
Towards a Formal Specification of
Multi-Paradigm Modelling

Moussa Amrani
Faculty of Science

University of Namur / NaDI
Namur, Belgium

Moussa.Amrani@unamur.be

Arend Rensink
Formal Methods and Tools

University of Twente
Twente, Netherlands

Arend.Rensink@utwente.nl

Dominique Blouin
LTCI, Telecom Paris

Institut Polytechnique de Paris
Paris, France

dominique.blouin@telecom-paris.fr

Hans Vangheluwe
Modelling, Simulation and Design Lab
University of Antwerp – Flanders Make

Antwerp, Belgium

Hans.Vangheluwe@uantwerpen.be

Robert Heinrich
Inst. Program Struct. and Data Org.

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

robert.heinrich@kit.edu

Andreas Wortmann
Software Engineering

RWTH Aachen University
Aachen, Germany

Wortmann@se-rwth.de

Abstract—The notion of a programming paradigm is used
to classify programming languages and their accompanying
workflows based on their salient features. Similarly, the notion of
a modelling paradigm can be used to characterise the plethora of
modelling approaches used to engineer complex Cyber-Physical
Systems (CPS). Modelling paradigms encompass formalisms, ab-
stractions, workflows and supporting tool(chain)s. A precise defi-
nition of this modelling paradigm notion is lacking however. Such
a definition will increase insight, will allow for formal reasoning
about the consistency of modelling frameworks and may serve
as the basis for the construction of new modelling, simulation,
verification, synthesis, . . . environments to support design of CPS.
We present a formal framework aimed at capturing the notion
of modelling paradigm, as a first step towards a comprehensive
formalisation of multi-paradigm modelling. Our formalisation
is illustrated by CookieCAD, a simple Computer-Aided Design
paradigm used in the development of cookie stencils.

I. INTRODUCTION

Modern General-Purpose Programming Languages (GPLs)

can be classified according the paradigm(s) they support. For

example, Eiffel is object-oriented and supports the contract-

based-design paradigm, Prolog is declarative, and Lisp is func-

tional. The paradigm characterises the underlying syntactic and

semantic structures and principles that govern these General

Purpose Languages (GPLs): object orientation is imperative in

nature and imposes viewing the world in terms of classes and

communicating objects whereas the declarative style relies on

term substitution and rewriting. As a consequence, a statement

in Eiffel has very little in common with a Prolog sentence

due to the very different view supported by both languages.

A programming paradigm directly translates into different

concepts encoded in the GPL’s syntax definition (known as

a metamodel in the Model-Driven Engineering world). Very

naturally, the idea of combining several paradigms at the

level of GPLs led to more expressive, powerful programming

languages such as Java (which is imperative, object-oriented,

concurrent, and real-time and, recently, functional) and Maude

(which is declarative, object-oriented and also concurrent and

real-time). What is a paradigm then? The science philosopher

Kuhn [1] defines it as an open-ended contribution that frames

the thinking of an object study with concepts, results and pro-

cedures that structures future achievements. Though seemingly

far from the concerns in the discipline of Computer Science,

this definition does highlight the emergence of a structure that

captures the object of discourse, and the notion of procedure
that guides achievements.

Cyber-Physical Systems (CPS) emerge from the networking

of multi-physical (mechanical, electrical, biochemical, . . . )

and computational (control, signal processing, logical infer-

ence, planning, . . . ) processes, often interacting with a highly

uncertain environment, including human actors, in a socio-

economic context. CPS are notoriously complex because they

cross discipline borders, leading to inter-domain interactions,

in applications that are often safety-critical.

