
Timo Greifenberg
Steffen Hillemacher
Bernhard Rumpe

T.
 G

re
ife

nb
er

g,
 S

. H
ill

em
ac

he
r,

B
. R

um
pe

 T

ow
ar

ds
 a

 S
us

ta
in

ab
le

 A
rti

fa
ct

 M
od

el

Band 30

B
an

d
30

Towards a Sustainable
Artifact Model
Artifacts in Generator-Based
Model-Driven Projects

Aachener Informatik-Berichte,
Software Engineering

Hrsg: Prof. Dr. rer. nat. Bernhard Rumpe

[GHR17] T. Greifenberg, S. Hillemacher, B. Rumpe:
Towards a Sustainable Artifact Model: Artifacts in Generator-Based Model-Driven Projects.
Shaker Verlag. ISBN 978-3-8440-5678-5. Aachener Informatik-Berichte, Software Engineering, Band 30. December 2017.

Shaker Verlag
Aachen 2017

Aachener Informatik-Berichte, Software Engineering

herausgegeben von
Prof. Dr. rer. nat. Bernhard Rumpe

Software Engineering
RWTH Aachen University

Band 30

Timo Greifenberg
Steffen Hillemacher
Bernhard Rumpe

RWTH Aachen University

Towards a Sustainable Artifact Model

Artifacts in Generator-Based Model-Driven Projects

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Copyright Shaker Verlag 2017
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 978-3-8440-5678-5
ISSN 1869-9170

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen
Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9
Internet: www.shaker.de • e-mail: info@shaker.de

Abstract

Model-driven development (MDD) is an enabler for the automatic generation of program-
ming language files for products or for tests from explicitly defined models. MDD projects
manage a large magnitude of artifacts (files, etc.) with various relationships.

A large class of artifact relations comes from artifacts using others, e.g., via importing
types and signatures. This form of usage strongly differs from generation dependencies,
where one artifact is generated, compiled, and transformed from or to other artifacts.

An MDD project usually entails a number of potentially dependent process steps, where
a chain of artifact generations, compilations, and packagings arises. During these steps a
multitude of artifacts are created, read or even executed. Those artifacts are thus related to
each other in various ways.

The number and complexity of occurring dependencies and other relationships between
development artifacts can lead to several problems, such as poor maintainability and long
development times of both, MDD tools and the product, in an MDD process. To tackle
these problems, it is important to understand which artifacts are involved and how these
artifacts are related to each other in MDD projects.

In this report, we (1) develop an abstract and rather general artifact model and (2) apply
the artifact model by examining in detail the kinds of artifacts and related concepts relevant
for a form of wide-spread projects, namely Java projects. We also dive into the core of
generative projects, by looking at the generator as a set of artifacts executed at design time.
Artifacts are regarded as storable and explicitly named elements of MDD projects, such as
model files, directories, libraries, and source code files. Thus, artifacts are the physical
manifestation of all information in an MDD project.

For a precise definition of all relevant concepts, we introduce the Artifact Model (AM),
which allows the precise, model-based specification of involved kinds of artifacts, corre-
sponding concepts, and their relations. The AM can also be considered as a specific form
of meta-model for models representing the concrete elements and relations between these
in MDD projects.

i

Contents

1. Introduction 1
1.1. How to Read the CD4A and OCL Specification 4
1.2. Contents of the Report . 5
1.3. Acknowledgements . 5

2. Essence of Artifact Models 7
2.1. Artifacts and Artifact Containers . 7

2.1.1. Artifacts . 8
2.1.2. Relations between Artifacts . 9
2.1.3. Artifact Containers . 10
2.1.4. Directories . 12
2.1.5. Archives . 12

2.2. Systems and Tools . 13
2.2.1. Systems . 13
2.2.2. Modules . 14

2.3. How to Use the Artifact Model . 15

3. Extending the Artifact Model to Java 17
3.1. Java Source and Class Files . 17

3.1.1. Java Artifacts . 18
3.1.2. Java Source Files . 18
3.1.3. Java Class Files . 19
3.1.4. Java Archives . 20

3.2. Relation Between Java Artifacts and Types 20
3.2.1. Packages . 21
3.2.2. Java Types . 21

3.3. Detailed Examination of Java Artifacts and Types 25
3.3.1. Case 1: Java Compiles All Files It Relies On 26
3.3.2. Case 2: Where Java Looks for Types 27
3.3.3. Case 3: Where Java Looks for Inner Types 29
3.3.4. Case 4: How Java Handles Archives 30
3.3.5. Summary . 31

4. Modelling Languages and Their Definitions 33
4.1. Languages . 34

iii

4.2. Grammar-Based Definitions . 34
4.3. ModelFiles Conform to Languages . 35

5. Class Diagrams in the Artifact Model 37

6. Generators and their Artifacts in MontiCore 41
6.1. Static Artifact Structures . 41

6.1.1. Templates . 42
6.1.2. Generators . 44

6.2. Dynamic Monitoring of Tool Executions 45
6.2.1. Representing Actions and Events 45
6.2.2. Actions in a Generation Process 47
6.2.3. Tools Read and Create Artifacts 49
6.2.4. Template and Java Files Contribute to Artifacts 50

7. Artifacts in Maven-managed Java Projects 53
7.1. Maven Modules . 54
7.2. Relations between Maven Modules . 55
7.3. Target Directories and Target Artifacts 56
7.4. POM and VCSRootDir . 57
7.5. Maven Phases . 59
7.6. Executing Maven . 60

8. Applications of the Artifact Model 65
8.1. Analyses based on Tool Monitoring . 66
8.2. Understanding the Module/Artifact Architecture 66
8.3. Generated Systems . 69
8.4. Template Relations Induced by Generated Artifacts 70
8.5. Incremental Toolchain Execution . 71
8.6. Unused Imports . 73

9. Conclusion 75
9.1. Considerations on the Artifact Model . 75
9.2. Multi-level considerations on CD4A and OCL 76

Bibliography 79

A. Merged Artifact Model 91

B. Entire Application Model 109

Index 113

iv

Chapter 1.

Introduction

A project usually develops, modifies, and uses a large number of artifacts. These artifacts
may be documentations, e.g., in word or excel files, models of various kinds, test definitions,
but especially code files. For us, an artifact is an independently storable and editable unit
of information, and therefore usually a file in the file system. Managing artifacts and their
various dependencies is a major issue in larger projects.

In Model-Driven Development (MDD) projects, model artifacts are used to capture
various information needed during the development process on various abstraction levels.
Thus, MDD aims at employing models as primary development artifacts to abstract from
technological and reoccurring details.

In MDD projects, not only the number of artifacts increases but the kinds of artifacts and
their relationships become more complex as well. Some of these relationships should lead
to automatic re-execution of generative or compiling tools when the source artifacts change,
and thus these relations need to be precisely understood. Model transformations and code
generators perform model-to-model and model-to-text transformations [CH03, HRW15,
GMR+16, Rum17] to generate the source code of a complex software system. For the
realization of such a process, a multitude of different elements such as models, templates,
source code, transformations, directories, languages, and generators are involved. They
participate in different states of the MDD process such as design, language and tool
development, and product development.

The mentioned elements are related to each other in several ways: (1) elements can use
each other statically, e.g., a model file imports another model file when parts of the other
model are needed for the definition of the former one. (2) Elements may be generated using
other elements within the MDD process. For example files are generated only when the
generator exists and has been executed. Furthermore, generated files relate to the source
files that the generator uses. (3) Elements can also contain each other allowing to structure
projects. For example, archives contain other artifacts.

The number and the complexity of these dependencies lead to a number of challenges
in MDD projects. Such challenges are: (1) poor maintainability due to unnecessary and
unforeseen impacts of required changes, (2) inefficient processes performing unnecessary
process steps, (3) long development times as inadequate organized dependencies constitute
a source of errors, (4) hindering the reuse of single components of software engineering

1

Chapter 1. Introduction

tools or (partly) generated target systems caused by unnecessary dependencies preventing
the extraction of components.

We believe that, due to the large number of involved artifacts, their various kinds of
dependencies, the number of employed software engineering tools, and the high degree
of automation in such projects, it is crucial to provide systematic solutions to manage the
complexity of MDD projects. As a first step to tackle these problems it is important to
understand which artifacts are involved and how these artifacts are related to each other in
MDD projects.

Only then we are able to analyze the structure of a project in terms of artifacts and
dependencies, understand how well structured and modularized a project is, and package
only the necessary artifacts leaving out unused artifacts. Refactoring [Fow99] allows to
improve the structure of the system as well as the project containing all source artifacts,
generators, and other tools used.

A number of attempts have been made to capture, analyze, and visualize MDD project
related elements and their dependencies such as:

• Dependencies between models for the evolution of models and corresponding strate-
gies for model evolution [VKB13, DRDRIP14, Wen14, DRELHE15, KEK+15,
SPBS15].

• Dependencies between models as part of an integrated mega model [FLV12, HSG12,
VJBB13, BSS14, SPBS15].

• Dependency analysis of executable programs as well as their source code [SJSJ05,
WL08, Die12, NWi15, Son15, Sta15, Str15].

• Tracing of MDD process dependencies and program execution traces [DS10, CHGZ12,
LM12, ALB+14, LvdA15].

All these approaches provide solutions for parts of MDD projects. However, not all
relevant elements of MDD projects have been taken into account sufficiently, such as
templates or handwritten source code files. These elements introduce additional uncon-
sidered relations to MDD projects and thereby increase the project’s complexity. These
relations occur between different kinds of model elements such as relies on relations
between templates and generator source code as well as between elements that participate
in different parts of the MDD process (e.g., the generates relation between templates,
which are part of the generator, and the generated source code files, which are part of the
target product). Moreover, none of the mentioned approaches is capable to cover complete
MDD projects, as they focus only on specific parts. We believe that by taking the data of
the overall MDD project into account and learning from it, the performance of the process
as well as the quality of both the target product and MDD byproducts such as reusable
models, languages, and tools can be improved.

In this report, we present the notion of Artifact Models (AMs), which enable to precisely
model element and relation types of MDD projects. AMs serves as a basis for tackling

2

the mentioned problems. [BGRW17] already presents a first idea of such a model and
discusses foreseen challenges for its application. In an AM, different types of MDD project
elements and dependencies between these are considered. This includes contains relations,
static refers to relations and dynamic produces relations as well as involved elements
relevant for the different phases of an MDD process. To show the applicability of the
approach, an AM for a specific code generator is provided in this report. Parts of this AM
can be directly reused within other types of projects. Other parts need to be adapted or can
serve as an example on how to model MDD projects by AMs.

A concrete AM for a specific set of MDD projects allows the precise definition of the
involved element types and the relation types that can exist between elements. Moreover,
derived properties can be specified within or based on the AM. Furthermore, data of MDD
projects can be directly extracted in the format of the AM. Thus, existing modeling tools
can be reused to create the AM, check the conformance of the data to the AM, perform the
calculation of derived properties automatically, and provide capabilities for analyzing and
visualizing the data in a comfortable way.

By taking the integrated project data of MDD projects into consideration, the following
capabilities can be obtained:

• Evolution among all parts of MDD projects, such as model evolution, tool evolution,
and product evolution, can be planned and performed, as the relations between the
relevant parts of a project are made explicit and thus, can be easily taken into account
when performing the necessary actions.

• The optimization and correction of the overall MDD process is possible based on the
extracted data to ensure a correct order of process execution, leading to deterministic
and repeatable code generation results.

• Incremental code generation becomes possible because of the explicit specification
of all necessary dependencies. The resulting speed up allows for a more agile
development, due to short generation, compilation, and testing cycles.

• Consistency of tools and processes to a desired architecture can be ensured by
automatically analyzing the extracted data.

The approach improves the overall understanding of MDD projects, i.e., of their involved
elements and relations. This may include the usage of generator customization points
of a configurable generator [GMR+16, Rot17] or the integration between handwritten
and generated code [GHK+15a, GHK+15b] as the product developer can investigate
the data to evaluate if the generator is utilized adequately. Moreover, the model-based
representation facilitates the communication between the different stakeholders, such as
language engineers, tool developers, product developers, and product operators [KRV06].
Thus, the contributions of this report are:

• The notion of Artifact Models describing the structure of a project in terms of its
artifacts and their various relations.

3

Chapter 1. Introduction

• An artifact model for generator-based model-driven projects, consisting of core part
(cf. Chapter 2) that can be reused for various kinds of projects and extended by
adding specific forms of artifacts and relations. The artifact model for generator-
based model-driven projects consist, among others, of a part to describe plain Java
projects and a part required to describe MDD projects, where not only the final
product is developed, but also generators are used and potentially adapted.

• Several initial ideas for the application of an AM are presented (cf. Chapter 8).
These kinds of analyses serve as a basis for increasing the quality of the overall
project and its structure, e.g., by enhancing the generation process (faster, more
reliable) or decoupling sub-systems.

1.1. How to Read the CD4A and OCL Specification

In the following, we are describing an AM as a structure of files, directories, archives, etc.
Therefore, we are using the notion of class diagrams, in particular CD4A as defined in
[Rot17], to precisely define this structure. CD4A is a textual notation for class diagrams,
which restricts the usage of some language concepts, such as methods and modifiers,
compared to the UML/P class diagram language [Sch12, Rum16]. Listing 2.2 is the first
part of the AM described using the CD4A modeling language. It is marked with AM to
identify it as part of the artifact model.

The first AM part using CD4A associations is presented in Listing 2.3. An association
starts with a keyword, defines its name (e.g., refersTo) and the source and destination
classes (e.g., Artifact). Additional elements are the navigation arrow (here ->),
optional multiplicities on each side (here [*]), role names and modifiers (such as / for
derived).

Furthermore, where relations and constraints are more detailed, the logic language OCL
is used as precise technique to further specify the properties of the AM. The OCL variant
used, e.g., in Listing 2.2 is defined in [Rum16] and uses a Java-like syntax for property
description, but is otherwise conceptually rather similar to the OCL standard [OMG14].
When referencing OCL constraints of a specific listing only the first line of the constraint
is referenced in this report. An example of an OCL constraint can be found in Line 10 of
Listing 2.2.

To give the reader a better overview, the report furthermore uses graphical illustrations
of the core classes and associations of the AM like in the Figure 2.1. However, these
figures are redundant to their textual counterparts and do not contain extra information but
usually omit all attributes.

Starting with Section 6.2, we also use CD4A and OCL to describe an execution of
the tools that generate a system’s source code. A tool execution is a sequence of actions
(that are furthermore hierarchically structured). In principle, actions are described in

4

1.2. Contents of the Report

a behavioral language. In this case a UML sequence diagram’s like-mechanism would
usually be used.

However, we encode behavior in form of a protocol (cf. Subsection 6.2.1) that is defined
as ordered sequence of action objects and store start and end times within each action. We
have therefore "objectified" the actions. This has two advantages: (1) For describing the
protocol, we can use CD4A and OCL in the same form as for the structure of the AM, and
(2) we can even use OCL to relate the AM structure and a tool execution that is generating
artifacts.

1.2. Contents of the Report

The remainder of the report is structured as follows: First, Chapter 2 introduces the essence
of the AM defining the most general parts with a high potential of direct reuse. Afterwards,
Chapter 3 examines Java artifacts and types and extends the AM to Java. Chapters 4 to
6 make further extensions taking into account MDD related concepts such as languages,
models, and MDD tools. Furthermore, Section 6.2 deals with dynamical process relations,
which allow to describe the execution of MDD build processes. The modeling of Maven
as an exemplary build tool is presented in Chapter 7, before Chapter 8 shows beneficial
possibilities to apply the AM. Last, Chapter 9 concludes this report.

1.3. Acknowledgements

It is a pleasure to thank Pedram Mir Seyed Nazari and Andreas Wortmann for useful
discussions. Moreover, Arvid Buttin, David Schmalzing, Filippo Grazioli, and Matthias
Markthaler gave valuable hints on draft versions of this text.

This research has partly received funding from the German Federal Ministry for Educa-
tion and Research under grant no. 01IS16043P. The responsibility for the content of this
publication is with the authors.

5

Chapter 2.

Essence of Artifact Models

In large projects, it is very helpful to structure the information and program modules in
appropriate forms to be able to develop, manage, evolve, or test individual, encapsulated
parts of the system. Furthermore, the reuse of parts from other systems, such as frameworks
or components, relies on a good capability for modularization of the system into artifacts.
In MDD projects quite a number of forms of artifacts occur and their relationships become
more complicated.

It is therefore worthwhile to classify the forms of artifacts and their relationships in an
Artifact Model (AM).

The specific AM defines basic artifacts as well as relations between these in the context
of a software development project. It is capable of linking some elements within the
artifacts (such as types, signatures, etc.) to their defining and importing artifacts, but also
allows to look at higher-level structures, commonly called modules, components, packages,
or subsystems.

In this report an AM is introduced which was mainly created for Java-based MDD
projects, more specifically MontiCore-based projects. However, the essentials presented in
this chapter are widely reusable to model other projects. The most specific model parts
presented in this report serve at least as a basis for the way MDD projects can be modeled
by AMs.

In the following, the AM is introduced incrementally. The most general elements, which
therefore have a high potential for direct reuse in other software development projects,
are introduced first. This core part of the AM for MontiCore-based projects serves as an
extension point for other projects with different artifact types in use. A complete version of
the AM is depicted in Appendix A. During the introduction of the different elements of the
AM, the corresponding excerpts of the model are presented to give a better understanding
of the way they are modeled. Henceforth, the AM presented in this report is simply referred
to as the AM.

2.1. Artifacts and Artifact Containers

The core elements of the AM are artifacts. Any project-related file or directory can be seen
as an artifact. We define an artifact as follows:

7

Chapter 2. Essence of Artifact Models

Definition 1 (Artifact) An artifact is an individually storable and referenceable element
serving a certain purpose in the context of a software engineering process.

Typical artifacts are files, such as Java source or class files, but also model files or
documentation units. However, in a database-oriented development setting, artifacts may
have a different shape.

The AM allows that artifacts can contain other artifacts. Typical examples are archives,
directories, but potentially also database files. Figure 2.1 gives an overview of the physical
organization of artifacts.

��

��������

������	

��������	
�������

��	����

�

����

��������

��	�	����
�

�

�������	�
��

Figure 2.1.: Organizing artifacts in containers.

It should be noted that, because we use the composite pattern [GHJV95] for this part
of the AM, archives and directories can contain each other arbitrarily, but each artifact is
contained in at most one artifact container. If the artifacts are modeled completely, there is
only one concrete element which is not contained in an artifact container: the root directory.
This directory depicts the root of the file system (see Subsection 2.1.4). Moreover, artifacts
can be used to produce other artifacts and can statically refer to other artifacts. A
definition for these relations can be found in Subsection 2.1.2.

2.1.1. Artifacts

Artifacts are the core elements of the AM. There are many different types of artifacts,
some of which are introduced in later chapters. In Listing 2.2 the common properties of all
artifacts are modeled in the abstract class Artifact. Each artifact has a simple name
and a name extension. This allows artifacts to be used from other artifacts.

In addition, each artifact contains the date of the last time it was modified (attribute
modified). The Attributes name, fullName, and isRoot can be derived from

8

2.1. Artifacts and Artifact Containers

��1 abstract class Artifact {
2 String simpleName;
3 String nameExtension;
4 Date modified;
5 /String name;
6 /String fullName;
7 /boolean isRoot;
8 }
9

10 context Artifact inv:
11 name == ((nameExtension == "") ? simpleName :
12 simpleName + "." + nameExtension);

Listing 2.2: AM: Artifact.

the information available in the artifact structure and are therefore specified by OCL
constraints.

The constraint shown in Listing 2.2 describes how the attributes name, simpleName,
and nameExtension are related. If the name extension of an artifact is empty, the name
is equal to the simple name. The full name of an artifact resembles the absolute path of the
file in the file system and is specified later.

2.1.2. Relations between Artifacts

��1 association /refersTo [*] Artifact -> Artifact [*];
2

3 association /produces [*] Artifact -> Artifact [*];
4

5 context Artifact a inv:
6 !a.produces**.contains(a);

Listing 2.3: AM: Core relations.

One core element of the AM is the refersTo relation between artifacts, as shown in
Figure 2.1. Specific forms of refersTo relations between different kinds of artifacts are
united in this relation.

Definition 2 (Refers to Relations Between Artifacts) If an artifact in some form needs
information from another artifact to fulfill its purpose, it refers to the other artifact.

Referring to other artifacts is a binary relation, with many concrete incarnations. Typ-
ically, Java classes rely on other Java classes, when they use their types, methods, or

9

Chapter 2. Essence of Artifact Models

inherit from their superclasses. In Java this typically (but not exactly always) manifests as
import or subclassing. Other ways would be, for example, the use of full qualified names.
Because this form of relation is usually defined through names that act as references, we
call it refersTo in the AM. Please note that artifacts may mutually rely on each other,
which generally allows refersTo to be cyclic.

The third and last core element of the AM is the produces relation between artifacts
that describes when information from one artifact are used to produce (generate, compile)
the other.

Definition 3 (Produces Relations Between Artifacts) An artifact can be produced by
automatic application of a tool. The tool may use existing source artifacts for this pro-
duction. Thus, an existing artifact contributes to the production of the new artifact if its
existence or content has influence on the produced resulting artifact.

The production of a new artifact does not destroy or modify the source artifacts. One or
more artifacts are created containing all the information needed from the sources. This
has two consequences: (1) the new artifact typically has no refersTo relationship to its
sources. (2) The produces relation has no cycle. It may be that one artifact is produced
from several sources and one source may be used several times, but the resulting graph
structure is definitely acyclic (specified by constraint Line 5 using transitive closure (**)
of Listing 2.3).

As a tool itself consists of a set of artifacts, the tool’s artifacts also have to be considered
as production elements for generated artifacts. This is especially interesting, when tools are
not considered as a black box, but can rely on artifacts, which are generated by meta-tools.
The produces relation is therefore dedicated to capture all forms of artifacts necessary
to successfully produce a resulting artifact.

As already mentioned, there exist many forms of produce relations caused by, e.g., a
simple copy script, a compiler, a code generator, or an archive tool. These relations all
have in common that the actions which caused them are executed automatically and can be
re-executed at any time. No humans are involved, but usually a build script knows what to
do – and in particular also, when to redo it.

The AM currently does not reflect human activities in all their detail. From its current
version, we can derive if an artifact is created by humans or has been produced by tools.
However, we do not capture artifacts that have been produced by tools originally and
modified by humans afterwards. These are generally handcrafted artifacts. The reason
behind this approach is that we generally believe in automatic production of artifacts only
in repeatable form. Hence, humans should not modify any produced artifact.

2.1.3. Artifact Containers

Definition 4 (Artifact Container) An artifact container is an artifact that contains a set
of conjointly used artifacts.

10

2.1. Artifacts and Artifact Containers

Technically ArtifactContainers are composed using the composite design pat-
tern [GHJV95]. Thus, ArtifactContainer is a specialization of Artifact. We
designed this composite in the AM, because ArtifactContainers are also handled
as individual, reusable units in development projects. An artifact container only has the
inherited properties and adds no further attributes. Artifact containers can contain other
artifacts represented by the contains composition from ArtifactContainer to
Artifact in Figure 2.1.

By default two forms of ArtifactContainers are provided, namely Directory
and Archive.

��1 abstract class ArtifactContainer extends Artifact {}
2

3 composition contains
4 [0..1] ArtifactContainer (parent) -> Artifact [*];
5

6 context Artifact inv:
7 isRoot <=> parent.isAbsent &&
8 !isRoot implies {p in parent** | p.isRoot}.size == 1;
9

10 context Artifact inv:
11 fullName == (isRoot ? "/" :
12 (parent.isRoot ? "/" + name :
13 parent.fullName + "/" + name));
14

15 context Artifact a, Artifact b inv:
16 a.name == b.name && a.parent == b.parent
17 implies a == b;

Listing 2.4: AM: ArtifactContainer.

In Listing 2.4 further constraints for the ArtifactContainers are given. The first
constraint ensures that only the root has no parent and that there exists exactly one root for
each file system.

The full name of artifacts is derived from the hierarchy structure of artifact containers. It
serves as an identifier for artifacts within a file system. This even holds for archives as they
are modeled as whitebox containers. That is, we assume that we can access artifacts within
archives and also identify them via their full names. This is possible as the full name for
all artifacts is unique including the full name of artifact containers even if they are of a
different kind.

The last constraint of Listing 2.4 ensures that the full name of each artifact is unique
within a file system (Line 15). Note that the presented constraints allow to capture more
than one file system, as there is no restriction for the number of root directories and the
name of an artifact must only be unique in the scope of its parent. That is, the full name of
artifacts is only unique in the scope of a single file system.

11

Chapter 2. Essence of Artifact Models

2.1.4. Directories

��1 class Directory extends ArtifactContainer {}
2

3 context Directory inv:
4 nameExtension == "";
5

6 context Artifact inv:
7 isRoot implies (this in Directory);
8

9 context Artifact inv:
10 isRoot <=> simpleName == "/";
11

12 context Artifact inv:
13 name.contains("/") implies isRoot;

Listing 2.5: AM: Directory.

Directories of file systems can be modeled by the Directory class. Nowadays,
projects tend to organize their artifacts in complete directories, which are version controlled,
generated, copied, etc. Therefore, we have modeled in Listing 2.5 that Directory is
also an Artifact. As a consequence, however, we have to set the nameExtension
attribute to be always empty (Line 3). Furthermore, we demand that the root Artifact
must be a Directory (Line 6) and, if present, its simple name is “/” (Line 9). Lastly, the
constraint in Line 12 specifies that only the root directory may contain a “/” in its name
thus having directory names conform to a typical file system.

2.1.5. Archives

Archives are used to collect several artifacts in a single file, which makes storage and
versioning easier. We ignore that files in archives can also be compressed. In general,
the content of an archive cannot be accessed directly, but the application of an external
program is necessary to extract the contained elements. However, in the AM only the
content of archives and not the compression or extraction algorithms is of interest. For this
reason, archives are modeled as artifact containers, which means that their content can be
accessed without any restrictions. In the AM, archives are modeled as subtypes of artifact
containers as shown in Listing 2.6. In contrast to directories no additional constraints are
given.

