
Integrating Tools via Component and Connector Architectures

1

Nahtlose Systementwicklung durch Werkzeugintegration
über Komponenten- und Konnektorarchitekturen

Towards Sustainable Systems Engineering – Integrating

Tools via Component and Connector Architectures

M. Dalibor, N. Jansen, J. Michael*,
B. Rumpe, A. Wortmann

 Software Engineering, RWTH Aachen University
Ahornstraße 55, 52074 Aachen, Germany

[DJM+19] M. Dalibor, N. Jansen, J. Michael, B. Rumpe, A. Wortmann:
Towards Sustainable Systems Engineering-Integrating Tools via Component and Connector Architectures.
In: Antriebstechnisches Kolloquium 2019: Tagungsband zur Konferenz, pp. 121-133, Feb. 2019.
www.se-rwth.de/publications/

Integrating Tools via Component and Connector Architectures

1

Inhaltsverzeichnis

Abstract ... 1

1 Introduction ... 1

2 Motivating Example .. 2

3 Preliminaries ... 3

4 Constructing a Tool Communication Infrastructure with C&C
Architectures ... 4

5 Case Study .. 5

6 Related Work ... 6

7 Discussion and Conclusion ... 6

8 References... 7

ATK 2019

1

Abstract

The engineering of sophisticated systems today is highly multi-disciplinary and depends
on domain-specific documents being exchanged between the different participating ex-
perts, software tools, and engineering phases. The lack of integration between these
tools raises the challenge of media disruption, which demands for manual translation of
documents passed between the different tools. Existing research on tool integration fo-
cuses the pairwise translation between specific technological spaces only, which hinders
toolchain extension. We conceived an integration model for systematic data exchange
among systems engineering tools that leverages component and connector architec-
tures. Our model supports automated data translation and distribution between tools
encapsulated using the architecture description language MontiArc and model transfor-
mations. This enables agile and sustainable development among heterogeneous tool-
chains, which preserves existing workflows and is easily extensible.

1 Introduction

In modern development of mechatronic and cyber-physical systems, a variety of soft-
ware tools, such as MagicDraw [SIL09], support developers in creating, maintaining, and
updating their products. These tools have been proven to be essential for various do-
mains such as automotive [BLO13], avionics [FEI12], and robotics [WIG17]. As technol-
ogy gets more advanced, the complexity of the resulting products and hence the neces-
sary tooling grows in terms of required functionality diversity. Unfortunately, the available
tools support the developer concerning specific tasks only. Due to the heterogeneity of
particular tools, they lack in interconnectivity and uniform information distribution. This
emerges media disruptions, the manual and error-prone translation between tool data
formats, which impedes agile development.

Different approaches in Model-Based Systems Engineering (MBSE), such as SysML,
support product development by providing tools that enable working on a combined sys-
tem model [ROB98]. While these solutions tackle the problem of distributed data by join-
ing information into a single source of truth, they also entail additional effort. Domain
experts have to be trained and motivated in using these new tools. Additionally, compa-
nies often require customizations that may not be compatible with the prescribed tooling
[DRA18]. Developers also tend to fall back into accustomed workflows with familiar tools,
if the added value of systems engineering is not accessible directly [CHA18].

These challenges require a domain-independent solution that prevents media disrup-
tions, without entailing additional effort for domain experts. Therefore, we present our
approach of leveraging component and connector (C&C) architectures to automatically
distribute tool-specific data as generalized messages along a generated communication
layer towards particular tools. Hence, developers can preserve their workflows within
familiar tools, while automatically exchanging information throughout the toolchain. The

Integrating Tools via Component and Connector Architectures

2

approach is based on the architecture description language (ADL) MontiArc [BUT17a,
BUT17b, RIN15] for C&C systems and model transformations [HOE18].

In the following, Section 2 illustrates selected challenges in agile systems engineering
and motivates connecting the different technological spaces of development tools. Sec-
tion 3 presents preliminaries before Section 4 introduces the realization of our solution.
Afterwards, Section 5 illustrates the benefits through a case study, and Section 6 con-
siders related work. Finally, Section 7 discusses our solution and concludes.

2 Motivating Example

Consider a company producing wind turbines using highly heterogeneous software
tools, such as MagicDraw [SIL09] for modeling software structure, CATIA [BRA09] for
computer-aided design (CAD), MATLAB Simulink [ONG98] for simulation, and a spread-
sheet software for production cost analysis. Domain experts have to consider multiple
aspects when developing a new turbine design. For the sake of simplicity, we restrict
this example to a small subset of the original parameter space. Figure 1 presents a class
diagram for the simplified wind turbine infrastructure. The model of a wind turbine is
characterized by its height, span, expected efficiency, and production cost. Ad-

ditionally, it features geometry data that also contains material information.