Multi-Paradigm Modelling (MPM) has been recognised

lately as a powerful paradigm in its own right that may be

helpful in designing, as well as communicating and reasoning

about, CPS. Originating from the Modelling and Simulation

Community, the term MPM finds its origin in 1996, when the

EU ESPRIT Basic Research Working Group 8467 formulated

a series of simulation policy guidelines [2] identifying the

need for “a multi-paradigm methodology to express model

knowledge using a blend of different abstract representations

rather than inventing some new super-paradigm”, and later

on proposing a methodology focusing on combining multiple

formalisms [3]. The recent COST Action IC1404 MPM4CPS

(http://mpm4cps.eu) surveyed some existing languages and

tools commonly used for CPS, and related the languages

and techniques for modelling CPS in an ontology. This work

triggered the need to propose a theoretical, formal specifica-

tion of MPM. This formal framework aims to facilitate the

communication between experts to help them better grasp the

essence of how their CPS are built, but also to facilitate a

rigorous comparison of systems based on their core MPM com-

[ABH+19] M. Amrani, D. Blouin, R. Heinrich, A. Rensink, H. Vangheluwe, A. Wortmann: 
Towards a Formal Specification of Multi-paradigm Modelling. 
In: Proceedings of MODELS 2019. Workshop MPM4CPS, pp. 418--423, Munich, Sep. 2019. 
www.se-rwth.de/publications/ 



ponents. Ultimately, this framework aims to support (meta-

)tool builders who assist practitioners to reason about CPS

and figure out which formalisms, abstractions, workflows and

supporting methods, techniques and tools are most appropriate
to carry out their task(s).

Section II motivates our work. Section III sketches a formal

framework proposal addressing the notion of paradigms. Sec-

tion IV introduces the small CookieCAD paradigm. Section V

discusses related work and concludes.

II. MOTIVATION

To develop a CPS, project managers and engineers need to

select the most appropriate development languages, software

lifecycles and “interfaces” to specify the different views,

components and their interactions of the system with as little

“accidental complexity” [4] as possible. For example, when

it is known that system/software requirements are likely to

change frequently during the project’s course, selecting an

Agile development process may help cope with evolution and

change. If the system’s behaviour requires that operations

are triggered when data become available, similar to reactive

systems, Data Flow languages may help specify the most

critical parts of the software behaviour precisely, making it

amenable for timing analysis.

MPM requires to model everything explicitly, using the most
appropriate formalism(s), at the most appropriate abstraction
level(s) [5]. This suggests that a paradigm is a placeholder

for the properties in each of the dimensions described above:

the formalisms, the abstraction levels, and the processes used

in the modelling activities. Ultimately, MPM aims to select,

organise and manage the three dimensions above. We aim

to clarify the formal foundations of MPM to help design

supporting tools. In this paper, we ignore the abstraction

dimension for now and focus on the two others, though we

do motivate here why the three dimensions are necessary and

how they are related.

Formalisms/Languages. The first dimension relates to what is

known as Modelling Language Engineering, i.e., the explicit

modelling of the key components of (modelling) languages:

concrete and abstract syntaxes, as well as semantics, together

with the usual activities: analysis, simulation, execution, de-

bugging, etc. that should be supported by tools. Such tools

may be largely synthesized from high-level specifications of

these languages (such as metamodels for abstract syntax)

and their usage. All modelling artefacts, including language

specifications as well as their instances, are organised in a

repository which we call the Modelverse. The state of this

repository evolves over time as the artefacts in it are modified.

Processes. Workflows or life-cycles are processes relating the

various MPM activities. In particular, the above three primitive

activities are combined. This is often supported by a toolchain

whereby different tools support different activities. Processes

may be descriptive, charting the sequence of activities carried

out as well as the artefacts involved, proscriptive by declara-

tively specifying constraints on the allowed activities and their

combinations, and prescriptive allowing enactment.

TABLE I: Properties of two paradigms: Object Orientation

(OO[7]) and Computer-Aided Design (CAD[8])

ι1: Object Orientation (OO)
OO1 Possess the concepts of Object and Class
OO2 Objects possess a state and a set of capabilities / operations
OO3 Possess an inheritance mechanism
OO4 Inheritance allows to reuse operations

ι2: Computer-Aided Design (CAD)
CAD1 Comprises concepts of (2D/3D) points and lines
CAD2 Shapes are defined by lines
CAD3 Supports transformation of shapes into (2D/3D) products

Abstraction/Refinement, Architectural and View decompo-
sition. During the course of system development, three basic

approaches are commonly combined to tackle complexity. One

particular combination of these approaches leads to Contract-

Based System Design [6].