��1 class Archive extends ArtifactContainer {}

Listing 2.6: AM: Archive.

12

2.2. Systems and Tools

2.2. Systems and Tools

In order to understand how systems are modeled in the AM, first the general definition of a
software system is considered.

2.2.1. Systems

Definition 5 (System) A system is a set of cooperating and connected artifacts that can
be executed to fulfill a desired purpose.

In the AM, the term system is used to describe executable software systems. In C-based
projects, a system is often only one artifact, namely the .exe file, produced by the linker.
In Java projects a system may be contained in a jar archive or actually consist of a set of
class files in the directory.

The AM distinguishes between two kinds of considered systems: tools and products.
Tools are systems used during the development process. This is in particular interesting,
when the tool itself is modified and thus has to be compiled (or generated) in the same
development project as the final product. Furthermore, several tools and products may be
of interest. The situation becomes even more tricky, when tools and products share parts
of their artifacts.

Figure 2.7 gives an overview over the elements related to systems.

��
������

�������

��������

����

���������� �

Figure 2.7.: A system consists of artifacts and is either a tool or a product.

A system can be identified by its name and usually also has a version number. The
version attribute is of type String to permit arbitrary version definition (e.g. 1.0.0-
SNAPSHOT). As displayed by the consistsOf relation in Figure 2.7 and Listing 2.8,
each system consists of any kind of artifacts. Even though a system consists of artifacts,
their existence does not depend on the existence of the system they belong to and artifacts
can be used in many systems.

As described above, there are two well-known kinds of Systems namely Product
and Tool. Both are described in the following Listing 2.9 and Listing 2.10 respectively.

A product is a system that is the main outcome of a project made available to the user
with its sources (partly) generated by a generator.

A tool is also a special kind of system. Compared to a product, however, a tool is an
executable system involved in the MDD process that reads artifacts as input and produces

13

Chapter 2. Essence of Artifact Models

��1 abstract class System {
2 String name;
3 String version;
4 }
5

6 association consistsOf [*] System -> Artifact [*];

Listing 2.8: AM: System.

��1 class Product extends System {}

Listing 2.9: AM: Product.

��1 class Tool extends System {}

Listing 2.10: AM: Tool.

output artifacts when executed (see Section 6.2). Tools are not necessarily available to
the user. They may be readily available (e.g., like a Java compiler) or must be developed
within the project, such as a specific code generator.

2.2.2. Modules

In order to model the architectural substructure of a system, a system in the AM can
be divided into modules. Modules can be further divided into submodules consisting of
artifacts. By using modules, a high level overview over the system’s architectural units and
their relations can be modeled, as shown in Figure 2.11.

Definition 6 (Module) A module is a set of cooperating and connected artifacts that fulfill
a desired purpose, but are not necessarily complete and executable.

Typical modules are ranging from subsystems, developed by a subset of the developers,
to reusable frameworks or class libraries, or even single Java source files. The Java package
concept is a possibility to structure modules, but this depends on how developers use their
package structures. Besides that, jar archives are often used to organize modules.

In the literature the term module is frequently used interchangeably with the terms
component or subsystem.

A module represents an architectural substructure of a system. The architecture repre-
sented by modules is based on artifacts. Ideally, the physical structure of artifacts (i.e.,
their organization in artifact containers) matches the structure of architectural modules. In
other approaches, such as [PW15], types are used instead of artifacts to define and analyze
the system’s architecture.

14

2.3. How to Use the Artifact Model

��

����� �����	�����	 ���������

��������	
�

�

� �������� ��

Figure 2.11.: Modules represent the architectural substructure of a system. They consist of
artifacts and can be composed of submodules.

��1 class Module {
2 String name;
3 }
4

5 association module [*] System -> Module [*];
6

7 association subModule [*] Module -> Module [*];
8

9 association artifact [*] Module -> Artifact [*];

Listing 2.12: AM: Module.

A set of modules constitutes a system. The subModule association enables a way
to divide modules into submodules and therefore provides a way to compose modules
hierarchically. Besides an arbitrary number of submodules, a module comprises a set
of artifacts (defined by the artifact relation). Artifacts can be assigned to multiple
modules and modules to multiple systems.

While it is possible that a module is reflected by a concrete artifact, such as an archive,
it may also be that modules are only used as a conceptual form of structure and are not
directly reflected in the artifact structure.

2.3. How to Use the Artifact Model

So far, the essentials of the artifact model are rather abstract. They describe general
concepts enabling to structure large projects. However, specific projects require specific
forms of artifacts, modules, etc.

The idea of the presented AM core is to be extendable by introducing subclasses. The
subclasses may be special forms of artifacts, systems, or modules. Along with these special
forms of artifacts come specializations for the corresponding associations. While object
orientation is well suitable for classification using subclasses, there is no generally accepted
form of refining associations.

We therefore use a specific technique for association specialization: We introduce a new
association and relate the new one with the existing, refined association using an OCL

15

Chapter 2. Essence of Artifact Models

constraint. We have borrowed this technique from the field of mathematics. A typical
specialization follows the principle used to specify the association reliesOnJavaAr-
tifact, defined in the forthcoming Listing 3.2. It refines the refersTo association
defined in Listing 2.2, because it is connected via an OCL constraint which is basically a
containsAll statement (see Line 6).

As an alternative, it would have been possible to introduce the AM core as a form
of meta-meta-model that should be instantiated to concrete projects, where, e.g., meta-
association refersTo would then be instantiated accordingly. However, we felt this
technique would not be simpler to understand and master. Furthermore, we can imagine
situations where a hierarchy of specializations is needed which cannot easily be handled in
a meta-setting yet.

In the following chapters, we will discuss several extensions of the AM core to demon-
strate its usage.

16

Chapter 3.

Extending the Artifact Model to Java

Java, like many other programming languages, uses files to store individual pieces of code.
Therefore Java source and class files are the primary artifacts to deal with. Because Java
has a smart technique to identify the artifacts in which external types (classes) are defined
with the import statement, we additionally investigate how the Java import statement
actually works and how this is modeled in the AM.

3.1. Java Source and Class Files

In this section, Java artifacts and relations between different Java artifacts are introduced
as a refinement of the AM. These artifacts can be found in Java-based software projects.
Figure 3.1 gives an overview of the involved classes of the AM and their relations.

��

 ���!����	"��	 ���#����"��	

������������

��������

������	��� ��

�

�

������� ��

�	��	��� �����������

Figure 3.1.: Java artifacts, related concepts and relations.

A Java artifact is either a JavaSourceFile or a JavaClassFile. Java source
files contain source code written in Java [GJS+15], while Java class files contain the
compiled code to be executed by the Java Virtual Machine [LYBB15]. Class files also
contain the complete symbol information for external use. Therefore, importing source

17

Chapter 3. Extending the Artifact Model to Java

files do not necessarily rely on the source of the imported classes. Symbols are defined as
follows:

Definition 7 (Symbol) “A symbol definition (or short symbol) contains all essential in-
formation about a named model element. It has a specific kind depending on the model
element it denotes. A symbol is defined exactly once.” [MSN17]

3.1.1. Java Artifacts

The JavaArtifact class is a specialization of the Artifact class. It is abstract and
unifies its two subclasses, the Java source and Java class artifacts. In Listing 3.2, the
definition of a Java artifact is given.

��1 abstract class JavaArtifact extends Artifact {}
2

3 association reliesOnJavaArtifact
4 [*] JavaArtifact -> JavaArtifact [*];
5

6 context JavaArtifact inv:
7 refersTo.containsAll(reliesOnJavaArtifact);

Listing 3.2: AM: JavaArtifact.

The homogenous reliesOnJavaArtifact relation shown in Figure 3.1 is used to
display that Java artifacts can rely on each other. We define that a Java source file relies
on another Java artifact iff the other artifact has to be loaded when compiling the Java
source file. A Java class file relies on another Java class file iff something (type, method,
constant,. . .) of the other class file is used during execution of the part of the program
defined by the class file.

As described in Section 2.3, the reliesOnJavaArtifact relation is defined as
specialization of the refersTo relation (Line 6).

We could already further specialize the reliesOnJavaArtifact relation, based
on a distinction whether it is defined through explicit import, use of a fully qualified name,
inheritance, or other mechanisms. We use this distinction in Section 8.6, e.g., to identify
unused imports.

3.1.2. Java Source Files

Java source files denote source code artifacts written in Java. They are modeled as a
specialization of the abstract element JavaArtifact. The specification of the Java-
SourceFile element is given in Listing 3.3.

A Java source file can import Java artifacts corresponding to the import statements
defined within the file. This import relation is represented by the imports association as

18

3.1. Java Source and Class Files

��1 class JavaSourceFile extends JavaArtifact {}
2

3 association imports [*] JavaSourceFile -> JavaArtifact [*];
4

5 association compiledTo
6 [1] JavaSourceFile -> JavaClassFile [*];
7

8 context JavaSourceFile inv:
9 reliesOnJavaArtifact.containsAll(imports);

10

11 context JavaSourceFile inv:
12 produces.containsAll(compiledTo);
13

14 context JavaSourceFile inv:
15 nameExtension == "java";

Listing 3.3: AM: JavaSourceFile.

shown in Figure 3.1 and does not distinguish source or class imports. The import statement
allows to use symbols defined in the imported artifacts, such as the types, methods, etc.
Thus, it contributes to the reliesOnJavaArtifacts relation (Line 8).

However, an import can be unused (cf. Section 8.6) and foreign references may be
fully qualified and thus do not need imports. While it is a good engineering practice that
imports == reliesOnJavaArtifacts, the relation is not necessarily a subset in
any of both directions, since the Java programming language allows for a Java artifact
to import other Java artifacts using their full qualified names. Then, no explicit import
statements is required.

Furthermore, a Java source file is compiled into multiple Java class files, one for each
class defined in the source file. This is modeled by the compiledTo relation, which is a
refinement of the produces relation (see Line 11).

3.1.3. Java Class Files

According to [LYBB15], a Java class is the compiled code to be executed by the Java
Virtual Machine. It represents a hardware- and operating system-independent binary
format, typically stored in the class file.

In the AM, it is assumed that the compiled code is stored in such files, which are
represented by the JavaClassFile element in the AM. Its AM definition is given in
Listing 3.4.

Similar to Java source files, Java class files are modeled as specializations of the abstract
JavaArtifact class, such that import statements can refer to both at the same time.

19

Chapter 3. Extending the Artifact Model to Java

��1 class JavaClassFile extends JavaArtifact {}
2

3 context JavaClassFile inv:
4 nameExtension == "class";

Listing 3.4: AM: JavaClassFile.

3.1.4. Java Archives

To complete the Java artifacts, we also consider the Java archives, also called jar files,
because of their names extensions. Figure 3.5 illustrates the embedding of the jar file
within the AM.

��

 ���������	

������	

Figure 3.5.: Java archives.

��1 class JavaArchive extends Archive {}
2

3 context JavaArchive inv:
4 nameExtension == "jar";

Listing 3.6: AM: JavaArchive.

The Java archive acts like any other archive. While we expect that it mainly contains
Java source and class artifacts it is generally allowed to add any other kind of artifacts as
well. Furthermore, the archive internally resembles a directory structure, which is used for
example by the Java compiler to quickly find artifacts by their fully qualified name.

3.2. Relation Between Java Artifacts and Types

For Java projects, the AM does not only take Java artifacts into account but also Java
types and packages. Both form individual relations among themselves and to Java artifacts.
Figure 3.7 gives an overview of the different elements and the relations between these
within the AM.

20

3.2. Relation Between Java Artifacts and Types

��

��������������	
� �

�	���	� ��

�	��	��� �����������

�

���$�%	

�	���%���

�

�

��������

�
���	���	

���������%��	
����

��

�	��	���

�

�

����

������$�%	

���	��

�����

Figure 3.7.: Java types and their relations to Java artifacts.

3.2.1. Packages

We start with the Package class of Figure 3.7. A package organizes a set of related
classes and interfaces [Ora16].

The Package class contains a name attribute as well as a fullName. Furthermore,
each Java source as well as class file belongs to exactly one package. This relation is
modeled by the belongsTo association in Figure 3.7.

As mentioned earlier, the naming structure of packages suggest a package hierarchy,
which is reflected in the subPackage relation. This hierarchical definition is based on
the Java package specification [GJS+15]. While the package hierarchy is a helpful form
of structure for humans, Java itself does not capitalize on this hierarchy. In particular,
visibilities between parent and subpackages are the very same as between two arbitrary
packages.

Furthermore, it should be noted that packages may or may not be identical to modules.
Thus, we do not presuppose a given relation between Module and Package.

Several constraints shown in Listing 3.8 ensure some correctness, such as names of a
package must not contain dots, how the full names of a package and a subpackage are
related, that the full name of a package is unique, and that there exists exactly one root for
each package hierarchy.

We only enforce packages to be present if an artifact is included. Therefore, several
packages may not have a parent or no root package is present.

3.2.2. Java Types

The relationships between Java artifacts are needed, because some Java artifacts use types
and their signatures defined in another Java artifact. We therefore make the type structure
explicit in the AM. Thus, the AM contains the Type class to describe where types can be
found in artifacts. We chose to not distinguish between any specific kind of types, but to

21

Chapter 3. Extending the Artifact Model to Java

��1 class Package {
2 String name;
3 String fullName;
4 /boolean isRoot;
5 }
6

7 association belongsTo [*] JavaArtifact -> Package [1];
8

9 composition subPackage
10 [0..1] Package (parent) -> (child) Package [*];
11

12 context Package inv:
13 !name.contains(".");
14

15 context Package inv:
16 isRoot <=> parent.isAbsent &&
17 !isRoot implies {p in parent** | p.isRoot}.size == 1;
18

19 context Package inv:
20 !isRoot implies
21 fullName == parent.fullName + "." + name;
22

23 context Package a, Package b inv:
24 a.parent == b.parent && a.name == b.name implies a == b;

Listing 3.8: AM: Package.

use the general class Type to represent any form of type system. Henceforth, when we
talk about Java types, these types are always represented by instances of the Type class of
the AM. In the AM, Java types are content elements of a Java artifact. Listing 3.9 shows
the corresponding excerpt of the AM.

In general, a Java type is either a Java class, interface, or enum. Within the AM, however,
we do not differentiate between them, as the level of detail of the AM abstracts from any
specific model element.

The Type class describes the types. Each type has a simple name (such as Person) and
the three derived attributes name, fullName, and isInnerType. The name attribute
also contains the name of the containing type. Lastly, the fullName attribute is equal to
the full qualified name of a type. Listing 3.9 further defines the general type structure used
in the AM.

Each Java artifact can define an arbitrary number of Java types. Every type can be
defined by an arbitrary number of Java artifacts. This relation is modeled by the defines
association (Line 8).

22

3.2. Relation Between Java Artifacts and Types

��1 class Type {
2 String simpleName;
3 /String name;
4 /String fullName;
5 /boolean isInnerType;
6 }
7

8 association defines [*] JavaArtifact -> Type [*];
9

10 composition contains [1] Package -> Type [*];
11

12 composition
13 [0..1] Type (containingType) -> (innerType) Type [*];
14

15 association reliesOn [*] Type -> Type [*];
16

17 context Type inv:
18 isInnerType <=> !containingType.isAbsent &&
19 isInnerType implies
20 {t in containingType** | t.isInnerType}.size == 1;
21

22 context Type inv:
23 name == (isInnerType ?
24 containingType.name + "." + simpleName : simpleName);
25

26 context Type inv:
27 fullName == (package.isRoot ? name :
28 package.fullName + "." + simpleName);

Listing 3.9: AM: Type.

Furthermore, a type is a member of exactly one package, whereas a package can contain
an arbitrary number of types [GJS+15]. This is modeled by the contains composition
(Line 10).

The homogeneous relation of the Type class models that a type can define multiple
inner types. More specifically, a type can have an arbitrary number of inner types, while it
can only be contained by one other type (Line 12). This relationship is important when
inner types are used externally in a qualified form, because the outer type then acts as a
part of the qualifier.

Finally, a type A relies on a type B iff B itself or one of its elements (method, constant,
. . .) is syntactically used to define A. This also includes the encapsulated use of, e.g., type
B for a local variable or private attribute in A. The reliesOn relation summarizes all
relations introduced in [PKB13, PW15] (Line 15).

23

Chapter 3. Extending the Artifact Model to Java

The first constraint shown in Listing 3.9 states that inner types have a containing-
Type (Line 17). Moreover, the name of an inner type is composed by the name of the
containing type and its own simple name separated by a dot (Line 22). Finally, the full
name of a type located in the root package is the type’s name. The full name for any other
type composed of the name of its containing package and its own name separated by a dot
(Line 26).

��1 context JavaSourceFile inv:
2 defines == compiledTo.defines;
3

4 context JavaSourceFile inv:
5 {t in defines | !t.isInnerType}.size == 1;
6

7 context JavaArtifact a1, a2,
8 Type t1 in a1.defines, Type t2 in a2.defines inv:
9 t1.reliesOn.contains(t2) implies

10 a1 == a2 || a1.reliesOn.contains(a2);
11

12 context JavaArtifact a, Type t in a.defines inv:
13 !t.isInnerType implies t.simpleName == a.simpleName;
14

15 context JavaArtifact inv:
16 parent.fullName.replaceAll("/", ".")
17 .endsWith(belongsTo.fullName);
18

19 context JavaSourceFile inv:
20 forall n in { t.fullName.replace(".", "/") |
21 t in defines && !t.isInnerType }:
22 fullName.endsWith(n + ".java");
23

24 context JavaClassFile inv:
25 parent.fullName.replaceAll("/", ".")
26 .endsWith(defines.package.fullName);
27

28 context JavaClassFile inv:
29 simpleName == defines.name.replaceAll(".", "$");

Listing 3.10: AM: Relation between Java artifacts and types.

Listing 3.10 concludes this subsection with a set of OCL statements that further refine
the relations between Java artifacts, Java types, packages, and directories as modeled in
the AM.

Line 1 focuses on Java source files and the Java class files to which they are compiled
to. The types defined by a Java source file and the ones defined by the corresponding Java
class files must be the same.

24

3.3. Detailed Examination of Java Artifacts and Types

Line 4 enforces that each Java source file defines exactly one top level Java type. Note,
that this is modeled for simplicity and is not enforced by the Java compiler. It is possible
to compile a Java source file without defining any public type. Multiple top level types
can be handled by the Java compiler as well. Properties and behavior of the default Java
compiler are discussed in more detail in Section 3.3 by taking a closer look at some corner
cases of the Java programming language.

Line 7 states that if a type A relies on a type B, and both are defined by Java artifacts,
they are either defined in the same Java artifact or their Java artifacts rely on each other in
the same way.

All further OCL statements constrain the relations of names as known from Java.
Constraint Line 12 demands that the simple name of a Java artifact and the non-inner type
it defines are equal.

Constraint Line 15 enforces that the full name of the directory containing the Java
source file must end with the full name of the package declared by the Java source file.
Nevertheless, the directory may be deeper nested. This constraint is not enforced by the
Java language definition (see Section 3.3), but by many tools including the Eclipse IDE
[Ecl15].

Line 19 enforces that the full name of a Java source file corresponds to the full name of
its defined top level type modulo separator replacement.

Line 24 defines that the name of the package declared by the Java source file, which is
compiled to Java class files, must be reflected in the file system, i.e., the full name of the
folder containing these Java class files must end with the full name of the package declared
by the Java source file (see Section 3.3). Lastly, Line 28 demands that the simple name of
a Java class file corresponds to the name of its defined type. If the type is an inner type,
dots are replaced by “$” chars.

3.3. Detailed Examination of Java Artifacts and
Types

Many Java tools capitalize on the following rule:

Definition 8 (Java Type Artifact Correspondence Rule) A type with name T is stored
in an artifact of the same name T.java. This also holds for full qualified types q.T that
are stored in q/T.java

This rule is not enforced by the Java language definition, but by many tools, because it
greatly simplifies the lookup mechanism for types. Based on this rule import statements
basically refer to other types as well as to artifacts. In contrast to this, other languages like
C or C++ explicate that their import statements refer to artifacts exclusively.

This Java correspondence rule is also very helpful for developers, because it allows them
to widely ignore the difference between classes and artifacts. They can write the desired
types into the import statement and thereby automatically refer to their defining artifacts.

25

Chapter 3. Extending the Artifact Model to Java

However, the AM clearly separates both concepts and their relationships. For further
motivation of this separation, in the rest of this section we demonstrate some special corner
cases that occur in Java and make this distinction necessary.

The presented corner cases will help to understand the programming language Java and
its import statement. Moreover, these cases are used to give a better understanding of the
way Java-based projects are modeled in the AM. For each of the special cases, first, its
setup is presented. Next, it is explained, which actions are performed, i.e., the way the Java
default compiler was used. Afterwards, the results of the specific compilation attempts are
discussed in detail in addition to the direct consequences for the AM. As a final remark, if
not explicitly stated otherwise, we assume for all the cases that the directory structure on
the file system matches the package structure.

3.3.1. Case 1: Java Compiles All Files It Relies On

The first case in Listing 3.11 shows a standard situation with four Java classes D, E, F, and
G, where each relies on the previous one in a different form.

 ���1 // artifact p/D.java
2 package p;
3

4 public class D {}

 ���1 // artifact p/E.java
2 package p;
3 import p.D;
4

5 public class E {}

 ���1 // artifact p/F.java
2 package p;
3

4 public class F {
5 E e;
6 }

 ���1 // artifact p/G.java
2 package p;
3

4 public class G extends F {}

Listing 3.11: Java source artifacts D, E, F and G for Case 1.

Each of these classes may be compiled individually. However, if we only compile class
G by using

26

3.3. Detailed Examination of Java Artifacts and Types

1 javac p/G.java

we get the other four classes compiled as well. This doesn’t happen if we compile E, where
only two classes are produced.

1 javac p/E.java

We learn: Java includes its own dependency management. It knows which artifacts it
has to consider when compiling an artifact. So an import statement serves at the same time
as reference to both, the imported type and the artifact where the type is stored.

As an aside, if the superclass artifact F changes and G is recompiled, then Java detects a
potential need for recompilation. However, this need is not detected along the transitive
closure. Modifying D.java and then recompiling only F.java does not lead to a
recompilation of E.java and D.java. So it is unsafe to rely on Java’s dependency
management when building a system incrementally.

3.3.2. Case 2: Where Java Looks for Types

The setup of the second case, an unusual situation with three Java classes A, B, and
AlsoDefinesA, is shown in Listing 3.12.

 ���1 // artifact A.java
2 package p;
3

4 public class A {}

 ���1 // artifact B.java
2 package p;
3 import p.A;
4

5 public class B {}

 ���1 // artifact p/AlsoDefinesA.java
2 package p;
3

4 class A {}
5

6 class AlsoDefinesA {}

Listing 3.12: Java source artifacts A, B, and AlsoDefinesA for Case 2.

27

Chapter 3. Extending the Artifact Model to Java

The situation is unusual as A claims it belongs to package p, but is not stored inside the
directory p. Furthermore, the artifact AlsoDefinesA defines two types, because it also
produces a version of class A.

1 javac A.java

compiles well, but unfortunately creates the class file A.class in the same (current)
directory, which does not correspond to package p. This is why the compilation of B fails,
pretending not to find the desired symbol A:

1 javac B.java

This failure is independent of whether A has been compiled before. However, if we
compile A at the wrong place and move it to the desired directory, then the compilation is
successful:

1 javac A.java

2 mv A.class p

3 javac B.java

So Java does not look in all directories, not even in the current directory, for potential
places where an artifact can be, but uses the concatenation of package and class name as
artifact identification and thus as destination to look at.

As an aside, file A.class is also created by the unusual file p/AlsoDefinesA that
contains two top-level type definitions. When we compile this in the following order, the
compilation is successful:

1 javac p/AlsoDefinesA.java

2 javac B.java

This example also shows that the import statement looks for both the class files and the
source files, but is already satisfied if it finds one of these artifacts. However, if both files
are compiled together like in

1 javac B.java A.java

then the compilation is successful, because the compiler uses the compiled version of A in
the internal buffer and does not look externally at all.

We learn: The Java compiler only looks at certain destinations for certain artifacts. If an
artifact is in the wrong place, then it is not used even if it would contain the correct type.

If, however, the artifacts are compiled together, then the internal buffer stores types with
their qualified names and not artifacts.

As a note, we would like to add that the smartness of the Java compiler managing depen-
dencies between Java files has a lot of advantages for standard Java projects. Nonetheless,

28

3.3. Detailed Examination of Java Artifacts and Types

it also introduces problems, when a larger number of files are generated and the dependency
management, as very well done by Make [SMS15], has to include artifacts that serve as
sources for generated Java files.

3.3.3. Case 3: Where Java Looks for Inner Types

The third case, whose setup is shown in Listing 3.13, is related to the second case. It also
demonstrates how Java manages packages and inner types.

 ���1 // artifact M.java
2 package x.y;
3

4 public class M {}
5

6 class P {
7 public class Q {}
8 }

 ���1 // artifact N.java
2 package x.y;
3

4 import x.y.P.Q;
5

6 public class N {}

Listing 3.13: Java source artifacts M and N for Case 3.

The artifact M contains the class M and two more classes P and P.Q. Both artifacts M
and N belong to package x.y. Compiling with

1 javac M.java

2 javac N.java

is not successful. The compiler complains that package x.y.P does not exist. It does not
recognize that the type P exists and contains the inner type Q in the package x.y. It only
looks at location x/y/P. However, again the internal buffer has precedence, because

1 javac M.java N.java

successfully compiles and produces four artifacts for M, N, P, and P$Q.
Again, Java is smart and efficient, but it considers each element of the path in an import

statement, such as x.y.P, as directory as well as file artifact. The following setting in
Listing 3.14 is very similar to Listing 3.13, but this time it stores the Java source artifacts
in the appropriate directory and includes the inner type in the official type (identical to the
filename).

29

Chapter 3. Extending the Artifact Model to Java

 ���1 // artifact p/y/R.java
2 package p.y;
3

4 public class R {
5 public class T {
6 public class U {}
7 }
8 }

 ���1 // artifact p/y/S.java
2 package p.y;
3

4 import p.y.R.T.U;
5

6 public class S {}

Listing 3.14: Java source artifacts R and S for Case 3.