Figure 1: Class diagram of a simplified structure of a wind turbine. The wind turbine
features height, span, efficiency, and production cost. Additionally, it

requires geometry data with a corresponding material.

When designing a new wind turbine, developers have to address these parameters. A
toolchain comprising a variety of tools supports the development process concerning
specific focal aspects. In this example, we require four tools to properly model the wind
turbine. In Figure 2, we illustrate the corresponding applications. Initially, we have a
SysML Tool MagicDraw for defining the overall architecture. With this, constraints such
as the height, rotor span width, and efficiency are specified. To evaluate these,

we perform a MATLAB Simulink Simulation to verify over an according environment
model, whether the wind turbine reaches the expected efficiency threshold. Addi-

tionally, we use the CAD Tool CATIA to specify geometry data including material.

Finally, we perform a Cost Calculation to estimate production cost.

This toolchain is capable of completing the distinct tasks. However, the involved tools
rely on information that is specified within another tool. Figure 2 presents an example
where all these tools have data interdependency. The CAD Tool and the Simulation

ATK 2019

3

both require constraints depicted in the SysML Tool. Additionally, the Cost Calcu-

lation depends on the SysML Tool (for height and span), as well as the CAD Tool

(for the rotor material). Since these tools are not connected, development entails

media disruptions through manual translation of output data of one tool into input data
of another tool, which impede severely development. Moreover, this constitutes an un-
necessary source of failure and prevents truly agile systems engineering, since the data
has to be traced down the complete toolchain, once a parameter changes. To mitigate
this, the next sections emphasize a method to automatically distribute the data through-
out the toolchain without media disruptions.

Figure 2: Exemplary tooling landscape for the development of a wind turbine. Media
disruptions emerge between the four distinct tools. Information is not distrib-
uted throughout the system automatically.

3 Preliminaries

The realization of connecting heterogeneous tools relies on the MontiArc ADL and model
transformations across the different technological spaces. This section introduces both.

MontiArc [BUT17a, BUT17b] is an ADL for modeling C&C systems. An architecture de-
signed with MontiArc consists of components, ports, and connectors that define the C&C
infrastructure over a corresponding configuration. Components either compute behavior
or contain configurations of subcomponents. They feature interfaces of typed, directed
ports to exchange messages. We will leverage the strongly typed component interfaces
of components to encapsulate tool-specific inputs and outputs and use MontiArc’s com-
position mechanism to integrate different encapsulated tools without media disruptions.

Within the components we employ formal model-to-model (M2M) transformations
[HOE18] to automatically translate messages received by the tool-encapsulating com-
ponents into suitable inputs for the contained tool. Approaching tool integration via en-
capsulation and model transformation enables portability between the different data for-
mats (or metamodels [KLE08]) and facilitates building bridges among the different tech-
nological spaces of systems engineering.

Integrating Tools via Component and Connector Architectures

4

We apply model transformations on the abstract syntax tree (AST), a tree representation
of the parsed model that only contains processable features, without further syntactic
sugar, such as file format artifacts. The overall structure of the abstract syntax is given
by the metamodel [KLE08], the formal definition of a language or data format. This met-
amodel prescribes the set of possible models within the corresponding domain.

4 Constructing a Tool Communication Infrastructure
with C&C Architectures

In this section, we explain our approach of enabling an automatic data transfer between
distinct tools, utilizing MontiArc C&C architectures. The basic idea is to create a trans-
portation layer by using connected components that exchange messages. Tools can be
plugged in into components, which serve as communication interfaces and distribute
required data along the network. In the following, we explain, how components extract
the required information from an application concerning its metamodel and transform it
into a generalized form. Figure 3 illustrates the structure of such a tool interface. A com-
ponent contains multiple ports, one for each data set that should be distributed. We use
an incoming port when the tools require information that is provided elsewhere. Analo-
gously, outgoing ports denote that the tool contributes information for other applications.
The interdependencies of the tools are lifted onto the transportation layer of the C&C
infrastructure. Here, they are realized via corresponding connectors between ports of
the particular components. This abstraction enables data exchange with respect to but
also independent of the actual interdependencies of the underlying tooling landscape.

Figure 3: Components serve as communication interfaces to the C&C transportation
layer for distributing data to other tools. Model transformations enable the
translation of tool-specific data into a generalized and distributable format.

