
Towards a Family-based Analysis of Applicability
Conditions in Architectural Delta Models

Arne Haber1, Thomas Kutz1, Holger Rendel1,
Bernhard Rumpe1, and Ina Schaefer2

1 Software Engineering, RWTH Aachen University, Germany
2 Institute for Software Systems Engineering, TU Braunschweig, Germany

Abstract. Modeling variability in software architectures is a fundamen-
tal part of software product line development. ∆-MontiArc allows de-
scribing architectural variability in a modular way by a designated core
architecture and a set of architectural delta models modifying the core
architecture to realize other architecture variants. Delta models have to
satisfy a set of applicability conditions for the definedness of the architec-
tural variants. The applicability conditions can in principle be checked by
generating all possible architecture variants, which requires considering
the same intermediate architectures repeatedly. In order to reuse previ-
ously computed architecture variants, we propose a family-based analysis
of the applicability conditions using the concept of inverse deltas.

Keywords: Software Architectures; Delta-oriented Architectural Variability
Modeling; Family-based Product Line Analysis

1 Introduction

Modeling variability of the software architecture is an integral part in software
product line development. ∆-MontiArc [11] is a modular, transformational vari-
ability modeling approach for software architectures. In ∆-MontiArc, a family of
software architectures is described by a designated core architecture model and
a set of delta models containing modifications to the core architecture. A delta
model can add and remove components, ports and connections and modify the
internal structure of components. By applying the modifications contained in a
delta model, an existing architecture model is transformed into another archi-
tectural variant. A particular variant in the architecture family is specified by a
product configuration comprising the deltas that have to be applied to the core
architecture. In order to resolve conflicts between delta models modifying the
same architectural elements, an application order constraint can be attached to
each delta model determining which other delta models have to be or should not
be applied before this delta model.

Application order constraints are also used to ensure that each delta model
is applicable to the core or intermediate architecture during product generation.
Applicability means that all elements removed or modified by the delta exist

[HKR+11b] A. Haber, T. Kutz, H. Rendel, B. Rumpe, I. Schaefer 
Towards a Family-based Analysis of Applicability Conditions in Architectural Delta Models 
In: Variability for You Proceedings of VARY InternationalWorkshop affiliated with ACM/IEEE OCTOBTRth International Conference on Model 
Driven Engineering Languages and Systems (MODELS’11), IT University Technical Report Series TR-2011-144, pp. 43-52, October 2011. 
www.se-rwth.de/publications 



and that all elements added by the delta do not yet exist. If these applicabil-
ity conditions hold, the architecture resulting from delta application is defined,
otherwise the result is undefined, following [17]. In order to check that the appli-
cation order constraints guarantee the applicability of the delta models during
product generation, a naive product-based approach is to generate and check the
architectures for all possible product configurations and all possible intermediate
architectures. This naive approach is very inefficient because for examining all
possible product architectures, the same intermediate products might have to
be re-generated several times.

In this paper, we propose inverse deltas in order to enable an efficient family-
based analysis of the applicability conditions in architectural delta models. A
family-based analysis checks all products that can be derived by traversing the
whole artifacts base of the product line only once, without generating all pos-
sible products explicitly. An inverse delta reverts the operations carried out by
the original delta such that applying the delta and its inverse to an architecture
retrieves the original architecture. The family-based analysis constructs the fam-
ily application order tree (FAOT) which contains all possible delta application
orders that comply to the application order constraints attached to the delta
models. Using inverse deltas, it is possible to traverse the FAOT without gener-
ating the same intermediate architectures several times. Instead, the tree is only
traversed once in a depth-first manner. In this traversal, already computed in-
termediate architectures are reused by reconstructing them with the application
of inverse deltas. If the analysis of the FAOT passes the applicability conditions
checks, it is guaranteed that for all possible product configurations, which are
subsets of the set of deltas models, satisfy the applicability conditions and lead
to a defined resulting architecture.

This paper is structured as follows: Section 2 briefly introduces ∆-MontiArc.
Product Generation is described in Section 3. The family-based analysis using
inverse deltas is proposed in Section 4 and discussed in 5. Section 6 describes
related approaches. Section 7 concludes with an outlook to future work.

