
Towards Enabling Domain-Specific Modeling
Language Exchange between Modeling Tools

Rohit Gupta1, Christoph Binder2, Nico Jansen3, Ambra Calà1, Jan Vollmar1,
Nikolaus Regnat1, David Schmalzing3, and Bernhard Rumpe3

1 Siemens Technology, Munich, Germany
{rg.gupta,ambra.cala,jan.vollmar,nikolaus.regnat}@siemens.com

2 FH Salzburg, Salzburg, Austria
christoph.binder@fh-salzburg.ac.at

3 RWTH Aachen University, Aachen, Germany
{jansen,schmalzing,rumpe}@se-rwth.de

Abstract. Domain-specific modeling languages (DSMLs) enable vari-
ous stakeholders in solving complex modeling problems that are related
to their domains. However, as challenges in domain-specific modeling
grow in complexity, consistent exchange of domain-specific information
between various stakeholders across projects becomes a challenge, as such
stakeholders often use a variety of modeling tools suited for their needs.
Stakeholders often live within specific modeling tools relevant for de-
veloping and using their DSMLs, therefore there is little consideration
for generalizing these domain-specific concepts across modeling tools.
Further, there also exists a certain lack of exchanging domain-specific
constructs effectively for such tools. To solve this challenge, we propose
a bi-directional exchange mechanism between Enterprise Architect (EA)
and MagicDraw, two commercially established modeling, that allows ex-
changing individually created DSMLs and their constructs, essential in
promoting tool interoperability. As DSMLs represent domain-specific pe-
culiarities within a single area, the proposed exchange mechanism evalu-
ates with a simple illustrative example the applicability of DSML infor-
mation exchange by extracting and translating these peculiarities across
modeling tools. The approach is demonstrated by developing individual
extensions to the mentioned tools that support the seamless exchange of
domain-specific constructs. Ultimately, the paper presents a first step to-
wards enabling DSML exchange between all the concerned stakeholders
and fosters the engineering of DSMLs across modeling tools.

Keywords: Domain-Specific Modeling Language (DSML) · Modeling
Tools · Language Exchange.

1 Introduction

Model-driven engineering introduces a system model as a unique source of truth
including several viewpoints that address all involved stakeholders and their

[GBJ+24] R. Gupta, C. Binder, N. Jansen, A. Calà,
J. Vollmar, N. Regnat, D. Schmalzing, B. Rumpe:
Towards Enabling Domain-Specific Modeling Language Exchange Between Modeling Tools.
In: Advances in Model and Data Engineering in the Digitalization Era,
M. Mosbah, T. Kechadi, L. Bellatreche, F. Gargouri, C. G. Guegan,
H. Badir, A. Beheshti, M. M. Gammoudi (Eds.), pp. 89–103, ISBN 978-3-031-55729-3,
Springer Nature Switzerland, Cham, Mar. 2024.

2 R. Gupta et al.

cross-cutting concerns. While one model can effectively describe the entire sys-
tem, it is often broken down into smaller sub-systems that help detail every
aspect of the complete system. Stakeholders therefore need to consider the en-
tire product lifecycle to cope with growing complexities in multi-disciplinary
modeling projects. To this end, different modeling tools and framework, such as
MagicDraw [28], Rational Rhapsody [25], MetaEdit [36], and Enterprise Archi-
tect (EA) [16], are used to create various parts of a model within these indi-
vidual projects [32]. While such tools generally consider and allow the modeling
of language constructs, their application in a domain-specific scenario is often
challenging in terms of reusability and interoperability. Exchanging artifacts of
Domain-Specific Modeling Languages (DSMLs) between proprietary modeling
tools is still challenging. While there are studies that detail tool interoperabil-
ity and model synchronizations between modeling tools [8], applicability of such
studies in a real world context is still missing. Consideration for all kinds of
stakeholders at all stages of modeling using a DSML is often lost in translation,
as DSML projects are often time-bound and only exist in a single modeling en-
vironment. Little consideration is made for developing and reusing metamodels
with the idea of a language isomorphism across different modeling environments
in mind (section 2). In this paper, we share our experiences in establishing a bi-
directional exchange mechanism between two established commercial modeling
frameworks, MagicDraw and EA, in an industrial context. These tools have been
chosen as they are established within the systems engineering community and
the need for exchanging artifacts has appeared in actual industrial projects [8].
Further, these tools are primarily based on Unified Modeling Language (UML)
standards and can be extended to include domain-specific aspects for a variety
of domains. The introduced exchange mechanism enables the synchronization
of DSMLs across modeling environments by exchanging the respective model-
ing language artifacts, where the language definition in an individual tool is
extracted and translated to a format reusable by the other tool. An advantage
of this technique is that stakeholders can benefit from such an interchange of
the DSML across modeling tools, projects, and organizations. The use of such
a mechanism allows language engineers to effectively exchange similar concepts
of a DSML across multiple tool and do not need to develop DSMLs always
from scratch. However, in contrast to other promising model transformation ap-
proaches like ATLAS Transformation Language (ATL) [26], our approach does
not mainly target exchanging of finished models but rather transforming its
meta-information, such as the UML Profile, which can be used for jointly cre-
ating those models across a variety of tools. We realize the implementation of
the mechanism using custom plugins written in Java that enhance and extend
the functionalities of the respective tools. While the proposed approach targets
the mentioned modeling frameworks and represents a proof-of-concept (PoC)
for introducing such a mechanism, it is generally applicable to similar modeling
tools that support language development and where the exchange of a DSML is
required. The concepts described in this study takes a first step in ensuring tool
interoperability and consistent DSML development views between language en-