Model abstraction (and its dual, refinement) is used when

focusing on a particular set of properties of interest. A

relationship A between a detailed model md and a more

abstract model ma is an abstraction with respect to a set of
properties Π if for all properties π ∈ Π, the satisfaction of

π by the more abstract ma implies the satisfaction of π by

the more detailed md. This allows one to substitute md by

ma whenever questions about the properties in Π need to be

answered. Substitution is useful as the analysis of properties

on the more detailed model is usually more costly than on the

abstracted model. Note that the abstraction relationship may

hold between models in the same or in different formalisms,

as long as for both, the semantics allows for the evaluation of

the same properties.

Architectural decomposition (and its dual, component com-
position) is used when the problem can be broken into parts,

each with an appropriate interface. Such an encapsulation

reduces a problem to (1) a number of sub-problems, each

requiring the satisfaction of its own properties, and each

leading to the design of a component and (2) the design of an

appropriate architecture connecting the components in such a

way that the composition satisfies the original required prop-

erties. Such a breakdown often comes naturally at some levels

of abstraction, using appropriate formalisms (which support

hierarchy). This is for example thanks to locality or continuity

in the problem/solution domain. Note that the component

models may be described in different formalisms, as long their

interfaces match and the multi-formalism composition has a

precise semantics.

View decomposition (and its dual, view merge) is used in

the collaboration between multiple stakeholders, each with

different concerns. Each viewpoint allows the evaluation of

a stakeholder-specific set of properties. When concrete views

are merged, the conjunction of all the views’ properties must

hold. In the software realm, IEEE Standard 1471 defines the

relationships between viewpoints and their realisations, views.

Note that the views may be described in different formalisms.

419



III. FORMALISATION

Our formal framework defines a paradigm as a label or

name ι denoting a set of properties π ∈ Π. We define a

paradigmatic structure PS ∈ PS as a candidate structure

that qualifies, or embodies, or follows the paradigm ι if PS
satisfies π. PS describes a set of workflows that capture various

activities seen to be desirable for realising ι. Table I illustrates

some relevant properties for two paradigms.

Since every aspects of the paradigmatic structure needs to be

explicitly modelled, we first introduce the two established no-

tions to manipulate languages explicitly, namely metamodels

and models on the one hand, and transformation specification

and execution on the other.

A metamodel MM ∈ M specifies the abstract syntax of

a language L. MM is expressed in a specific language called

meta-metamodel. A model M ∈ M is a particular instance

of L, also specified using a language that may be visual /

diagrammatic, textual or hybrid (and normally different from

the meta-metamodel). When M is a valid instance of MM, M
is said to conform to MM and noted M�MM.

A transformation specification T ∈ T is a triple T =
((MMi

s)i∈[1..n], (MM
j
t)j∈[1..m], spec), where (MMi

s)i∈[1..n] and

(MMj
t)j∈[1..m] are indexed sets of source and target languages,

respectively, and constitute the transformation’s signature;

while spec is a well-formed transformation definition written

in a transformation language. A transformation execution
TET ∈ TE is a general computation performed on (a) language

instance(s) that conform(s) to the source language(s) of the

transformation T ∈ T.

As an example, the javac compiler is a transformation

Tcompil = (MMJava,MMBC, javac) that outputs byte code

(BC) from any (valid, conforming) Java program J�MMJava.

Note that javac is itself specified as a Java program (i.e.

javac�MMJava).