2 ∆-MontiArc

∆-MontiArc [11] is a modular and transformational approach for describing ar-
chitectural variability and is based on the textual architecture description lan-
guage (ADL) MontiArc [10]. MontiArc focuses on the domain of distributed
information-flow architectures. An example for a MontiArc architecture is given
in Listing 1.1 which represents an Anti Lock Braking System (ABS). It contains
inputs for four wheelsensors which measure the current speed of the four wheels
of a car, a signal for the braking command, and four outputs to control the brake
actuators. The component abs calculates the individual braking pressures for
all wheels. If a wheel is close to a blocking state indicated by the correspond-
ing wheel sensor, it reduces the braking pressure for this wheel to maintain the
stability of the vehicle.



1 component BrakingSystem {
2 autoconnect port;
3 port
4 in WheelSensor wheelspeed1,
5 in WheelSensor wheelspeed2,
6 in WheelSensor wheelspeed3,
7 in WheelSensor wheelspeed4,
8 in BrakeCommand brake,
9 out BrakePressure wheelpressure1,

10 out BrakePressure wheelpressure2,
11 out BrakePressure wheelpressure3,
12 out BrakePressure wheelpressure4;
13 component ABS abs;
14 }

Listing 1.1. MontiArc Model for an Anti-Lock Bracking System.

1 delta ElectronicStabilityControl after TractionControl {
2 modify component BrakingSystem {
3 add port in AccelerationSensor lateralaccel;
4 remove component tc;
5 add component ESC esc;
6 connect lateralaccel -> esc.accel;
7 }
8 }

Listing 1.2. Delta for Electronic Stability Control.

In ∆-MontiArc, MontiArc is extended with the concept of delta modeling [4,
16, 15] to represent architectural variability. Based on a core architecture spec-
ified in MontiArc, architectural deltas are specified that add, remove or mod-
ify architecture elements using the operations add, remove and modify for
ports, components and corresponding parameters. For connectors, the opera-
tions connect and disconnect are available. Further possible operations are
listed in [9], but not required for the comprehension of this paper.

An example for a delta model specified with ∆-MontiArc is given in List-
ing 1.2. The depicted ElectronicStabilityControl delta can only be ap-
plied if the TractionControl delta, which adds an input for accelleration
pedal position, is executed before. This information is provided by an applica-
tion order constraint in an after clause which specifies deltas which must or
must not be executed before the current delta (l. 1). The BrakingSystem is
modified (l. 2) by adding a new input for the lateral acceleration (l. 3) and re-
placing the traction control subcomponent tc with subcomponent esc (l. 4).
Finally, the new input is connected to the new component (l. 5).

A product configuration for a concrete product is a set of deltas which must be
applied to the core model. Listing 1.3 gives an example of a product configuration
for a motorbike (l. 2) which is equipped with traction control (TC, l. 3) and an



1 deltaconfig StreetMotorbike {
2 TwoWheel,
3 TractionControl,
4 TwoWheelTC,
5 ElectronicStabilityControl,
6 TwoWheelESC
7 }

Listing 1.3. Product configuration of a Street Bike with TC and ESC.

electronic stability control (ESC, l. 5). To adapt TC and ESC to a motorbike,
additional deltas (ll. 4, 6) are needed.

3 Product Generation

Product generation in ∆-MontiArc is the process of generating a concrete prod-
uct architecture by applying selected deltas to a given core architecture. The
product generator of ∆-MontiArc processes three different kinds of input mod-
els. As shown in [9], at first a product configuration is needed that determines
a selection of deltas to be applied for a concrete product architecture. Second,
a MontiArc architecture model for the core architecture is required and, third,
∆-MontiArc delta models determine variants of the core architecture.

Product Generation Process. Product generation is performed in four steps. At
first, MontiArc models for the core architecture are loaded, and their correspond-
ing abstract syntax tree is stored. In the second step, a product configuration
is parsed, and the delta models contained in the configuration are loaded. The
generation order of the selected delta models is computed based on the given
application order constraints. When a linear generation order is determined,
delta models are applied to the core architecture in the third step of product
generation. All modification operations of the deltas are applied stepwise to the
core architecture. To assure the definedness of the generated product architec-
ture, the applicability of the modification operations needs to be ensured. The
following applicability conditions [9] are necessary for the delta operations add,
remove, or modify:

– A component c can only be modified, if c exists.
– An architectural element ae must not be added to component c, if c already

contains ae.
– An architectural element ae must not be removed from component c, if c

does not contain ae.
– A port p must not be removed from component c, if c contains a connector

with p as its source or target.
– A subcomponent sc must not be removed from component c, if c contains a

connector that has a port of sc as its source or target.