Towards Enabling DSML Exchange between Modeling Tools 3

gineers across multi-disciplinary modeling projects and modeling environments.
The main contributions of the paper, given our expertise in language engineering
in the industry and the academia as well as with our experience in developing
DSMLs with multiple modeling tools and language workbenches, are as follows:

– We detail a concept for a bidirectional exchange mechanism (section 4) for
enabling tool interoperability for the exchange of DSML constructs using the
modeling tools MagicDraw and EA (section 5).

– We discuss the extension mechanisms of the modeling tools MagicDraw and
EA (section 3) that form the underlying basis of the implementation of the
exchange mechanism, along with related approaches (section 8).

– We discuss using a simple example of use cases, actors, and their tasks (sec-
tion 6), how the concepts of the described exchange mechanisms can be gen-
erally transferred to other modeling tools (section 7), and finally conclude
the paper in section 9.

2 Background

To easily manage and evolve complex systems across business units and organi-
zations, it is important to build modular reusable DSML elements that can be
easily interchanged between modeling tools. Often large organizations have mul-
tiple business units that use different modeling tools to realize and solve similar
challenges in their domains. On the other hand, small and medium enterprises
are limited to using a single modeling tool in a single modeling environment, re-
quiring extensive engineering efforts in developing conceptually similar DSMLs.
While efforts have been made to enable the globalization of Domain-Specific Lan-
guages (DSLs) using model-based engineering approaches [10], the engineering
of DSMLs is still challenging in organizations that require support for develop-
ment and usage of DSMLs in multiple modeling environments. The exchange of
models and language constructs between various model-driven software and sys-
tems development tools and workbenches require a large effort [34]. Generally,
language engineers and modelers operate within the ecosystem of their modeling
environments and do not specifically consider the aspect of reusability of a DSML
and its constructs beyond the boundaries of the respective technological spaces.
However, more recently the Object Management Group (OMG) has come up
with ways to address challenges of exchanging models in a more standard way,
such as by using XML Metadata Interchange (XMI) file formats [3]. While this is
beneficial in environments that use a more vanilla form of UML, considerations
for exchanging models between DSML environments is still lacking. Modeling
tools do not particularly generate a standard form of exporting and importing
domain-specific constructs for similar models, often leading to issues determin-
ing the model elements’ semantics in such exchange formats. As an example, if
we model UML stereotypes with the tool MagicDraw and export it to an XMI
format, it generates elements configured with a metaclass uml:Stereotype, while
the same model generates a plain UML metaclass uml:Class when exported from
EA. Such inconsistencies in the underlying stored format of a DSML hinders the

4 R. Gupta et al.

reuse of constructs between modeling environments and delays the successful
deployment of DSMLs across organizations. It is important to align the meta-
models in different modeling tools such that the mapping of DSML constructs is
beneficial in easily interchanging and reusing domain concepts across modeling
environments.

3 DSML Specification in Modeling Tools

3.1 MagicDraw

MagicDraw is primarily based on UML and supports customization possibili-
ties to enhance the modeling experience of DSML users [21] through modular
reusable building blocks of DSMLs [22]. These building blocks consist of reusable
language components, that define the language wholly or in part [34]. The cus-
tomization capabilities of MagicDraw can be leveraged to create a language
profile consisting of language component artifacts. An example of such an arti-
fact is a language element, referred to as a stereotype in MagicDraw. For each
stereotype, a set of customizations can be configured that are, in essence, rules
to define where model elements can be created and which specific properties of
the model elements can be displayed to users. MagicDraw supports Java Open
API that allows language engineers to integrate automation and creation of cus-
tom functionalities that are not supported by default. Model templates allows
for the creation of a predefined model that is automatically instantiated during
design time. Perspectives in MagicDraw help display various tool and DSML
functionalities that users require based on their skill level, novice or advanced.
The language profile of the DSML is exported as an Extensible Markup Lan-
guage (XML) file which allows for a language definition to be reused across
other projects and be translated to other modeling tools. The final archived
plugin file consists of an additional descriptor XML file that references all the
language artifacts and loads the source files into memory so that the DSML is
ready available to modelers on tool start-up. In various modeling projects such
as in [7], we naturally encountered challenges in translating language profiles [35]
across modeling tools with heterogeneous domain concepts as well as in bridging
the gap between textual and graphical modeling.