Because directory p.y exists, artifact R.java is found and identified as the next step
towards finding the inner type R.T.U. Thus, calling the compiler with

1 javac p/y/S.java

leads to the compilation of both Java files, resulting in four class files p/y/RTU,
p/y/R$T, p/y/R, and p/y/S.

We learn: Java tools and especially the compiler use the import statements to infer the
artifacts and directories where the definitions of the types that are of interest are assumed.
The import statement, however, combines a lookup of the artifact in the directory with a
lookup for inner types within the artifact. Thus, when a type contains inner types, the type
itself shares similarities to an artifact container.

3.3.4. Case 4: How Java Handles Archives

The fourth case focuses on the use of archives in the Java programming language. We
reuse Java source artifact B.java, as defined in Listing 3.12. Additionally, we use several
versions of libraries containing directories and versions of Java class files for class A, as
defined in Listing 3.12. All artifacts are located in the same folder. Listing 3.15 shows the
contents of the libraries.

The first two of the following three commands are successful, while the third fails:

1 javac -cp lib-classes.jar B.java

2 javac -cp lib-sources.jar B.java

3 javac -cp lib-broken.jar B.java # fails

30

3.3. Detailed Examination of Java Artifacts and Types

1 :> jar -tf lib-sources.jar
2 |_ p/
3 |_ p/A.java
4

5 :> jar -tf lib-classes.jar
6 |_ p/
7 |_ p/A.class
8

9 :> jar -tf lib-broken.jar
10 |_ A.class

Listing 3.15: Content of the Java libraries.

While the first command produces artifact B.class only, the second command addi-
tionally produces A.class, because only the sources were in lib-sources.jar.

The failure of the third is due to the fact that in the lib-broken.jar the artifact for
class A is stored in the wrong directory and thus is not found in package p. This indicates
that the Java compiler looks only in desired directories within archives and does not search
archives completely.

We learn: To use the Java compiler successfully, it has to be ensured that the directory
structure as well as the naming of directories, types, and artifacts is correct within a jar
file as well.

We have reflected these considerations in the AM using a number of constraints to ensure
that packages, directories, types, and inner types are named correctly and consistently (cf.
Line 15 of Listing 3.10).

3.3.5. Summary

In this section, a number of cases covering different aspects of the Java programming
language were presented. Each of these cases focuses on different properties of the
programming language and the behavior of the Java compiler.

The first case provided a simple yet informative example, which showed that Java
compiles not only the artifacts given in the arguments, but also artifacts these rely on.
This case can be seen as a strong hint that the import statement is regarded as a statement
between artifacts by the Java compiler.

The second and third case demonstrated where the Java compiler looks for types. With
the given examples it was shown that the Java compiler uses the import statements to infer
the artifacts and directories in which it assumes the definitions of certain types.

The fourth case took a closer look at archives and showed how they are handled by
the Java compiler. More specifically, the provided example demonstrated that the Java
compiler assumes the package structure to match the internal directory structure of a library.
This case also showed that this assumption by the default Java compiler is modeled in the

31

Chapter 3. Extending the Artifact Model to Java

AM. This way artifact data of a given MDD project that conforms to the AM can be used
to validate the project, or parts of it.

We also discussed that recompiling a previously modified artifact does only lead to a
recompilation of the modified artifacts it directly relies on. However, when the modified
artifact transitively relies on further modified artifacts, these artifacts are not recompiled,
as shown in the example of Subsection 3.3.1. Therefore, it is easily possible that this can
lead to errors. Thus, the Java compiler is not fully reliable for incremental compilation.

The case also demonstrated that the AM provides an useful way of giving an overview
of the artifacts relying on each other. Such an overview can be used to evaluate the impact
of any modification done to an artifact or for an efficient incremental compilation.

In conclusion, the different cases showed that our artifact centric approach to model
Java-based development projects not only describes the behavior of the Java compiler,
especially concerning the different relations on the artifact level, but also provides a good
opportunity to evaluate and analyze the artifact structure of Java projects.

As a final remark, we repeat our assumption that there is only one outer type in each
Java source file with the same simple name as the defining Java artifact. This is not
enforced by the compiler, but many tools rely on it. The assumption ensures that the
default class loading of the Java compiler works, since the logical structure matches the
physical structure of these.

Nonetheless, we have demonstrated that there exist other special corner cases for
which the logical and physical structure do not exactly match. Yet, it is still possible to
successfully use the Java compiler if all the sources are explicitly given as parameters. In
these cases the class loading step must work without file based search. It is, for example,
possible to replace the default ClassLoader. However, for the AM this possibility is
not taken into consideration, since we are convinced that for the majority of Java-based
development projects replacing the default ClassLoader is not necessary.

32

Chapter 4.

Modelling Languages and Their
Definitions

A modeling language, such as the UML/P defined in [Sch12, Rum16, Rum17], needs
a proper definition that is useful for humans but also processable by computers. The
extension of the AM defined up until now serves as a preparation for the definition of tools.
It is again generic in the sense that it does not deal with a concrete language, but covers
the range of language definitions.

On the other hand, we do not try to cover all potential language definitions, but concen-
trate on textual languages as they are defined by tools like MontiCore [GKR+06, KRV08,
GKR+08, KRV10, Kra10, Völ11]. Because of the textual nature of these languages, we
use grammars for language definition [KRV07a, KRV07b]. An alternative would be, for
example, to use meta-models, like MOF [OMG16] or Ecore [SBMP08].

��

����	�	��	�&

�	���	�

'������"��	

��������

�
������� ���!����	"��	

������	�

�

������

'������

(��%��%	

#�#�

%������ ����

�

�

�

�

�� � �

����������

Figure 4.1.: A language is described by a grammar and several context conditions (CoCos),
which describe the language’s well-formedness rules.

In Figure 4.1 we have defined the core concepts for modeling languages, including
the specialized artifact kinds JavaSourceFile, GrammarFile, and ModelFile.
Moreover, logical concepts reflecting the part of modeling languages that we are currently
interested in are shown.

33

Chapter 4. Modelling Languages and Their Definitions

4.1. Languages

Let us first capture the essence of a language in terms of the abstract concepts Language,
Grammar, and context condition (CoCo) in Listing 4.2. These are not directly reflected
as artifacts, neither are they part of artifacts. Thus, they belong to the area of semantics
definitions, which help us to structure and discuss concepts around the AM, but do not
(necessarily) find a counterpart in any form of tools.

��1 class Language {
2 String name;
3 }
4

5 class Grammar {}
6

7 class CoCo {
8 String name;
9 }

10

11 association grammar [*] Language -> Grammar [1];
12

13 association coco [*] Language -> CoCo [*];
14

15 context Language inv:
16 name != "";

Listing 4.2: AM: Language.

With the concept Language we describe any form of modeling, programming or other
language that is of interest for us. Various forms of automata, statecharts, class diagrams,
the full UML, etc. are candidates for a language.

In the pure textual setting that we have chosen, a language is defined by exactly one
Grammar to capture the context-free part. To define the set of well-formed models in all
the details, a set of context conditions (short CoCos) act as further constraints. Hence, for
a model of a language to be well-formed none of these constraints must be violated.

Please again note that the Language, Grammar, and CoCo are not artifacts them-
selves, but abstract concepts that are defined using artifacts.

4.2. Grammar-Based Definitions

In MontiCore and other language work benches, such as Xtext [EB10], spoofax [KV10],
or MPS [Voe13], it is possible to store a grammar used to describe a language in several
artifacts. We reflect this by a separation between the actual grammar as a logical concept
and the GrammarFile as a kind of reusable artifacts that contains a grammar, but also

34

4.3. ModelFiles Conform to Languages

includes other grammar definitions to complete the grammar. MontiCore, for example,
allows to extend and replace nonterminals of a grammar as well as to compose or refine
grammars. It offers the concept of a component grammar, which is basically dedicated for
reuse.

��1 class GrammarFile extends Artifact {}
2

3 association defines [1] GrammarFile -> Grammar [1];
4

5 association includes [*] GrammarFile -> GrammarFile [*];
6

7 context GrammarFile inv:
8 nameExtension == "mc4";
9

10 context GrammarFile inv:
11 refersTo.containsAll(includes);

Listing 4.3: AM: GrammarFile.

Listing 4.3 therefore introduces the GrammarFile, which defines a grammar while
including a number of other grammars. This inclusion is again a form of reference and
thus the association includes is a subset of refersTo. In MontiCore, grammar files
have always the file extension ".mc4".

��1 association implementedBy
2 [*] CoCo -> JavaSourceFile [1..*];

Listing 4.4: AM: CoCo.

Context conditions (CoCos) describe well-formedness rules of a language. Without
looking deeper into details, we very generally allow a context condition to be implemented
by a set of Java classes. Association implementedBy in Listing 4.4 models this without
further details.

4.3. ModelFiles Conform to Languages

Languages allow developers to write models. These models are stored in artifacts. We
therefore introduce in Listing 4.5 the artifact of kind ModelFile, which conforms to a
Language.

Of course, many model files conform to a language, but it may also be that a single
model file conforms to several languages. This is in particular the case, if languages exist
in different versions, such as Java 7, 8, etc. and their models do not explicitly contain

35

Chapter 4. Modelling Languages and Their Definitions

��1 abstract class ModelFile extends Artifact {}
2

3 association conformsTo [*] ModelFile -> Language [*];

Listing 4.5: AM: ModelFile.

a version number. This is, for example, the case in programming languages, but not
necessarily for XML dialects, where the XML document is forced to store its version and
thus only belongs to one version of the language.

At this point, we could go much further into semantic details, for example, by describing
models as a concept and relating them to a language as well as to the ModelFiles. In
practice it may be that there is a complex relationship, because one model is decomposed
and stored in several individual artifacts (ModelFiles). However, with this chapter we
only intended to give a short introduction into the basic concepts of languages and how
they can be modeled by an AM.

We could also take a deeper look into tooling issues, by investigating the parsing of
ModelFiles and the creation of abstract syntax trees (ASTs). This would require to
take a more detailed look at internals of artifacts, which is out of scope of this report and
increasingly specific.

36

Chapter 5.

Class Diagrams in the Artifact
Model

In Chapter 3, we have seen how to extend the AM to describe the typical artifacts of a
programming language. However, the AM is not only designed for programming artifacts,
but also for models written in specification and modeling languages. In Chapter 4, we
prepared the meta-level describing how a modeling language can be defined. In this chapter,
we demonstrate how to represent the set of models of a concrete language, namely class
diagrams, in the AM.

UML/P Class diagrams (CD) [Rum16, Rum17] are structure diagrams, which can be
utilized for various purposes. Common applications are conceptual modeling or the
modeling of the system’s design. In conceptual modeling [ET14] the main concepts of the
problem domain are modeled as result of an analysis activity, whereas when used for the
system design [Rum16], the structure of the system to be implemented is specified. Thus,
classes in a CD can represent both, the main concepts of the problem domain as well as
the technical classes of the target system.

In many MDD projects, CDs are used as conceptual models to describe the concepts
of the problem domain and their relations [Rei16, Rot17, Loo17]. The files containing
the model, namely CD model files, serve as input for the generator (cf. Subsection 2.2.1),
which generates a data management system including a GUI and persistence functionality.
Thus, CD model files can serve as source for the generation of the target product. In this
section, only CD related artifacts, elements and corresponding relations are explained. An
overview of these is given in Figure 5.1.

The relationship between source models and generated artifacts is investigated in Chap-
ter 6.

A CDModelFile is a file artifact, which defines a CD in a textual notation [Sch12].
CD model files import other artifacts corresponding to their import statements. The import
statement allows to use symbols defined in imported artifacts for the definition of the model
under consideration. MontiCore provides a complex infrastructure to allow the import
of symbols from foreign modeling languages [HLMSN+15, MSN17]. So the imported
symbols are not necessarily defined in CD artifacts.

37

Chapter 5. Class Diagrams in the Artifact Model

��

�

#
���	�"��	 ��	
�	���	�

�
�������

����
�

�������

�

�	��	���
�

�

�

�	��	���

��������

�

Figure 5.1.: Class diagram model files and their defined types.

We could look deeply into the syntactic structure of CD model files, exhibiting the
concepts of classes, associations, etc. However, we do not look into the syntactic structure
of CDs here, as the focus of the report lies on the artifact level. What we do, however, is to
describe the semantics of a class diagram in terms of the types it introduces.

In this section, we only talk about the types that are introduced but not about the artifacts
that implement these types. Probably, these artifacts will be Java artifacts generated from
the class diagram or handcoded by a developer using the class diagram as source of
information. Furthermore, the instances of class diagrams are located at the "object" level
here, as we use the language of class diagrams to model the AM.

A CD model file defines types. The Type class subsumes any form of types from Java,
CDs, etc. Its properties have already been defined in Listing 3.9.

As shown in Listing 5.2, several constraints are defined to ensure the consistency of the
corresponding project data. The imports relation contributes to the reliesOn relation
and the reliesOn relation is modeled as specializations of the refersTo relation in
the AM, similar to the corresponding relations between Java artifacts (cf. Listings 3.2 and
3.3). Moreover, Lines 18 and 22 ensure that all types that are required in a CD model file
are defined in the artifacts that the CD model file relies on.

Note that the last two OCL constraints of Listing 5.2 could be simplified as shown in
Listing 5.3 if there was a defines relation from Artifact to Type.

This defines relation, however, is not present in the AM. The decision to leave
out this relation was made since only a small number specialized artifact kinds in the
AM, namely CDModelFiles and JavaArtifacts, actually define Types. Thus, the
shown alternative cannot be chosen as valid specification of the AM, which is why the AM
flag is not assigned to Listing 5.3.

The artifact model is defined in such a way that it is not possible for Java artifacts to
rely on CD model files. However, this could, for example, be needed when handcoded

38

��1 class CDModelFile extends ModelFile {}
2

3 association imports [*] CDModelFile -> Artifact [*];
4

5 association reliesOn [*] CDModelFile -> Artifact [*];
6

7 association defines [0..1] CDModelFile -> Type [*];
8

9 context CDModelFile inv:
10 nameExtension == "cd";
11

12 context CDModelFile inv:
13 reliesOn.containsAll(imports);
14

15 context CDModelFile inv:
16 refersTo.containsAll(reliesOn);
17

18 context CDModelFile m1, m2,
19 Type t1 in m1.defines, Type t2 in m2.defines inv:
20 t2 in t1.reliesOn implies m1 == m2 || m2 in m1.reliesOn;
21

22 context CDModelFile m, JavaArtifact a,
23 Type t1 in m.defines, Type t2 in a.defines inv:
24 t2 in t1.reliesOn implies a in m.reliesOn;

Listing 5.2: AM: CDModelFile.

1 context CDModelFile m inv:
2 m.reliesOn.defines.containsAll(m.definesType.reliesOn);

Listing 5.3: Simpler version of the OCL specification based on a defines relation from
Artifacts.

Java classes cooperate with generated Java classes that implement types from a CD. On
the model level, only the CDs and the handcoded Java classes are taken into consideration
and thus have complex relationships, which we could also handle with the AM. As
the refersTo relation is defined between Artifacts and we use a common Type
element within the AM, we already prepared the addition of a reliesOn relation from
CDModelFile to JavaArtifact.

This requires the presence of generators that transform CD model files into Java artifacts
such as those described in [Rei16, Loo17, Rot17]. Here, the generated Java artifacts define
the same types as the input CD model file.

39

Chapter 5. Class Diagrams in the Artifact Model

Instead of defining this extension directly for class diagrams only, we define the general
mechanism of generators in the following Chapter 6, allowing to relate source models and
generated artifacts in general.

40

Chapter 6.

Generators and their Artifacts in
MontiCore

In general, a generator reads one or more existing artifacts and produces a number of
new artifacts. A code generator reads model artifacts as input and produces source code
artifacts as output, thus transforming abstract models into executable code. The input
models conform to well-defined modeling languages. In our AM, the target language, i.e.,
the language of the generated artifacts forming the product, is Java. Moreover, we now
concentrate mainly on MontiCore-based generation techniques, even though many of the
existing generator technologies use very similar approaches.

6.1. Static Artifact Structures

MontiCore-based generators make use of template-based code generation. The template
engine used by MontiCore-based generators is FreeMarker1. FreeMarker is a flexible tool
providing a powerful template language that, for example, allows templates to call other
templates as well as to execute arbitrary Java expressions within the templates.

Thus, each generator consists, among others, of a set of FreeMarker templates and
Java artifacts. Figure 6.1 shows the relevant elements and relations of the AM regarding
generators.

Figure 6.1 mainly introduces relations between FreeMarker templates and Java artifacts.
These relations occur as Java is not only used as target language for generation but also as
language for the implementation of the generator itself. The details of those relations are
given in Subsection 6.1.1.

All relations shown in Figure 6.1 can be inferred by a static analysis of the artifacts
that are involved. These relations are therefore especially useful to identify the part of a
development project that needs to be included in the generator, while unused templates
and Java classes can be stripped.

The part of the AM presented in this chapter is meant for reuse, which is important as
specific forms of MontiCore-based projects use different generators. Moreover, the AM

1www.freemarker.org

41

Chapter 6. Generators and their Artifacts in MontiCore

��

�	��	����	�����	

 �����������

'	�	�����

"�		���$	��	�����	
��	�����	 �

(��%��%	

�����(��%��%	

�

��������

�
�

��

����

�	��	��� �����������
��

�	��	����	�����	

� �

��	��

�

Figure 6.1.: Static structure of a generator as a tool that uses templates.

enables to describe projects using several generators and to model generators with several
input languages. Nevertheless, it is restricted to FreeMarker-based template generation
and Java as target language.

6.1.1. Templates

Before describing the generator as a whole, templates are introduced in detail in this section
as they constitute an important part of the generator.

“The basic idea behind Templated Generation is to write the output file you desire,
inserting callouts for all the bits that vary. You then use a template processor with the
template file and a context that can fill the callouts to populate the real output file.” [Fow10]

Thus, the purpose of a template is to comfortably generate source code. The corre-
sponding dynamic relation is introduced later on in Section 6.2 as the occurrence in a
project can only be observed during the execution of the generator. As mentioned, in
this section we concentrate on the relations, which can be statically determined in con-
trast to those observable during the execution of the generator. The specification of the
FreeMarkerTemplate element of the AM is presented in Listing 6.2.

As mentioned, FreeMarker templates can invoke each other [Sch12]. A corresponding
invocation statement induces a reliesOnTemplate relation between templates.

Templates can call methods from Java objects or create new objects. In this case the
template relies on the Java artifact that defines the method or creation mechanism that is
being used. This is indicated by the reliesOnJavaArtifact relation.

The reliesOnTemplate relation forms the counterpart to the aforementioned re-
lation as it connects Java artifacts to FreeMarker templates. Java artifacts can rely on
FreeMarker templates, for example, for the purpose of replacing default templates by more
specific ones [Rot17]. Such a reference is implemented using the qualified template name
in form of a string.

42

6.1. Static Artifact Structures

��1 class FreeMarkerTemplate extends Artifact {}
2

3 association reliesOnTemplate
4 [*] FreeMarkerTemplate -> FreeMarkerTemplate [*];
5

6 association reliesOnJavaArtifact
7 [*] FreeMarkerTemplate -> JavaArtifact [*];
8

9 association reliesOnTemplate
10 [*] JavaArtifact -> FreeMarkerTemplate [*];
11

12 context FreeMarkerTemplate inv:
13 nameExtension == "ftl";
14

15 context FreeMarkerTemplate inv:
16 refersTo.containsAll(reliesOnTemplate);
17

18 context FreeMarkerTemplate inv:
19 refersTo.containsAll(reliesOnJavaArtifact);
20

21 context JavaArtifact inv:
22 refersTo.containsAll(reliesOnTemplate);

Listing 6.2: FreeMarkerTemplate and its associations.

The flexible management of templates, both within the template hierarchy and within the
Java classes, contributes, among other techniques, to the configurability of the generator.
In [GMR+16], a similar approach is presented, which uses a DSL instead of Java artifacts
to define such replacements.

Whether the execution of such statements really occurs can only be determined at
runtime of the generator. The corresponding part of the AM can be found in Section 6.2. It
should also be noted that the dynamic relations of templates that call each other and the
static knowledge about each other may differ in dynamic systems. The static knowledge is
captured by the reliesOnTemplate association.

However, a static "type safe" analysis on the use of templates is not simple, because
references to templates are based on strings that are potentially computed at generation time.
We should not forbid this, but accept it as a well-known mechanism of parameterization
and customization. Nonetheless, when template names are computed at generation time,
then a static analysis of knowledge and usage becomes impossible.

In contrast, capturing corresponding calls through dynamic monitoring is easily doable.
The generator, however, becomes more difficult to understand, when the strings referring to
templates are manipulated, for example, by appending indexes or changing the path to the
referenced template in the file system. In such cases, it is not possible to determine which

43

Chapter 6. Generators and their Artifacts in MontiCore

templates are actually in use by applying statical analysis techniques. We thus suggest to
avoid manipulating any string that refers to a template.

6.1.2. Generators

We already know that a generator is a system that consists of a set of artifacts. We refined
this knowledge by connecting the generator with the templates it uses. Listing 6.3 shows
the core elements of a generator.

��1 class Generator extends Tool {}
2

3 association uses [*] Generator -> FreeMarkerTemplate [*];
4

5 association /template
6 [*] Generator -> FreeMarkerTemplate [*];
7

8 association inputLanguage [*] Generator -> Language [*];
9

10 context Generator g, JavaArtifact a in g.consistsOf inv:
11 g.template == g.uses.addAll(g.template.reliesOnTemplate**)
12 .addAll(a.reliesOnTemplate);
13

14 context Generator inv:
15 consistsOf.contains(template);
16

17 context Generator inv:
18 consistsOf.contains(template.reliesOnJavaArtifact);

Listing 6.3: AM: Generator.

The generator uses templates for the purpose of code generation depicted by the uses
and the template relation. We define both relations because the uses relation gives us
the set of directly known templates, whereas the template relation additionally contains
the indirectly used templates. Indirectly used templates are templates that are included by
other templates or templates on which Java artifacts of the generator rely. The template
relation can therefore be used to identify the full set of necessary templates. The directly
known templates can be identified through recognizing all names for templates that are
provided as parameter when invoking the generator. In case of the MontiDEx generator
[Rot17], the generator is invoked for each type defined in the CD. For each of the types
class, interface, and enum a different template is used. Thus, the uses relation contains
three templates in this case. Furthermore, only a smaller subset of the templates connected
through the template relation may actually be called, because some may not be used in
any execution.

44

6.2. Dynamic Monitoring of Tool Executions

We also specify the set of input languages of a generator, i.e., we define which kind of
artifacts can be processed as the generator’s input (cf. Section 6.2).

From Figure 2.1 we know that artifacts contribute to other artifacts when a generation
process is executed. The AM provides a general relation called produces to capture
this kind of contribution. Template and Java artifacts of a generator will contribute to the
generated artifacts. We concentrate on static relations and thus cannot deduce a further
refinement of the produces relation. For this, we use generator executions as described
in Section 6.2.

6.2. Dynamic Monitoring of Tool Executions

The representation of dynamic processes, like a monitoring of a tool execution, is based on
the notion of actions, which may be time-consuming. Therefore, the following subsection
reflects our notion of monitoring, and the forthcoming sections refine actions and events
for tool specific observations.

6.2.1. Representing Actions and Events

Figure 6.4 gives a general overview of how actions and their monitoring are modeled in
the AM. The figure is detailed by Listing 6.5.

��

����
�

�����

�

����

���

)*	�������������� �
+���	�	�,

+���	�	�,

���������

Figure 6.4.: Notion of action and their monitoring.

We generally add timestamps to Actions. An Action may have a duration and thus
has a start and end time.

Line 23 ensures that timestamps are well defined in an Action and Line 26 states that
a special form of Action, namely the Event, is instantaneous or just happens too fast
for us to observe a duration.

An action may consist of subactions, which may be events as well. Thus, we model an
Action hierarchy using a variant of the composite pattern with the subaction relation.
This relation is ordered to reflect the order in which the actions occur. However, this needs
to be compatible with the start and end dates of the actions. Line 29 ensures that subactions
are actually contained in their parent’s action and Line 32 ensures that two subsequent
actions are in timing order.

45

Chapter 6. Generators and their Artifacts in MontiCore

��1 class ExecutionProtocol {}
2

3 class Action {
4 Date start;
5 Date end;
6 }
7

8 class Event extends Action {}
9

10 association ExecutionProtocol -> Action [*] <<ordered>>;
11

12 association subaction
13 [0..1] Action -> (sub) Action [*] <<ordered>>;
14

15 context ExecutionProtocol p, int i,k inv:
16 (0 <= k && k <= p.action.size && 0 <= i && i <= k) implies
17 p.action[i].start <= p.action[k].start;
18

19 context ExecutionProtocol p inv:
20 p.action.nonEmpty implies (p.action.asSet ==
21 p.action[0].subaction**.asSet.add(action[0]));
22

23 context Action inv:
24 start <= end;
25

26 context Event inv:
27 start == end;
28

29 context Action a, Action s in a.subaction inv:
30 a.start <= s.start && s.end <= a.end;
31

32 context ExecutionProtocol p, int i,k inv:
33 (0 <= k && k <= p.action.size && 0 <= i && i <= k) implies
34 p.action[i].end <= p.action[k].start;

Listing 6.5: AM: Actions.

Please note that this form of action monitoring assumes that we have a sequential process
for the generation of code. It does not reflect potential parallelization of independent
generation steps, even though this might speed up the generation process.

An ExecutionProtocol consists of a list of actions. Because of Line 15, the order
of the list is consistent with the order in which the actions start, and thus a flat list of all
actions of an execution is available. This flat list can be derived from the hierarchy of
actions by the constraint in Line 19. This constraint also enforces that the list additionally
contains subactions of the starting action action[0].

46

6.2. Dynamic Monitoring of Tool Executions

6.2.2. Actions in a Generation Process

��

����
�

 ���#����"��	

��������

"�		���$	��	�����	

����

�

�

�

�

����

�

�

�

�

�

����

�	�����	

���	

�	���

��	��	�

 ����	����#���

��������-	��

�	�����)*	������

����)*	������

��������#�	��	

.���	!����%

��������)*���	��	
#�	�$

��	�$�

/���	����

�

����

�

/���	���
����

�

Figure 6.6.: Relevant actions in a Generation process.