The application order constraints capture dependencies between deltas to en-
sure the validity of the applicability conditions. If the current delta modification
operation satisfies the given applicability conditions, it is applied to the core
model. After all delta modifications are applied, MontiArc context conditions
are checked for the generated architecture that ensure its internal consistency
(see [10] for a complete list of MontiArc context conditions). In contrast, the
intermediate architectures are not required to be valid MontiArc architectures.

Checking of Applicability Conditions. The checking of the applicability condi-
tions is closely connected to the product generation process as the applicability of
one delta operation depends on the intermediate product architecture resulting
from the application of all former delta operations. When generating a concrete
product architecture, the respective product configuration defines which deltas
are applied, and a possible generation order can be derived and checked. How-
ever, when it should be established that all possible product configurations sat-
isfy the applicability conditions, all possible (intermediate) architectures have
to be considered. In a naive product-based analysis, all product architectures
are generated and analyzed separately. Thus, the same intermediate product
architectures which occur in several products during product generation are re-
peatedly regenerated.

4 Family-based Analysis of Applicability Conditions

In a family-based analysis, the core architecture model and the delta models of
a product line are analyzed only once, without generating all possible product
architectures by applying the respective delta models to the core architecture
explicitly. Instead of repeatedly generating intermediate products, intermediate
products are reused which is more efficient than a naive product-based analysis.

Family Application Order Tree. In order to check the applicability constraints
by a family-based analysis, a family application order tree (FAOT) is created.
The FAOT for the example introduced in Section 2 is shown in Figure 1. In
a FAOT, the nodes represent the deltas of the product line. Each path in the
FAOT starting from the root is a generation order that is valid according to the
application order constraints attached to the deltas. The root node corresponds
to the core architecture indicating that no delta has yet been applied and com-
bines the forest of possible generation orders into a tree. Leaves of the FAOT
correspond to maximal possible generation orders, where the addition of another
delta will violate the application order constraints of the deltas on the path to
the leaf. To each node in the FAOT, an architecture is associated that is gener-
ated by applying the deltas leading to this node including the node itself to the
core architecture. This architecture is either a product architecture that is valid
according to the MontiArc context conditions or an intermediate architecture.

The applicability conditions of the deltas can be checked by traversing all
paths in the FAOT and establishing the applicability conditions for each modifi-
cation operation encountered. In this way, all possible product architectures are



Fig. 1. FAOT for the example product line

analyzed that can be generated by a (sub-)path in the FAOT. Due to a large
number of deltas and a sparse set of application order constraints, the FAOT
can be fairly complex. Therefore, the efficient computation of the intermediate
products that are necessary to traverse the FAOT is essential. Two approaches
can be distinguished:

1. The intermediate architectures for certain tree nodes are stored such that
they can be reused for calculating further intermediate products which, how-
ever, requires a hugh amount of memory for large architecture models.

2. Inverse deltas can be applied to a generated architecture to undo the appli-
cation of a delta in order to backtrack in the FAOT without storing inter-
mediate architectures.

Inverse Deltas. For each delta model D consisting of a set of delta operations,
there is an inverse delta model D−1 such that for any product architecture P , it
holds that apply(apply(P,D), D−1) = P where application of the modification
operations in a delta is defined by apply : Arch ×Delta → Arch for Arch the
set of MontiArc architectures and D the set of delta models in ∆-MontiArc. An
inverse delta D−1 is derived from a delta D by inverting each delta modification
operation in D and also inverting the ordering of the modification operations.
For each add statement, the inverse operation is a remove statement and, vice
versa. The operations connect and disconnect statements are inverses for
each other. The enclosing component modification operations remain unchanged.
An example for an inverse delta is shown in Listing 1.4.

FAOT Analysis Using Inverse Deltas. Using inverse deltas, the FAOT can be
traversed in a depth-first manner without storing any intermediate architectures



1 delta A { | delta A_Inverse {
2 modify component Base { | modify component Base {
3 add port Integer p; | disconnect p -> sub.input;
4 connect p -> sub.input; | remove port p;
5 } | }
6 } | }

Listing 1.4. Inverting the delta on the left side results in the delta on the right side.

at the FAOT nodes. For the FAOT depicted in Figure 1, the following depth-
first traversal is computed: SW → SW−1 → TC → ESC → TW → TW TC →
TW ESC → TW ESC−1 → TW TC−1 → TW ESC...

The applicability conditions are checked by processing the deltas during the
traversal one by one. After processing one delta, its inverse is computed, if nec-
essary, and stored for later application. Since an inverse delta depends on the
intermediate architecture to which the original delta is applied, it is not possible
to compute all required inverse deltas up front.

