought of initially as an
implied behaviour.

Nuance 7: Each [State]s can also be marked with any addi-
tional relevant icon that represents visually aiding information
about the [State]. Reason: Complex industrial systems consists
of multiple hardware and software resources. Using relevant
icons helps identify model elements with ease.

IV. EXTENDED EXAMPLE AS A CASE STUDY

A local government of a city is holding an exhibition
(expo) inviting industrial manufacturers to foster innovation

around mobility and sustainability. To effectively manage
traffic during the event, an intelligent traffic management
system is needed serving different purposes. For example, one
area of the expo calls for a traffic signal serving pedestrians
and cars, while another area of the expo needs a traffic signal
catering to fully autonomous cars, thus requiring fewer states
and transitions and standardised traffic signal lights that the
autonomous cars can detect to either proceed or stop. With a
state machine DSL Building Block defined earlier, deriving
such traffic signal DSL Building Blocks, that also require
sequential control logic, becomes significant for re-usability.
This reduces repetitive tasks such as defining constraints, states
and transitions and defining syntax related to the language
during the graphical DSL development.

We extend the example of a state machine to a traffic signal
in this case study. A traffic signal DSL Building Block consists
of three state instances: [State: Go] (Initial State), [State: Slow]
(Intermediate State), [State: Stop] (Intermediate State). The
transitions and triggers for these states are shown in Table II.
The times in the trigger column are filled in by DSL Users
when building models, thus simplifying the use of a DSL.
The method, language and nucleus parts are adapted by the
DSL Building Block Developers for a specific traffic signal
and do not influence the state machine DSL Building Block.
However, an advantage of exploring different case studies
allows common adaptations to also be incorporated directly in
a parent DSL Building Block for future re-use, thus allowing
quick and continuous improvements. An example of such
commonality could be a sensor that is used in all instances
of all traffic signal implementation. Finally, nuances help in
relating to better visual representations allowing DSL Users
to design traffic signal models that are similar to real-world
traffic signals as shown Fig. 5.

We now discuss modifications to the state machine example
to support the traffic signal DSL Building Block. The follow-
ing constraint is added to the method. Constraint 5: As a traffic
signal is intended to run indefinitely, the final state will not
exist. The methodical steps from the state machine example
is updated to include the following transitions. [Transition: 1]:
[State: Go] ->[State: Slow]; [Transition: 2]: [State: Slow] -

53

TABLE II
TRANSITIONS AND TRIGGER CONDITIONS FOR A TRAFFIC SIGNAL DSL

BUILDING BLOCK.

Transition Source State Target State Trigger Condition

[Transition: 1] [State: Go] [State: Slow] ”Wait t1 seconds”a

[Transition: 2] [State: Slow] [State: Stop] ”Wait t2 seconds”a

[Transition: 3] [State: Stop] [State: Go] ”Wait t3 seconds”a
at1, t2, t3 are the times defined by a DSL user when using the DSL.

Wait 30
 seconds

Wait 5 seconds

Wait 20 seconds

[State: Stop]

[State: Green]

[State: Slow]
Wait 10

 seconds
Wait 40
seconds

[State: Stop]

[State: Green]

Fig. 5. A traffic signal model for pedestrians and cars (left) and a model for
autonomous cars with fewer states and transitions (right).

>[State: Stop]; [Transition: 3]: [State: Stop] ->[State: Go].
The class diagram representing the abstract syntax is updated
to reflect traffic signal specifics, such as two state types: Initial
and Intermediate, and three states. The documentation of the
model elements described in Table I is updated to reflect the
changes. Transitions and triggers for this traffic signal example
are described in the Table II. To further improve visual aspects
for the traffic signal, the following nuances are updated or
added. Nuance 2 (updated): The states must be circular in
shape and are arranged vertically in this order (top to bottom):
[State: Stop], [State: Slow] and [State: Go]. Nuance 8: [State:
Go] is filled with green colour and contains a green tick (Ë)
icon. Nuance 9: [State: Slow] is filled with yellow colour and
contains an orange (ë) icon. Finally, Nuance 10: [State: Stop]
is filled with red colour and contains a red cross (é) icon.
The reasoning for these nuances is to effectively represent
important model elements visually by defining colours, shapes
and layouts that are commonly used in real world traffic
signals. This case study shows methodical steps, structured
documentation and better visual notations of model elements
that help DSL Users model systems with a greater degree
of confidence and show how parts of a similarly structured
graphical DSL can be re-used with minimal adaptations.