A. Templates

Templates are plain metamodels and transformations, spec-

ified with the usual meta-metamodel(s) and transformation

languages. A key difference however is that they are not

complete, in the sense that they require a regular meta-

model (or transformations) to be matched. Templates are

used as placeholders for enforcing transformation signatures,

expressing high-level properties for metamodels and trans-

formations (specifications), or capturing the necessary steps

in a transformation. Suppose we want to formally specify

property OO3 for inheritance in Table I. Figure 1a presents

a minimal template defining the basic placeholders: to even

allow discussing about super- and sub-classes, one need at

least distinguishing between Class and Objects, and defining a

partial order (super) between classes. The inheritance property

then states that any object of a subclass has access to the

state defined by its class, but also to the state defined by its

superclass. Note that using a MOF-like meta-metamodel for

expressing the template provides navigational notation for free:

the property would start with something like c1, c2 : Class
such that c2 ∈ c1.super.

Using templates requires a powerful, customisable matching

process. For metamodels, contributions on model typing [9],

a posteriori typing [10], and metamodel morphisms [11], [12]

may be appropriate; for transformations, the rich literature on

reuse [13] provides some guidelines on how to realise that.

Hence, matching Fig. 1a’s template into the Java metamodel

[14] would match ClassDeclaration to C and the extends
clause to super. We simply capture this important relationship

in the following: for a template metamodel TMM ∈ M and

a regular metamodel MM ∈M, we note TMM� MM when

TMM is appropriately matched by MM.

B. Workflow

Transformations typically support the realisation of activ-

ities that are essential to (the engineering of) languages,

typically for parsing and/or pretty printing, defining their

semantics (translationally or operationnaly), analysing relevant

properties, debugging, and of course executing, simulating,

animating, etc. [15]. These activities, and others essential for

a paradigm, are typically captured through a workflow.

In our framework, workflows describe precisely the set of

activities captured by a candidate paradigmatic structure. A

workflow is composed of two elements: a Formalism Trans-
formation Graph (FTG) describes explicitly the links between

formalisms / languages, stating which possible transformations

may be used; and a Process Model describes how language

instances are combined together towards achieving a particular

activity. Combining both elements results in an FTG+PM, as

described in [16], [17], [18].

Instead of directly manipulating (meta-)models and/or trans-

formations, our framework relies on names that allow to re-

trieve the corresponding artefacts from a repository (eventually

centralised as a Modelverse). This linking is captured by the

following definition.

Definition 1 (Naming). The naming functions associate names
to their actual item:

model : MName�M

mmodel : MMName�M
tmm : TMMName�M
trans : TName� T

tt : TTName� T

All functions are partial, returning an undefined item (noted

⊥) when the repository stores no item with the asked name.

Template names for metamodels (TMMName) and transfor-

mations (TTName) are in a separate namespace than those

for regular ones. The repository is ultimately responsible to

retrieve appropriate items: for example, querying the repo with

the template of Fig. 1a would eventually allow the selection

of the Java metamodel if inheritance is required.

To accomodate with templates, we introduce extended FTGs,

defined as a (name-restricted) mapping of (template) transfor-

mations (names) into a signature.

Definition 2. (Extended) Formalism Transformation Graph
(xFTG) An Extended Formalism Transformation Graph FTG ∈

420



(a) Template for ex-
pressing inheritance.

(b) FTG for compilation
/ hierarchy extraction.

(c) Compiling PM.

Fig. 1: Examples for (a) Templates, (b) FTG, and (c) PM.

FTG(TR,MM) is a function FTG : TR → 〈MM〉 ×
〈MM〉 × B.

We parameterise FTG with two sets of names

TR ⊆ (TName ∪ TTName) for regular or template

transformations, and MM ⊆ (MMName ∪ TMMName)
for regular or template metamodels. Let tr 	→
(〈mm1, . . . ,mmn〉, 〈mm′

1, . . . ,mm
′
m〉, b) be such a mapping

in FTG(TR,MM): when b is set to true, tr refers to an

automatic transformation (and human guided otherwise); and

mmis (resp. mm′
js) names are the source (resp. target) of tr.