5 Discussion

Comparing the family-based analysis using inverse deltas to an analysis in which
all intermediates architectures at decision-nodes in the FAOT are stored (inter-
mediate approach), the inverse delta approach requires less memory. In large
product lines where the FAOTs contain many decision nodes, memory space
might become a severe problem, as every intermediate architecture that has to
be stored comprises the ASTs of the modified core architecture. Compared to the
naive product-based approach, the inverse delta approach uses the same amount
of memory, as in both approaches no intermediate products are stored.

Regarding runtime complexity, the worst case is if there are n deltas without
application order constraints. Then, every possible permutation of deltas is con-
tained in the FAOT. The amount of edges in a FAOT is AE(n) =

∑n−1
i=0

n!
i! =

n! ∗
∑n−1

i=0
1
i! . The intermediate approach computes every delta once, such that

AE(n) steps are needed to check every possible product. The inverse delta ap-
proach visits every edge twice, once applying a delta, and once applying its
inverse. The most right path of the FAOT is visited only once. Thus, in the
inverse delta approach 2 ∗ AE(n) − n = n! ∗ (2 ∗

∑n−1
i=0

1
i! −

1
(n−1)! ) steps are

necessary where
∑∞

i=0
1
i! = e is a constant factor, and for n → ∞, the term

1
(n−1)! converges to zero. Hence, both factors, as well as the constant factor of
2, may be neglected for an estimation of complexity such that the inverse delta
approach as well as the intermediate approach belong to complexity class O(n!)
The naive product-based analysis approach generates n! products by applying n
deltas for each product. In total, n ∗ n! delta applications are performed leading
to a complexity of O(n∗n!). This yields that the family-based analyses are about
n times faster in the worst-case than the product-based analysis. Nevertheless,



Fig. 2. FAOTs with late and early decision-nodes

a complexity of O(n!) is still very high, but this is accounted to the inherent
complexity of family-based analyses.

The shape of the FAOT influences the number of inverse deltas that are
required to get from one leaf to the next. Figure 2 shows two examples. Tree
(a) contains many decision-nodes close to the leafs. So deriving C1 based on
C0 is done in two steps by applying the inverse delta C0−1 and afterwards delta
C1. In contrast, tree (b) contains only one decision-node (the root). To get from
the product on the very left to the next product whose path starts with C1, m
inverse deltas have to be applied. As the root node is the only decision-node, no
intermediate architectures have to be stored such that the inverse delta approach
is about 2 ∗m steps slower without saving any memory. Accordingly, we suggest
a hybrid approach that considers the shape of the FAOT and stores intermediate
architectures at selected decision-nodes. This way, some backtracking steps with
inverse deltas can be omitted such that a balance between memory consumption
and runtime effort can be achieved. For example, consider the worst-case FAOT
and assume that we store intermediate architectures at the last decision-nodes
before the leaves. On level n−2 of the FAOT, each node has two children which
each has one child that are leaves, since there are only 2 more deltas left which
have to be applied. Storing these intermediate architectures saves 4 inverse delta
applications for each of the nodes on level n− 2, except for the most right node
where only 2 steps will be saved. On level n − 2, we have n!

2 nodes such that a
reduction of 4 ∗ n!

2 − 2 = 2n!− 2 inverse delta applications can be achieved with
only minor increase in memory consumption.

6 Related Approaches

Architectural variability modeling approaches can be classified into annota-
tive, compositional and transformational modeling approaches. Annotative ap-
proaches, e.g., [6], consider one model representing all products and define which
parts of the model are removed to derive a product model. Compositional ap-
proaches, e.g., [1], associate model fragments with product features that are



composed for a particular feature configuration. Transformational approaches,
such as CVL [12], represent variability of a base model by rules describing how
a base model is transformed in order to obtain a particular product model. ∆-
MontiArc can be classified as a transformational approach.

Product line analyses can be classified in three main categories [18]: first,
product-based analyses consider each product variant separately. Second, feature-
based analyses consider the building blocks of the different product variants in
isolation to derive results about all variants, but in general rely on heavy restric-
tions on the admissible product line variability. Third, family-based analyses
check the complete code base of the product line in a single analysis to obtain a
result about all possible variants.

Family-based product line analyses are currently used for type checking [2,
7] and model checking [5, 8, 14] of product lines. The approach presented in [2]
also constructs all possible application orders of feature modules (which are
comparable to delta models in our approach) and checks that in any possible
combinations of feature modules all required references are provided. The type
checking approach proposed in [7] uses a constraint-based type system where a
large formula is constructed from the product line’s feature model and the feature
module constraints that is true if all product variants are type safe. In [17], the
type safety of all product variants is checked based on the analysis of a product
abstraction that is generated from constraints derived for delta modules. Thus,
it can be classified as an mixture between product- and feature-based analyses.