Figure 6.6 and Listing 6.7 show the relevant kinds of actions that we want to observe
when a generation process executes.

We are interested in observing all template executions, because we want to understand
which templates are used and where they are contributing to. A template usually is copied
completely into the artifact it writes to, thus a template execution is associated to an artifact.
However, it may be that control templates do not directly write output into a file and
subactions of a template, triggered, e.g., by related Java code, may contribute to further
artifacts.

We are also interested in the artifacts created during the generation process and the
artifacts that are read for that purpose. Some generators, especially MontiCore, are sensitive
to the existence of certain handcoded Files. To reflect this, we observe the check, whether
an artifact exists.

We do not want to observe all method calls, but only the interesting ones, which includes
method calls from templates to Java. A template may invoke Java methods to retrieve
information. Additionally, it may invoke certain Java methods which then again start
more generation processes. Furthermore, we subsume static methods, object creation, and
attribute read and write as method calls.

In general, template executions and method calls may mutually and recursively call
each other. In particular, it is also possible that a method call starts another template
execution. We have reflected this in the action hierarchy in Listing 6.5. However, we allow

47

Chapter 6. Generators and their Artifacts in MontiCore

��1 class ToolExecution extends Action {}
2 class TemplateExecution extends Action {}
3 class JavaMethodCall extends Action {}
4 class ArtifactRead extends Action {}
5 class ArtifactExistenceCheck extends Action {
6 String fullName;
7 }
8 class ArtifactCreate extends Action {}
9 class WriteString extends Action {

10 String content;
11 }
12

13 association tool [*] ToolExecution -> Tool [1];
14

15 association writesTo
16 [*] TemplateExecution -> Artifact [0..1];
17

18 association template
19 [*] TemplateExecution -> FreeMarkerTemplate [1];
20

21 association file [*] JavaMethodCall -> JavaClassFile [1];
22

23 association reads [*] ArtifactRead -> Artifact [1];
24

25 association checks
26 [*] ArtifactExistenceCheck -> Artifact [0..1];
27

28 association creates [0..1] ArtifactCreate -> Artifact [1];
29

30 association writesTo [*] WriteString -> Artifact [1];

Listing 6.7: AM: Actions.

ArtifactRead and ArtifactCreate actions to be time-consuming. In particular,
it may be that an artifact creation uses a number of interesting and therefore observed
methods calls.

Please note that there are a number of caveats and options: First, we might be interested
in observing more forms of actions, such as the application of a transformation [Wei12,
HRW15], creation of an abstract syntax tree or a symbol table [MSNRR16, MSN17],
execution of a visitor [HMSNRW16], etc. Second, the temporal order (or even temporal
containment) of two actions does not necessarily induce a causality. The actions could
also be executed in a different order, because they are actually independent. Third, it may
also be that an earlier action modifies the internal state (e.g. abstract syntax of the loaded
models), such that a later action depends on the earlier one. In particular, it may be that all

48

6.2. Dynamic Monitoring of Tool Executions

artifacts read at a certain point in time, contribute to the artifacts created later on. Thus,
observations on this level are potentially coarse-grained and could need further refinement.

We could add a number of additional constraints. These constraints, however, would
not contribute to the overall specification. For example, a JavaClassArtifact can
obviously not be called before it is created. It is most likely, that an artifact that is created
during a ToolExecution will not be called later in the process, even though that is
possible.

In the following, we derive some higher level relations but also add additional relations
that allow us to understand in a more fine-grained way which methods and which templates
contribute to which artifacts created.

6.2.3. Tools Read and Create Artifacts

One goal when monitoring the execution of a generator is to understand when to re-execute
it (cf. Section 8.5). This is important if the goal is to use efficient and therefore incremental
building processes. If such a process consists of several generation steps, where one
generation step relies on the previous one, it is necessary to observe which artifacts have
been used and which are produced. With our execution monitoring, we can derive this
information and store it in the relations shown in Figure 6.8.

��

���	�����
	�	��	��
��������

����)*	������

������

�

� ����
�������

�
�

�

Figure 6.8.: Input and output dependencies of tool executions.

In Listing 6.9, we additionally describe the exact derivation.
Line 1 derives the total set of input artifacts that have been used by the tool execution.

For this purpose all subactions that actually read an artifact are regarded.
Starting with Line 7, we derive the set of artifacts that is created during a tool execution.
Starting with Line 13, the creationDependency associations between artifacts is

connected with the output relation. This relation is a conservative over approximation,
which means that two Artifacts M and N can be related through this relation, although
M has no real effect on N. Nonetheless, it is ensured that any building script that is based on
artifact dependencies, such as Make (but not Maven), can utilize this to calculate necessary
re-executions of generators.

Because of the conservative nature of creationDependency, it may be that the
actual produces relation contains less links (see Line 18). For example, the Java

49

Chapter 6. Generators and their Artifacts in MontiCore

��1 association /input [*] ToolExecution -> Artifact [*];
2

3 context ToolExecution inv:
4 input == {a in subaction** |
5 a in ArtifactRead || a in ArtifactExistenceCheck}.reads;
6

7 association /output [0..1] ToolExecution -> Artifact [*];
8

9 context ToolExecution inv:
10 output ==
11 {a in subaction** | a in ArtifactCreate}.creates;
12

13 association /creationDependency [*] Artifact -> Artifact [*];

14

15 context Artifact inv:
16 creationDependency == output.input;
17

18 context Artifact inv:
19 produces.containsAll(creationDependency);

Listing 6.9: Derivation of input and output.

compiler reads all source files and produces all class files in one execution. As a result, for
Java files the produces relation forms a small subset of the creationDependency
as we know what the tool does internally. However, as already discussed in Chapter 3, if
only Java is involved the Java compiler manages its production dependencies itself.

6.2.4. Template and Java Files Contribute to Artifacts

When monitoring artifact dependencies using the creationDependency relation it
is not possible to determine in a fine-grained form which artifacts of the generator tool
contribute to which generated artifacts of the product. Therefore, we add the con-
tributesTo relation described in Figure 6.10 and Listing 6.11 that stores more fine-
grained contribution information.

Assuming that a generator is a Tool with a fixed set of Artifacts (see consist-
sOf), we can distinguish between variable input files and the fixed set of artifacts, both
contributing to a generated artifact. Hence, the generator tool’s internal contributions are
monitored through the contributesTo relation.

This relation helps to understand which template or which specific Java class actually
contributes to an artifact. This is especially interesting when the template can and should be
modified to allow adaptation of the generation process. This way, the contributesTo

50

6.2. Dynamic Monitoring of Tool Executions

��

����������	���

��������
������������� ���

�

�

�

����
�

 ���#����"��	

"�		���$	��	�����	
�

�

��������������"�

Figure 6.10.: Template and Java files contribute to artifacts.

��1 association /contributesTo [*] Action -> Artifact [*];
2

3 context ToolExecution inv:
4 contributesTo == sub.contributesTo;
5

6 context ToolExecution inv:
7 contributesTo == output;
8

9 context TemplateExecution inv:
10 contributesTo == sub.contributesTo.add(writesTo);
11

12 context JavaMethodCall inv:
13 contributesTo == sub.contributesTo;
14

15 context ArtifactRead inv:
16 contributesTo == {};
17

18 context ArtifactExistenceCheck inv:
19 contributesTo == {};
20

21 context ArtifactCreate inv:
22 contributesTo == {creates};
23

24 context WriteString inv:
25 contributesTo == {writesTo};

Listing 6.11: Relevant action contribution associations.

relation determines which template to modify and what the impact of this modification
will be.

In general, relation contributesTo must be derived by the concrete generator tool,
e.g., through the protocol. This is the case for TemplateExecution and JavaMethod-
Call. For a detailed understanding of the actions, we also collect information on in-
dividual contributions through write actions. For other special forms of Actions,

51

Chapter 6. Generators and their Artifacts in MontiCore

the contribution can be defined as done by the constraints specified in Lines 3 to 24 pf
Listing 6.12.

We assume that it is a minimally defined association in the sense that if an action is
embedded in a super-action, the super-action must not know that it actually contributes
to an artifact. However, we can derive the set of all artifact contributions by deriving the
transitive closure of the subactions and their contributions.

Based on the contributesTo relation, we can derive which templates and which Java
classes actually have a contributing impact on a generated artifact as shown in Listing 6.12.

��1 association /contributionFT
2 [*] FreeMarkerTemplate -> Artifact [*];
3

4 context FreeMarkerTemplate inv:
5 contributionFT == templateExecution.contributesTo;
6

7 context FreeMarkerTemplate inv:
8 produces.containsAll(contributionFT);
9

10 association /contributionJava
11 [*] JavaClassFile -> Artifact [*];
12

13 context JavaClassFile inv:
14 contributionJava == javaMethodCall.contributesTo;
15

16 context JavaClassFile inv:
17 produces.containsAll(contributionJava);

Listing 6.12: Relevant artifact contribution associations.

In Lines 1 and 10, we define appropriate associations that capture this impact, and in
Lines 4 and 13, we derive these relations from the monitoring relation contributesTo.

The relations contributionFT and contributionJava help to understand
which artifacts of the generator need to be adapted or replaced to modify the content of a
generated artifact. Furthermore, the relation contributionFT also helps to understand
all potential side effects of template modification, which is in practice an underestimated
problem.

Finally, both relations contributionFT and contributionJava are subsets of
the produce relation (Line 7 and Line 16).

To demonstrate how these relations can be used to perform a variety of different analyses
that are based on tool monitoring, Chapter 8 describes an exemplary application of the
AM.

52

Chapter 7.

Artifacts in Maven-managed Java
Projects

The configuration and execution of software development projects is usually done by build
tools such as Make, Ant, Maven, or Gradle. This holds also for MDD Projects, where
MDD tools have to be additionally executed. In this chapter we investigate on the example
of Maven, “[...] a tool used to build deployable artifacts from source code.” [OMC+08],
how the usage of build tools can be modeled by an AM. Figure 7.1 gives an overview over
the involved artifacts, concepts and relations between them as they are modeled in our AM.

��

��	�������	������	
����
��

 ���!����	"��	 ���������	

0���!��
��

�0���!��"��	 ������

��������	 �

����
�

�	�	����� �

� �

����

�

����

����

��������

����

���	�

�

�	�	�����)*�	����

�

Figure 7.1.: Maven is a tool to build Maven modules, which have several directories with
specific purposes. Maven modules make use of libraries, submodules, and
modules they depend on.

Maven is a specialized form of Tool itself, which “[...] can now be used for building
and managing any Java-based project.” [Mav17b]. Therefore, Maven modules containing
Java source files are defined, which take Java archives into account when building the
software. In addition several directories with special purposes are defined. In this section,
we assume that Maven is used for building Java projects. Nevertheless, there are also
approaches in which Maven is used to build software written in another programming
language [NAR17].

53

Chapter 7. Artifacts in Maven-managed Java Projects

��1 class Maven extends Tool {}
2

3 class MavenModule {
4 boolean jarModule;
5 boolean project;
6 }
7

8 association rootDir [0..1] MavenModule -> Directory [1];
9

10 association javaSrcDir
11 [0..1] MavenModule -> Directory [0..1];
12

13 association /javaSrcFile
14 [0..1] MavenModule -> JavaSourceFile [*];
15

16 context MavenModule inv:
17 javaSrcDir.fullName ==
18 rootDir.fullName + "/src/main/java";
19

20 context MavenModule inv:
21 javaSrcFile ==
22 {JavaSourceFile f | f in javaSrcDir.contains**};
23

24 context MavenModule m, JavaSourceFile f in m.javaSrcFile inv:

25 f.parent != m.javaSrcDir implies
26 f.parent.fullName == m.javaSrcDir.fullName + "/" +
27 f.belongsTo.fullName.replaceAll(".", "/");
28

29 context MavenModule inv:
30 jarModule implies javaSrcDir.isPresent;

Listing 7.2: AM:Maven and MavenModule.

7.1. Maven Modules

Maven projects can either consist of a single module producing a single artifact or consist
of several Maven modules organized in a module hierarchy. Listing 7.2 specifies the
MavenModule concept of the AM that represents each of the modules. The root module
of a module hierarchy is marked by the project flag. Only the leafs of the module
hierarchy can contain source code. Other modules are used for the configuration of the
build process. Leafs that contain source code files are marked by the jarModule flag, as
they produces a jar file as output.

Each MavenModule has a rootDir, which is the directory that contains the overall
content of the Maven module. Another directory with a special purpose regarding the

54

7.2. Relations between Maven Modules

MavenModule is the javaSrcDir. This directory contains the Java source files of the
Maven module to be considered when building the deployable artifact. In this directory only
the source files of the target product are contained but not side products such as test cases.
The set of all those Java source files can be derived, as realized by the javaSrcFile
relation.

By default, the Java source directory of a Maven module is located in the subdirectory
"/src/main/java" of the root directory (cf. Line 16). Moreover, it is ensured in Line 24
that each Java source file is located in the subdirectory of the Java source directory that
corresponds to the file’s package name.

7.2. Relations between Maven Modules

As shown in Listing 7.3, there are three kinds of relations between MavenModules.
Multi-module projects consist of several modules organized in a module hierarchy. Sub-
modules related by the subModule relation inherit some properties of their parent
module.

The second relation is the dependsOn relation. Modules of the same module hierarchy
can depend on each other, and thus artifacts defined in one Maven module can be used
within another Maven module. Furthermore, Maven modules can depend on external
Maven modules, which are modules that are part of another project.

Moreover, the library relation depicts that third party libraries, which are Java
archives, can be used by Maven modules. These archives are not built by a module that
is part of the same module hierarchy, but any form of artifacts, such as Java class files,
templates, etc., within a library can be used by the artifacts of the module.

Furthermore, several interesting properties of Maven modules are expressed by the OCL
constraints in Listing 7.3.

Line 18 defines that the root directory of each submodule is contained in the root
directory of its parent module. This is a guideline enforced for MontiCore MDD Projects
and the default configuration of Maven. Maven examines these directories and adds the
submodules to the list of modules that are included in a build [OvZF+10]. Nevertheless,
for other projects, this constraint could be relaxed, because the Maven default configuration
can be adapted if desired.

Line 21 expresses that Maven modules can only depend on modules that are part
of the same module hierarchy. Hence, dependent modules have the same root module
marked by the project flag. Dependencies to other modules are comprised by the
dependsOnExternal association.

Lines 25 to 35 describe that the dependsOn, the dependsOnExternal, and the
library relations of a parent module are inherited from all submodules and that de-
pendsOn relations cannot form a cycle.

55

Chapter 7. Artifacts in Maven-managed Java Projects

��1 association subModule
2 [0..1] MavenModule (parent) -> MavenModule [*];
3

4 association dependsOn [*] MavenModule -> MavenModule [*];
5

6 association dependsOnExternal
7 [*] MavenModule -> MavenModule [*];
8

9 association library [0..1] MavenModule -> JavaArchive [*];
10

11 context MavenModule inv:
12 (project <=> parent.isAbsent) &&
13 (!project implies {p in parent** | p.project}.size == 1);
14

15 context MavenModule inv:
16 jarModule implies subModule.isAbsent;
17

18 context MavenModule inv:
19 rootDir.contains(subModule.rootDir);
20

21 context MavenModule m1, MavenModule m2 in m1.dependsOn inv:
22 {m in m1.parent** | m.project} ==
23 {m in m2.parent** | m.project};
24

25 context MavenModule inv:
26 !project implies dependsOn.containsAll(parent.dependsOn);
27

28 context MavenModule inv:
29 !project implies dependsOnExternal
30 .containsAll(parent.dependsOnExternal);
31

32 context MavenModule inv:
33 !project implies library.containsAll(parent.library);
34

35 context MavenModule inv:
36 !(dependsOn**).contains(this);

Listing 7.3: AM: Relations between MavenModules.

7.3. Target Directories and Target Artifacts

During its execution Maven creates an output directory for each of its jar modules, where
the produced output artifacts are stored. This relation is shown, among others, in Figure 7.4.
Some of the shown elements are introduced later in Section 7.4.

56

7.4. POM and VCSRootDir

��

��	�������	������	

 ���������	

���%	�
��

���%	���������

���� ����

����

����

1#!-���
�����

��������

���

�

�

Figure 7.4.: Each Maven module is configured by its POM. The compiled Java class files
of the Maven module are packaged to a target artifact contained in the target
directory. The artifacts of Maven modules can be stored within a version
control system (VCS).

One of these outputs is the targetArtifact, which is a deployable artifact packaged
during the build process and is produced for each jar module. If there is only one jar
module that is used to define the target product, the produced targetArtifact equals
the target product. Nevertheless, in other cases the targetArtifact can either be part
of the target product or form a library to be used in other projects. In the MDD domain,
this target artifact can also be an executable generator, the run time environment needed to
execute a generated product or even the run time environment needed to execute MDD
tools as it is the case for MontiCore.

In addition to Figure 7.4, Listing 7.5 specifies how the target directory is named and
where the target directory and the target artifact is located (cf. Line 6). Moreover, Line 13
describes that Java class files compiled from Java source files are located in the directory
inside the target artifact, which corresponds to the package name of its source file.

The last constraint (Line 20) states, that target artifacts of dependent external modules
are contained in the set of libraries that can be used for development.

7.4. POM and VCSRootDir

This section introduces further elements shown in Figure 7.4, which are detailed by the
Listings 7.6 and 7.7.

As the sources of Maven modules are usually stored in a version control system (VCS)
such as SVN [PCSF11] or git [CS14], a special kind of directory is introduced with
VCSRootDirectory, which represents the working copy of the VCS content. Thus,
this directory is a directory of the local file system. Moreover, Line 3 of Listing 7.6
describes that Maven root directories are contained in the directory hierarchy of exactly
one VCSRootDir.

The configuration of Maven modules is contained in a special artifact, the Project Object
Model (POM). Each Maven module has exactly one POM file. Within the POM artifact,
the mentioned subModules, dependendModules, and libraries are defined.
Moreover, bindings of tools can be defined within a POM file (see Section 7.5). Thus,

57

Chapter 7. Artifacts in Maven-managed Java Projects

��1 association targetDir [0..1] MavenModule -> Directory[0..1];
2

3 association targetArtifact
4 [0..1] MavenModule -> JavaArchive [0..1];
5

6 context MavenModule inv:
7 jarModule implies targetDir.isPresent &&
8 targetArtifact.isPresent &&
9 targetDir.parent == rootDir &&

10 targetDir.simpleName == "target" &&
11 targetArtifact.parent == targetDir;
12

13 context MavenModule m, JavaSourceFile f in javaSrcFile inv:
14 m.jarModule implies (f.compiledTo.parent.fullName ==
15 ((f.parent == m.javaSourceDir) ?
16 targetArtifact.fullName :
17 m.targetArtifact.fullName + "/" +
18 f.belongsTo.fullName.replaceAll(".", "/")));
19

20 context MavenModule inv:
21 library.containsAll(dependsOnExternal.targetArtifact);

Listing 7.5: AM: targetDir and targetArtifact relations.

��1 class VCSRootDir extends Directory {}
2

3 context MavenModule inv:
4 {VCSRootDir d | d in (rootDir.parent**)}.size == 1;

Listing 7.6: AM: VCSRootDir.

POMs are the configuration points for the Maven build process. Furthermore, the necessary
information to define a concrete project version, namely groupId, artifactId, and
version, are specified within this artifact.

Listing 7.7 further specifies the name of POM artifacts in terms of their simpleName
(cf. Line 9) and their nameExtension (cf. Line 12). This naming convention is used in
MontiCore projects and thus the naming for POM files follows its default. Nevertheless,
the naming convention is not enforced by Maven. To use a POM file with a different
simpleName, Maven can be executed by the following command, where the file name is
provided as argument [OMC+08]:

1 mvn -f <file>

58

7.5. Maven Phases

��1 class POM extends Artifact {
2 String groupId;
3 String artifactId;
4 String version;
5 }
6

7 association pom [1] MavenModule -> POM [1];
8

9 context POM inv:
10 simpleName == "pom";
11

12 context POM inv:
13 nameExtension == "xml";
14

15 context MavenModule inv:
16 rootDir == pom.parent;

Listing 7.7: AM: POM.

However, the POM of each Maven module must be located in the module’s root directory
(Line 15).

7.5. Maven Phases

When Maven is executed, different MavenPhases are processed (see Section 7.6).

��

���	������	 ����� ���	�����	�	*	���	�

+���	�	�,
� ������

+���	�	�,

Figure 7.8.: Tools can be bound to Maven Modules via a Maven phase.

Each MavenPhase has a name and an index. Maven provides three lifecycles with
a total of 30 Phases [Mav17a]. Here, we restrict the model to the seven main phases of the
default lifecycle [Mav17a], which are validate, compile, test, package, verify, install, and
deploy. The index of the first phase (validate) is 0 and the index of the last phase (deploy)
is 6. The number of phases is restricted in the AM by Line 11 Listing 7.9.

When Maven is executed, different phases are processed (see Section 7.6). For each
phase, several tools can be bound to a module. A bound tool will be executed when the
phase to which the tool is bound is executed. Such bindings can be defined within the POM
files. Bound tools of a parent module are inherited by all submodules (Line 14). "In Maven
2.0.5 and above, multiple goals bound to a phase are executed in the same order as they

59

Chapter 7. Artifacts in Maven-managed Java Projects

��1 class MavenPhase {
2 String name;
3 int index;
4 }
5

6 association executes
7 [*] MavenModule -> MavenPhase [*] <<ordered>>;
8

9 association binds [*] MavenPhase -> Tool [*] <<ordered>>;
10

11 context MavenModule inv :
12 executes.size == 7;
13

14 context MavenModule inv:
15 executes.binds.containsAll(parent.executes.binds);

Listing 7.9: AM: MavenPhase.

are declared in the POM [...]" [Mav17a]. Thus, the relations executes and binds are
ordered.

7.6. Executing Maven

This section examines how Maven processes its phases in terms of its actions. Therefore,
three additional Actions are introduced in Figure 7.10. The fourth action, ToolExe-
cution, has already been introduced in Subsection 6.2.2.

The action MavenExecution represents the execution of the overall Maven build
process, which requires the Maven module serving as root module for the build and a
specific Maven phase provided as parameter. In contrast, MavenModuleExecution
represents the part of the process building a single MavenModule, which is performed
by several consecutive MavenPhaseExecutions in the AM. Listing 7.11 gives further
details on the modeling of the Maven build process execution.

The subActions of each Maven-related Action kind are all of the same specialized
action kind, as defined in Lines 18 to 24. Further properties of Maven related actions are
specified by Listing 7.12.

The Maven related actions contribute to the artifacts their subactions contribute to,
which is defined by Lines 1 to 7 of Listing 7.12. Moreover, Line 10 states that Maven
always builds the module that is provided as root of the build first. Line 13 states that
Maven also builds all transitively reachable submodules. All phases are executed for each
module up to the phase provided as a parameter to a single Maven build (Line 16). The
tools, which are executed during a single phase execution, are exactly those bound to
the corresponding MavenModule of that phase (Line 21). Finally, a target artifact is

60

7.6. Executing Maven

��

����
�

���	�)*	������

����)*	������ ����� �����

���	������)*	������ ���	������	
� ������������	

���	�����)*	������ ���	�����	
����	���� �

�����-���

������	��������	�	�

�

�
����

�

Figure 7.10.: Maven executions.

available after a successful Maven build, when one of its phase executions executed the
package phase (Line 24).

It might seem that the MavenExecution class is not necessary, as we do not have a
corresponding structural element in the AM. Moreover, allowing MavenModulExecu-
tions as subactions of MavenModulExecutions and determining the start and end
time of a single execution by looking at the subactions seems natural. We did not model
the AM in this way as (1) each module needs time to build its own artifact, and (2) not all
submodules of a parent module must be completed before building another module. An
example for (2) is given in Figure 7.13, which is marked with the ArtifactData flag
indicating that the shown object diagram conforms to the AM. In the example, the order
of executions would be: R → B → B2 → A → B1. Thus, module A "interrupts" the
building of the complete module hierarchy of module B consisting of B, B1 and B2.

61

Chapter 7. Artifacts in Maven-managed Java Projects

��1 class MavenExecution extends Action {}
2

3 association buildRoot [*] MavenExecution -> MavenModule [1];
4

5 association providedAsParameter
6 [0..1] MavenExecution -> MavenPhase [1];
7

8 class MavenModuleExecution extends Action {}
9

10 association buildsModule
11 [1] MavenModuleExecution -> MavenModule [1];
12

13 class MavenPhaseExecution extends Action {}
14

15 association phase
16 [0..1] MavenPhaseExecution -> MavenPhase [1];
17

18 context MavenExecution inv:
19 sub in MavenModuleExecution;
20

21 context MavenModuleExecution inv:
22 sub in MavenPhaseExecution;
23

24 context MavenPhaseExecution inv:
25 sub in ToolExecution;

Listing 7.11: AM: MavenExecution.

62

7.6. Executing Maven

��1 context MavenExecution inv:
2 contributesTo == sub.contributesTo;
3

4 context MavenModuleExecution inv:
5 contributesTo == sub.contributesTo;
6

7 context MavenPhaseExecution inv:
8 contributesTo == sub.contributesTo;
9

10 context MavenExecution inv:
11 buildRoot.mavenModuleExecution == sub[0];
12

13 context MavenExecution inv:
14 sub.containsAll(buildRoot.subModule**);
15

16 context MavenExecution me,
17 MavenModuleExecution mme in me.sub,
18 MavenPhaseExecution mpe in mme.sub inv:
19 me.providedAsParameter.index >= mpe.phase.index;
20

21 context MavenModuleExecution inv:
22 sub.containsAll(phase.binds.toolExecution);
23

24 context MavenModuleExecution me,
25 MavenPhaseExecution pe in me.sub inv:
26 pe.phase.name == "package" implies
27 me.buildsModule.targetArtifact.isPresent;

Listing 7.12: Further properties regarding the execution of a Maven build process.

&�2���	������	 &32���	������	

&2���	������	�2���	������	

-2���	������	

��������	

��������	��������	

��������	

��������
���

�	�	�����

�	�	�����

Figure 7.13.: Example of a Maven module structure.