Figure 1b pictures a simple FTG using two template, automatic

transformations (names) (represented with double-rounded,

white items) called Compile,ExtractH ∈ TTransName that

respectively compile and extract the class hierarchy of a

template metamodel OO MM ∈ TMMName.
As its name indicates, a PM describes a process, i.e., a

set of activities that are combined together towards achieving

a particular goal. Instead of reinventing a Domain-Specific

Language for this well-studied domain, we simply specialise

one standard and well-known language that covers our needs,

namely UML’s Activity Diagrams.

Definition 3 (Process Model (PM)). A process model P ∈ PM

is an instance of a UML Activity Diagram where

• ActionNodes are labelled by transformation instance
names typed by their conforming transformation speci-
fications, and may be hierarchical and may contain input
or output Pins; and

• ObjectNodes are labelled by language instance names
typed by their conforming languages; and

• ControlNodes include Decision/Merge, Fork/Join and
Init/Finals nodes.

Figure 1c pictures a compilation process between one

ObjectNode representing a Java program : Java producing a

ByteCode instance : ByteCode through the ActionNode javac.
The following definition puts things together: a workflow is

composed of an FTG together with a well-formed PM.

Definition 4 (Workflow). A workflow W ∈ W(TR,MM) is
a pair W = (FTG,P) where FTG ∈ FTG(TR,MM) and

P ∈ PM, such that P is well-formed (noted P � FTG) wrt.
FTG, i.e., for each ActionNode inside P with name tr,

• there exists a transformation name t ∈ Dom(FTG) that
refers to a transformation specification T (i.e. trans(t) =
T or tt(t) = T) such that tr conforms to T (i.e. tr

T
∈ TE)

• for each source or target mmi of t (i.e.
FTG = (〈. . . ,mmi, . . .〉, 〈. . .〉, b) or FTG =
(〈. . .〉, 〈. . . ,mmi, . . .〉, b)) at rank i refering to a
(template) metamodel MMi (i.e. mmodel(mmi) = MMi

or tmmodel(mmi) = MMi), there exists a Pin at
rank i connected (as input or output) to an input
ObjectNode carrying a model name mname that refers
to a model conforming to a metamodel MM′ (i.e.
model(mname) � MM′, such that either MM is the
source/target i-metamodel of T (i.e. MM = MM′), or it
matches it (i.e., MM� MM).

When clear from context, or unnecessarily detailed, we simply

note the set of workflows W, without any indication of

languages or transformations (sets).
For instance, the PM in Fig. 1c is well-formed wrt. the

FTG in Fig. 1b: as established earlier, :Java refers to a Java

model, whose metamodel matches OO MM and javac is an

appropriate match for Compile; furthermore, no transformation

(execution) are exhibited for matching ExtractH.
Our definition for xFTGs relies solely on names: we heavily

rely on the repository (Modelverse) capabilities in order to

first retrieve the appropriate items (metamodels, models and

transformations) as well as checking that matching between

them is appropriately achieved. This was abstracted away in

Def. 1, but requires a proper formalisation in the future.
Similar to the original [16], [17], [18], our definition does

not impose a particular topology on the PM as long as trans-

formations are well-formed. However, the original definition

simply rely on a name-matching typing, similar to what is

depicted in Fig. 1c, leverage UML-like Object/Class instancia-

tion. In contrast, we introduced a relaxed matching mechanism

based on metamodel/transformation matching relying on the

� relationship.

C. Paradigm
Properties characterising a paradigm (as briefly described

in Table I) may span all the previous element. For example,

expressing the inheritance formally would require the (tem-

plate) metamodel of Fig. 1a, but also access to its semantic

domain to check that the state of a superclass becomes avail-

able to all objects of any subclass. Similarly, properties over

transformations may restrict or constraint their applicability

(e.g., ExtractH would have to define preconditions for object-

oriented metamodels allowing multiple inheritance, and have

a post-condition on the datastructure of its output). Properties

may also characterise the topology, the usage and the matching

process in an FTG or its corresponding PM (by, for example,

ensuring frequent loops for the Agile paradigm).
We first collect all previous elements in a single mathemati-

cal structure called paradigmatic structure on which properties

may hold.