Storing only the differences between products, as we do with inverse deltas,
is also applied in versioning systems. For instance, the Revision Control System
(RCS) [19] only keeps the most recent version and a sequence of inverse modi-
fications in order to retrieve prior versions which is more efficient than working
with complete version snapshots. The formalization of DARCS patch theory [13]
has a concept of inverses although on a fairly abstract level. In recent work, Ba-
tory et al. [3] apply the idea of differencing for updating a program obtained by
feature-oriented composition. However, in that approach it is unclear whether
the differences can be expressed by means of feature modules, while in the ap-
proach presented in this paper, inverse deltas can be expressed by the same
linguistic means as ordinary deltas.

7 Conclusion

The family-based analysis to validate ∆-MontiArc product lines is an extension
of our previous work [11, 9]. In this paper, we have introduced the concept of
inverse deltas that allows traversing the FAOT without storing intermediate ar-
chitectures. For future work, we are planning to evaluate the proposed approach
at large case examples. Furthermore, we will extend the inverse delta approach
to deal with the convenience operations presented [9], such as the replacement
of components, where there is no obvious inverse.



References

1. S. Apel, F. Janda, S. Trujillo, and C. Kästner. Model Superimposition in Software
Product Lines. In International Conference on Model Transformation (ICMT),
2009.

2. S. Apel, C. Kästner, A. Grösslinger, and C. Lengauer. Type safety for feature-
oriented product lines. Automated Software Engineering, 17(3):251–300, 2010.

3. D. Batory, P. Höfer, and J. Kim. Feature interactions, products, and composition.
In Proc. of GPCE’11, 2011. (to appear).

4. D. Clarke, M. Helvensteijn, and I. Schaefer. Abstract Delta Modeling. In GPCE.
Springer, 2010.

5. A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin. Model
checking lots of systems: Efficient verification of temporal properties in software
product lines). In ICSE 2010, 2010.

6. K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template Ap-
proach Based on Superimposed Variants. In GPCE, 2005.

7. B. Delaware, W. Cook, and D. Batory. A Machine-Checked Model of Safe Com-
position. In FOAL, pages 31–35. ACM, 2009.

8. A. Fantechi and S. Gnesi. Formal Modeling for Product Families Engineering. In
Software Product Line Conference (SPLC), 2008.

9. A. Haber, T. Kutz, H. Rendel, B. Rumpe, and I. Schaefer. Delta-oriented Archi-
tectural Variability Using MontiCore. In 1st International Workshop on Software
Architecture Variability SAVA 2011, 2011.

10. A. Haber, T. Kutz, J. O. Ringert, and B. Rumpe. MontiArc - Architectural Mod-
eling Of Interactive Distributed Systems. Technical report, RWTH Aachen Uni-
versity, 2011. (to appear).

11. A. Haber, H. Rendel, B. Rumpe, and I. Schaefer. Delta Modeling for Software
Architectures. In MBEES, 2011.

12. Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. Olsen, and A. Svendsen. Adding
Standardized Variability to Domain Specific Languages. In SPLC, 2008.

13. J. Jacobson. A formalization of Darcs patch theory using inverse semigroups.
Technical Report CAM report 09-83, UCLA, 2009.

14. K. Lauenroth, K. Pohl, and S. Toehning. Model checking of domain artifacts in
product line engineering. In ASE, pages 269–280, 2009.

15. I. Schaefer. Variability Modelling for Model-Driven Development of Software Prod-
uct Lines. In VaMoS, 2010.

16. I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-oriented
Programming of Software Product Lines. In SPLC. Springer, 2010.

17. I. Schaefer, L. Bettini, and F. Damiani. Compositional type-checking for delta-
oriented programming. In Intl. Conference on Aspect-oriented Software Develop-
ment (AOSD’11). ACM Press, 2011.

18. T. Thüm, I. Schaefer, M. Kuhlemann, and S. Apel. Proof Composition for Deduc-
tive Verification of Software Product Lines. In Workshop on Variability-intensive
Systems Testing, Validation and Verification (VAST 2011), 2011.

19. W. F. Tichy. Design, implementation, and evaluation of a revision control system.
In Proceedings of the 6th international conference on Software engineering, ICSE
’82, pages 58–67, Los Alamitos, CA, USA, 1982. IEEE Computer Society Press.