3.2 Enterprise Architect

Within EA, a DSML is implemented in the form of a model-driven generation
(MDG) technology [30] file. This term is the EA-specific representation of an
individual modeling notation. Thereby, the core concept of the DSML is the UML
metamodel, which represents the conceptual architecture and the interconnection
of the domain-specific elements. By doing so, the metamodel inherits all elements
needed to describe the intended application domain and shows the dependencies
with the real world. The MDG allows the extension of EA’s modeling capabilities,
similar to the customizations in MagicDraw, and consists of three main parts: (1)

Towards Enabling DSML Exchange between Modeling Tools 5

UML Profile: the UML Profile consists of all domain-specific elements including
their UML metaclass and relationships or restrictions; (2) Diagram Profile: the
Diagram Profile selects the corresponding UML diagram on which the DSML is
built and maps a toolbox to this diagram. Each diagram only allows modeling
with a particular set of elements; and (3) Toolbox Profile: within the Toolbox
Profile, all UML elements are classified within groups according to a modeling
context. A natural distinction is separating elements and relationships. Apart
from these parts, additional information could be stored in the MDG-file. This
information could consist of alternative representations of model elements by
selecting suitable images or additional attributes for those elements. As those
are not part of the UML Profile, they are additionally exported and stored in an
XML file. Ultimately, the file is stored within the MDG Technologies folder of the
EA instance.Within this folder, any other DSMLs, such as those implementing
the Zachman framework [37], that have been developed and introduced, are
stored for provisioning. However, when storing the created MDG into this folder,
its information is loaded directly with the start-up of EA and hence no additional
setup needs to be performed. Diagrams including the mapped model elements
are directly added via the context menu and used for modeling domain-specific
system architectures.

4 Concept for a DSML Exchange Mechanism

The capabilities of both tools set the precedent for deriving a generic concept for
the transformation of DSMLs between modeling tools as described in Figure 1.
The general concept of exchanging DSML constructs is through: (1) a modeling
tool extension that imports and exports DSML constructs and their information
through; (2) a standard file format and; (3) by identifying the appropriate meta-
classes. Here, the concept details both the export and import processes from one
modeling tool to another.

Methodology

exports

XML file containing
language elements

Modeling
Tool A

Plugin in
Tool A

Map the UML
metaclasses

Modeling
Tool B

Plugin in
Tool B

Create the DSML
elements and
relationships

used by maps used to

Fig. 1. A general concept for interchanging DSML elements between modeling tools.

Certain customizations are possible in modeling tools that extend their func-
tionalities. This can be achieved through adding a custom code in any General
Purpose Language (GPL) in the form of tool plugins or add-ins. Here, modeling
tool A’s plugin extracts language elements and their properties, such as sym-
bols and relations into an XML formatted file. This is done through Application

6 R. Gupta et al.

Programming Interfaces (APIs) exposed by the modeling tools. Modeling tool
B ’s plugin then imports the XML file and provides capabilities to parse, map,
and create the DSML elements. The exported XML file is parsed by B ’s plugin.
This XML file consists of both UML and DSML constructs that convey the nec-
essary information about the various elements of a DSML. In this way, semantic
properties of a construct can also be defined as part of the exchange. Next,
B ’s plugin parses the XML file from A and maps the individual elements to its
appropriate UML metaclass. This mapping ensures that metadata information
is not lost during the exchange process. Finally, the mapped data is translated
into DSML elements through a UML profile. B ’s plugin creates elements and
their properties on the profile through APIs so that the DSML consists of the
language profiles, elements, and their relationships exported from A to B.

5 Implementation

5.1 Plugin for MagicDraw

While XMI allows defining a common format for standard UML models, it
has limitations in encoding accompaniment information for domain-specific con-
structs, making the interchange of DSML information in modeling tools challeng-
ing. Domain-specific XMI models exported from EA contain XML attributes and
EA-specific data that is incomprehensible to default MagicDraw import mech-
anisms. As discussed in section 3, custom functionalities can be added in the
form of additional plugins bundled within the final DSML profile in MagicDraw.
To this end, we develop a plugin, using MagicDraw’s API, to enable importing
a language profile and its constructs from EA. The plugin adds an additional
context menu item to MagicDraw’s default import mechanism for selecting an
EA exported XMI file to extract information from it. Once this information is
extracted and translated, the respective stereotypes and their customizations are
configured and created on a MagicDraw profile. The referentPath is the attribute
exported from MagicDraw and used for import into EA.