Since we can realize the communication on the C&C layer, we now consider the trans-
portation of information from a tool towards its corresponding component. To this end,
we use model transformations to prepare the data for exchange. Figure 3 sketches the
translation of tool-specific data into a generalized model for data distribution. The data
created within a tool gets parsed with respect to the corresponding metamodel of the

ATK 2019

5

tool. The information is stored in an AST, and we apply M2M transformations to map the
tool-specific abstract syntax representation to a generalized form, which is used on our
transportation layer. Hence, the infrastructure extracts data from a tool and distributes it
along the network.

To provide information for a tool, we use an analogous approach. Here, we translate the
generalized AST into tool-comprehensive data. In general, there are two approaches. If
the tool supports an application programming interface (API), we again use M2M trans-
formations to map the general AST into a specific that the tool can directly process.
Otherwise, we generate a file with respect to the tool’s metamodel. Thus, the tool can
import the required information.

This enables a complete data distribution throughout a tooling landscape of highly het-
erogeneous applications. Data is exchanged via model transformations between tools
and the corresponding components, which then distribute messages for communication
along the C&C network. Finally, the data is reintegrated into the desired tools.

Figure 4: C&C system as communication layer for distributing data among distinct
tools. Components exchange information with their underlying tools and
transport messages concerning the original dependencies.

5 Case Study

To evaluate our approach of generating a communication infrastructure with C&C archi-
tectures, we consider the initial example from Section 2. Again, we require four distinct
applications for designing a wind turbine. For each tool, we create a component in the
communication infrastructure to distribute and receive data. Figure 4 illustrates the Mon-
tiArc C&C model for the tooling landscape. Each tool is encapsulated by its correspond-
ing component that handles the data distribution. The ports and connectors are derived
from the original tool interdependencies described in Section 2. The SysML Tool pro-

vides the span and height values for the Simulation, CAD Tool, and Cost Cal-

Integrating Tools via Component and Connector Architectures

6

culation. Additionally, it passes the expected efficiency to the Simulation. Fi-

nally, the CAD Tool contributes the rotor material that is required for the Cost

Calculation as well. Thus, the C&C infrastructure distributes information across the

communication network. The particular components translate received messages into
consilient tool-specific information. This way, the communication layer ensures global
consistency, even among highly heterogeneous tools and thus, enables agile MBSE.

6 Related Work

There have been many attempts to integrate tools that support the MBSE process
[FER15, SHA10, CHA06]. The realized solutions are often particular for tools that com-
panies use to define their system models. For example, in [FER15] the authors present
an integration between CAD systems tailored for shipbuilding and general product lifecy-
cle management (PLM) tools. The key idea is the publish and synchronization mecha-
nism which ensures that changes in one tool are transferred to the other. Publishing
refers to the transfer of changes in the CAD tool into an PLM. Synchronization, on the
other hand, is the process of informing the CAD system about changes in the PLM sys-
tem. The whole process of publishing and synchronizing relies on a database that con-
tains the identification between CAD and PLM elements. In contrast to our approach,
this approach is specific for CAD systems, whereas we present a concept that integrates
arbitrary tools. Besides, we provide a graphical notation of tool interactions, which im-
proves readability compared to a database table.

Another approach introduces an integration idea based on a common SysML model,
that describes those parts of the system that are common for all tools that interact during
the systems modeling process [SHA10]. A mapping between the SysML model and the
tool-specific models is archived by model transformations, that define which parts of the
SysML model are relevant for the specific tool and how they are represented. The paper
evaluates the idea based on an integration between EPLAN [SEN09] and Modelica
[FRI10]. The main advantage of C&C models is the visualization. It shows explicitly
which data is transferred between involved tools. This enables engineers to analyze how
changes in one tool may affect models that engineers created and maintain in another
tool. Therefore, as effects of a change in one model are also visible, simplifies an agile
systems engineering.

7 Discussion and Conclusion

We presented a concept of connecting heterogeneous tools by leveraging C&C archi-
tectures and model transformations. The goal was preventing media disruptions in de-
velopment due to tool incompatibility. At its core, components provide communication
interfaces for the underlying applications. We presented the generalization of tool-spe-
cific data using M2M transformations concerning an underlying metamodel. The port and
connector configuration, which results from the original data dependencies, represents

ATK 2019

7

a communication layer. This allows the exchange of messages that finally, are translated
back into tool-specific information. As communication is automated, this approach does
not entail any additional effort for domain experts. In fact, our solution reduces the
amount of work, as manual data distribution is now managed by the system. This also
eliminates the entailed source of error and facilitates agile development. In contrast to
existing solutions that mainly concentrate on data transfer between two particular tools,
our approach describes a general concept independent of underlying applications. Since
the established communication infrastructure is concealed from the development envi-
ronment of the domain experts, our solution perfectly scales even for larger systems.
We believe that connecting tools among distinct technological spaces is essential for
future development of mechatronic and cyber-physical systems.