421



Fig. 2: CookieCAD: (a) Real-life cookie cutter. (b) House-like

shape with line-sharing. (c) Invalid shape (due to overlaps).

Definition 5 (Paradigmatic Structure). A paradigmatic struc-

ture PS ∈ PS is a pair PS = (MM,W ) where MM ∈ ℘(M)
is a set of metamodels and W ∈ ℘(W) is a set of workflows.

Following the mantra of modelling ”at the most appropriate

level of abstraction“, it becomes impossible at the abstraction

level of this presentation to formally (i.e., intensionally) define

the nature of such a large class of properties. We therefore

provide an extensional definition: we note P(S) the set of all

possible properties expressible over a structure S.

Definition 6 (Paradigmatic Properties). A paradigmatic prop-

erty is a tuple π = (πMM, πW, πPS) ∈ Π where
• πMM ∈ P(M) is a set of properties over metamodels

(and their semantics);
• πW ∈ P(W) is a set of properties over workflows (and

their matching procedure);
• πPS ∈ P(PS) is a set of properties spanning over all

components of paradigmatic structures).

Paradigmatic properties may be expressed through pattern
languages, e.g., for ensuring the presence of certain concepts,

or through dedicated logics, e.g., for ensuring semantic prop-

erties. Finally, we associate a name to a set of properties for

referring to a specific paradigm.

Definition 7. Paradigm Let ParadigmName be a set of
(paradigm) names, that we associate to properties through a
function ι ∈ [IntentN→ Π].

For paradigm ∈ ParadigmName such that ι(paradigm) =
(πMM(p), πW(p), πPS(p)), we say that PS = (MM,W ) ∈ PS

embodies (alternatively, follows, qualifies as) paradigm iff
• the properties πMM(p) hold on MM ;
• the properties πW(p) hold on W ; and
• the properties πPS(p)) hold on PS.

Notice that it may be interesting to introduce namespaces for

paradigm names, since it is likely that similar denominations

would be used for slightly different sets of properties: e.g.,

one may define object orientation in the context of single

or multiple inheritance, the latter requiring to take care of

conflicting properties (e.g., via Eiffel’s renaming mechanism).

IV. CASE STUDY: COOKIECAD

Computer-Aided Design (CAD) [8] promotes the use of

computer systems to assist the creation, modification, analysis

and optimisation of a design. A design may describe any

physical, 3D object, e.g., engines or planes for analysing

Fig. 3: FTGCCAD: an xFTG for CCAD activities.

heat and fluid transfers, bridges and wind mills to estimate

the dynamic response of the mechanical structure to various

environmental variations. CAD is often paired with Computer-

Aided Manufacturing (CAM) to help plan, manage and control

the operations around the process of bringing 3D designs

to life. Historically, techniques and tools heavily rely on

geometry, solid and surface mathematical formalisms. This

particular set of processes operated over a selected bunch of

formalisms and languages makes CAD a paradigm on its own.

We propose to illustrate our formal framework with a

simplified variant of CAD named CookieCAD (CCAD) that

helps design simple cookie cutters, as illustrated in Fig. 2(a).

A cookie cutter adopts a simple shape (triangle, rectangle,

star, etc.) represented by 2D geometric lines (noted L) which

are specified based on the definition of two points in no

particular order (noted P ) placed in a cartesian plane (using x-

/y- coordinates). In order to be manufacturable, points shall not

be placed too close to each other (the exact distance tolerance

depends on the machinery used), and shall represent closed

polygons that may share some lines (as illustrated in Fig. 2(b)

for a house-like cutter, with the triangular roof placed over

the rectangular base). Consequently, lines shall not cross each

others as illustrated in Fig. 2(c), which results in an invalid
cookie cutter. At manufacturing time, such a design shall be

associated with a width to build a 3D physical object: the

precision of the machine may finally discard some of the

designs presented on Fig. 2(a) if it is not able to cut or fold

metal pieces that size.