V. EVALUATION
The proposed approach was subject to a qualitative assess-

ment using focus group methods [9]. The purpose of this
evaluation was to bring together a group of experienced prac-
titioners and researchers to collectively understand the chal-
lenges of the approach, discuss possible solutions and define a
systematic graphical DSL developmental approach that would

be beneficial for both practitioners and researchers alike. In
this section, we describe the evaluation pre-processing, dis-
cussions and the results. The evaluation was initially planned
for two in-person phases, however due to travel and contact
restrictions surrounding COVID-19, the second phase was
conducted online using video conferencing tools.
A. Participants

To assess the approach, five participants with varying
modelling and programming knowledge were chosen. Two
participants from the industry were domain modelling experts
with 8-12 years experience in developing graphical DSLs. Two
participants were researchers from the software engineering
domain with limited programming, but 6-12 years experience
in software and systems modelling. The final participant was
a software developer with limited modelling experience, but
5 years of programming and UX skills. The moderator, a
research group manager with experience as a scrum master,
was briefed with the proposed approach before each phase.
B. Phase 1

Phase 1 was held in-person. The focus group was guided by
the moderator who prepared a list of questions and activities on
the proposed approach with the discussion lasting two hours.

Pre-processing. The moderator was given three weeks to
prepare the content of the discussion, the scripts and the
technical setup. The outcome of this phase was to provide
a first look into the problems faced by domain experts in
building graphical DSLs for industrial projects, and to foster
lively discussions and feedback on the proposed approach.
The moderator proposed the prepared set of questions and
activities, including whiteboard discussions, and took hand-
written notes while guiding the discussion.

Discussion and results. The discussion was held over three
stages: introduction, main stage and the follow-up phase. In the
introduction stage, the moderator introduced the participants
and presented the elementary question: (1) What is the single
most difficult challenge when designing DSLs? The practition-
ers and researchers unanimously agreed on the need to have
proper guidelines in developing graphical DSLs. In the main
stage, the following questions were asked: (2) Which steps in
designing graphical DSLs consumes the most of your time?
(3) Is the usage of visual notations beneficial when using
a graphical DSL? In this stage, there were mixed opinions.
While practitioners favoured UX as being more beneficial, the
researchers said re-usability helps in reducing time-consuming
tasks. Then, the difference between the language and nucleus
parts was discussed as certain nuances could be part of the
syntax of the language. However, one researcher opined that
segregating the nuances and classifying them with reasoning
would be more structured for developers. The software de-
veloper advocated the use of common visual notations and
representations making DSL elements easier for any user to
understand. In the follow-up phase, all participants believed
more clarifications were needed for phase two as some issues
of this approach were insufficiently addressed.
C. Phase 2

Phase 2, initially planned for in-person, was conducted
online, three months later, due to restrictions surrounding

54

COVID-19 with the same participants and moderator. Building
on the experience in the first phase and being updated with
an improved version of the approach, the moderator framed a
diverse set of questions and activities for this phase.

Pre-processing. The moderator prepared the content of the
discussion and set up the audio and video conferencing in
Microsoft Teams [37]. The whiteboard discussion was held
over Conceptboard [38]. The outcome of this phase was to
reach a systematic approach beneficial for both users and
developers of graphical DSLs.

Discussion and results. The discussion was held over three
stages: introduction, main stage and the follow-up phase.
In the introduction, the moderator presented the approach
and the initial question: (1) What strengths or weaknesses
does this improved approach carry? This was followed by
a creative discussion in the main stage which included virtual
whiteboard discussions. In this stage, participants came up
with an approach to define various constraints in the method
part and reasoning for each nuance based on the state machine
example. At times the audio and video distorted, however,
the moderator noted that there was no real disruption in the
outcome as all topics were well articulated. The inability to
use an offline whiteboard was a challenge for participants as
more time was needed here than planned. In the follow-up
phase, participants were asked to describe and rate the further
improved approach and list prospective work. The participants
agreed this final systematic approach is beneficial for both
developers and users as well as practitioners and researchers.
The final approach presented in this paper is a three layered
developmental approach incorporating various suggestions and
feedback based on both focus group discussions.