8 References

[RIN15] Ringert, Jan Oliver and Roth Alexander and Rumpe, Bernhard and Wortmann
Andreas: Language and Code Generator Composition for Model-Driven Engi-
neering of Robotics Component & Connector Systems. In: Journal of Software
Engineering for Robotics.

[BUT17a] Butting, Arvid and Kautz, Oliver and Rumpe, Bernhard and Wortmann, An-
dreas: Architectural Programming with MontiArcAutomaton. In: 12th Interna-
tional Conference on Software Engineering Advances (ICSEA 2017).

[BUT17b] Butting, Arvid and Haber, Arne and Hermerschmidt, Lars and Kautz, Oliver
and Rumpe, Bernhard and Wortmann, Andreas: Systematic Language Exten-
sion Mechanisms for the MontiArc Architecture Description Language. In: Eu-
ropean Conference on Modelling Foundations and Applications, 2017.

[BLO13] Blom, Hans et al.: EAST-ADL: An architecture description language for Auto-
motive Software-Intensive Systems. In: Embedded Computing Systems: Ap-
plications, Optimization, and Advanced Design: Applications, Optimization,
and Advanced Design, 456, 2013.

[FEI12] Feiler, Peter H. and Gluch, David P: Model-Based Engineering with AADL: An
Introduction to the SAE Architecture Analysis & Design Language, Addison-
Wesley, 2012.

[WIG17] Wigand, Dennis Leroy and Nordmann, Arne and Dehio, Niels and Mistry, Mi-
chael and Wrede, Sebastian: Domain-Specific Language Modularization
Scheme Applied to a Multi-Arm Robotics Use-Case. In: Journal of Software
Engineering for Robotics, 2017.

[DRA18] Drave, Imke and Greifenberg, Timo and Hillemacher, Steffen and Kriebel,
Stefan and Kusmenko, Evgeny and Markthaler, Matthias and Orth, Philipp
and Salman, Karin Samira and Richenhagen, Johannes and Rumpe, Bern-
hard and Schulze, Christoph and von Wenckstern, Michael and Wortmann,

Integrating Tools via Component and Connector Architectures

8

Andreas: SMArDT modeling for automotive software testing. In: Software:

Practice and Experience, 1-28, 2018.

[CHA18] Chami, Mohammad and Bruel, Jean-Michel: A Survey on MBSE Adoption
Challenges. In: INCOSE EMEA Sector Systems Engineering Conference,
2018.

[HOE18] Hölldobler, Katrin and Rumpe, Bernhard and Wortmann, Andreas: Software
Language Engineering in the Large: Towards Composing and Deriving
Languages. In: Computer Languages, Systems & Structures, 54:386-405,

Elsevier, 2018.

[KLE08] Kleppe, Anneke: Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels. Pearson Education, 2008.

[SIL09] Šilingas, Darius and Butleris, Rimanta: Towards Implementing a Framework
for Modeling Software Requirements in MagicDraw UML. In: Information
Technology and Control, 38.2, 2009.

[ONG98] Ong, Chee-Mun: Dynamic Simulation of Electric Machinery: using
MATLAB/SIMULINK. Vol. 5, Upper Saddle River, NJ: Prentice hall PTR, 1998.

[BRA09] Braß, Egbert: Konstruieren mit CATIA V5: Methodik der parametrisch-assozi-
ativen Flächenmodellierung. Hanser Verlag, 2009.

[FER15] Fernández, Rodrigo Pérez and Lado, Roberto Penas: Integration between ship-
building CAD systems and a generic PLM tool in naval projects. In: Computer
Science, 2.5, 181-191, 2015.

[SHA10] Shah, Aditya A. et al.: Multi-view modeling to support embedded systems en-
gineering in SysML. In: Graph transformations and model-driven engineering,
2010.

[CHA06] Chang, Kuang-Hua and Joo, Sung-Hwan: Design parameterization and tool
integration for CAD-based mechanism optimization. In: Advances in Enginee-
ring Software, 2006.

[ROB98] Robertson, Tim: INCOSE Systems Engineering Handbook. INSIGHT, 1.2
Wiley Online Library, 1998.

[SEN09] Sendler, Ulrich: EPLAN Software & Service. In: Das PLM-Kompendium 163-
174. Springer, Berlin, Heidelberg, 2009.

[FRI10] Fritzson, Peter: Principles of object-oriented modeling and simulation with
Modelica 2.1. John Wiley & Sons, 2010.