63

Chapter 8.

Applications of the Artifact Model

With the last chapter we finished the introduction of our AM consisting of its core and a
number of project specific extensions, for example, for Java and for MDD concepts. Based
on our AM, we are now able to analyze concrete projects or add additional constraints that
we expect the projects to fulfill. The actual number of these kinds of analyses is unlimited.
In this chapter, we therefore demonstrate the usefulness of the AM based on a selected set
of examples. Besides the ones presented in this chapter, further examples would be:

• Understand the execution dependencies in a Maven project and reduce the unneces-
sary re-execution of process steps. In the case of MDD projects, this would lead to a
much more efficient generation and deployment process.

• Understand the complex multi-level generation process, where some artifacts are
generated and then used in a generator to generate the next level of artifacts. Maven
currently handles this by separating each generation level in its own module, as
the compile phase is only executed once during a module execution. In this case,
Maven re-processes all artifacts belonging to the same module, even though, the re-
processing of only a few artifacts per module might be necessary. This considerably
reduces efficiency and thus agility, especially when several levels of generation are
modified at the same time.

• Understand the complexity of relationships as potential sources of errors, e.g., for
review or automated testing.

• Understand the flow of symbols imported and exported from several artifacts, poten-
tially modified or mapped into other kinds of symbols, which is heavily necessary in
heterogeneous modeling language environments, such as assisted by MontiCore.

• Understand the impact of potential changes in some artifacts on dependent artifacts,
which is usually referred to as Change Impact Analysis [Arn96]. Using the AM, such
an analysis can be performed considering different kinds of artifacts and relations.

• Understand which artifacts have been generated and which are source artifacts. This
can be especially useful to understand if exactly the source artifacts are version
controlled.

65

Chapter 8. Applications of the Artifact Model

• Understand which present artifacts do not contribute to the result. Examples for such
artifacts are generated artifacts that are never used and are not part of any shipped
product or archive. This indicates that the generator produces irrelevant artifacts.
Another example for such artifacts are model artifacts that are not used as input
within the generation process and are thus potentially irrelevant.

8.1. Analyses based on Tool Monitoring

In this section, we demonstrate how to define additional associations that describe certain
forms of information derived from the AM. These analyses are mainly based on the
model part defined in Subsection 6.2.1. Listing 8.1 contains these descriptions in form of
associations and their derivations as OCL constraints.

The analyses are based on a number of execution protocols (execs). Line 7 describes
which of the tools have never been used. Line 13 describes which of the available
FreeMarker templates are not syntactically known to the tools and thus are not usable for
generation. Those templates are candidates for removal. Line 25 describes which of the
available FreeMarker templates are not used. They might be used in a different context
but for the monitored generation processes they are not. It may be that an erroneous
template did not executed those templates accidentally. Line 30 examines whether there
are templates that have been used, but don’t have any contribution to the resulting artifacts.

8.2. Understanding the Module/Artifact Architecture

Modules describe the architectural substructures of the systems that are present in a project.
Modules can be defined for the target product as well as potential tools and generators in
model-driven development projects. By explicitly modeling such modules and assigning
artifacts to modules, stakeholders are able to get a view on the overall project from a more
abstract perspective. Modules might be identified by packages or directories, but neither
of these are actually sufficient to describe what the modules in a concrete project are.
By defining modules explicitly, we are able to focus only on specific parts of the overall
project, and different architectures, each with its own focus, can be defined for the same
project. In [Lil16], for example, the following architectures are regarded:

• Technical architecture consisting of technical modules such as client, logic, and
persistence.

• Domain architecture consisting of modules reflecting elements or processes of the
target domain.

• Pattern architecture putting together artifacts with the same role within the project,
such as all artifacts fulfilling the same role of, e.g., the model-view-controller pattern
[Fow02].

66

8.2. Understanding the Module/Artifact Architecture

1 class Analysis {}
2

3 association execs Analysis -> ExecutionProtocol [*];
4

5 association /unusedTools Analysis -> Tool [*];
6

7 context Analysis inv:
8 unusedTools == Tool.removeAll(
9 {te.tool | ToolExecution te in execs.action});

10

11 association /unknownTP Analysis -> FreeMarkerTemplate [*];
12

13 context Analysis inv:
14 unknownTP ==
15 {FreeMarkerTemplate t | !t in Generator.template};
16

17 association /usedTP Analysis -> FreeMarkerTemplate [*];
18

19 association /unusedTP Analysis -> FreeMarkerTemplate [*];
20

21 context Analysis inv:
22 usedTP ==
23 {te.template | TemplateExecution te in execs.action};
24

25 context Analysis inv:
26 unusedTP == FreeMarkerTemplate.removeAll(usedTP);
27

28 association /noContrib Analysis -> FreeMarkerTemplate [*];
29

30 context Analysis inv:
31 noContrib ==
32 {Template t in usedTP | contributionFT.isEmpty};

Listing 8.1: Defining analyses based on the AM.

Moreover, there can be different kinds of modules in an architecture description such as
components, layers, interfaces, etc. In the AM, we concentrate on a single substructure to
define the architecture, which can be hierarchically composed: Module. To maintain the
required flexibility when defining architectures, the assignment from artifacts to modules
must be done manually. With the artifacts and their relations at hand, the reliesOnMod-
ule relation between modules can be derived as shown in Listing 8.2. The shallower this
relation, the better the degree of modularization in the project is.

To calculate the reliesOnModule relation between modules, three other assisting
derived associations are defined. First, modules are structured hierarchically, i.e., each
module may contain a set of submodules. Moreover, each module contains a set of artifacts

67

Chapter 8. Applications of the Artifact Model

1 association /containedModule [*] Module -> Module [*];
2

3 context Module inv:
4 containedModule == {this}.addAll(subModule**);
5

6 association /containedArtifact [*] Module -> Artifact [*];
7

8 context Module inv:
9 containedArtifact == containedModule.artifact;

10

11 association /externalArtifact [*] Module -> Artifact [*];
12

13 context Module inv:
14 externalArtifact ==
15 containedArtifact.reliesOn.removeAll(containedArtifact);
16

17 association /reliesOnModule [*] Module -> Module [*];
18

19 context Module inv:
20 reliesOnModule == externalArtifact.module;

Listing 8.2: Application of AM: Actual architecture.

that consists of the artifacts contained directly by the module itself and those contained
by its submodules. Then, for each module hierarchy a set of external artifacts exists
consisting of all the artifacts on which the artifacts of the whole module hierarchy rely and
which are not contained in the module hierarchy themselves. With those relations at hand,
the mentioned reliesOnModule relation between modules can be derived. Here, all
other modules that are no submodules of the given module and which contain artifacts the
module or its submodules rely on are related. This relation finally allows us to inspect the
actual architecture of the project in terms of modules and relations between them.

As we choose to manually assign artifacts to modules, the concept Module cannot
be derived from the underlying set of artifacts automatically. In our view, the modeled
architecture should be well aligned with the actual structure of the artifacts. This way,
stakeholders are enabled to orient themselves easily in the sources of the projects, as they
can find and follow the architectural decomposition they already have in mind. Even when
the actual architecture follows the desired architecture, a gap between the organization of
artifacts and the module organization can exist. This gap should be as small as possible.
Therefore, the analyses shown in Listing 8.3 are useful.

First, the relationship between Directory and Module is pretty interesting. In many
projects, modules are organized in such a way that artifacts belonging to one module (and
its submodules) are stored in one directory (and its subdirectories), while packages are
distributed over both, modules and directories. Whether the modules and directories are
aligned well can be assessed by looking at the moduleDirectory relation. It relates

68

8.3. Generated Systems

1 association /moduleDirectory [*] Module <-> Directory [*];
2

3 context Module m, Directory d in m.containedArtifact inv:
4 m.moduleDirectory ==
5 {Directory sub | sub in d.contains**}.add(d);
6

7 association /modulePackage [*] Module <-> Package [*];
8

9 context Module m, JavaArtifact j in m.containedArtifact inv:
10 m.modulePackage == j.package;
11

12 association /packageDirectory [1] Package <-> Directory [*];
13

14 context Package inv:
15 javaSourceFile.parent in Directory implies
16 packageDirectory == javaSourceFile.parent;

Listing 8.3: Application of AM: Align modules to the physical structure.

all directories assigned to the module and its submodules as well as all subdirectories of
those to the module (cf. Line 3).

Another interesting question is how Modules and Packages are related. This can be
examined through the modulePackage relation illustrating, how many packages belong
to a module and also in how many modules a package participates. It is an interesting
question whether this should be a shallow relation, potentially even a 1− 1 relation. All
packages of contained Java artifacts are constituted in this relation (cf. Line 9).

Lastly, also the Directory and Package concepts are related, but not identical,
because it is not required to locate all artifacts of one package in the same directory (and
also not in the same archive). Although it is not mandatory, but ensured by the constraints
of the AM, to locate an artifact of a certain package in a directory that reflects the package
name. Nevertheless, packages can be related to several directories and thus the relation
directoryPackage also gives interesting hints about the structure of the project. All
directories containing the artifacts belonging to a given package are related to that package
(cf. Line 14). Note that Java source files can also be located in archives without having a
parent directory. Hence, to restrict the directoryPackage relation to directories an
implication is used.

8.3. Generated Systems

In a model-driven development project at least one system is (partly) generated: the target
product. To get an overview of the generators directly participating in the generation of
different systems, a relation between Generators and Systems can be calculated as
shown in Listing 8.4

69

Chapter 8. Applications of the Artifact Model

1 association /generatedSystem [*] Generator -> System [*];
2

3 context Generator inv:
4 generatedSystem ==
5 {System s | s.consistsOf(toolExecution.contributesTo)};

Listing 8.4: Application of AM: Generated systems.

Again, a derived association is introduced representing the result of this analysis: gen-
eratedSystem. A generator is linked to a system if the generator participated in the
system’s creation, i.e., the generator generated at least one artifact of each linked system.
As tools and generators are systems themselves, this analysis also covers cases where a
generator generates another tool participating in the creation of the target system. An
example for such a multi-step build process is given in [AHRW17], where transformation
tools are generated based on transformation models. Then, these tools are used to perform
model-to-model transformations as a preparation step before code generation.

8.4. Template Relations Induced by Generated
Artifacts

When template-based generation is used, the following problem occurs quite often: large
parts of the templates are written in the target language and only small parts are written
in the template language itself. Thus, templates often do not rely on each other directly,
but the artifacts generated by the templates do. In these cases, changing only one of
the templates may result in the generation of corrupted target code by other templates.
Therefore, it is useful to know this kind of indirect relation between templates, which can
be calculated as shown in Listing 8.5.

1 association /contributionsRelyOn
2 [*] FreeMarkerTemplate -> FreeMarkerTemplate [*];
3

4 context FreeMarkerTemplate inv:
5 contributionsRelyOn == contributionFT.contributionFT
6 .addAll(contributionFT.refersTo.contributionFT);

Listing 8.5: Application of AM: Indirect template relations.

By adding the association contributionsRelyOn between FreeMarkerTem-
plates, the results of this analysis are available when needed. Two template artifacts
are linked if either both templates contributed to the generation of the same artifact or the
generated source files of these templates rely on each other (e.g., through an import). Note
that it also relates each template to itself.

70

8.5. Incremental Toolchain Execution

The presented analysis can give a hint whether a change of a template might induce
changes of other templates. There are two threats: (1) As the analysis depends on one
execution of the tool chain and the available generated code depends on the input used in
one execution, it cannot be guaranteed that the relation is complete for all possible inputs.
(2) For both cases of the analysis, it may be that the change of a related template is not
really necessary. This depends on the kind of change, i.e., if the generated code of one
template interacts somehow with the generated code of another template. A more detailed
analysis would be beneficial, but requires a more detailed extraction of relations between
generated code parts. As the focus of the AM lies on relations between artifacts, the hint
that a change may be necessary is sufficient.

8.5. Incremental Toolchain Execution

Executing a tool chain should be as fast as possible. Otherwise developers can loose their
development flow [Csi96], which results in a lack of productivity. One effective way to
reduce the execution time of the tool chain is to only execute the relevant parts of the tool
chain affected by the last changes. A flag indicating that a ToolExecution should be
repeated can be calculated as shown in Listing 8.6.

1 abstract class Artifact {
2 //...
3 boolean removed;
4 boolean isHandcoded;
5 /boolean toBeRecreated;
6 }
7

8 class ToolExecution extends Action {
9 /boolean toRepeat;

10 }
11

12 context Artifact inv:
13 isHandcoded implies !toBeRecreated;

Listing 8.6: Application of AM: Incremental toolchain execution.

Listing 8.6 introduces some "runtime" extensions to the AM necessary to determine the
part of the tool chain that needs to be executed again. While the structure of the AM is
in principle static, this information can change during tool executions and development
activities.

First, with the Boolean flag removed, we indicate that an artifact was deleted, which
can be observed, for example, by monitoring the underlying file system. Artifacts with flag
removed=true are thus only virtually existing (in the monitoring logs), but there are
no real artifacts corresponding anymore. Together with the modified date attribute (cf.

71

Chapter 8. Applications of the Artifact Model

Listing 2.2), we model modifications and deletions of files that happen when developers
change models. This includes the creation of a new artifact, which can also be detected by
its modification date.

Another attribute describes whether the artifact is subject to be generated or whether it
is a handcoded artifact (isHandcoded). This information is usually retrieved from build
files such as makefiles or Maven POMs. Finally, the toBeRecreated flag indicates
whether some action on the artifact is necessary.

The ExecutionProtocol contains a list of actions, including ToolExecutions,
that all have start and end dates. Furthermore, we know for each ToolExecution, which
artifacts it used as input and produced as output. However, we have already combined
this information into the creationDependency association between artifacts directly.
This allows us to describe the toBeRecreated value, without explicit naming of the
tools necessary in Listing 8.7.

1 context Artifact inv:
2 toBeRecreated == !isHandcoded && (
3 removed ||
4 lastChange < max(createDependecy.lastChange) ||
5 creationDependency.toBeRecreated ||
6 output.output.toBeRecreated);

Listing 8.7: Application of AM: Artifacts to be recreated.

A file is subject to re-creation when it was generated and then has been removed (Line 3),
or one of the modification dates of one dependent artifacts is newer (Line 4), or one of the
dependent artifacts themselves are marked for re-creation (Line 5).

Unfortunately, when executing a tool, it usually re-creates or at least touches all its
outputs, not only those that are necessary. This is some kind of "collateral damage" that
could be optimized if tools were more fine-grained. To capture this, the last part of the
specification (Line 6) ensures that re-creation is also propagated downward the tool chain
for files that are re-generated as collateral damage.

This is not a complete definition but a recursive characterization. Indeed, setting all
toBeRecreated flags of all generated files to true would fulfill the specification. How-
ever, we are interested in the minimal solution, where as many toBeRecreated flags
as possible remain false. This form of calculation is done, e.g., by Make but unfortunately
not by Maven.

Finally, Listing 8.8 describes which tool executions need to be repeated.

1 context ToolExecution e, Artifact a in e.output inv:
2 a.toBeRecreated implies e.toRepeat;

Listing 8.8: Application of AM: Tool executions to be repeated.

72

8.6. Unused Imports

8.6. Unused Imports

Code smells generally reduce the readability of sources and increase maintainability costs.
One specific kind of code smell is the unused import. For Java, modern IDEs can remove
unused imports automatically. Based on the AM, different relations indicating that unused
imports for corresponding artifact kinds (including Java artifacts) exist, which can be
calculated as shown in Listing 8.9.

1 association /typeUsage [*] JavaArtifact -> JavaArtifact [*];
2

3 association /unusedImports
4 [*] JavaSourceFile -> JavaArtifact [*];
5

6 context JavaSourceFile inv:
7 typeUsage == defines.reliesOn.javaArtifact.remove(this);
8

9 context JavaSourceFile inv:
10 unusedImports == imports.removeAll(typeUsage);
11

12 association /typeUsage [*] CDModelFile -> Artifact [*];
13

14 association /unusedImports [*] CDModelFile -> Artifact [*];
15

16 context CDModelFile inv:
17 typeUsage == defines.reliesOn.javaArtifact
18 .addAll(defines.reliesOn.cDModelFile).remove(this);
19

20 context CDModelFile inv:
21 unusedImports == imports.removeAll(typeUsage);

Listing 8.9: Application of AM: Unused imports.

Unused imported artifacts are those artifacts that are imported, but whose types are not
required by the importing artifact. For Java, only Java source files can import other artifacts.
Thus, the relation unusedImports (Line 3) from Java source files to Java artifacts is
specified. Unused Java imports can be derived from the set of imported Java artifacts by
removing Java artifacts whose types do not rely on each other. Similar to the relation
for Java, the relation unusedImports (Line 14) is specified containing imported but
unused artifacts for CD model files. As introduced in Chapter 5, CD Model files can import
several kinds of artifacts. Those kinds are not further constrained, which is why the target
of this association is Artifact. Nevertheless, the derivation of the unused imports for
CD model files relies on the concrete kinds of artifacts that define relevant types for CD
model file (see Line 16).

73

Chapter 9.

Conclusion

We conclude this report by summing up the considerations on the presented version of the
artifact model, which are followed by multi-level considerations on CD4A and OCL based
on our experiences.

9.1. Considerations on the Artifact Model

In this report, we presented the first version of our artifact model for generator-based
model-driven projects with precise definitions for the core elements and relations relevant
for software development projects and some extensions useful for model based projects
that use generators.

For a precise specification, we used the CD4A dialect [Rot17] describing class diagrams
and the OCL/P constraint language [Rum16] to capture relations in all necessary details.
The main advantage of these notations is that they can be directly used for tool development,
e.g., for an analysis of concrete projects with, e.g., derivatives of the Data Explorer
[MSNRR15, Rot17].

The AM was developed in an extensible way. Building subclasses and refining associa-
tions allows to adapt the meta-classes defined in the AM. Several extension of the later
chapters have demonstrated how to do this.

We assume that our AM can not only be used as foundation for tooling but also helps
to clarify terminology. For example the term artifact has now a clear definition. The
term dependency is also used very often, but different stakeholders have a very different
understanding of what a dependency is. Already at the early definitions, we have clarified
that artifacts can either "depend" on each other, because they refer to each other, e.g.,
through import statements and thus are used together, or because a generator retrieves
information from one artifact to produce another one, and then only the newly produced
artifact is of further use.

The presented model is actually much more than only an artifact model. It contains
abstract, organizational concepts, such as modules, but also partially internals of the
artifacts, retrieving, e.g., imports and fully qualified use of external artifacts. It also
describes a part of the type systems whose types are typically passed around between
artifacts.

75

Chapter 9. Conclusion

The AM contains static relations that can be inferred through artifact analysis but also
dynamic relations that need to be monitored when a build process is executed. The mon-
itoring protocol gives useful hints on which of the static relations are actually in use at
construction time and which may be used. We might speak of construction smells, for ex-
ample, when static knowledge between artifacts prevents a decoupling of the development,
modularization, or leads to a re-execution of generation processes even if unnecessary.

With the AM and corresponding tooling, we can also capture the overall picture of
the situation in an MDD project. This helps to improve the communication between all
involved stakeholders and constitutes a substantial step towards an integrated, model-based
analysis of MDD projects.

These contributions will serve as a starting point for further research. We are interested
in exploiting the big picture of development projects. The AM and corresponding data
will serve as a basis for the improvement of software development projects in general and
MDD projects in particular, such as the optimization and correction of MDD processes,
incremental code generation, and ensuring consistency between the actual state of the
project and its desired architecture. Moreover, further evaluations and improvements
of the approach are planned in software development projects including in particular
Cyber Physical System developments projects [Lee06, Lee08, HRR12, KRS12, RRW14,
KRRvW17, RRSW17], where mechanical, electrical, and software parts are modeled
together using various modeling languages. The same holds for many other domains,
such as flight control [ZPK+11], cloud computing [NPR13, HHK+14, KRR14, HHK+15]
building information systems [FLP+11, FPPR12, KPR12], robotics [RRW12, RRW13,
THR+13, RRRW15], or automotive development [BBR07, GHK+08, GKPR08, BR12b,
BR12a].

9.2. Multi-level considerations on CD4A and OCL

In Section 1.1 we introduced the specification language CD4A [Rot17] in combination with
a Java-like version of the OCL [Rum16]. Throughout this report, we used this combination
consequently to describe the structure and partly structural manifestation of execution
behavior (we can call that protocol of action sequences) of a model-based development
project.

The effort undertaken was partly due to the available tooling infrastructure that enables
to directly generate a monitoring system based on this specification language. But to some
extent, we also wanted to understand how well a textual notation for class diagrams and
for additional constraints works.

The reader will probably concur that the illustrating graphical descriptions of the class
diagram gave a better overview of the structure then the textual representation could do.
Unfortunately, OCL constraints cannot easily be visualized but to a large extent need to be
textual. We would also like to point the reader to the idea of integrating object diagrams
for specific situations into the OCL, as discussed in [Rum17].

76

9.2. Multi-level considerations on CD4A and OCL

Other alternatives would be to use a graphical notation only for class diagrams or to use
a combination between graphical visualization and a textual master artifact, quite like we
did in this report. However, this form of tooling is still to be improved and not part of the
consideration here.

Both CD4A and the OCL can be improved by variety of operators to better cope with
multi-level modeling. It could be interesting, for example, to introduce several levels
of classes that can be instantiated into other forms of classes, similar to [Atk97, AK01,
CHE05, AGK09, dLG10, Fra16].

As an alternative, we could remain in a single level structure, but allow at least better
assistance for singletons, and especially for refinement of complete structures includ-
ing several classes and associations. In particular, we had to describe two associations
and specify with OCL that one is a subset of the other, instead of directly refining the
association.

Although we presented CD4A in modular chunks, the whole class diagram is actually
one flat model. To refine structures, it would be helpful to modularize class diagrams and
provide explicit operators for their composition and refinement. Composition of class
diagrams means that the diagrams are merged on elements (especially classes and associa-
tions) with the same name. Refinement of a class diagram means that existing classes and
associations are individually refined by adding attributes, specializing multiplicities, and
similar operations.

Finally, the OCL also could provide more elaborate functions, for example, for a
reflective, transitive closure, handling of sequences in time, or string manipulation for
directory and package names.

77

Bibliography

[AGK09] Colin Atkinson, Matthias Gutheil, and Bastian Kennel. A Flexible In-
frastructure for Multilevel Language Engineering. IEEE Transactions on
Software Engineering, 35(6):742–755, 2009.

[AHRW17] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann.
Engineering Robotics Software Architectures with Exchangeable Model
Transformations. In International Conference on Robotic Computing
(IRC’17), pages 172–179. IEEE, April 2017.

[AK01] Colin Atkinson and Thomas Kühne. The Essence of Multilevel Metamod-
eling. In International Conference on the Unified Modeling Language,
pages 19–33. Springer, 2001.

[ALB+14] Hamoud Aljamaan, Timothy C. Lethbridge, Omar Badreddin, Geoffrey
Guest, and Andrew Forward. Specifying Trace Directives for UML
Attributes and State Machines. In Proceedings of the 2nd International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD), pages 79–86, Jan 2014.

[Arn96] Robert S. Arnold. Software Change Impact Analysis. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1996.

[Atk97] C. Atkinson. Meta-modelling for Distributed Object Environments. In
Proceedings First International Enterprise Distributed Object Computing
Workshop, pages 90–101, Oct 1997.

[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software
& Systems Engineering Process and Tools for the Development of Au-
tonomous Driving Intelligence. Journal of Aerospace Computing, Infor-
mation, and Communication (JACIC), 4(12):1158–1174, 2007.

[BGRW17] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wort-
mann. Taming the Complexity of Model-Driven Systems Engineering
Projects. Jordi Cabot, Richard Paige, and Alfonso Pierantonio, edi-
tors, Part of the Grand Challenges in Modeling (GRAND’17) Workshop.
http://www.edusymp.org/Grand2017/, 2017.

79

BIBLIOGRAPHY

[BR12a] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years
after the Urban Challenge: The Anticipatory Vehicle as a Cyber-Physical
System. In Automotive Software Engineering Workshop (ASE’12), pages
789–798, 2012.

[BR12b] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving
Software. In C. Rouff and M. Hinchey, editors, Experience from the
DARPA Urban Challenge, pages 243–271. Springer, Germany, 2012.

[BSS14] María Cecilia Bastarrica, Jocelyn Simmonds, and Luis Silvestre. Using
Megamodeling to Improve Industrial Adoption of Complex MDE Solu-
tions. In Proceedings of the 6th International Workshop on Modeling in
Software Engineering, pages 31–36. ACM, 2014.

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of Model Trans-
formation Approaches. In Proceedings of the OOPSLA’03 Workshop on
the Generative Techniques in the Context Of Model-Driven Architecture,
Anaheim, California, USA, 2003.

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged
Configuration Through Specialization and Multi-Level Configuration of
Feature Models. Software process: improvement and practice, 10(2):143–
169, 2005.

[CHGZ12] Jane Cleland-Huang, Orlena Gotel, and Andrea Zisman. Software and
Systems Traceability. Springer, 2012.

[CS14] Scott Chacon and Ben Straub. Pro Git. Apress, 2014.

[Csi96] Mihaly Csikszentmihalyi. Creativity: Flow and the Psychology of Dis-
covery and Invention. HarperCollins, 1996.

[Die12] Jens Dietrich. Upload your Program, Share your Model. In Proceedings
of the 3rd annual conference on Systems, programming, and applications:
software for humanity, pages 21–22. ACM, 2012.

[dLG10] Juan de Lara and Esther Guerra. Deep Meta-modelling with MetaDepth,
pages 1–20. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[DRDRIP14] Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, and Alfonso Pieranto-
nio. Dealing with the coupled evolution of metamodels and model-to-text
transformations. In Proceedings of the Workshop on Models and Evolution
(ME), 2014.

80

BIBLIOGRAPHY

[DRELHE15] Andreas Demuth, Markus Riedl-Ehrenleitner, Roberto E. Lopez-Herrejon,
and Alexander Egyed. Co-evolution of metamodels and models through
consistent change propagation. Journal of Systems and Software, 2015.

