
Towards Development Platforms for Digital
Twins: A Model-Driven Low-Code Approach

Judith Michael1 and Andreas Wortmann2

1 Software Engineering, RWTH Aachen University michael@se-rwth.de
2 Institute for Control Engineering of Machine Tools and Manufacturing Units

(ISW), University of Stuttgart andreas.wortmann@isw.uni-stuttgart.de

Abstract. Digital Twins in smart manufacturing must be highly adapt-
able for different challenges, environments, and system states. In prac-
tice, there is a need for enabling the configuration of Digital Twins by
domain experts. Low-code approaches seem to be a meaningful solution
for configuration purposes but often lack extension options. We propose
a model-driven low-code approach for the configuration and reconfigura-
tion of Digital Twins using language plugins. This approach uses model-
driven software engineering and software language engineering methods
to derive a configurable digital twin implementation. Moreover, we dis-
cuss some remaining challenges such as interoperability, language mod-
ularity, evolution, integration of assistive services, collaborative develop-
ment, and web-based debugging.

Keywords: Digital Twin · Low-Code Platform · Model-Driven Software
Engineering · Software Language Engineering

1 Motivation

Digital Twins provide means to monitor and control Cyber-Physical Systems
(CPSs) in various domains, such as smart manufacturing [29], biology [19], or
autonomous driving [8]. They serve different purposes, such as analysis [23],
control [31], or behavior prediction [21]. They promise tremendous potential to
reduce cost and time and improve our understanding of the twinned systems.

Where human operators and their expertise are involved, such Digital Twins
must provide access to data about the CPS in human-readable form via Graph-
ical User Interfaces (GUIs), also called Digital Twin cockpits [10], allow for
interaction and provide situational support via assistive services [22,30]. Cyber-
Physical Production Systems (CPPSs) are long-living complex systems that op-
erate in different environments and experience vastly different usage histories.
Consequently, Digital Twins in production must be highly adaptable for differ-
ent challenges, environments, and system states. Thus, they have to allow for
configuration at the commissioning of the Digital Twin and throughout their
lifetime. This configuration needs to be carried out by domain experts, which
typically lack formal software engineering training.

[MW21] J. Michael, A. Wortmann: 
Towards Development Platforms for Digital Twins: A Model-Driven Low-Code Approach. 
In: Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems, 
pp. 333-341, IFIP WG 5.7 International Conference, APMS 2021, Nantes, France, September 2021. 
www.se-rwth.de/publications/



ExecutorData Processor

CPPS

Query Data

Goal

Solution Feedback

Evaluator

FeedbackCommand

Raw Data

Reasoner

Request

Data Digital

Shadows

Execution

Adapter

Execution

Logic

MontiArc

Data Lake DB DB …

Processor

Logic

Processor

Adapter

Queries

DigitalTwin

Digital 

Shadows
Queries

Fig. 1. Digital Twin architecture model

Low-code platforms [7,27] seem to be a promising way to enable domain ex-
perts to create, configure, and operate complex systems for a specific purpose
in a particular domain. The combination of Model-Driven Software Engineer-
ing (MDSE) and low-code approaches have a high potential to facilitate the
fast configuration, instantiation, and operation of Digital Twins. We envision a
model-driven low-code approach for configuring Digital Twins and discuss chal-
lenges for future Low-Code Development Platforms (LCDP) that is based on
our experience in MDSE for Digital Twins [3,10,20] and enterprise information
systems [1,13] as well as in Software Language Engineering (SLE) [6,17]. In the
following, we present preliminaries in Section 2, before we discuss our vision in
Section 3, and discuss further future challenges in Section 4.

2 Background

Our vision rests on the model-driven architecture of Digital Twins and its in-
tegration with the MontiGem generator framework for Enterprise Information
Systems as a visualization interface.