Figure 3 depicts a possible, simplified xFTG for CCAD

named FTGCCAD. It includes four transformations tem-

plates represented as double-rounded ellipses named Design,

Validate, EstimateCosts and Manufacture. As an exam-

ple, a repository would have to retrieve a transforma-

tion corresponding to the following signature: Validate 	→
(〈CCAD〉, 〈CCAD,Boolean,Trace〉,
), meaning that Validate
is automatic and takes as source a CCAD model and produces

back the source CCAD (notice the double arrow from/to

CCAD), and a boolean value, indicating whether the source

model is valid or not, in which case a Trace model is produced.

The target CCAD model may be discarded by some tools, but

nothing prevents a repository to select transformations that

may additionnally decorate the target with information from

the trace model to help CCAD designers grasp their errors’

origins more easily, or keep traces and models cleanly sep-

arated, since both behaviours match Validate’s signature. All

422



Fig. 4: Template metamodel CCAD in FTGCCAD (cf. Fig. 3).

transformation and metamodel names in Fig. 3 are templates

(meaning they belong to TMMName or TTName) except

Boolean and Real, which is used as a source parameterising

the width of the cookie cutter design in order to produce the

physical 3D cutter.

These template transformations make a central use of the

CCAD language that would handle the visual representation,

design, validation, debugging, etc. of a cookie cutters designs,

based on the template metamodel of Fig. 4: a CCAD model

is defined by a set of lines delimited by exactly two points,

in no particular order, having real coordinates on a 2D plane.

The semantics of such a metamodel captures all points in an

Euclidian plane between any pair of points defining a line.

Fig. 5a depicts a candidate, well-formed PMs named PMFull.

It arranges three transformations from FTGCCAD in a sequen-

tial fashion: starting from scratch, a designer starts iteratively

create a design, then manufacture it once it has been validated.

This workflow does not prohibit manufacturing of expensive

designs, since EstimateCosts is left out. Enforcing such a

scenario requires specifying properties specifically targeting

PMFull’s topology, asking at least EstimateCosts’s presence in

the PM in order to break PMFull well-formedness. Refering

to Tab. I, CAD1 and CAD2 are easily recognised as property

patterns over a metamodel manipulating CAD designs; while

CAD3 specifies a property characterising the existence of

a transformation that produces a final, real-life 3D prod-

uct. Fig. 4 shows possible patterns for capturing them in a

MOF-like syntax. Assuming one has explicit languages for

expressing the required properties, this would built a set of

paradigmatic properties πCAD ∈ Π that constitute part of our

CAD paradigm (i.e. CAD 	→ πCAD in the sense of Def. 7).

We have built a paradigmatic structure PSCCAD =
(MM, {WCCAD}) ∈ PS with only one workflow WCCAD =
(FTGCCAD,PMFull) ∈ W(TR,MM) relying on transforma-

tion TR and metamodel names MM as described in Fig. 3.

Now, does PSCCAD qualify as a CAD (simplified) paradigm?
Properties CAD1 and CAD2 are easily checked on the

CCAD metamodel by matching the classes from the template

properties to their corresponding class (namely, L and P to

Line and Point, then references and b to x and y, and

finally S to CCAD itself). Property CAD2 may be matched

to the transformation template Manufacture, with a template

Product yet to be retrieved from the repository.

V. CONCLUSION

To deal with the complexities in designing CPS, MPM is

seen as a potential candidate for helping project managers and

engineers.

This paper motivated the need of MPM for CPS and iden-

tified three important dimensions: formalisms / languages;

Fig. 5: (Left) Candidate PM for manufacturing CCAD designs.

(Right) Pattern properties for CAD1 and CAD2.

abstractions / viewpoints; and processes. It proposes, as a

first step, a partial formalisation of two of these to capture

the notion of paradigm: after defining the core characterising

properties of a paradigm, we offer a decision procedure to

check that a structure comprising two of the three previous

dimensions satisfy these properties. This was illustrated with

a (simplified) CAD paradigm. Many directions still need to

be explored: adding multi-view properties as well as going

from a single to multiple paradigms as well as specifying how

they relate to each other (through abstractions/multiviews) and

characterising such relationships; then validating the approach

on realistic/industrial CPS examples.