The plugin in MagicDraw imports the EA-XMI file that is constructed in
a way that the elements of the language are configured under the XML nodes
uml:Model and packagedElement. An example of a EA-XMI file is shown in List-
ing 1.1, where the identifiers (xmi:id) for each node is modified to illustrate
the relations to the respective language elements. The elements from the XMI
nodes are stored in custom objects. Next, MagicDraw’s OpenAPI is used to cre-
ate a DSML project, a language profile, and a UML profile diagram, for setting
the stereotypes, their customizations and metaclasses. To correctly configure the
stereotypes, the extracted information must be translated for the domain-specific
classifiers. As there is a possibility for XMI conflicts such as with domain-specific
classifiers, special cases must be handled by the plugin, such as identifying the
correct metaclasses for a specific xmi:type attribute. For example, a uml:Task
type is translated to a Class metaclass, as in a domain-specific context we con-
sider tasks as activities in a UML activity diagram to be the most general UML
metaclass. On the other hand, a uml:Association type is directly extracted and

Towards Enabling DSML Exchange between Modeling Tools 7

Listing 1.1. An example of an (incomplete) XML file generated in EA detailing a
DSML with use cases, actors, tasks, and their relations.
<uml:Model xmi:type="uml:Model" name="EA_Model">
<packagedElement xmi:type="uml:Package" xmi:id="pkg_ID" name="Package">
<packagedElement xmi:type="uml:Actor" xmi:id="actor_ID" name="Actor"/>
<packagedElement xmi:type="uml:UseCase" xmi:id="uc_ID" name="UseCase"/>
<packagedElement xmi:type="uml:Association" xmi:id="assoc_ID" name="Performs">
<memberEnd xmi:idref="dst_ID"/>
<ownedEnd xmi:type="uml:Property" xmi:id="dst_ID" association="assoc_ID"/>
<memberEnd xmi:idref="src_ID"/>
<ownedEnd xmi:type="uml:Property" xmi:id="src_ID" association="assoc_ID"/>
</packagedElement >
<packagedElement xmi:type="uml:Task" xmi:id="task_ID" name="Task"/>
</packagedElement >
</uml:Model >

used, since MagicDraw also uses the same classifier for an association connector.
For an association, there must also be restrictions set on the configured stereo-
types that allows associations to be created only between certain stereotypes. In
this case, the ownedEnd nodes of a packagedElement in the XMI is first extracted
and then the identifiers that specify the source and destination ends of the asso-
ciation are looked up. These identifiers are used to set the typesForSource and
typesForTarget customization properties in MagicDraw that help restrict the use
of a connector between specific model elements. A limitation of this import pro-
cess is that icons for the model elements cannot be stored directly within the
XMI file, but have to be transmitted and processed individually outside of the
XMI extraction process. Then the stereotypes are created within the language
profile. Once all the artifacts are generated, they are stored in a .mdzip file,
an archive file storing all the information related to the DSML, including any
additional plugins. This also includes icons, as scalable vector graphic images,
and any model templates that can be provided to modelers for quickly creating
models. This DSML profile is now installed in the modelers’ MagicDraw envi-
ronment. Language engineers can, therefore, configure a family of similar DSML
profiles across both MagicDraw and EA. MagicDraw provides functionality to
export the entire language profile as XMI, which we now use to showcase the
import process from MagicDraw to EA.

5.2 Add-In for Enterprise Architect

To enable export and import of DSML information, an Add-In for EA, the so-
called RAMI Toolbox [6], is expanded in functionality. More specifically, the
RAMI Toolbox allows the engineering of complex production systems for vari-
ous industrial domains. The toolbox is used for exporting and importing such
elements making it ideal to be applied in the context of this paper. Exporting
domain-specific information from EA is straightforward, as the MDG file is ex-
ported in XML format. This is done as the XML stores the needed information
within a single file that requires extraction. However, importing domain-specific
elements into EA via the RAMI Toolbox is more complex, as information needs
to be extracted from the MagicDraw XMI file that contains the modeled el-
ements. Those elements must then be properly integrated within an MDG file

8 R. Gupta et al.

that can be interpreted by EA. We extract the information out of the MagicDraw
XMI file to find all domain-specific elements. These are embedded in the pack-
agedElement XML nodes. The RAMI Toolbox deals with iterating through the
file and storing all such elements for further processing. In general, we consider
the elements classified as uml:Stereotype to represent a domain-specific element.
Within such a stereotype, the name could be easily extracted via its same-called
attribute. However, the underlying UML class is of major importance, as this at-
tribute defines the underlying foundation of each element. This means, the third
attribute deals as a standardized exchange format between both frameworks,
MagicDraw as well as EA, since DSMLs in either of them is based on UML
standard types. Apart from those attributes, relationships between the elements
also need to be exported from the MagicDraw XMI. To do so, the attribute
DSL_Customization is parsed within the file. This node also contains three at-
tributes, the type of relationship, the source element, and the target element.
Within the relationship type, the customizationTarget indicates the relationship
used between the DSML elements. Next, the typesForSource and typesForTar-
get specify the source and target element. When parsing this information, only
the specified relationship is used to interconnect the DSML elements within the
model. Finally, after exporting this information, it needs to be embedded within
an EA-MDG file. More specifically, the parsed DSML elements including their
UML related aspects are stored within the UML Profile of the MDG, where the
Diagram Profile is adjusted and the toolbox is finally linked for utilization.