[DS10] Anna Derezinska and Marian Szczykulski. Tracing of state machine
execution in the model-driven development framework. In Proceedings of
2nd International Conference on Information Technology (ICIT), pages
109–112, June 2010.

[EB10] Moritz Eysholdt and Heiko Behrens. Xtext: Implement Your Language
Faster Than the Quick and Dirty Way. In Proceedings of the ACM Interna-
tional Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion, OOPSLA ’10, pages 307–309,
New York, NY, USA, 2010. ACM.

[Ecl15] Eclipse Website http://www.eclipse.org, visited: 16.11.2015.

[ET14] David W. Embley and Bernhard Thalheim. Handbook of Conceptual
Modeling. Springer, 2014.

[FLP+11] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and
Bernhard Rumpe. State-based Modeling of Buildings and Facilities. In
Enhanced Building Operations Conference (ICEBO’11), 2011.

[FLV12] Jean-Marie Favre, Ralf Lämmel, and Andrei Varanovich. Modeling the
Linguistic Architecture of Software Products. Springer, 2012.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Programs.
Addison-Wesley, 1999.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2002.

[Fow10] Martin Fowler. Domain Specific Languages. Addison-Wesley, 1st edition,
2010.

[FPPR12] M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe.
The Energy Navigator - A Web-Platform for Performance Design and
Management. In Energy Efficiency in Commercial Buildings Confer-
ence(IEECB’12), 2012.

[Fra16] Ulrich Frank. Designing Models and Systems to Support IT Management:
A Case for Multilevel Modeling. In 3rd International Workshop on Multi-
Level Modelling (MULTI 2016), pages 3–24, 2016.

81

BIBLIOGRAPHY

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1995.

[GHK+08] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz
Rothhardt, and Bernhard Rumpe. Modelling Automotive Function Nets
with Views for Features, Variants, and Modes. In Proceedings of 4th
European Congress ERTS - Embedded Real Time Software, 2008.

[GHK+15a] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look,
Pedram Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri
Plotnikov, Dirk Reiß, Alexander Roth, Bernhard Rumpe, Martin Schindler,
and Andreas Wortmann. A Comparison of Mechanisms for Integrat-
ing Handwritten and Generated Code for Object-Oriented Programming
Languages. In Model-Driven Engineering and Software Development
Conference (MODELSWARD’15), pages 74–85. SciTePress, 2015.

[GHK+15b] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look,
Pedram Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri
Plotnikov, Dirk Reiß, Alexander Roth, Bernhard Rumpe, Martin Schindler,
and Andreas Wortmann. Integration of Handwritten and Generated Object-
Oriented Code. In Model-Driven Engineering and Software Development,
Communications in Computer and Information Science 580, pages 112–
132. Springer, 2015.

[GJS+15] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley.
The Java Language Specification. Oracle America, Java SE 8 edition,
2015.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe.
Modeling Variants of Automotive Systems using Views. In Modellbasierte
Entwicklung von eingebetteten Fahrzeugfunktionen, Informatik Bericht
2008-01, pages 76–89. TU Braunschweig, 2008.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. MontiCore 1.0 - Ein Framework zur Erstellung und
Verarbeitung domänspezifischer Sprachen. Informatik-Bericht 2006-04,
CFG-Fakultät, TU Braunschweig, August 2006.

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. MontiCore: A Framework for the Development of Tex-
tual Domain Specific Languages. In 30th International Conference on
Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008,
Companion Volume, pages 925–926, 2008.

82

BIBLIOGRAPHY

[GMR+16] Timo Greifenberg, Klaus Müller, Alexander Roth, Bernhard Rumpe,
Christoph Schulze, and Andreas Wortmann. Modeling Variability in
Template-based Code Generators for Product Line Engineering. In Model-
lierung 2016 Conference, LNI 254, pages 141–156. Bonner Köllen Verlag,
March 2016.

[HHK+14] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling,
Bernhard Rumpe, and Klaus Wehrle. User-driven Privacy Enforcement
for Cloud-based Services in the Internet of Things. In Conference on
Future Internet of Things and Cloud (FiCloud’14). IEEE, 2014.

[HHK+15] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling,
Bernhard Rumpe, and Klaus Wehrle. A comprehensive approach to pri-
vacy in the cloud-based Internet of Things. Future Generation Computer
Systems, 56:701–718, 2015.

[HKR+11] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina
Schaefer. Delta-oriented Architectural Variability Using MontiCore. In
Software Architecture Conference (ECSA’11), pages 6:1–6:10. ACM,
2011.

[HLMSN+15] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio
Navarro Perez, Bernhard Rumpe, Steven Völkel, and Andreas Wortmann.
Composition of Heterogeneous Modeling Languages. In Model-Driven
Engineering and Software Development, Communications in Computer
and Information Science 580, pages 45–66. Springer, 2015.

[HMSNRW16] Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas
Wortmann. Compositional Language Engineering using Generated, Exten-
sible, Static Type Safe Visitors. In Conference on Modelling Foundations
and Applications (ECMFA), LNCS 9764, pages 67–82. Springer, July
2016.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Archi-
tectural Modeling of Interactive Distributed and Cyber-Physical Systems.
Technical Report AIB-2012-03, RWTH Aachen University, February
2012.

[HRW15] Katrin Hölldobler, Bernhard Rumpe, and Ingo Weisemöller. System-
atically Deriving Domain-Specific Transformation Languages. In Con-
ference on Model Driven Engineering Languages and Systems (MOD-
ELS’15), pages 136–145. ACM/IEEE, 2015.

[HSG12] Regina Hebig, Andreas Seibel, and Holger Giese. On the Unification of
Megamodels. Electronic Communications of the EASST, 42, 2012.

83

BIBLIOGRAPHY

[KEK+15] Angelika Kusel, Jürgen Etzlstorfer, Elisabeth Kapsammer, Werner Rets-
chitzegger, Wieland Schwinger, and Johannes Schönböck. Consistent
Co-Evolution of Models and Transformations. In Proceedings of MOD-
ELS, 2015.

[KPR12] Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie
Navigator. In H. Lichter and B. Rumpe, Editoren, Entwicklung und
Evolution von Forschungssoftware. Tagungsband, Rolduc, 10.-11.11.2011,
Aachener Informatik-Berichte, Software Engineering, Band 14. Shaker
Verlag, Aachen, Deutschland, 2012.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen
Sprachen im Software-Engineering. Aachener Informatik-Berichte, Soft-
ware Engineering, Band 1. Shaker Verlag, März 2010.

[KRR14] Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud
Computing. Springer, Schweiz, December 2014.

[KRRvW17] Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael von
Wenckstern. Modeling Architectures of Cyber-Physical Systems. In
Modelling Foundations and Applications (ECMFA’17), Held as Part of
STAF 2017, pages 34–50. Springer International Publishing, 2017.

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-
Physical Systems - eine Herausforderung für die Automatisierungstech-
nik? In Proceedings of Automation 2012, VDI Berichte 2012, Seiten
113–116. VDI Verlag, 2012.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software
Development using Domain Specific Modelling Languages. In Domain-
Specific Modeling Workshop (DSM’06), Technical Report TR-37, pages
150–158. Jyväskylä University, Finland, 2006.

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor Gen-
eration for Compositional DSLs in Eclipse. In Domain-Specific Modeling
Workshop (DSM’07), Technical Reports TR-38. Jyväskylä University,
Finland, 2007.

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition
of Abstract and Concrete Syntax for Textual Languages. In Conference
on Model Driven Engineering Languages and Systems (MODELS’07),
LNCS 4735, pages 286–300. Springer, 2007.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular
Development of Textual Domain Specific Languages. In Conference on

84

BIBLIOGRAPHY

Objects, Models, Components, Patterns (TOOLS-Europe’08), LNBIP 11,
pages 297–315. Springer, 2008.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Frame-
work for Compositional Development of Domain Specific Languages.
International Journal on Software Tools for Technology Transfer (STTT),
12(5):353–372, September 2010.

[KV10] Lennart C.L. Kats and Eelco Visser. The Spoofax Language Workbench:
Rules for Declarative Specification of Languages and IDEs. In Proceed-
ings of the ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA ’10, pages 444–463,
New York, NY, USA, 2010. ACM.

[Lee06] Edward A Lee. Cyber-Physical Systems - Are Computing Foundations
Adequate? In Position Paper for NSF Workshop On Cyber-Physical
Systems: Research Motivation, Techniques and Roadmap, 2006.

[Lee08] Edward A Lee. Cyber Physical Systems : Design Challenges. Electrical
Engineering, 2008.

[Lil16] Carola Lilienthal. Langlebige Software-Architekturen: Technische
Schulden analysieren, begrenzen und abbauen. dpunkt, 2016.

[LM12] David Lo and Shahar Maoz. Scenario-Based and Value-Based Spec-
ification Mining: Better Together. Automated Software Engineering,
19(4):423–458, 2012.

[Loo17] Markus Look. Modellgetriebene, agile Entwicklung und Evolution
mehrbenutzerfähiger Enterprise Applikationen mit MontiEE. Aachener
Informatik-Berichte, Software Engineering, Band 27. Shaker Verlag,
2017.

[LvdA15] Maikel Leemans and Wil M. P. van der Aalst. Process Mining in Software
Systems. In Proceedings of MODELS, 2015.

[LYBB15] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java
Virtual Machine Specification. Oracle America, Java SE 8 edition, 2015.

[Mav17a] Maven - Introduction to the Build Lifecycle https:
//maven.apache.org/guides/introduction/
introduction-to-the-lifecycle.html, visited: 12.06.2017.

[Mav17b] Maven - Introduction https://maven.apache.org/
what-is-maven.html, visited: 01.05.2017.

85

BIBLIOGRAPHY

[MSN17] Pedram Mir Seyed Nazari. MontiCore: Efficient Development of Com-
posed Modeling Language Essentials. Aachener Informatik-Berichte,
Software Engineering, Band 29. Shaker Verlag, 2017.

[MSNRR15] Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe. Mixed
Generative and Handcoded Development of Adaptable Data-centric Busi-
ness Applications. In Domain-Specific Modeling Workshop (DSM’15),
pages 43–44. ACM, 2015.

[MSNRR16] Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe. An
Extended Symbol Table Infrastructure to Manage the Composition of
Output-Specific Generator Information. In Modellierung 2016 Conference,
LNI 254, pages 133–140. Bonner Köllen Verlag, March 2016.

[NAR17] NAR Plugin Website http://maven-nar.github.io/index.
html, visited: 01.05.2017.

[NPR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Archi-
tectures as Interactive Systems. In Model-Driven Engineering for High
Performance and Cloud Computing Workshop, CEUR Workshop Proceed-
ings 1118, pages 15–24, 2013.

[NWi15] nWire Software Ltd nWire http://www.nwiresoftware.com,
visited: 16.11.2015.

[OMC+08] Tim O’Brien, Manfred Moser, John Casey, Brian Fox, Jason Van Zyl, Eric
Redmond, and Larry Shatzer. Maven: The Complete Reference, 2008.

[OMG14] Object Management Group. Object Constraint Language, February 2014.
http://www.omg.org/spec/OCL/2.4.

[OMG16] Object Management Group. OMG Meta Object Facility (MOF) Core Spec-
ification, November 2016. http://www.omg.org/spec/MOF/2.5.1/PDF/.

[Ora16] The Java Tutorials - What is a Package? http://docs.oracle.
com/javase/tutorial/java/concepts/package.html,
visited: 19.05.2016.

[OvZF+10] T O’Brien, J van Zyl, B Fox, J Casey, J Xu, and T Locher. Maven: By
example. An introduction to Apache Maven, 2010.

[PCSF11] C Michael Pilato, Ben Collins-Sussman, and Brian Fitzpatrick. Version
Control with Subversion. "O’Reilly Media, Inc.", 2011.

86

BIBLIOGRAPHY

[PKB13] Leo Pruijt, Christian Koppe, and Sjaak Brinkkemper. Architecture Com-
pliance Checking of Semantically Rich Modular Architectures: A Com-
parative Study of Tool Support. In Proceedings of 29th IEEE Inter-
national Conference onSoftware Maintenance (ICSM), pages 220–229.
IEEE, 2013.

[PW15] Leo Pruijt and Jan Martijn EM van der Werf. Dependency Types and
Subtypes in the Context of Architecture Reconstruction and Compliance
Checking. In Proceedings of the 2015 European Conference on Software
Architecture Workshops, page 56. ACM, 2015.

[Rei16] Dirk Reiß. Modellgetriebene generative Entwicklung von Web-
Informationssystemen. Aachener Informatik-Berichte, Software Engi-
neering, Band 22. Shaker Verlag, May 2016.

[Rot17] Alexander Roth. Adaptable Code Generation of Consistent and Cus-
tomizable Data-Centric Applications with MontiDEx. Shaker Verlag,
2017.

[RRRW15] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wort-
mann. Language and Code Generator Composition for Model-Driven
Engineering of Robotics Component & Connector Systems. Journal of
Software Engineering for Robotics (JOSER), 6(1):33–57, 2015.

[RRSW17] Jan Oliver Ringert, Bernhard Rumpe, Christoph Schulze, and Andreas
Wortmann. Teaching Agile Model-Driven Engineering for Cyber-Physical
Systems. In International Conference on Software Engineering: Software
Engineering and Education Track (ICSE’17), pages 127–136. IEEE, 2017.

[RRW12] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. A Require-
ments Modeling Language for the Component Behavior of Cyber Physical
Robotics Systems. In Seyff, N. and Koziolek, A., editor, Modelling and
Quality in Requirements Engineering: Essays Dedicated to Martin Glinz
on the Occasion of His 60th Birthday, pages 133–146. Monsenstein und
Vannerdat, Münster, 2012.

[RRW13] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiAr-
cAutomaton: Modeling Architecture and Behavior of Robotic Systems. In
Conference on Robotics and Automation (ICRA’13), pages 10–12. IEEE,
2013.

[RRW14] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Architec-
ture and Behavior Modeling of Cyber-Physical Systems with MontiArcAu-
tomaton. Aachener Informatik-Berichte, Software Engineering, Band 20.
Shaker Verlag, December 2014.

87

BIBLIOGRAPHY

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods.
Springer International, July 2016.

[Rum17] Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International, May 2017.

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: Eclipse Modeling Framework. Pearson Education, 2008.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P. Aachener Informatik-Berichte, Software Engineering, Band
11. Shaker Verlag, 2012.

[SJSJ05] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using
Dependency Models to Manage Complex Software Architecture. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications, OOPSLA
’05, pages 167–176, New York, NY, USA, 2005. ACM.

[SMS15] Richard M. Stallman, Roland McGrath, and Paul D. Smith. GNU Make
Reference Manual. Samurai Media Limited, 2015.

[Son15] hello2morrow Sonargraph https://www.hello2morrow.com/
products/sonargraph, visited: 16.11.2015.

[SPBS15] Jocelyn Simmonds, Daniel Perovich, Marıa Cecilia Bastarrica, and Luis
Silvestre. A Megamodel for Software Process Line Modeling and Evolu-
tion. In Proceedings of MODELS, 2015.

[Sta15] Odysseus Software GmbH stan4j http://stan4j.com/, visited:
16.11.2015.

[Str15] Structure101 Software Architecture Environment (ADE) http://www.
structure101.com, visited: 16.11.2015.

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and
Andreas Wortmann. A New Skill Based Robot Programming Language
Using UML/P Statecharts. In Conference on Robotics and Automation
(ICRA’13), pages 461–466. IEEE, 2013.

[VJBB13] Andrés Vignaga, Frédéric Jouault, María Cecilia Bastarrica, and Hugo
Brunelière. Typing artifacts in megamodeling. Software & Systems
Modeling, 12(1):105–119, 2013.

88

BIBLIOGRAPHY

[VKB13] Paola Vallejo, Mickaël Kerboeuf, and Jean-Philippe Babau. Specifica-
tion of a Legacy Tool by Means of a Dependency Graph to Improve its
Reusability. In Proceedings of the Workshop on Models and Evolution
(ME), pages 80–87. Citeseer, 2013.

[Voe13] Markus Voelter. Language and IDE Modularization and Composition
with MPS", pages 383–430. Springer, 2013.

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer
Sprachen. Aachener Informatik-Berichte, Software Engineering, Band 9.
Shaker Verlag, 2011.

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformation-
ssprachen. Aachener Informatik-Berichte, Software Engineering, Band
12. Shaker Verlag, 2012.

[Wen14] Sven Wenzel. Unique identification of elements in evolving software
models. Software & Systems Modeling, 13(2):679–711, 2014.

[WL08] Richard Wettel and Michele Lanza. CodeCity: 3D Visualization of Large-
Scale Software. In Companion of the 30th international conference on
Software engineering, pages 921–922. ACM, 2008.

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige,
Kumardev Chatterjee, Andreas Horst, and Bernhard Rumpe. On De-
mand Data Analysis and Filtering for Inaccurate Flight Trajectories. In
Proceedings of the SESAR Innovation Days. EUROCONTROL, 2011.

89

Appendix A.

Merged Artifact Model

1 classdiagram ArtifactModel {

2 // __

3 // Artifact

4 // __

5

6 abstract class Artifact {

7 String simpleName;

8 String nameExtension;

9 Date modified;

10 /String name;

11 /String fullName;

12 /boolean isRoot;

13 }

14

15 context Artifact inv:
16 name == ((nameExtension == "") ? simpleName :

17 simpleName + "." + nameExtension);

18

19 association /refersTo [*] Artifact -> Artifact [*];

20

21 association /produces [*] Artifact -> Artifact [*];

22

23 context Artifact a inv:
24 !a.produces**.contains(a);

25

26 //__

27 // ArtifactContainer

28 //__

29

30 abstract class ArtifactContainer extends Artifact {}

31

32 composition contains

33 [0..1] ArtifactContainer (parent) -> Artifact [*];

91

Appendix A. Merged Artifact Model

34

35 context Artifact inv:
36 isRoot <=> parent.isAbsent &&

37 !isRoot implies {p in parent** | p.isRoot}.size == 1;

38

39 context Artifact inv:
40 fullName == (isRoot ? "/" :

41 (parent.isRoot ? "/" + name :

42 parent.fullName + "/" + name));

43

44 context Artifact a, Artifact b inv:
45 a.name == b.name && a.parent == b.parent

46 implies a == b;

47

48 //__

49 // Directory

50 //__

51

52 class Directory extends ArtifactContainer {}

53

54 context Directory inv:
55 nameExtension == "";

56

57 context Artifact inv:
58 isRoot implies (this in Directory);

59

60 context Artifact inv:
61 isRoot <=> simpleName == "/";

62

63 context Artifact inv:
64 name.contains("/") implies isRoot;

65

66 //__

67 // Archive

68 //__

69

70 class Archive extends ArtifactContainer {}

71

72 // __

73 // JavaArtifacts

74 // __

75

76 abstract class JavaArtifact extends Artifact {}

77

92

Appendix A. Merged Artifact Model

78 association reliesOnJavaArtifact

79 [*] JavaArtifact -> JavaArtifact [*];

80

81 context JavaArtifact inv:
82 refersTo.containsAll(reliesOnJavaArtifact);

83

84 // __

85 // JavaSourceFile

86 // __

87

88 class JavaSourceFile extends JavaArtifact {}

89

90 association imports [*] JavaSourceFile -> JavaArtifact [*];

91

92 association compiledTo

93 [1] JavaSourceFile -> JavaClassFile [*];

94

95 context JavaSourceFile inv:
96 reliesOnJavaArtifact.containsAll(imports);

97

98 context JavaSourceFile inv:
99 produces.containsAll(compiledTo);

100

101 context JavaSourceFile inv:
102 nameExtension == "java";

103

104 // __

105 // JavaClassFile

106 // __

107

108 class JavaClassFile extends JavaArtifact {}

109

110 context JavaClassFile inv:
111 nameExtension == "class";
112

113 // __

114 // JavaArchive

115 // __

116

117 class JavaArchive extends Archive {}

118

119 context JavaArchive inv:
120 nameExtension == "jar";

121

93

Appendix A. Merged Artifact Model

122 // __

123 // Package

124 // __

125

126 class Package {

127 String name;

128 String fullName;

129 /boolean isRoot;

130 }

131

132 association belongsTo [*] JavaArtifact -> Package [1];

133

134 composition subPackage

135 [0..1] Package (parent) -> (child) Package [*];

136

137 context Package inv:
138 !name.contains(".");

139

140 context Package inv:
141 isRoot <=> parent.isAbsent &&

142 !isRoot implies {p in parent** | p.isRoot}.size == 1;

143

144 context Package inv:
145 !isRoot implies
146 fullName == parent.fullName + "." + name;

147

148 context Package a, Package b inv:
149 a.parent == b.parent && a.name == b.name implies a == b;

150

151 // __

152 // Type

153 // __

154

155 class Type {

156 String simpleName;

157 /String name;

158 /String fullName;

159 /boolean isInnerType;

160 }

161

162 association defines [*] JavaArtifact -> Type [*];

163

164 composition contains [1] Package -> Type [*];

165

94

Appendix A. Merged Artifact Model

166 composition
167 [0..1] Type (containingType) -> (innerType) Type [*];

168

169 association reliesOn [*] Type -> Type [*];

170

171 context Type inv:
172 isInnerType <=> !containingType.isAbsent &&

173 isInnerType implies
174 {t in containingType** | t.isInnerType}.size == 1;

175

176 context Type inv:
177 name == (isInnerType ?

178 containingType.name + "." + simpleName : simpleName);

179

180 context Type inv:
181 fullName == (package.isRoot ? name :

182 package.fullName + "." + simpleName);

183

184 // __

185 // Relation between Java Artifacts and Java Types

186 // __

187

188 context JavaSourceFile inv:
189 defines == compiledTo.defines;

190

191 context JavaSourceFile inv:
192 {t in defines | !t.isInnerType}.size == 1;

193

194 context JavaArtifact a1, a2,

195 Type t1 in a1.defines, Type t2 in a2.defines inv:
196 t1.reliesOn.contains(t2) implies
197 a1 == a2 || a1.reliesOn.contains(a2);

198

199 context JavaArtifact a, Type t in a.defines inv:
200 !t.isInnerType implies t.simpleName == a.simpleName;

201

202 context JavaArtifact inv:
203 parent.fullName.replaceAll("/", ".")

204 .endsWith(belongsTo.fullName);

205

206 context JavaSourceFile inv:
207 forall n in { t.fullName.replace(".", "/") |

208 t in defines && !t.isInnerType }:

209 fullName.endsWith(n + ".java");

95

Appendix A. Merged Artifact Model

210

211 context JavaClassFile inv:
212 parent.fullName.replaceAll("/", ".")