2.1 Digital Twins

Digital Twins are software systems comprising data, models, and services to
interact with a CPPS for a specific purpose [3,20,10]. We devised a model-
driven architecture of self-adaptive Digital Twins [4] that integrates various
application-specific models to tailor the Digital Twin to specific challenges lever-
aging the MontiArc [5] architecture description language. The architecture (Fig-



Fig. 2. Generating Digital Twin cockpits with MontiGem

ure 1) realizes the MAPE-K loop [2] of self-adaptive systems through compo-
nents that query a data lake (component DataProcessor), analyze resulting
data (Evaluator), plan next actions (Reasoner), and execute these (Executor).
To this end, it operates in the context of (1) a class diagram domain model
and digital shadow [28] models, (2) leverages application-specific event models
to trigger (re)actions of the Digital Twin, (3) uses various models (e.g., State-
charts, case-based reasoning models, design of experiment models) to prescribe
the behavior of CPPS and Digital Twin, and (4) connection models to communi-
cate commands to the CPPS. In the following, we will leverage this architecture
to integrate further (low-code) modeling languages towards truly domain-specific
modeling of Digital Twins.

2.2 MontiGem

Within [10], we have shown how to use the generator framework MontiGem [1] to
create interactive Digital Twin cockpits. Figure 2 presents the main generation
process. MontiGem can handle models in different Domain-Specific Languages
(DSLs) as input. Required is only the domain model represented using Class
Diagrams (CDs) [13]. Optional models include data models (views on the data
structure), GUI models representing the graphical interfaces, tagging models
for the addition of rights and roles, and Object Constraint Language (OCL) to
define restrictions on the data model and data input validation in the GUI.

The generation result is an interactive Digital Twin cockpit, which can be
integrated into a Digital Twin architecture, as shown in [10]. The Digital Twin
cockpit and further components of the Digital Twin, such as reasoning or exe-
cution services, could be connected directly via the backend or by sharing data
in a shared data storage. The proposed generation process allows for extensions



4D DSL 

Component
EditorViewer

Model

Database

Operations

Database

Digital Twin

Configuration
M2M

ViewerEditor

MontiGem InstanceMontiGem Design-Time Models

Digital

Twin

Instance

Digital

Twin

Instance

Digital

Twin

Instance

Digital

Twin

Instance

Digital

Twin

Instance

Digital Twin 

Components

Event

Producer

Event

Producer

Extended Digital Twin Architecture

ExecutorData Processor

CPPS

Evaluator Reasoner

Data Lake

Extended Digital Twin Models

MontiGem 

Generators

Digital Twin

Generator

Event 

Model

Reason. 

Model

Monitoring, Control, 

and Optimization

Interpreters

MontiGem Digital Twin Language Plugins
Digital Twin 

Models

Data 

Model

Data 

Model

Comm.

Ext.

Data 

Model

M2M

M2T

M2T

Fig. 3. A model-driven toolchain for the creation of LCDPs and Digital Twins

and continuous re-generation in agile engineering processes. The generated code
can be extended by hand-written classes, which use the extension functionality
of object-oriented programming languages [16]. This method ensures that the
additions remain during re-generation.

3 Model-Driven Synthesis of Digital Twin LCDPs

We envision combining our model-driven Digital Twin architecture with the
MontiGem code generation framework to enable the pervasive model-driven de-
velopment of low-code platforms for the creation, configuration, and operation
of Digital Twins in production, as illustrated in Figure 3.

MDSE of a LCDP for Digital Twins

Development of a LCDP for Digital Twins begins with selecting supported mod-
eling languages through reasoning language plugins and communication language
plugins. Each plugin comprises:

– A 4D DSL component [6] that encapsulates realizations of abstract and con-
crete syntax, well-formedness rules, and semantics in form of MontiCore [16]
grammars, Java context conditions, and FreeMarker-based code generators
behind explicit interfaces of provided and required extensions.

– An interpreter for models of the component’s DSL (reasoning language plug-
ins) or a communicator translating reasoner input to communication objects



for, e.g., MQTT, OPC UA, or ROS (communication language plugins) as a
(possibly hierarchically composed) MontiArc component model.

– An event producer creating Digital Twin event models from models of se-
lected DSLs to invoke the interpreter of the Digital Twins to be created.

– A web-based editor and a web-based viewer for models of these DSLs that
is compatible with the (graphical) language server protocol [26].

Given the models required for generating a MontiGem application and the
language plugins and a model-to-model (M2M) transformation, the data model
used as input for the MontiGem generator is extended with classes to capture
the Abstract Syntax Tree (AST) of the available language plugins’ DSLs. Af-
terward, the MontiGem generators process the MontiGem input models, the
extended data model and the language plugins, generates a MontiGem applica-
tion, integrates the editors into its user interface, creates databases for operation
data and for models, and persists metadata about the available DSLs.