6 Application

We illustrate the applicability of our research with an illustrative example in-
volving actors, tasks, and use cases. The goal is to model individual use cases,
actors, tasks, and their relationships independently in both EA and MagicDraw
using the bi-directional exchange mechanism described in section 5. A use case
language is used to model the high-level functionality of a system. An actor lan-
guage can be used to model actors, their tasks, and the relations between their
tasks. In this example, we combine both the use case language and the actor lan-
guage into a single language, to demonstrate the how the DSML constructs for
this language can be translated from EA to MagicDraw. The MagicDraw plugin
allows users to import an exported XMI file from EA. This XMI file consists of
a language definition with use cases similar to UML use cases, actuators, and
their tasks and an example of this XMI file was listed in Listing 1.1. Generally,
use cases, actors, and associations are directly translated into their respective
UML metaclasses. The plugin extracts the domain-specific constructs from the
EA XMI file and creates the respective stereotypes and their customizations in
MagicDraw on a UML profile diagram. Figure 2 shows the constituents of this
profile diagram consisting of the various stereotypes for the use case, task, actor,
association, and their configured properties that have been imported from EA.

While the use case, actor, and association elements have been assigned their
respective stereotypes, the domain-specific task element from EA is assigned the

Towards Enabling DSML Exchange between Modeling Tools 9

MagicDraw, 1-1 D:\Rohit\Notes\30 RAMI Toolbox\My EA Example\ImportEAProjectv1.mdzip Profile_Diagram 24 Apr 2023 15:41:13

Profile Diagram EA_Model_Profile Profile_Diagram][

typesForTarget = Task
typesForSource = Actor
customizationTarget = Performs

«Customization»

Performs
«Customization»

customizationTarget = UseCase
«Customization»

UseCase
«Customization»

«Customization»
customizationTarget = Actor

Actor
«Customization»

customizationTarget = Task
«Customization»

Task
«Customization»

[Association]
Performs

«stereotype»

[Class]
Task

«stereotype»

[UseCase]
UseCase

«stereotype»

[Actor]
Actor

«stereotype»

Fig. 2. A MagicDraw UML Profile Diagram for the extracted EA DSML elements.
class metaclass. With a standard XMI file, either the domain-specific constructs
or some of their properties cannot be directly interchanged from EA to Mag-
icDraw. To solve this challenge, the plugin is configured to identify constructs
that are domain-specific and performs the necessary translation for import into
MagicDraw. While the constraints are mainly embedded into properties within
MagicDraw elements, EA uses so-called metarelationships or metaconstraints to
restrict the misuse of the modeling elements. Thus, the performs relationship
directly specifies source and target elements, which is stored into the metacon-
straint. To only allow this connector to be used for the actor and task elements,
this information is placed within the metarelationship. In order to ensure inter-
operability between EA and MagicDraw, the plugin deals with translating each
other’s information and transforms the properties into connectors and vice versa.
The plugin is also responsible for calculating the references between the elements
based on the XMI file and configures those references, such as setting the source
and target elements for a relationship. In doing so, EA can also generate further
information specific to an element, and that would be parsed and utilized by the
MagicDraw plugin. Similarly, the XMI file exported from MagicDraw, containing
the DSML definition, can be imported into EA. On successful import, the DSML
elements are embedded into the EA-MDG file and the required information is
stored within the UML profile in EA.

6.1 Model Example

Figure 3 shows an example model created in MagicDraw using the DSML con-
structs that are imported from EA. Here, the model elements are created indi-
vidually and the respective stereotypes are assigned to each of these elements.
This can be done automatically with a model template, that is created for the
imported UML profile and configured with the final archived MagicDraw DSML

10 R. Gupta et al.

MagicDraw, 1-1 D:\Rohit\Notes\30 RAMI Toolbox\My EA Example\ImportEAProjectv1.mdzip Model_Design 24 Apr 2023 15:41:58

Model_DesignModel_Designpackage][

UC1: Withdraw
money from bank

account

«UseCase»

T1: Walk to bank and
w ithdraw money

«Task»

Customer
«Actor»

«Performs»

Fig. 3. An exemplary MagicDraw model using the DSML elements configured in Fig-
ure 2 showing an actor performing a task for a respective use case.

plugin. Therefore, the T1 model element, configured as a UML Class metaclass,
is assigned the Task stereotype that is imported from the EA XMI file. Simi-
larly, the Customer model element is configured as a UML Actor metaclass and
receives the stereotype Actor. An association between Customer and T1 is as-
signed the Performs stereotype, which is a UML Association with the configured
source and target stereotypes. Finally, the UC1 model element is configured with
the UML UseCase stereotype. The illustrated model can also be replicated in
EA using the same DSML exported from MagicDraw as an XML file.