VI. DISCUSSION
The presented methodology enables DSL Developers to sys-

tematically develop graphical DSLs. We achieve re-usability of
common aspects during graphical DSL development by sepa-
rating the concerns of industrial DSL engineering along three
different levels relating to different skill sets and activities.
The approach, DSL Building Blocks, assists DSL Building
Block Developers in defining constraints and methodical steps
intended to help DSL Users achieve their modelling goals.
The business requirements for each project specific DSL is
gathered by DSL Building Block Developers in consultation
with DSL Users. The developer then extracts commonalities
from requirements in the form of a DSL Building Block
definition. Project specific use-cases of DSL Building Blocks
can extend and adapt the method, language and nucleus parts,
thereby providing adequate flexibility to domain experts in
realizing problems of a specific domain. Furthermore, visual
representation of various DSL elements is beneficial for DSL
Users in simplifying their DSL modelling experience, as
users can relate such elements to real world domain specific
examples. The combination of providing methodical steps to
reach a modelling goal and the focus on UX for DSL Users
has been addressed with our approach. Our approach presents
a structured graphical DSL development process including
adaptation and continuous integration of DSL requirements

from DSL Users, who closely interact and suggest feedback
to DSL Building Block Developers. Our approach to DSL
engineering is limited to graphical DSLs, as large corporations
such as Siemens, mostly focus on visualization concepts for
representing DSLs. We note that graphical modelling tools
such as MetaEdit+ [39] and MagicDraw [40] have different
technical capabilities, which therefore poses a challenge to-
wards adopting this methodology seamlessly across all tools.
Other language engineering tools such as MPS [41], Spoofax
[42], and Melange [15] provide certain means for language
composition and customization, but fail to provide methods
for systematic reuse for similarly structured DSLs. While
our focus group evaluation was limited to a few practition-
ers and researchers, we are currently building an extensive
survey to gather ways on improving UX for domain experts
within Siemens. As part of the ongoing research, we plan to
categorize and structure various nuances allowing for them
to be easily analyzed to make it more machine-processable
and accessible to automation. Further, we plan to work on
challenges to introduce inheritance support for multiple DSL
Building Blocks in enabling re-use support across a wider
variety of domains not structurally related to each other.

Overall, our approach builds upon our experience of devel-
oping graphical DSLs for various industry projects as well as
the qualitative evaluation of the approach using focus groups
that included experienced practitioners and researchers. In this
vision, the need to have a proper set of guidelines and docu-
mentation is important. We, therefore, propose this systematic
approach that not only fosters re-use of language parts for DSL
Developers, but also focuses on visual representation of model
elements that help DSL Users understand and use graphical
DSLs with simplicity. We are unaware of any other similar
methodologies for the development of graphical DSLs that
helps realize this vision.

VII. CONCLUSIONS

We have presented a systematic approach for developing
graphical DSLs, DSL Building Blocks, through separation of
concerns of industrial DSL engineering among developers and
users with different skill sets and activities. This approach
solves challenges related to re-usability of common DSL
elements for developers and is intended for a better user
experience for domain experts who possess different skill sets
in DSL language use and engineering. While our approach
is currently limited to graphical DSLs, they greatly facilitate
the re-use of DSL parts and provide robust guidance, docu-
mentation and effective visual representations to users helping
them achieve modelling goals with simplicity. Continuous
feedback by users to developers help in constantly adapting
and improving the DSL Building Blocks and subsequent
DSLs. This fosters the adoption of the systematic development
of graphical DSLs among developers and narrows the gap
between practitioners and researchers. As part of our ongoing
research, we are building an extensive feedback survey to
collect experiences from users in improving our methodology.
We also plan to apply our approach to different domains by

55

introducing inheritance support between DSL Building Blocks
and integrate further language definition dimensions.

ACKNOWLEDGEMENT
The authors would like to thank Ambra Calà and Jérôme

Pfeiffer for their inputs during the course of writing this paper.

REFERENCES

[1] R. France and B. Rumpe, “Model-driven Development of Complex Soft-
ware: A Research Roadmap,” Future of Software Engineering (FOSE
’07), pp. 37–54, May 2007.