Model-Driven Creation of Digital Twins

With the low-code development platform in place, users can create Digital Twins
conforming to our reference architecture using the available DSLs through a
configuration assistant that employs information about these DSLs and their
available models, e.g., initially devised for other Digital Twins. To this end,
they select (1) evaluation DSLs, e.g., goal languages or BPMN for assistive
services, (2) reasoning DSLs, e.g., case-based reasoning [25] or PDDL [32], and
(3) communication DSLs, e.g., for connection to CPPS via OPC UA [24] and
(4) assign an ID and further configuration information, e.g., additional event
models.

Based on the selection of DSLs, another M2M transformation integrates the
interpreter components and communicator components of the corresponding lan-
guage plugins into the reasoner and the executor of the Digital Twin’s MontiArc
architecture, respectively. Another M2M transformation produces new event
models for the Digital Twins to react on model updates invoked by the con-
nected MontiGem LCDP. The Digital Twin generator then takes the resulting
extended Digital Twin architecture model, the handcrafted and generated event
models, and its data models as input to produce executable Digital Twin in-
stances. To this effect, it leverages the event producer components provided by
the language plugins to derive events from the reasoning models that invoke
their corresponding reasoner accordingly.

As the MontiGem LCDP and the Digital Twins operate on the same databases,
the Digital Twin writes operation data, and the LCDP writes model changes,
additional communication infrastructure is not necessary. In contrast, the CPPS
is connected using a model of a communication language plugin.

4 Outlook

Our vision of a model-driven low-code approach for configuring Digital Twins
facilitates researchers and practitioners in manufacturing in creating LCDPs



integrated with Digital Twins and domain-specific modeling languages for the
particular production challenges at hand. Extending, evolving, maintaining, and
using the envisioned method in practices is subject to further challenges out of
which selected are outlined below.

LCDP and Digital Twin Interoperability. Research and industry have produced
various platforms (e.g., Microsoft Azure, Amazon Greengrass, or Siemens Mind-
Sphere) and modeling techniques (e.g., Eclipse Ditto, Hono, and Vorto, Microsoft
Digital Twin Description Language) to model Digital Twins. These platforms
are walled gardens that lock the users to a specific vendor without system-
atic means for interoperability. As production needs to integrate systems and
solutions from various OEMs and suppliers, interoperability of Digital Twins
and their platforms is essential. The LCDP in Figure 3 allows to specify com-
munication DSLs for different communication standards and generates needed
application interfaces. Approaches such as [20] already showed how to generate
such interfaces from models.

Modeling Language Modularity and Evolution. To support addressing evolving
challenges with a LCDP for Digital Twins, the employed modeling languages
and language infrastructure must allow for modularity within the language. This
includes the combination of building blocks and the establishment of language
hierarchies [18], which, for instance, is important if Digital Twins for different
application areas in smart manufacturing request different depths of, e.g., event
or reasoning models.

Integration of Assistive Services. Where production is not fully automated, in-
cluding human operators in the loop is crucial. To mitigate the increasing amount
and detail of production information, Digital Twins should assist operators in
making the best possible decisions [22]. Consequently, functionalities such as
analyzing a current action, identifying next actions and suggesting their execu-
tion [15] should be integrated into the toolchain. By now, there is still research
missing, e.g., on which modeling languages could be incorporated into these
processes, what aspects have to be modeled to provide meaningful, automated
support, or to provide variety in supporting devices.

Collaborative Development. Digital Twins of production systems will address
multiple concerns of the twinned system and its, e.g., strategic, context. Conse-
quently, multiple stakeholders, such as shop-floor experts and managers, might
interact with the Digital Twin collaboratively. Textual modeling techniques gen-
erally support this. Within the last years, a variety of collaborative modeling
tools evolved as browser- or cloud-based solutions [14,11,12]. However, within
the application domains of Digital Twins, areas such as support for graphi-
cal modeling, identifying and resolving modeling conflicts, as well as consider-
ing roles, rights, and corresponding views for successful collaborative intra- and
inter-organizational modeling remain to be investigated.