7 Discussion

The approach presented in this paper to solve the challenges of DSML interop-
erability between modeling tools was conducted with a group of practitioners
and researchers. The challenge to enable the exchange of DSML and its con-
structs was identified as a key research topic in improving the overall DSML
engineering process across different research units. While exchanging standard
UML constructs across different modeling environments is possible via XMI file
formats, achieving the same in a domain-specific environment is currently lack-
ing. Therefore, the presented methodology brings a first perspective using two
popular commercial modeling tools, EA and MagicDraw. Previously, language
engineers had to build DSMLs that represent similar domain concepts from
scratch as concepts that detail the reuse DSML of constructs were lacking in the
literature. Although the OMG tried to solve this challenge by creating a com-
mon file interchange mechanism, with XMI, it did not consider domain-specific
aspects which are crucial to effectively realize Model-based Systems Engineer-
ing (MBSE) methodologies. Further, different modeling tools often generate such
XMI file formats that are unusable in another modeling environment. Extending
the existing modeling tools creates the opportunities for language engineers to
design DSMLs in a way that their constructs are now reusable. We developed two
Java plugin extensions in each of the modeling tools to showcase the bidirectional
interchange of DSML constructs using an example of use cases, actors, tasks,
and their relations. The solution enables both standard and domain-specific
constructs to be translated across business lines that work on different tools

Towards Enabling DSML Exchange between Modeling Tools 11

and fosters the reusability of DSML constructs without losing domain-specific
information. The presented approach in this paper separates the concerns of col-
lecting DSML constructs in an XML file, parsing those XML files using GPL
code, and finally using the tool capabilities to create the language. This sepa-
ration allows language engineers to easily adopt this solution to their modeling
environments as it considers standard file formats that are frequently used [4].
Although our study is conducted in a vendor-locked scenario which introduces
a threat to the study, the implementation is described in a way it is seamlessly
transferable to other modeling tools that support language development. The
use of an XML format and Java code to extend a modeling tool’s functionalities
makes the solution independent of a modeling tool. This is based on the assump-
tion that a modeling tool exposes APIs, e.g., Java OpenAPI in our case, that
allows DSML information such as language elements, models, and their proper-
ties to be accessed using an independent GPL code. Although maintaining the
plugins require additional effort, we deem this effort low, as modifications to the
plugins depend primarily on updates to the API specifications of the involved
modeling tools. The applicability of the research using a simple illustrative ex-
ample demonstrates the capability of the solution to exchange both UML and
domain-specific constructs, and can be extended to other modeling tools, or even
to other modeling languages such as with SysML. We are currently working to
further validate our research in other modeling environments, such as Ratio-
nal Rhapsody. Therefore, we believe the concepts presented in this paper will
encourage language engineers to develop extensions that enable an easy inter-
change of a DSML and its constructs between various modeling environments
that eventually reduces the effort needed in modeling a family or variants of
DSMLs across complex modeling environments.

8 Related Work

One technique of interchanging constructs of a modeling language is using stan-
dard file formats such as XMI or XML [1,2]. However, with every MBSE ap-
proach [10], it is often very challenging to engineer [11], exchange [24], and
reuse standard file formats to model domain-specific elements in a variety of
domains and across various modeling tools or language workbenches [23,15].
There still exist several challenges on model interchange between model-driven
software and systems development tools [34], as the methods and concepts are
often only described for a specific purpose and do not consider aspects for gen-
eralization. Modeling tools often use different file formats and data structures
to store their language concepts such as UML or the Systems Modeling Lan-
guage (SysML) [13]. The OMG has introduced XMI file formats [3] to exchange
models in a more standard way and foster model-to-model transformations such
as by using query/view/transformation (QVT) techniques. However, not all tools
generate a standard format for exporting domain-specific elements for similar
models [38], meaning semantics of the exchange formats are not clearly speci-
fied [19,29]. This means that the MBSE tools often lack of conformance to OMG

12 R. Gupta et al.

standards and are strictly designed to consider only plain UML concepts. Ex-
isting work on bridging the gap between different technological spaces focuses
on translating languages between different technological spaces [9,12], improv-
ing modeling language variability [20], and the interoperability of models and
language elements [14,5,15]. Additionally, techniques for extending DSLs, which
are embedded in a predefined tool, via tagging languages [18], tool integration
frameworks [31], or through model federation [17] exist. However, realizing a
seamless exchange of DSML constructs between different model-driven develop-
ment tools in a real-world context is still challenging as it requires domain-specific
knowledge across multiple modeling environments that involves a large number
of stakeholders. Even though tools such as EA and MagicDraw are powerful for
exchanging UML constructs [33,27], truly achieving interoperability, exchange of
models, and DSML constructs across different modeling tools needs special con-
sideration. This paper therefore describes how we aimed to reduce this gap and
show how we enable DSML exchange between two commercial modeling tools,
with the basis that the implementation can be extended to other modeling tools.