213 .endsWith(defines.package.fullName);

214

215 context JavaClassFile inv:
216 simpleName == defines.name.replaceAll(".", "$");

217

218 //__

219 // Language

220 //__

221

222 class Language {

223 String name;

224 }

225

226 class Grammar {}

227

228 class CoCo {

229 String name;

230 }

231

232 association grammar [*] Language -> Grammar [1];

233

234 association coco [*] Language -> CoCo [*];

235

236 context Language inv:
237 name != "";

238

239 //__

240 // GrammarFile

241 //__

242

243 class GrammarFile extends Artifact {}

244

245 association defines [1] GrammarFile -> Grammar [1];

246

247 association includes [*] GrammarFile -> GrammarFile [*];

248

249 context GrammarFile inv:
250 nameExtension == "mc4";

251

252 context GrammarFile inv:
253 refersTo.containsAll(includes);

96

Appendix A. Merged Artifact Model

254

255 //__

256 // CoCo

257 //__

258

259 association implementedBy

260 [*] CoCo -> JavaSourceFile [1..*];

261

262 //__

263 // ModelFile

264 //__

265

266 abstract class ModelFile extends Artifact {}

267

268 association conformsTo [*] ModelFile -> Language [*];

269

270 // __

271 // CDModelFile

272 // __

273

274 class CDModelFile extends ModelFile {}

275

276 association imports [*] CDModelFile -> Artifact [*];

277

278 association reliesOn [*] CDModelFile -> Artifact [*];

279

280 association defines [0..1] CDModelFile -> Type [*];

281

282 context CDModelFile inv:
283 nameExtension == "cd";

284

285 context CDModelFile inv:
286 reliesOn.containsAll(imports);

287

288 context CDModelFile inv:
289 refersTo.containsAll(reliesOn);

290

291 context CDModelFile m1, m2,

292 Type t1 in m1.defines, Type t2 in m2.defines inv:
293 t2 in t1.reliesOn implies m1 == m2 || m2 in m1.reliesOn;

294

295 context CDModelFile m, JavaArtifact a,

296 Type t1 in m.defines, Type t2 in a.defines inv:
297 t2 in t1.reliesOn implies a in m.reliesOn;

97

Appendix A. Merged Artifact Model

298

299 // __

300 // System

301 // __

302

303 abstract class System {

304 String name;

305 String version;

306 }

307

308 association consistsOf [*] System -> Artifact [*];

309

310 // __

311 // Product

312 // __

313

314 class Product extends System {}

315

316 // __

317 // Tool

318 // __

319

320 class Tool extends System {}

321

322 // __

323 // Module

324 // __

325

326 class Module {

327 String name;

328 }

329

330 association module [*] System -> Module [*];

331

332 association subModule [*] Module -> Module [*];

333

334 association artifact [*] Module -> Artifact [*];

335

336 // __

337 // FreeMarkerTemplate

338 // __

339

340 class FreeMarkerTemplate extends Artifact {}

341

98

Appendix A. Merged Artifact Model

342 association reliesOnTemplate

343 [*] FreeMarkerTemplate -> FreeMarkerTemplate [*];

344

345 association reliesOnJavaArtifact

346 [*] FreeMarkerTemplate -> JavaArtifact [*];

347

348 association reliesOnTemplate

349 [*] JavaArtifact -> FreeMarkerTemplate [*];

350

351 context FreeMarkerTemplate inv:
352 nameExtension == "ftl";

353

354 context FreeMarkerTemplate inv:
355 refersTo.containsAll(reliesOnTemplate);

356

357 context FreeMarkerTemplate inv:
358 refersTo.containsAll(reliesOnJavaArtifact);

359

360 context JavaArtifact inv:
361 refersTo.containsAll(reliesOnTemplate);

362

363 // __

364 // Generator

365 // __

366

367 class Generator extends Tool {}

368

369 association uses [*] Generator -> FreeMarkerTemplate [*];

370

371 association /template

372 [*] Generator -> FreeMarkerTemplate [*];

373

374 association inputLanguage [*] Generator -> Language [*];

375

376 context Generator g, JavaArtifact a in g.consistsOf inv:
377 g.template == g.uses.addAll(g.template.reliesOnTemplate**)

378 .addAll(a.reliesOnTemplate);

379

380 context Generator inv:
381 consistsOf.contains(template);

382

383 context Generator inv:
384 consistsOf.contains(template.reliesOnJavaArtifact);

385

99

Appendix A. Merged Artifact Model

386 // __

387 // Action

388 // __

389

390 class ExecutionProtocol {}

391

392 class Action {

393 Date start;

394 Date end;

395 }

396

397 class Event extends Action {}

398

399 association ExecutionProtocol -> Action [*] <<ordered>>;

400

401 association subaction

402 [0..1] Action -> (sub) Action [*] <<ordered>>;

403

404 context ExecutionProtocol p, int i,k inv:
405 (0 <= k && k <= p.action.size && 0 <= i && i <= k) implies
406 p.action[i].start <= p.action[k].start;

407

408 context ExecutionProtocol p inv:
409 p.action.nonEmpty implies (p.action.asSet ==

410 p.action[0].subaction**.asSet.add(action[0]));

411

412 context Action inv:
413 start <= end;

414

415 context Event inv:
416 start == end;

417

418 context Action a, Action s in a.subaction inv:
419 a.start <= s.start && s.end <= a.end;

420

421 context ExecutionProtocol p, int i,k inv:
422 (0 <= k && k <= p.action.size && 0 <= i && i <= k) implies
423 p.action[i].end <= p.action[k].start;

424

425 // __

426 // ToolActions

427 // __

428

429 class ToolExecution extends Action {}

100

Appendix A. Merged Artifact Model

430 class TemplateExecution extends Action {}

431 class JavaMethodCall extends Action {}

432 class ArtifactRead extends Action {}

433 class ArtifactExistenceCheck extends Action {

434 String fullName;

435 }

436 class ArtifactCreate extends Action {}

437 class WriteString extends Action {

438 String content;

439 }

440

441 association tool [*] ToolExecution -> Tool [1];

442

443 association writesTo

444 [*] TemplateExecution -> Artifact [0..1];

445

446 association template

447 [*] TemplateExecution -> FreeMarkerTemplate [1];

448

449 association file [*] JavaMethodCall -> JavaClassFile [1];

450

451 association reads [*] ArtifactRead -> Artifact [1];

452

453 association checks

454 [*] ArtifactExistenceCheck -> Artifact [0..1];

455

456 association creates [0..1] ArtifactCreate -> Artifact [1];

457

458 association writesTo [*] WriteString -> Artifact [1];

459

460 // __

461 // ToolExecution

462 // __

463

464 association /input [*] ToolExecution -> Artifact [*];

465

466 context ToolExecution inv:
467 input == {a in subaction** |

468 a in ArtifactRead || a in ArtifactExistenceCheck}.reads;

469

470 association /output [0..1] ToolExecution -> Artifact [*];

471

472 context ToolExecution inv:
473 output ==

101

Appendix A. Merged Artifact Model

474 {a in subaction** | a in ArtifactCreate}.creates;

475

476 association /creationDependency [*] Artifact -> Artifact [*];

477

478 context Artifact inv:
479 creationDependency == output.input;

480

481 context Artifact inv:
482 produces.containsAll(creationDependency);

483

484 // __

485 // Action and Artifact Contribution

486 // __

487

488 association /contributesTo [*] Action -> Artifact [*];

489

490 context ToolExecution inv:
491 contributesTo == sub.contributesTo;

492

493 context ToolExecution inv:
494 contributesTo == output;

495

496 context TemplateExecution inv:
497 contributesTo == sub.contributesTo.add(writesTo);

498

499 context JavaMethodCall inv:
500 contributesTo == sub.contributesTo;

501

502 context ArtifactRead inv:
503 contributesTo == {};

504

505 context ArtifactExistenceCheck inv:
506 contributesTo == {};

507

508 context ArtifactCreate inv:
509 contributesTo == {creates};

510

511 context WriteString inv:
512 contributesTo == {writesTo};

513

514 association /contributionFT

515 [*] FreeMarkerTemplate -> Artifact [*];

516

517 context FreeMarkerTemplate inv:

102

Appendix A. Merged Artifact Model

518 contributionFT == templateExecution.contributesTo;

519

520 context FreeMarkerTemplate inv:
521 produces.containsAll(contributionFT);

522

523 association /contributionJava

524 [*] JavaClassFile -> Artifact [*];

525

526 context JavaClassFile inv:
527 contributionJava == javaMethodCall.contributesTo;

528

529 context JavaClassFile inv:
530 produces.containsAll(contributionJava);

531

532 // __

533 // Maven

534 // __

535

536 class Maven extends Tool {}

537

538 // __

539 // Maven Module

540 // __

541

542 class MavenModule {

543 boolean jarModule;

544 boolean project;

545 }

546

547 association rootDir [0..1] MavenModule -> Directory [1];

548

549 association javaSrcDir

550 [0..1] MavenModule -> Directory [0..1];

551

552 association /javaSrcFile

553 [0..1] MavenModule -> JavaSourceFile [*];

554

555 context MavenModule inv:
556 javaSrcDir.fullName ==

557 rootDir.fullName + "/src/main/java";

558

559 context MavenModule inv:
560 javaSrcFile ==

561 {JavaSourceFile f | f in javaSrcDir.contains**};

103

Appendix A. Merged Artifact Model

562

563 context MavenModule m, JavaSourceFile f in m.javaSrcFile inv:
564 f.parent != m.javaSrcDir implies
565 f.parent.fullName == m.javaSrcDir.fullName + "/" +

566 f.belongsTo.fullName.replaceAll(".", "/");

567

568 context MavenModule inv:
569 jarModule implies javaSrcDir.isPresent;

570

571 association subModule

572 [0..1] MavenModule (parent) -> MavenModule [*];

573

574 association dependsOn [*] MavenModule -> MavenModule [*];

575

576 association dependsOnExternal

577 [*] MavenModule -> MavenModule [*];

578

579 association library [0..1] MavenModule -> JavaArchive [*];

580

581 context MavenModule inv:
582 (project <=> parent.isAbsent) &&

583 (!project implies {p in parent** | p.project}.size == 1);

584

585 context MavenModule inv:
586 jarModule implies subModule.isAbsent;

587

588 context MavenModule inv:
589 rootDir.contains(subModule.rootDir);

590

591 context MavenModule m1, MavenModule m2 in m1.dependsOn inv:
592 {m in m1.parent** | m.project} ==

593 {m in m2.parent** | m.project};

594

595 context MavenModule inv:
596 !project implies dependsOn.containsAll(parent.dependsOn);

597

598 context MavenModule inv:
599 !project implies dependsOnExternal

600 .containsAll(parent.dependsOnExternal);

601

602 context MavenModule inv:
603 !project implies library.containsAll(parent.library);

604

605 context MavenModule inv:

104

Appendix A. Merged Artifact Model

606 !(dependsOn**).contains(this);

607

608 association targetDir [0..1] MavenModule -> Directory[0..1];

609

610 association targetArtifact

611 [0..1] MavenModule -> JavaArchive [0..1];

612

613 context MavenModule inv:
614 jarModule implies targetDir.isPresent &&

615 targetArtifact.isPresent &&

616 targetDir.parent == rootDir &&

617 targetDir.simpleName == "target" &&

618 targetArtifact.parent == targetDir;

619

620 context MavenModule m, JavaSourceFile f in javaSrcFile inv:
621 m.jarModule implies (f.compiledTo.parent.fullName ==

622 ((f.parent == m.javaSourceDir) ?

623 targetArtifact.fullName :

624 m.targetArtifact.fullName + "/" +

625 f.belongsTo.fullName.replaceAll(".", "/")));

626

627 context MavenModule inv:
628 library.containsAll(dependsOnExternal.targetArtifact);

629

630 // __

631 // VCSRootDir

632 // __

633

634 class VCSRootDir extends Directory {}

635

636 context MavenModule inv:
637 {VCSRootDir d | d in (rootDir.parent**)}.size == 1;

638

639 // __

640 // POM

641 // __

642

643 class POM extends Artifact {

644 String groupId;

645 String artifactId;

646 String version;

647 }

648

649 association pom [1] MavenModule -> POM [1];

105

Appendix A. Merged Artifact Model

650

651 context POM inv:
652 simpleName == "pom";

653

654 context POM inv:
655 nameExtension == "xml";

656

657 context MavenModule inv:
658 rootDir == pom.parent;

659

660 // __

661 // MavenPhase

662 // __

663

664 class MavenPhase {

665 String name;

666 int index;

667 }

668

669 association executes

670 [*] MavenModule -> MavenPhase [*] <<ordered>>;

671

672 association binds [*] MavenPhase -> Tool [*] <<ordered>>;

673

674 context MavenModule inv :

675 executes.size == 7;

676

677 context MavenModule inv:
678 executes.binds.containsAll(parent.executes.binds);

679

680 // __

681 // MavenExecution

682 // __

683

684 class MavenExecution extends Action {}

685

686 association buildRoot [*] MavenExecution -> MavenModule [1];

687

688 association providedAsParameter

689 [0..1] MavenExecution -> MavenPhase [1];

690

691 class MavenModuleExecution extends Action {}

692

693 association buildsModule

106

Appendix A. Merged Artifact Model

694 [1] MavenModuleExecution -> MavenModule [1];

695

696 class MavenPhaseExecution extends Action {}

697

698 association phase

699 [0..1] MavenPhaseExecution -> MavenPhase [1];

700

701 context MavenExecution inv:
702 sub in MavenModuleExecution;

703

704 context MavenModuleExecution inv:
705 sub in MavenPhaseExecution;

706

707 context MavenPhaseExecution inv:
708 sub in ToolExecution;

709

710 context MavenExecution inv:
711 contributesTo == sub.contributesTo;

712

713 context MavenModuleExecution inv:
714 contributesTo == sub.contributesTo;

715

716 context MavenPhaseExecution inv:
717 contributesTo == sub.contributesTo;

718

719 context MavenExecution inv:
720 buildRoot.mavenModuleExecution == sub[0];

721

722 context MavenExecution inv:
723 sub.containsAll(buildRoot.subModule**);

724

725 context MavenExecution me,

726 MavenModuleExecution mme in me.sub,

727 MavenPhaseExecution mpe in mme.sub inv:
728 me.providedAsParameter.index >= mpe.phase.index;

729

730 context MavenModuleExecution inv:
731 sub.containsAll(phase.binds.toolExecution);

732

733 context MavenModuleExecution me,

734 MavenPhaseExecution pe in me.sub inv:
735 pe.phase.name == "package" implies
736 me.buildsModule.targetArtifact.isPresent;

737 }

107

Appendix B.

Entire Application Model

1 classdiagram AMApplications {

2 // __

3 // Tool Monitoring Analyses

4 // __

5

6 class Analysis {}

7

8 association execs Analysis -> ExecutionProtocol [*];

9

10 association /unusedTools Analysis -> Tool [*];

11

12 context Analysis inv:
13 unusedTools == Tool.removeAll(

14 {te.tool | ToolExecution te in execs.action});

15

16 association /unknownTP Analysis -> FreeMarkerTemplate [*];

17

18 context Analysis inv:
19 unknownTP ==

20 {FreeMarkerTemplate t | !t in Generator.template};

21

22 association /usedTP Analysis -> FreeMarkerTemplate [*];

23

24 association /unusedTP Analysis -> FreeMarkerTemplate [*];

25

26 context Analysis inv:
27 usedTP ==

28 {te.template | TemplateExecution te in execs.action};

29

30 context Analysis inv:
31 unusedTP == FreeMarkerTemplate.removeAll(usedTP);

32

33 association /noContrib Analysis -> FreeMarkerTemplate [*];

109

Appendix B. Entire Application Model

34

35 context Analysis inv:
36 noContrib ==

37 {Template t in usedTP | contributionFT.isEmpty};

38

39 // __

40 // Actual Architecture

41 // __

42

43 association /containedModule [*] Module -> Module [*];

44

45 context Module inv:
46 containedModule == {this}.addAll(subModule**);

47

48 association /containedArtifact [*] Module -> Artifact [*];

49

50 context Module inv:
51 containedArtifact == containedModule.artifact;

52

53 association /externalArtifact [*] Module -> Artifact [*];

54

55 context Module inv:
56 externalArtifact ==

57 containedArtifact.reliesOn.removeAll(containedArtifact);

58

59 association /reliesOnModule [*] Module -> Module [*];

60

61 context Module inv:
62 reliesOnModule == externalArtifact.module;

63

64 association /moduleDirectory [*] Module <-> Directory [*];

65

66 context Module m, Directory d in m.containedArtifact inv:
67 m.moduleDirectory ==

68 {Directory sub | sub in d.contains**}.add(d);

69

70 association /modulePackage [*] Module <-> Package [*];

71

72 context Module m, JavaArtifact j in m.containedArtifact inv:
73 m.modulePackage == j.package;

74

75 association /packageDirectory [1] Package <-> Directory [*];

76

77 context Package inv:

110

Appendix B. Entire Application Model

78 javaSourceFile.parent in Directory implies
79 packageDirectory == javaSourceFile.parent;

80

81 // __

82 // Generated Systems

83 // __

84

85 association /generatedSystem [*] Generator -> System [*];

86

87 context Generator inv:
88 generatedSystem ==

89 {System s | s.consistsOf(toolExecution.contributesTo)};

90

91 // __

92 // Indirect Template Relations

93 // __

94

95 association /contributionsRelyOn

96 [*] FreeMarkerTemplate -> FreeMarkerTemplate [*];

97

98 context FreeMarkerTemplate inv:
99 contributionsRelyOn == contributionFT.contributionFT

100 .addAll(contributionFT.refersTo.contributionFT);

101

102 // __

103 // Incremental Toolchain Execution

104 // __

105

106 context Artifact inv:
107 toBeRecreated == !isHandcoded && (

108 removed ||

109 lastChange < max(createDependecy.lastChange) ||

110 creationDependency.toBeRecreated ||

111 output.output.toBeRecreated);

112

113 context ToolExecution e, Artifact a in e.output inv:
114 a.toBeRecreated implies e.toRepeat;

115

116 // __

117 // Unused Imports

118 // __

119

120 association /typeUsage [*] JavaArtifact -> JavaArtifact [*];

121

111

Appendix B. Entire Application Model

122 association /unusedImports

123 [*] JavaSourceFile -> JavaArtifact [*];

124

125 context JavaSourceFile inv:
126 typeUsage == defines.reliesOn.javaArtifact.remove(this);

127

128 context JavaSourceFile inv:
129 unusedImports == imports.removeAll(typeUsage);

130

131 association /typeUsage [*] CDModelFile -> Artifact [*];

132

133 association /unusedImports [*] CDModelFile -> Artifact [*];

134

135 context CDModelFile inv:
136 typeUsage == defines.reliesOn.javaArtifact

137 .addAll(defines.reliesOn.cDModelFile).remove(this);

138

139 context CDModelFile inv:
140 unusedImports == imports.removeAll(typeUsage);

141 }

112

Index

Action, 45
Architecture, 14, 66
Archive, 12
Artifact, 8
artifact, 15
Artifact Model, 7
ArtifactContainer, 10
ArtifactCreate, 47
ArtifactExistenceCheck, 47
ArtifactRead, 47
AST, 36

belongsTo, 21
binds, 59
buildRoot, 60

CDModelFile, 37, 73
Class Diagram, 4, 76
CoCo, 34
coco, 34
compiledTo, 19
conformsTo, 35
consistsOf, 13
containingType, 22
contains, 22
contributesTo, 50
contributionFT, 52
contributionJava, 52
creationDependency, 49

defines, 22, 35, 37
dependsOn, 55
dependsOnExternal, 55
Directory, 12

Event, 45

executes, 59
ExecutionProtocol, 45

FreeMarkerTemplate, 42, 66, 70

Generator, 69
generator, 44
Grammar, 34
grammar, 34
GrammarFile, 34

implementedBy, 35
imports, 18, 37, 73
includes, 35
innerType, 22
input, 49
inputLanguage, 44

JavaArchive, 20
JavaArtifact, 18, 73
JavaClassFile, 19
JavaMethodCall, 47
JavaSourceFile, 18
javaSrcDir, 55
javaSrcFile, 55

Language, 34
library, 55

Maven, 53
MavenExecution, 60
MavenModule, 54
MavenModuleExecution, 60
MavenPhase, 59
MavenPhaseExecution, 60
ModelFile, 35

113

INDEX

Module, 14, 66
module, 15
MontiCore, 33, 35, 37, 41, 47, 57
MontiDEx, 44

Object Constraint Language, 4, 15, 76
output, 49

Package, 20
POM, 57
produces, 10
Product, 13
providedAsParameter, 60

refersTo, 9
reliesOn, 23, 38
reliesOnJavaArtifact, 18, 42
reliesOnTemplate, 42
rootDir, 54

subaction, 45
subModule, 15, 55
subPackage, 22
Symbol, 18
System, 13, 69

targetArtifact, 57
targetDirectory, 57
template, 44
TemplateExecution, 47
Tool, 13
ToolExecution, 49, 71
Type, 22, 38

uses, 44

VCSRootDirectory, 57

114

Related Interesting Work from the SE Group, RWTH
Aachen

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using an exe-
cutable, yet abstract and multi-view modeling language for modeling, designing and programming
still allows to use an agile development process.” Modeling will be used in development projects
much more, if the benefits become evident early, e.g with executable UML [Rum02] and tests
[Rum03]. In [GKRS06], for example, we concentrate on the integration of models and ordinary
programming code. In [Rum12] and [Rum16], the UML/P, a variant of the UML especially de-
signed for programming, refactoring and evolution, is defined. The language workbench MontiCore
[GKR+06, GKR+08] is used to realize the UML/P [Sch12]. Links to further research, e.g., include
a general discussion of how to manage and evolve models [LRSS10], a precise definition for
model composition as well as model languages [HKR+09] and refactoring in various modeling and
programming languages [PR03]. In [FHR08] we describe a set of general requirements for model
quality. Finally [KRV06] discusses the additional roles and activities necessary in a DSL-based
software development project. In [CEG+14] we discuss how to improve reliability of adaprivity
through models at runtime, which will allow developers to delay design decisions to runtime
adaptation.

Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound
derivate of the UML designed for product and test code generation. [Sch12] describes a flexible gen-
erator for the UML/P based on the MontiCore language workbench [KRV10, GKR+06, GKR+08].
In [KRV06], we discuss additional roles necessary in a model-based software development project.
In [GKRS06] we discuss mechanisms to keep generated and handwritten code separated. In
[Wei12] demonstrate how to systematically derive a transformation language in concrete syntax.
To understand the implications of executability for UML, we discuss needs and advantages of
executable modeling with UML in agile projects in [Rum04], how to apply UML for testing in
[Rum03] and the advantages and perils of using modeling languages for programming in [Rum02].

Unified Modeling Language (UML)

Starting with an early identification of challenges for the standardization of the UML in [KER99]
many of our contributions build on the UML/P variant, which is described in the two books [Rum16]
and [Rum12] implemented in [Sch12]. Semantic variation points of the UML are discussed in
[GR11]. We discuss formal semantics for UML [BHP+98] and describe UML semantics using the
“System Model” [BCGR09a], [BCGR09b], [BCR07b] and [BCR07a]. Semantic variation points
have, e.g., been applied to define class diagram semantics [CGR08]. A precisely defined semantics
for variations is applied, when checking variants of class diagrams [MRR11c] and objects diagrams
[MRR11d] or the consistency of both kinds of diagrams [MRR11e]. We also apply these concepts
to activity diagrams [MRR11b] which allows us to check for semantic differences of activity

115

Related Interesting Work from the SE Group, RWTH Aachen

diagrams [MRR11a]. The basic semantics for ADs and their semantic variation points is given in
[GRR10]. We also discuss how to ensure and identify model quality [FHR08], how models, views
and the system under development correlate to each other [BGH+98] and how to use modeling in
agile development projects [Rum04], [Rum02]. The question how to adapt and extend the UML is
discussed in [PFR02] describing product line annotations for UML and more general discussions
and insights on how to use meta-modeling for defining and adapting the UML are included in
[EFLR99], [FELR98] and [SRVK10].

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use, but need
appropriate tooling. The MontiCore language workbench [GKR+06, KRV10, Kra10, GKR+08]
allows the specification of an integrated abstract and concrete syntax format [KRV07b] for easy
development. New languages and tools can be defined in modular forms [KRV08, GKR+07, Völ11]
and can, thus, easily be reused. [Wei12] presents a tool that allows to create transformation rules
tailored to an underlying DSL. Variability in DSL definitions has been examined in [GR11]. A
successful application has been carried out in the Air Traffic Management domain [ZPK+11].
Based on the concepts described above, meta modeling, model analyses and model evolution have
been discussed in [LRSS10] and [SRVK10]. DSL quality [FHR08], instructions for defining views
[GHK+07], guidelines to define DSLs [KKP+09] and Eclipse-based tooling for DSLs [KRV07a]
complete the collection.

Software Language Engineering

For a systematic definition of languages using composition of reusable and adaptable language
components, we adopt an engineering viewpoint on these techniques. General ideas on how to
engineer a language can be found in the GeMoC initiative [CBCR15, CCF+15]. As said, the
MontiCore language workbench provides techniques for an integrated definition of languages
[KRV07b, Kra10, KRV10]. In [SRVK10] we discuss the possibilities and the challenges using
metamodels for language definition. Modular composition, however, is a core concept to reuse lan-
guage components like in MontiCore for the frontend [Völ11, KRV08] and the backend [RRRW15]].
Language derivation is to our believe a promising technique to develop new languages for a specific
purpose that rely on existing basic languages. How to automatically derive such a transformation
language using concrete syntax of the base language is described in [HRW15, Wei12] and suc-
cessfully applied to various DSLs. We also applied the language derivation technique to tagging
languages that decorate a base language [GLRR15] and delta languages [HHK+15a, HHK+13],
where a delta language is derived from a base language to be able to constructively describe
differences between model variants usable to build feature sets.

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals, streams
of telephone or video data, method invocation, or data structures passed between software services.
We use streams, statemachines and components [BR07] as well as expressive forms of composition

116

Related Interesting Work from the SE Group, RWTH Aachen

and refinement [PR99] for semantics. Furthermore, we built a concrete tooling infrastructure called
MontiArc [HRR12] for architecture design and extensions for states [RRW13b]. MontiArc was ex-
tended to describe variability [HRR+11] using deltas [HRRS11, HKR+11] and evolution on deltas
[HRRS12]. [GHK+07] and [GHK+08] close the gap between the requirements and the logical
architecture and [GKPR08] extends it to model variants. [MRR14] provides a precise technique
to verify consistency of architectural views [Rin14, MRR13] against a complete architecture in
order to increase reusability. Co-evolution of architecture is discussed in [MMR10] and a modeling
technique to describe dynamic architectures is shown in [HRR98].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling.
The mechanisms for distributed systems are shown in [BR07] and algebraically underpinned in
[HKR+07]. Semantic and methodical aspects of model composition [KRV08] led to the language
workbench MontiCore [KRV10] that can even be used to develop modeling tools in a compositional
form. A set of DSL design guidelines incorporates reuse through this form of composition
[KKP+09]. [Völ11] examines the composition of context conditions respectively the underlying
infrastructure of the symbol table. Modular editor generation is discussed in [KRV07a]. [RRRW15]
applies compositionality to Robotics control. [CBCR15] (published in [CCF+15]) summarizes our
approach to composition and remaining challenges in form of a conceptual model of the “globalized”
use of DSLs. As a new form of decomposition of model information we have developed the concept
of tagging languages in [GLRR15]. It allows to describe additional information for model elements
in separated documents, facilitates reuse, and allows to type tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and
detailedness is discussed in [HR04]. We defined a semantic domain called “System Model” by
using mathematical theory in [RKB95, BHP+98] and [GKR96, KRB96]. An extended version
especially suited for the UML is given in [BCGR09b] and in [BCGR09a] its rationale is discussed.
[BCR07a, BCR07b] contain detailed versions that are applied to class diagrams in [CGR08]. To
better understand the effect of an evolved design, detection of semantic differencing as opposed
to pure syntactical differences is needed [MRR10]. [MRR11a, MRR11b] encode a part of the
semantics to handle semantic differences of activity diagrams and [MRR11e] compares class
and object diagrams with regard to their semantics. In [BR07], a simplified mathematical model
for distributed systems based on black-box behaviors of components is defined. Meta-modeling
semantics is discussed in [EFLR99]. [BGH+97] discusses potential modeling languages for the
description of an exemplary object interaction, today called sequence diagram. [BGH+98] discusses
the relationships between a system, a view and a complete model in the context of the UML. [GR11]
and [CGR09] discuss general requirements for a framework to describe semantic and syntactic
variations of a modeling language. We apply these on class and object diagrams in [MRR11e] as
well as activity diagrams in [GRR10]. [Rum12] defines the semantics in a variety of code and test
case generation, refactoring and evolution techniques. [LRSS10] discusses evolution and related
issues in greater detail.

117

Related Interesting Work from the SE Group, RWTH Aachen

Evolution & Transformation of Models
Models are the central artifact in model driven development, but as code they are not initially
correct and need to be changed, evolved and maintained over time. Model transformation is
therefore essential to effectively deal with models. Many concrete model transformation problems
are discussed: evolution [LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], refactor-
ing [Rum12, PR03], translating models from one language into another [MRR11c, Rum12] and
systematic model transformation language development [Wei12]. [Rum04] describes how compre-
hensible sets of such transformations support software development and maintenance [LRSS10],
technologies for evolving models within a language and across languages, and mapping archi-
tecture descriptions to their implementation [MMR10]. Automaton refinement is discussed in
[PR94, KPR97], refining pipe-and-filter architectures is explained in [PR99]. Refactorings of mod-
els are important for model driven engineering as discussed in [PR01, PR03, Rum12]. Translation
between languages, e.g., from class diagrams into Alloy [MRR11c] allows for comparing class
diagrams on a semantic level.