REFERENCES

[1] T. Kuhn, The Structure of Scientific Revolutions. Chicago Press, 2012.
[2] H. Vangheluwe, G. Vansteenkiste, and E. Kerckhoffs, “Simulation for the

Future: Progress of the ESPRIT Basic Research working group 8467,”
in European Simulation Symposium (ESS). SCS, 1996.

[3] H. Vangheluwe and G. Vansteenkiste, “A multi-paradigm modeling
and simulation methodology: Formalisms and languages,” in European
Simulation Symposium (ESS). SCS, 1996, pp. 168–172.

[4] F. P. Brooks, Jr., “No silver bullet – essence and accidents of software
engineering,” Computer, vol. 20, no. 4, pp. 10–19, Apr. 1987.

[5] Y. Van Tendeloo, “A Foundation for Multi-Paradigm Modelling,” Ph.D.
dissertation, University of Antwerp, 2017.

[6] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. A. Henzinger,
and K. G. Larsen, “Contracts for system design,” Foundations and
Trends in Electronic Design Automation, vol. 12, no. 2-3, 2018.

[7] P. Wegner, “Dimensions of Object-Based Language Design,” SIGPLAN
Notices, vol. 22, no. 12, pp. 168–182, Dec. 1987.

[8] M. P. Groover and E. W. J. Zimmers, CAD/CAM: Computer-Aided
Design and Manufacturing, P. Hall, Ed. Prentice Hall, 2008.

[9] T. Degueule, B. Combemale, A. Blouin, O. Barais, and J.-M. Jézéquel,
“Safe Model Polymorphism for Flexible Modeling,” Computer Lan-
guages, Systems and Structures, vol. 49, no. C, pp. 176–195, 2017.

[10] J. De Lara and E. Guerra, “A posteriori typing for model-driven
engineering: Concepts, analysis, and applications,” ACM Transactions
on Software Engineering Methodology, vol. 25, no. 4, pp. 1–31, 2017.

[11] R. Salay, J. Mylopoulos, and S. Esterbrook, “Using Macromodels to
Manage Collections of Related Models,” in CAiSE, 2009, pp. 141–155.

[12] F. Durán, S. Zschaler, and J. Troya, “On the Reusable Specification of
Non-functional Properties in DSLs,” in SLE, 2012, pp. 332–351.

[13] A. Kusel, J. Schonbock, M. Wimmer, G. Kappel, W. Retschitzegger, and
W. Swinger, “Reuse in Model-To-Model Transformation Languages: Are
We There Yet?” SoSyM, vol. 14, no. 2, pp. 537–572, 2015.

[14] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, and D. Smith, The
Java Language Specification, se 12 ed. Oracle USA, 2019.

[15] L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. Selim,
E. Syriani, and M. Wimmer, “Model Transformation Intents and Their
Properties,” SOSYM, vol. 15, no. 3, pp. 647–684, 2014.

[16] S. Mustafiz, J. Denil, L. Lúcio, and H. Vangheluwe, “The FTG+PM
Framework For Multi-Paradigm Modelling: An Automotive Case
Study,” in MPM Workshop, 2012, pp. 13–18.

[17] L. Lúcio, S. Mustafiz, J. Denil, H. Vangheluwe, and M. Jukss,
“FTG+PM: An Integrated Framework For Investigating Model Trans-
formation Chains,” in International SDL Forum, 2013, pp. 182–202.

[18] L. Lúcio, S. Mustafiz, J. Denil, B. Meyers, and H. Vangheluwe,
“The Formalism Transformation Graph As A Guide To Model-Driven
Engineering,” McGill University, Tech. Rep. SOCS-TR2012, 2012.

423