9 Conclusion

As systems grow more complex and heterogeneous, so does challenges in the
interchange of domain-specific constructs between modeling tools that support
DSML development. Standard file interchange formats such as XMI have emerged
to solve challenges to exchange metadata of UML models. However, different
modeling tools generate different XMI file formats for the concerned domain-
specific constructs preventing a seamless language exchange between modeling
environments. To solve this challenge, we build an exchange mechanism between
two commercial modeling tools, Enterprise Architect and MagicDraw, that al-
lows standard UML and DSML constructs to be interchanged. We create Java-
based plugins in the modeling tools that extracts domain-specific information
and creates language definitions in the respective tools. This allows language
and model elements to be exchanged across different modeling environments
without losing domain-specific information. Cross-functional teams across dif-
ferent organizations can therefore reuse language definitions for a single domain.
Although this paper constitutes a first step towards DSML exchange between
modeling tools, further work is ongoing to validate the exchange mechanism in
other modeling tools. Ultimately, such a DSML exchange mechanism allows for
the interoperability of DSML constructs in complex modeling environments.

References

1. Extensible Markup Language (XML) (2023), https://www.w3.org/XML/
2. Model Interchange Wiki (2023), https://www.omgwiki.org/model-interchange/

doku.php
3. XML Metadata Interchange (XMI) (2023), https://www.omg.org/spec/XMI/

https://www.w3.org/XML/
https://www.omgwiki.org/model-interchange/doku.php
https://www.omgwiki.org/model-interchange/doku.php
https://www.omg.org/spec/XMI/

Towards Enabling DSML Exchange between Modeling Tools 13

4. Bézivin, J.: Model driven engineering: An emerging technical space. Generative
and Transformational Techniques in Software Engineering: International Summer
School, GTTSE 2005, Braga, Portugal, July 4-8, 2005. pp. 36–64 (2006)

5. Bézivin, J., Brunelière, H., Cabot, J., Doux, G., Jouault, F., Sottet, J.S.: Model
driven tool interoperability in practice. In: 3rd Workshop on Model-Driven Tool &
Process Integration (co-located with ECMFA 2010). pp. 62–72 (2010)

6. Binder, C., Neureiter, C., Lüder, A.: Towards a domain-specific approach enabling
tool-supported model-based systems engineering of complex industrial internet-of-
things applications. Systems 9(2) (2021)

7. Böhm, W., Broy, M., Klein, C., Pohl, K., Rumpe, B., Schröck, S. (eds.): Model-
Based Engineering of Collaborative Embedded Systems. Springer (January 2021)

8. Bruneliere, H., Cabot, J., Clasen, C., Jouault, F., Bézivin, J.: Towards model driven
tool interoperability: Bridging eclipse and microsoft modeling tools. In: Modelling
Foundations and Applications: 6th European Conference, ECMFA 2010, Paris,
France, June 15-18, 2010. Proceedings 6. pp. 32–47. Springer (2010)

9. Butting, A., Jansen, N., Rumpe, B., Wortmann, A.: Translating Grammars to
Accurate Metamodels. In: International Conference on Software Language Engi-
neering (SLE’18). pp. 174–186. ACM (2018)

10. Cheng, B.H.C., Combemale, B., France, R.B., Jézéquel, J.M., Rumpe, B.: On the
Globalization of Domain Specific Languages. In: Globalizing Domain-Specific Lan-
guages. pp. 1–6. LNCS 9400, Springer (2015)

11. Clark, T., Brand, M.v.d., Combemale, B., Rumpe, B.: Conceptual Model of
the Globalization for Domain-Specific Languages. In: Globalizing Domain-Specific
Languages. pp. 7–20. LNCS 9400, Springer (2015)

12. Dalibor, M., Jansen, N., Kästle, J., Rumpe, B., Schmalzing, D., Wachtmeister,
L., Wortmann, A.: Mind the Gap: Lessons Learned from Translating Grammars
Between MontiCore and Xtext. In: International Workshop on Domain-Specific
Modeling (DSM’19). pp. 40–49. ACM (October 2019)

13. Dalibor, M., Jansen, N., Michael, J., Rumpe, B., Wortmann, A.: Towards Sustain-
able Systems Engineering-Integrating Tools via Component and Connector Ar-
chitectures. In: Jacobs, G., Marheineke, J. (eds.) Antriebstechnisches Kolloquium
2019: Tagungsband zur Konferenz. pp. 121–133. Books on Demand (February 2019)

14. Diallo, P.I., Champeau, J., Lagadec, L.: A model-driven approach to enhance tool
interoperability using the theory of models of computation. In: Software Language
Engineering: 6th International Conference, SLE 2013, Indianapolis, IN, USA, Oc-
tober 26-28, 2013. Proceedings 6. pp. 218–237. Springer (2013)