Web-Based Debugging. For experimentation, configuration, and (virtual) com-
missioning, it is crucial to predict the Digital Twin’s behavior on the twinned
system. To this end, being able to debug, trace, and replay the Digital Twin’s
behavior is necessary. While there are various means to provide debugging, etc.,
for modeling languages (e.g., GEMOC Studio [9]), none of these provide generic
or generative web-based interfaces.

5 Conclusion

The model-driven software engineering of low-code development platforms for
Digital Twins in production promises powerful means to create and operate
highly-specific platforms together with integrated Digital Twins for a more effi-
cient configuration and operation of production systems. Our approach to com-
bining MDSE and SLE to engineering such platforms signposts a possible real-
ization of this vision.

References

1. Adam, K., Michael, J., Netz, L., Rumpe, B., Varga, S.: Enterprise Information
Systems in Academia and Practice: Lessons learned from a MBSE Project. In: 40
Years EMISA: Digital Ecosystems of the Future: Methodology, Techniques and
Applications (EMISA’19). LNI, vol. P-304, pp. 59–66. Gesellschaft für Informatik
e.V. (2020)

2. Arcaini, P., Riccobene, E., Scandurra, P.: Modeling and analyzing MAPE-K feed-
back loops for self-adaptation. In: 2015 IEEE/ACM 10th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems. pp. 13–23. IEEE
(2015)

3. Bibow, P., Dalibor, M., Hopmann, C., Mainz, B., Rumpe, B., Schmalzing, D.,
Schmitz, M., Wortmann, A.: Model-Driven Development of a Digital Twin for
Injection Molding. In: International Conference on Advanced Information Systems
Engineering (CAiSE’20). LNCS, vol. 12127, pp. 85–100. Springer (2020)

4. Bolender, T., Bürvenich, G., Dalibor, M., Rumpe, B., Wortmann, A.: Self-adaptive
manufacturing with digital twins. In: 2021 International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). pp. 156–166.
IEEE Computer Society, Los Alamitos, CA, USA (May 2021)

5. Butting, A., Haber, A., Hermerschmidt, L., Kautz, O., Rumpe, B., Wortmann, A.:
Systematic Language Extension Mechanisms for the MontiArc Architecture De-
scription Language. In: Europ. Conf. on Modelling Foundations and Applications
(ECMFA’17). pp. 53–70. LNCS 10376, Springer (2017)

6. Butting, A., Pfeiffer, J., Rumpe, B., Wortmann, A.: A Compositional Framework
for Systematic Modeling Language Reuse. In: 23rd ACM/IEEE Int. Conf. on Model
Driven Engineering Languages and Systems. pp. 35—-46. ACM (2020)

7. Cabot, J.: Positioning of the low-code movement within the field of model-driven
engineering. In: Guerra, E., Iovino, L. (eds.) MODELS ’20: ACM/IEEE 23rd Inter-
national Conference on Model Driven Engineering Languages and Systems, Virtual
Event, Canada, 18-23 October, 2020, Companion Proceedings. pp. 76:1–76:3. ACM
(2020). https://doi.org/10.1145/3417990.3420210

https://doi.org/10.1145/3417990.3420210


8. Chen, X., Kang, E., Shiraishi, S., Preciado, V.M., Jiang, Z.: Digital behavioral
twins for safe connected cars. In: 21th ACM/IEEE Int. Conf. on Model Driven
Engineering Languages and Systems. pp. 144–153 (2018)

9. Combemale, B., Barais, O., Wortmann, A.: Language engineering with the
GEMOC studio. In: 2017 IEEE International Conference on Software Architec-
ture Workshops (ICSAW). pp. 189–191. IEEE (2017)

10. Dalibor, M., Michael, J., Rumpe, B., Varga, S., Wortmann, A.: Towards a Model-
Driven Architecture for Interactive Digital Twin Cockpits. In: Conceptual Model-
ing. pp. 377–387. Springer (2020)

11. Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Collaborative repositories
in model-driven engineering [software technology]. IEEE Software 32(3), 28–34
(2015). https://doi.org/10.1109/MS.2015.61

12. Franzago, M., Di Ruscio, D., Malavolta, I., Muccini, H.: Collaborative
model-driven software engineering: A classification framework and a research
map. IEEE Transactions on Software Engineering 44(12), 1146–1175 (2018).
https://doi.org/10.1109/TSE.2017.2755039