[2] H. A. Proper and M. Bjeković, “Fundamental challenges in systems
modelling,” in 40 Years EMISA 2019, H. C. Mayr, S. Rinderle-Ma, and
S. Strecker, Eds. Bonn: Gesellschaft für Informatik e.V., 2020, pp.
13–28.

[3] M. Fowler, Domain-Specific Languages, ser. The Addison-Wesley sig-
nature series. Addison-Wesley, 2011.

[4] S. J. Chapman, MATLAB programming for engineers. Nelson Educa-
tion, 2015.

[5] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML:
The Systems Modeling Language. Morgan Kaufmann, 2014.

[6] B. Meyers, M. Wimmer, A. Cicchetti, and J. Sprinkle, “A generic in-
place transformation-based approach to structured model co-evolution,”
Electronic Communications of the EASST, vol. 42, Jan. 2011.

[7] D. Moody, “The “physics” of notations: Toward a scientific basis for
constructing visual notations in software engineering,” IEEE Trans.
Softw. Eng., vol. 35, no. 6, p. 756–779, Nov. 2009.

[8] J. Nielsen, “Designing web usability,” 2000.
[9] R. Krueger and M. Casey, Focus Groups: A Practical Guide for Applied

Research. SAGE Publications, 2009.
[10] J.-M. Favre, D. Gasevic, R. Lämmel, and E. Pek, “Empirical language

analysis in software linguistics,” in International Conference on Software
Language Engineering. Springer, 2010, pp. 316–326.

[11] M. V. Cengarle, H. Grönniger, and B. Rumpe, “Variability within Model-
ing Language Definitions,” in Conference on Model Driven Engineering
Languages and Systems (MODELS’09), ser. LNCS 5795. Springer,
2009, pp. 670–684.

[12] T. Clark, M. v. d. Brand, B. Combemale, and B. Rumpe, “Conceptual
Model of the Globalization for Domain-Specific Languages,” in Glob-
alizing Domain-Specific Languages, ser. LNCS 9400. Springer, 2015,
pp. 7–20.

[13] K. Hölldobler and B. Rumpe, MontiCore 5 Language Workbench Edition
2017, ser. Aachener Informatik-Berichte, Software Engineering, Band
32. Shaker Verlag, December 2017.

[14] B. Combemale, O. Barais, and A. Wortmann, “Language engineering
with the GEMOC studio,” in 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW). IEEE, 2017, pp. 189–191.

[15] T. Degueule, B. Combemale, A. Blouin, O. Barais, and J.-M. Jézéquel,
“Melange: A Meta-language for Modular and Reusable Development
of DSLs,” in 8th International Conference on Software Language
Engineering (SLE), Pittsburgh, United States, 2015.

[16] L. Bettini, Implementing domain-specific languages with Xtext and
Xtend. Packt Publishing Ltd, 2016.

[17] F. Campagne, The MPS language workbench: volume I. Fabien
Campagne, 2014, vol. 1.

[18] D. Harel and B. Rumpe, “Meaningful Modeling: What’s the Semantics
of ”Semantics”?” IEEE Computer, vol. 37, no. 10, pp. 64–72, 2004.

[19] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Science of computer programming, vol. 72, no.
1-2, pp. 31–39, 2008.

[20] A. Kleppe, Software Language Engineering: Creating Domain-Specific
Languages using Metamodels. Pearson Education, 2008.

[21] K. Hölldobler, B. Rumpe, and A. Wortmann, “Software Language En-
gineering in the Large: Towards Composing and Deriving Languages,”
Computer Languages, Systems & Structures, vol. 54, pp. 386–405, 2018.

[22] S. Erdweg, T. Storm, M. Völter, M. Boersma, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. D. Konat,
P. J. Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler,
R. Solmi, V. A. Vergu, E. Visser, K. van der Vlist, G. H. Wachsmuth, and
J. van der Woning, “The State of the Art in Language Workbenches,”
in Software Language Engineering, ser. Lecture Notes in Computer
Science, M. Erwig, R. F. Paige, and E. Van Wyk, Eds. Springer
International Publishing, 2013, vol. 8225, pp. 197–217.

[23] D. Méndez-Acuña, J. A. Galindo, T. Degueule, B. Combemale, and
B. Baudry, “Leveraging software product lines engineering in the
development of external dsls: A systematic literature review,” Comput.
Lang. Syst. Struct., vol. 46, pp. 206–235, 2016.