Variability & Software Product Lines (SPL)
Products often exist in various variants, for example cars or mobile phones, where one manufacturer
develops several products with many similarities but also many variations. Variants are managed in
a Software Product Line (SPL) that captures product commonalities as well as differences. Feature
diagrams describe variability in a top down fashion, e.g., in the automotive domain [GHK+08]
using 150% models. Reducing overhead and associated costs is discussed in [GRJA12]. Delta
modeling is a bottom up technique starting with a small, but complete base variant. Features are
additive, but also can modify the core. A set of commonly applicable deltas configures a system
variant. We discuss the application of this technique to Delta-MontiArc [HRR+11, HRR+11] and
to Delta-Simulink [HKM+13]. Deltas can not only describe spacial variability but also temporal
variability which allows for using them for software product line evolution [HRRS12]. [HHK+13]
and [HRW15] describe an approach to systematically derive delta languages. We also apply
variability to modeling languages in order to describe syntactic and semantic variation points, e.g.,
in UML for frameworks [PFR02]. Furthermore, we specified a systematic way to define variants of
modeling languages [CGR09] and applied this as a semantic language refinement on Statecharts in
[GR11].

Cyber-Physical Systems (CPS)
Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physical
entities. Contributions for individual aspects range from requirements [GRJA12], complete product
lines [HRRW12], the improvement of engineering for distributed automotive systems [HRR12]
and autonomous driving [BR12a] to processes and tools to improve the development as well as the
product itself [BBR07]. In the aviation domain, a modeling language for uncertainty and safety
events was developed, which is of interest for the European airspace [ZPK+11]. A component
and connector architecture description language suitable for the specific challenges in robotics is
discussed in [RRW13b, RRW14]. Monitoring for smart and energy efficient buildings is developed
as Energy Navigator toolset [KPR12, FPPR12, KLPR12].

118

Related Interesting Work from the SE Group, RWTH Aachen

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including
Petri nets or temporal logics. Software engineering is particularly interested in using statemachines
for modeling systems. Our contributions to state based modeling can currently be split into three
parts: (1) understanding how to model object-oriented and distributed software using statemachines
resp. Statecharts [GKR96, BCR07b, BCGR09b, BCGR09a], (2) understanding the refinement
[PR94, RK96, Rum96] and composition [GR95] of statemachines, and (3) applying statemachines
for modeling systems. In [Rum96] constructive transformation rules for refining automata behavior
are given and proven correct. This theory is applied to features in [KPR97]. Statemachines
are embedded in the composition and behavioral specification concepts of Focus [BR07]. We
apply these techniques, e.g., in MontiArcAutomaton [RRW13a, RRW14] as well as in building
management systems [FLP+11].

Robotics

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an
inherent heterogeneity of involved domains, relevant platforms, and challenges. The engineering of
robotics applications requires composition and interaction of diverse distributed software modules.
This usually leads to complex monolithic software solutions hardly reusable, maintainable, and
comprehensible, which hampers broad propagation of robotics applications. The MontiArcAu-
tomaton language [RRW13a] extends ADL MontiArc and integrates various implemented behavior
modeling languages using MontiCore [RRW13b, RRW14, RRRW15] that perfectly fit Robotic
architectural modelling. The LightRocks [THR+13] framework allows robotics experts and laymen
to model robotic assembly tasks.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication
systems as well as advanced active and passive safety-systems result in complex embedded systems.
As these feature-driven subsystems may be arbitrarily combined by the customer, a huge amount of
distinct variants needs to be managed, developed and tested. A consistent requirements management
that connects requirements with features in all phases of the development for the automotive domain
is described in [GRJA12]. The conceptual gap between requirements and the logical architecture
of a car is closed in [GHK+07, GHK+08]. [HKM+13] describes a tool for delta modeling for
Simulink [HKM+13]. [HRRW12] discusses means to extract a well-defined Software Product Line
from a set of copy and paste variants. [RSW+15] describes an approach to use model checking
techniques to identify behavioral differences of Simulink models. Quality assurance, especially
of safety-related functions, is a highly important task. In the Carolo project [BR12a, BR12b],
we developed a rigorous test infrastructure for intelligent, sensor-based functions through fully-
automatic simulation [BBR07]. This technique allows a dramatic speedup in development and
evolution of autonomous car functionality, and thus enables us to develop software in an agile way
[BR12a]. [MMR10] gives an overview of the current state-of-the-art in development and evolution
on a more general level by considering any kind of critical system that relies on architectural

119

Related Interesting Work from the SE Group, RWTH Aachen

descriptions. As tooling infrastructure, the SSElab storage, versioning and management services
[HKR12] are essential for many projects.

Energy Management
In the past years, it became more and more evident that saving energy and reducing CO2 emissions
is an important challenge. Thus, energy management in buildings as well as in neighbourhoods
becomes equally important to efficiently use the generated energy. Within several research projects,
we developed methodologies and solutions for integrating heterogeneous systems at different
scales. During the design phase, the Energy Navigators Active Functional Specification (AFS)
[FPPR12, KPR12] is used for technical specification of building services already. We adapted the
well-known concept of statemachines to be able to describe different states of a facility and to
validate it against the monitored values [FLP+11]. We show how our data model, the constraint
rules and the evaluation approach to compare sensor data can be applied [KLPR12].

Cloud Computing & Enterprise Information Systems
The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-
based application and service architectures with high complexity, criticality and new application
domains. It promises to enable new business models, to lower the barrier for web-based innovations
and to increase the efficiency and cost-effectiveness of web development [KRR14]. Application
classes like Cyber-Physical Systems and their privacy [HHK+14, HHK+15b], Big Data, App and
Service Ecosystems bring attention to aspects like responsiveness, privacy and open platforms.
Regardless of the application domain, developers of such systems are in need for robust methods
and efficient, easy-to-use languages and tools [KRS12]. We tackle these challenges by perusing
a model-based, generative approach [NPR13]. The core of this approach are different modeling
languages that describe different aspects of a cloud-based system in a concise and technology-
agnostic way. Software architecture and infrastructure models describe the system and its physical
distribution on a large scale. We apply cloud technology for the services we develop, e.g., the
SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also for our tool demonstrators
and our own development platforms. New services, e.g., collecting data from temperature, cars etc.
can now easily be developed.

120

Related Interesting Work from the SE Group, RWTH Aachen

[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & Systems
Engineering Process and Tools for the Development of Autonomous Driving Intelli-
gence. Journal of Aerospace Computing, Information, and Communication (JACIC),
4(12):1158–1174, 2007.

[BCGR09a] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe.
Considerations and Rationale for a UML System Model. In K. Lano, editor, UML 2
Semantics and Applications, pages 43–61. John Wiley & Sons, November 2009.

[BCGR09b] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe.
Definition of the UML System Model. In K. Lano, editor, UML 2 Semantics and
Applications, pages 63–93. John Wiley & Sons, November 2009.

[BCR07a] Manfred Broy, María Victoria Cengarle, and Bernhard Rumpe. Towards a System
Model for UML. Part 2: The Control Model. Technical Report TUM-I0710, TU
Munich, Germany, February 2007.

[BCR07b] Manfred Broy, María Victoria Cengarle, and Bernhard Rumpe. Towards a System
Model for UML. Part 3: The State Machine Model. Technical Report TUM-I0711,
TU Munich, Germany, February 2007.

[BGH+97] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Krüger, Bernhard
Rumpe, Monika Schmidt, and Wolfgang Schwerin. Exemplary and Complete Ob-
ject Interaction Descriptions. In Object-oriented Behavioral Semantics Workshop
(OOPSLA’97), Technical Report TUM-I9737, Germany, 1997. TU Munich.

[BGH+98] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schwerin.
Systems, Views and Models of UML. In Proceedings of the Unified Modeling
Language, Technical Aspects and Applications, pages 93–109. Physica Verlag, Hei-
delberg, Germany, 1998.

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katharina Spies.
Software and System Modeling Based on a Unified Formal Semantics. In Workshop
on Requirements Targeting Software and Systems Engineering (RTSE’97), LNCS
1526, pages 43–68. Springer, 1998.

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Modellierung als
Grundlage der Software- und Systementwicklung. Informatik-Spektrum, 30(1):3–18,
Februar 2007.

[BR12a] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years after the Urban
Challenge: The Anticipatory Vehicle as a Cyber-Physical System. In Automotive
Software Engineering Workshop (ASE’12), pages 789–798, 2012.

[BR12b] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving Software.
In C. Rouff and M. Hinchey, editors, Experience from the DARPA Urban Challenge,
pages 243–271. Springer, Germany, 2012.

121

Related Interesting Work from the SE Group, RWTH Aachen

[CBCR15] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard Rumpe. Con-
ceptual Model of the Globalization for Domain-Specific Languages. In Globalizing
Domain-Specific Languages, LNCS 9400, pages 7–20. Springer, 2015.

[CCF+15] Betty H. C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, and
Bernhard Rumpe, editors. Globalizing Domain-Specific Languages, LNCS 9400.
Springer, 2015.

[CEG+14] Betty Cheng, Kerstin Eder, Martin Gogolla, Lars Grunske, Marin Litoiu, Hausi
Müller, Patrizio Pelliccione, Anna Perini, Nauman Qureshi, Bernhard Rumpe, Daniel
Schneider, Frank Trollmann, and Norha Villegas. Using Models at Runtime to
Address Assurance for Self-Adaptive Systems. In Models@run.time, LNCS 8378,
pages 101–136. Springer, Germany, 2014.

[CGR08] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model
Semantics of Class Diagrams. Informatik-Bericht 2008-05, TU Braunschweig, Ger-
many, 2008.

[CGR09] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability within
Modeling Language Definitions. In Conference on Model Driven Engineering Lan-
guages and Systems (MODELS’09), LNCS 5795, pages 670–684. Springer, 2009.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-Modelling
Semantics of UML. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral
Specifications of Businesses and Systems, pages 45–60. Kluver Academic Publisher,
1999.

[FELR98] Robert France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The UML as a formal
modeling notation. Computer Standards & Interfaces, 19(7):325–334, November
1998.

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualität als Indikator
für Softwarequalität: eine Taxonomie. Informatik-Spektrum, 31(5):408–424, Oktober
2008.

[FLP+11] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard
Rumpe. State-based Modeling of Buildings and Facilities. In Enhanced Building
Operations Conference (ICEBO’11), 2011.

[FPPR12] M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. The Energy
Navigator - A Web-Platform for Performance Design and Management. In Energy
Efficiency in Commercial Buildings Conference(IEECB’12), 2012.

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bernhard
Rumpe. View-based Modeling of Function Nets. In Object-oriented Modelling of
Embedded Real-Time Systems Workshop (OMER4’07), 2007.

[GHK+08] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Rothhardt,
and Bernhard Rumpe. Modelling Automotive Function Nets with Views for Features,

122

Related Interesting Work from the SE Group, RWTH Aachen

Variants, and Modes. In Proceedings of 4th European Congress ERTS - Embedded
Real Time Software, 2008.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. Modeling
Variants of Automotive Systems using Views. In Modellbasierte Entwicklung von
eingebetteten Fahrzeugfunktionen, Informatik Bericht 2008-01, pages 76–89. TU
Braunschweig, 2008.

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System
Model with State. Technical Report TUM-I9631, TU Munich, Germany, July 1996.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung domänspez-
ifischer Sprachen. Informatik-Bericht 2006-04, CFG-Fakultät, TU Braunschweig,
August 2006.

[GKR+07] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. Textbased Modeling. In 4th International Workshop on Software Language
Engineering, Nashville, Informatik-Bericht 4/2007. Johannes-Gutenberg-Universität
Mainz, 2007.

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. MontiCore: A Framework for the Development of Textual Domain Specific
Languages. In 30th International Conference on Software Engineering (ICSE 2008),
Leipzig, Germany, May 10-18, 2008, Companion Volume, pages 925–926, 2008.

[GKRS06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, and Martin Schindler. Integration
von Modellen in einen codebasierten Softwareentwicklungsprozess. In Modellierung
2006 Conference, LNI 82, Seiten 67–81, 2006.

[GLRR15] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe. Engineer-
ing Tagging Languages for DSLs. In Conference on Model Driven Engineering
Languages and Systems (MODELS’15), pages 34–43. ACM/IEEE, 2015.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. Technical
Report TUM-I9533, TU Munich, Germany, October 1995.

[GR11] Hans Grönniger and Bernhard Rumpe. Modeling Language Variability. In Workshop
on Modeling, Development and Verification of Adaptive Systems, LNCS 6662, pages
17–32. Springer, 2011.

[GRJA12] Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-Level Re-
quirements Management and Complexity Costs in Automotive Development Projects:
A Problem Statement. In Requirements Engineering: Foundation for Software Quality
(REFSQ’12), 2012.

[GRR10] Hans Grönniger, Dirk Reiß, and Bernhard Rumpe. Towards a Semantics of Activity
Diagrams with Semantic Variation Points. In Conference on Model Driven Engineer-
ing Languages and Systems (MODELS’10), LNCS 6394, pages 331–345. Springer,
2010.

123

Related Interesting Work from the SE Group, RWTH Aachen

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller, Bern-
hard Rumpe, and Ina Schaefer. Engineering Delta Modeling Languages. In Software
Product Line Conference (SPLC’13), pages 22–31. ACM, 2013.

[HHK+14] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard
Rumpe, and Klaus Wehrle. User-driven Privacy Enforcement for Cloud-based Ser-
vices in the Internet of Things. In Conference on Future Internet of Things and Cloud
(FiCloud’14). IEEE, 2014.

[HHK+15a] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller, Bern-
hard Rumpe, Ina Schaefer, and Christoph Schulze. Systematic Synthesis of Delta
Modeling Languages. Journal on Software Tools for Technology Transfer (STTT),
17(5):601–626, October 2015.

[HHK+15b] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard
Rumpe, and Klaus Wehrle. A comprehensive approach to privacy in the cloud-based
Internet of Things. Future Generation Computer Systems, 56:701–718, 2015.

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bernhard
Rumpe, and Ina Schaefer. First-Class Variability Modeling in Matlab/Simulink. In
Variability Modelling of Software-intensive Systems Workshop (VaMoS’13), pages
11–18. ACM, 2013.

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. An Algebraic View on the Semantics of Model Composition. In Conference
on Model Driven Architecture - Foundations and Applications (ECMDA-FA’07),
LNCS 4530, pages 99–113. Springer, Germany, 2007.

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. Scaling-Up Model-Based-Development for Large Heterogeneous Systems
with Compositional Modeling. In Conference on Software Engineeering in Research
and Practice (SERP’09), pages 172–176, July 2009.

[HKR+11] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina Schaefer.
Delta-oriented Architectural Variability Using MontiCore. In Software Architecture
Conference (ECSA’11), pages 6:1–6:10. ACM, 2011.

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A Plug-In-
Based Framework for Web-Based Project Portals. In Developing Tools as Plug-Ins
Workshop (TOPI’12), pages 61–66. IEEE, 2012.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of
”Semantics”? IEEE Computer, 37(10):64–72, October 2004.

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic Component
Interfaces. In Technology of Object-Oriented Languages and Systems (TOOLS 26),
pages 58–70. IEEE, 1998.

124

Related Interesting Work from the SE Group, RWTH Aachen

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der
Linden. Hierarchical Variability Modeling for Software Architectures. In Software
Product Lines Conference (SPLC’11), pages 150–159. IEEE, 2011.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architectural
Modeling of Interactive Distributed and Cyber-Physical Systems. Technical Report
AIB-2012-03, RWTH Aachen University, February 2012.

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Model-
ing for Software Architectures. In Tagungsband des Dagstuhl-Workshop MBEES:
Modellbasierte Entwicklung eingebetteterSysteme VII, pages 1 – 10. fortiss GmbH,
2011.

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving Delta-
oriented Software Product Line Architectures. In Large-Scale Complex IT Systems.
Development, Operation and Management, 17th Monterey Workshop 2012, LNCS
7539, pages 183–208. Springer, 2012.

[HRRW12] Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Einführung
eines Produktlinienansatzes in die automotive Softwareentwicklung am Beispiel von
Steuergerätesoftware. In Software Engineering Conference (SE’12), LNI 198, Seiten
181–192, 2012.

[HRW15] Katrin Hölldobler, Bernhard Rumpe, and Ingo Weisemöller. Systematically Deriv-
ing Domain-Specific Transformation Languages. In Conference on Model Driven
Engineering Languages and Systems (MODELS’15), pages 136–145. ACM/IEEE,
2015.

[KER99] Stuart Kent, Andy Evans, and Bernhard Rumpe. UML Semantics FAQ. In A. Moreira
and S. Demeyer, editors, Object-Oriented Technology, ECOOP’99 Workshop Reader,
LNCS 1743, Berlin, 1999. Springer Verlag.

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler,
and Steven Völkel. Design Guidelines for Domain Specific Languages. In Domain-
Specific Modeling Workshop (DSM’09), Techreport B-108, pages 7–13. Helsinki
School of Economics, October 2009.

[KLPR12] Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe. Modeling
Cyber-Physical Systems: Model-Driven Specification of Energy Efficient Buildings.
In Modelling of the Physical World Workshop (MOTPW’12), pages 2:1–2:6. ACM,
October 2012.

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Specification and
Refinement with State Transition Diagrams. In Workshop on Feature Interactions in
Telecommunications Networks and Distributed Systems, pages 284–297. IOS-Press,
1997.

125

Related Interesting Work from the SE Group, RWTH Aachen

[KPR12] Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie Navigator. In
H. Lichter and B. Rumpe, Editoren, Entwicklung und Evolution von Forschungssoft-
ware. Tagungsband, Rolduc, 10.-11.11.2011, Aachener Informatik-Berichte, Software
Engineering, Band 14. Shaker Verlag, Aachen, Deutschland, 2012.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen Sprachen im
Software-Engineering. Aachener Informatik-Berichte, Software Engineering, Band 1.
Shaker Verlag, März 2010.

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based mathematical
model for distributed information processing systems - SysLab system model. In
Workshop on Formal Methods for Open Object-based Distributed Systems, IFIP
Advances in Information and Communication Technology, pages 323–338. Chapmann
& Hall, 1996.

[KRR14] Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud Computing.
Springer, Schweiz, December 2014.

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical
Systems - eine Herausforderung für die Automatisierungstechnik? In Proceedings of
Automation 2012, VDI Berichte 2012, Seiten 113–116. VDI Verlag, 2012.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Develop-
ment using Domain Specific Modelling Languages. In Domain-Specific Modeling
Workshop (DSM’06), Technical Report TR-37, pages 150–158. Jyväskylä University,
Finland, 2006.

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor Generation for
Compositional DSLs in Eclipse. In Domain-Specific Modeling Workshop (DSM’07),
Technical Reports TR-38. Jyväskylä University, Finland, 2007.

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition of Ab-
stract and Concrete Syntax for Textual Languages. In Conference on Model Driven
Engineering Languages and Systems (MODELS’07), LNCS 4735, pages 286–300.
Springer, 2007.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular Devel-
opment of Textual Domain Specific Languages. In Conference on Objects, Models,
Components, Patterns (TOOLS-Europe’08), LNBIP 11, pages 297–315. Springer,
2008.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Framework for
Compositional Development of Domain Specific Languages. International Journal
on Software Tools for Technology Transfer (STTT), 12(5):353–372, September 2010.

[LRSS10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz, and Jonathan Sprinkle.
Model Evolution and Management. In Model-Based Engineering of Embedded
Real-Time Systems Workshop (MBEERTS’10), LNCS 6100, pages 241–270. Springer,
2010.

126

Related Interesting Work from the SE Group, RWTH Aachen

[MMR10] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving Software Architecture
Descriptions of Critical Systems. IEEE Computer, 43(5):42–48, May 2010.

[MRR10] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A Manifesto for Semantic
Model Differencing. In Proceedings Int. Workshop on Models and Evolution (ME’10),
LNCS 6627, pages 194–203. Springer, 2010.

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic Differ-
encing for Activity Diagrams. In Conference on Foundations of Software Engineering
(ESEC/FSE ’11), pages 179–189. ACM, 2011.

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational Semantics
for Activity Diagrams using SMV. Technical Report AIB-2011-07, RWTH Aachen
University, Aachen, Germany, July 2011.

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class Dia-
grams Analysis Using Alloy Revisited. In Conference on Model Driven Engineering
Languages and Systems (MODELS’11), LNCS 6981, pages 592–607. Springer, 2011.

[MRR11d] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object Diagrams.
In Object-Oriented Programming Conference (ECOOP’11), LNCS 6813, pages
281–305. Springer, 2011.

[MRR11e] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically Configurable
Consistency Analysis for Class and Object Diagrams. In Conference on Model Driven
Engineering Languages and Systems (MODELS’11), LNCS 6981, pages 153–167.
Springer, 2011.

[MRR13] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Component
and Connector Models from Crosscutting Structural Views. In Meyer, B. and Baresi,
L. and Mezini, M., editor, Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE’13), pages 444–454. ACM New York, 2013.

[MRR14] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Component and
Connector Models against Crosscutting Structural Views. In Software Engineering
Conference (ICSE’14), pages 95–105. ACM, 2014.

[NPR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architectures as
Interactive Systems. In Model-Driven Engineering for High Performance and Cloud
Computing Workshop, CEUR Workshop Proceedings 1118, pages 15–24, 2013.

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line Annotations
with UML-F. In Software Product Lines Conference (SPLC’02), LNCS 2379, pages
188–197. Springer, 2002.

[PR94] Barbara Paech and Bernhard Rumpe. A new Concept of Refinement used for Be-
haviour Modelling with Automata. In Proceedings of the Industrial Benefit of Formal
Methods (FME’94), LNCS 873, pages 154–174. Springer, 1994.

127

Related Interesting Work from the SE Group, RWTH Aachen

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Architectures. In
Congress on Formal Methods in the Development of Computing System (FM’99),
LNCS 1708, pages 96–115. Springer, 1999.

[PR01] Jan Philipps and Bernhard Rumpe. Roots of Refactoring. In Kilov, H. and Baclavski,
K., editor, Tenth OOPSLA Workshop on Behavioral Semantics. Tampa Bay, Florida,
USA, October 15. Northeastern University, 2001.

[PR03] Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Specifications. In
Kilov, H. and Baclavski, K., editor, Practical Foundations of Business and System
Specifications, pages 281–297. Kluwer Academic Publishers, 2003.

[Rin14] Jan Oliver Ringert. Analysis and Synthesis of Interactive Component and Connector
Systems. Aachener Informatik-Berichte, Software Engineering, Band 19. Shaker
Verlag, 2014.

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior. In
B. Harvey and H. Kilov, editors, Object-Oriented Behavioral Specifications, pages
265–286. Kluwer Academic Publishers, 1996.

[RKB95] Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes mathematis-
ches Modell verteilter informationsverarbeitender Systeme - Syslab-Systemmodell.
Technischer Bericht TUM-I9510, TU München, Deutschland, März 1995.

[RRRW15] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wortmann. Lan-
guage and Code Generator Composition for Model-Driven Engineering of Robotics
Component & Connector Systems. Journal of Software Engineering for Robotics
(JOSER), 6(1):33–57, 2015.

[RRW13a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Software
Architecture Structure and Behavior Modeling to Implementations of Cyber-Physical
Systems. In Software Engineering Workshopband (SE’13), LNI 215, pages 155–170,
2013.

[RRW13b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiArcAutomaton:
Modeling Architecture and Behavior of Robotic Systems. In Conference on Robotics
and Automation (ICRA’13), pages 10–12. IEEE, 2013.

[RRW14] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Architecture and
Behavior Modeling of Cyber-Physical Systems with MontiArcAutomaton. Aachener
Informatik-Berichte, Software Engineering, Band 20. Shaker Verlag, December 2014.

[RSW+15] Bernhard Rumpe, Christoph Schulze, Michael von Wenckstern, Jan Oliver Ringert,
and Peter Manhart. Behavioral Compatibility of Simulink Models for Product Line
Maintenance and Evolution. In Software Product Line Conference (SPLC’15), pages
141–150. ACM, 2015.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter
Systeme. Herbert Utz Verlag Wissenschaft, München, Deutschland, 1996.

128

Related Interesting Work from the SE Group, RWTH Aachen

[Rum02] Bernhard Rumpe. Executable Modeling with UML - A Vision or a Nightmare?
In T. Clark and J. Warmer, editors, Issues & Trends of Information Technology
Management in Contemporary Associations, Seattle, pages 697–701. Idea Group
Publishing, London, 2002.

[Rum03] Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In Symposium
on Formal Methods for Components and Objects (FMCO’02), LNCS 2852, pages
380–402. Springer, November 2003.

[Rum04] Bernhard Rumpe. Agile Modeling with the UML. In Workshop on Radical Innova-
tions of Software and Systems Engineering in the Future (RISSEF’02), LNCS 2941,
pages 297–309. Springer, October 2004.

[Rum11] Bernhard Rumpe. Modellierung mit UML, 2te Auflage. Springer Berlin, September
2011.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfälle, Refac-
toring, 2te Auflage. Springer Berlin, Juni 2012.

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods. Springer
International, July 2016.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P.
Aachener Informatik-Berichte, Software Engineering, Band 11. Shaker Verlag, 2012.

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai. Meta-
modelling: State of the Art and Research Challenges. In Model-Based Engineering of
Embedded Real-Time Systems Workshop (MBEERTS’10), LNCS 6100, pages 57–76.
Springer, 2010.

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and Andreas
Wortmann. A New Skill Based Robot Programming Language Using UML/P State-
charts. In Conference on Robotics and Automation (ICRA’13), pages 461–466. IEEE,
2013.

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer Sprachen. Aach-
ener Informatik-Berichte, Software Engineering, Band 9. Shaker Verlag, 2011.

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformationssprachen.
Aachener Informatik-Berichte, Software Engineering, Band 12. Shaker Verlag, 2012.

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige, Kumardev
Chatterjee, Andreas Horst, and Bernhard Rumpe. On Demand Data Analysis and
Filtering for Inaccurate Flight Trajectories. In Proceedings of the SESAR Innovation
Days. EUROCONTROL, 2011.

129