15. Drux, F., Jansen, N., Rumpe, B., Schmalzing, D.: Embedding Textual Languages
in MagicDraw. In: Modellierung 2022 Satellite Events. pp. 32–43. Gesellschaft für
Informatik e.V. (June 2022)

16. Enterprise Architect (2023), https://sparxsystems.com/
17. Golra, F.R., Beugnard, A., Dagnat, F., Guerin, S., Guychard, C.: Using free mod-

eling as an agile method for developing domain specific modeling languages. In:
Proceedings of the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems. pp. 24–34 (2016)

18. Greifenberg, T., Look, M., Roidl, S., Rumpe, B.: Engineering Tagging Languages
for DSLs. In: Conference on Model Driven Engineering Languages and Systems
(MODELS’15). pp. 34–43. ACM/IEEE (2015)

19. Grönniger, H., Ringert, J.O., Rumpe, B.: System Model-based Definition of Model-
ing Language Semantics. In: Proc. of FMOODS/FORTE 2009, LNCS 5522. Lisbon,
Portugal (2009)

https://sparxsystems.com/

14 R. Gupta et al.

20. Grönniger, H., Rumpe, B.: Modeling Language Variability. In: Workshop on Mod-
eling, Development and Verification of Adaptive Systems. pp. 17–32. LNCS 6662,
Springer (2011)

21. Gupta, R., Jansen, N., Regnat, N., Rumpe, B.: Design Guidelines for Improving
User Experience in Industrial Domain-Specific Modelling Languages. In: Proceed-
ings of the 25th International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings. ACM (October 2022)

22. Gupta, R., Kranz, S., Regnat, N., Rumpe, B., Wortmann, A.: Towards a Systematic
Engineering of Industrial Domain-Specific Languages. In: 2021 IEEE/ACM 8th
International Workshop on Software Engineering Research and Industrial Practice
(SE&IP). pp. 49–56. IEEE (May 2021)

23. Hölldobler, K., Rumpe, B.: MontiCore 5 Language Workbench Edition 2017. Aach-
ener Informatik-Berichte, Software Engineering, Band 32, Shaker Verlag (2017)

24. Hölldobler, K., Rumpe, B., Wortmann, A.: Software Language Engineering in the
Large: Towards Composing and Deriving Languages. Computer Languages, Sys-
tems & Structures 54, 386–405 (2018)

25. IBM Rhapsody (2023), https://www.ibm.com/products/
systems-design-rhapsody/

26. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: Atl: a qvt-like trans-
formation language. In: Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and applications. pp. 719–720
(2006)

27. Kern, H.: Study of interoperability between meta-modeling tools. In: 2014 Feder-
ated Conference on Computer Science and Information Systems. pp. 1629–1637.
IEEE (2014)

28. MagicDraw Enterprise (2023), https://www.3ds.com/products-services/
catia/products/no-magic/magicdraw/

29. Maoz, S., Ringert, J.O., Rumpe, B.: Semantically Configurable Consistency Anal-
ysis for Class and Object Diagrams. In: Conference on Model Driven Engineering
Languages and Systems (MODELS’11). pp. 153–167. Springer (2011)

30. MDG Technologies (2023), https://sparxsystems.com/resources/mdg_tech/
31. Mustafiz, S., Denil, J., Lúcio, L., Vangheluwe, H.: The FTG+PM Framework for

Multi-Paradigm Modelling: An Automotive Case Study. In: Proceedings of the 6th
International Workshop on Multi-paradigm Modeling. pp. 13–18 (2012)

32. Odukoya, K.A., Whitfield, R.I., Hay, L., Harrison, N., Robb, M.: An architectural
description for the application of mbse in complex systems. In: 2021 IEEE Inter-
national Symposium on Systems Engineering (ISSE). pp. 1–8. IEEE (2021)

33. Ozkaya, M.: Are the uml modelling tools powerful enough for practitioners? a
literature review. IET Software 13(5), 338–354 (2019)

34. Rumpe, B.: Modeling with UML: Language, Concepts, Methods. Springer Inter-
national (July 2016)

35. Gupta, R., Jansen, N., Regnat, N., Rumpe, B.: Implementation of the SpesML
Workbench in MagicDraw. In: Modellierung 2022 Satellite Events. pp. 61–76.
Gesellschaft für Informatik (June 2022)

36. Tolvanen, J.P.: Metaedit+ integrated modeling and metamodeling environment for
domain-specific languages. In: Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages, and applications (2006)

37. Zachman, J.A.: The zachman framework for enterprise architecture. Primer for
Enterprise Engineering and Manufacturing.[si]: Zachman International (2003)

38. Zusane, U.I., Nikiforova, O., Gusarovs, K.: Several issues on the model interchange
between model-driven software development tools (2015)

https://www.ibm.com/products/systems-design-rhapsody/
https://www.ibm.com/products/systems-design-rhapsody/
https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
https://sparxsystems.com/resources/mdg_tech/

	Towards Enabling Domain-Specific Modeling Language Exchange between Modeling Tools