[24] J. Tolvanen and S. Kelly, “Defining domain-specific modeling languages
to automate product derivation: Collected experiences,” in Software
Product Lines, 9th International Conference, SPLC 2005, Rennes,
France, September 26-29, 2005, Proceedings, 2005, pp. 198–209.

[25] A. Butting, J. Pfeiffer, B. Rumpe, and A. Wortmann, “A Compositional
Framework for Systematic Modeling Language Reuse,” in Proceedings
of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems. ACM, October 2020, p. 35–46.

[26] J. Steel and J.-M. Jézéquel, “On model typing,” Software & Systems
Modeling, vol. 6, no. 4, pp. 401–413, 2007.

[27] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and
S. Völkel, “Design Guidelines for Domain Specific Languages,” in
Domain-Specific Modeling Workshop (DSM’09), ser. Techreport B-108.
Helsinki School of Economics, October 2009, pp. 7–13.

[28] G. Czech, M. Moser, and J. Pichler, “A systematic mapping study on
best practices for domain-specific modeling,” Softw. Qual. J., vol. 28,
no. 2, pp. 663–692, 2020.

[29] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley, 2004.

[30] K. L. Beck, Extreme programming explained - embrace change.
Addison-Wesley, 1990.

[31] S. Maro, J. Steghöfer, A. Anjorin, M. Tichy, and L. Gelin, “On integrat-
ing graphical and textual editors for a UML profile based domain specific
language: an industrial experience,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Language Engineering,
SLE 2015, Pittsburgh, PA, USA, October 25-27, 2015, 2015, pp. 1–12.

[32] B. Nastov and F. Pfister, “Experimentation of a graphical concrete
syntax generator for domain specific modeling languages,” in Actes du
XXXIIème Congrès INFORSID, Lyon, France, 20-23 Mai 2014, 2014,
pp. 197–213.

[33] E. Mosqueira-Rey and D. Alonso-Rı́os, “Usability heuristics for domain-
specific languages (dsls),” in SAC ’20: The 35th ACM/SIGAPP Sym-
posium on Applied Computing, online event, [Brno, Czech Republic],
March 30 - April 3, 2020, 2020, pp. 1340–1343.

[34] I. P. Rodrigues, A. F. Zorzo, M. Bernardino, and M. de Borba Cam-
pos, “Usa-dsl: usability evaluation framework for domain-specific lan-
guages,” in Proceedings of the 33rd Annual ACM Symposium on Applied
Computing, SAC 2018, Pau, France, April 09-13, 2018, pp. 2013–2021.

[35] T. R. G. Green and M. Petre, “Usability analysis of visual program-
ming environments: A ’cognitive dimensions’ framework,” J. Vis. Lang.
Comput., vol. 7, no. 2, pp. 131–174, 1996.

[36] A. F. Blackwell, “Cognitive dimensions of notations: Understanding
the ergonomics of diagram use,” in Diagrammatic Representation and
Inference, 5th International Conference, Diagrams 2008, Herrsching,
Germany, September 19-21, 2008. Proceedings, 2008, pp. 5–8.

[37] (2020) A collaborative workspace offering workspace chat and
video conferencing. [Online]. Available: https://www.microsoft.com/en-
us/microsoft-365/microsoft-teams/group-chat-software

[38] (2020) An online visual collaboration workspace. [Online]. Available:
https://conceptboard.com/

[39] J. Tolvanen, “Metaedit+: integrated modeling and metamodeling en-
vironment for domain-specific languages,” in Companion to the 21th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2006, October 22-26,
2006, Portland, Oregon, USA, 2006, pp. 690–691.

[40] D. Neuendorf, “Review of magicdraw uml® 11.5 professional edition,”
J. Object Technol., vol. 5, no. 7, pp. 115–118, 2006.

[41] M. Völter and E. Visser, “Language extension and composition with
language workbenches,” in Companion to the 25th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, SPLASH/OOPSLA 2010, October 17-21,
2010, Reno/Tahoe, Nevada, USA, 2010, pp. 301–304.

[42] G. H. Wachsmuth, G. D. Konat, and E. Visser, “Language design with
the spoofax language workbench,” IEEE Software, vol. 31, no. 5, pp.
35–43, 2014.

56