13. Gerasimov, A., Michael, J., Netz, L., Rumpe, B., Varga, S.: Continuous Transi-
tion from Model-Driven Prototype to Full-Size Real-World Enterprise Information
Systems. In: 25th Americas Conf. on Information Systems (AMCIS 2020). AIS
Electronic Library (AISeL), Association for Information Systems (AIS) (2020)

14. Gray, J., Rumpe, B.: The evolution of model editors: browser- and cloud-
based solutions. Software and Systems Modeling 15(2), 303–305 (2016).
https://doi.org/10.1007/s10270-016-0524-2

15. Hölldobler, K., Michael, J., Ringert, J.O., Rumpe, B., Wortmann, A.: Innovations
in Model-based Software and Systems Engineering. The Journal of Object Tech-
nology 18(1), 1–60 (July 2019)

16. Hölldobler, K., Rumpe, B.: MontiCore 5 Language Workbench Edition 2017. Aach-
ener Informatik-Berichte, Software Engineering, Band 32, Shaker Verlag (Decem-
ber 2017)

17. Hölldobler, K., Rumpe, B., Wortmann, A.: Software Language Engineering in the
Large: Towards Composing and Deriving Languages. Computer Languages, Sys-
tems & Structures 54, 386–405 (2018)

18. Johanson, A.N., Hasselbring, W.: Hierarchical combination of internal and external
domain-specific languages for scientific computing. In: Zdun, U. (ed.) European
Conference on Software Architecture Workshops (ECSAW ’14). pp. 1–8. ACM
Press, New York, USA (2014). https://doi.org/10.1145/2642803.2642820

19. Joordens, M., Jamshidi, M.: On The Development of Robot Fish Swarms in Virtual
Reality with Digital Twins. In: 2018 13th Annual Conference on System of Systems
Engineering (SoSE). pp. 411–416. IEEE (2018)

20. Kirchhof, J.C., Michael, J., Rumpe, B., Varga, S., Wortmann, A.: Model-driven
Digital Twin Construction: Synthesizing the Integration of Cyber-Physical Systems
with Their Information Systems. In: 23rd ACM/IEEE Int. Conf. on Model Driven
Engineering Languages and Systems. pp. 90–101. ACM (2020)

21. Knapp, G., Mukherjee, T., Zuback, J., Wei, H., Palmer, T., De, A., DebRoy, T.:
Building blocks for a digital twin of additive manufacturing. Acta Materialia 135,
390–399 (2017)

22. Michael, J., Rumpe, B., Varga, S.: Human behavior, goals and model-driven soft-
ware engineering for assistive systems. In: Koschmider, A., Michael, J., Thalheim,
B. (eds.) Enterprise Modeling and Information Systems Architectures (EMSIA
2020). vol. 2628, pp. 11–18. CEUR Workshop Proceedings (June 2020)

https://doi.org/10.1109/MS.2015.61
https://doi.org/10.1109/TSE.2017.2755039
https://doi.org/10.1007/s10270-016-0524-2
https://doi.org/10.1145/2642803.2642820


23. Pargmann, H., Euhausen, D., Faber, R.: Intelligent big data processing for wind
farm monitoring and analysis based on cloud-technologies and digital twins: A
quantitative approach. In: 3rd Int. Conf. on Cloud Computing and Big Data Anal-
ysis (ICCCBDA). pp. 233–237. IEEE (2018)

24. Pauker, F., Frühwirth, T., Kittl, B., Kastner, W.: A systematic approach to opc
ua information model design. Procedia CIRP 57, 321–326 (2016)

25. Recio-Garćıa, J.A., González-Calero, P.A., Dı́az-Agudo, B.: jcolibri2: A framework
for building Case-based reasoning systems. Science of Computer Programming 79,
126–145 (2014)

26. Rodriguez-Echeverria, R., Izquierdo, J.L.C., Wimmer, M., Cabot, J.: Towards a
language server protocol infrastructure for graphical modeling. In: 21st ACM/IEEE
Int. Conf. on Model Driven Engineering Languages and Systems. pp. 370–380
(2018)

27. Sahay, A., Indamutsa, A., Ruscio, D.D., Pierantonio, A.: Supporting the un-
derstanding and comparison of low-code development platforms. In: 46th Eu-
romicro Conference on Software Engineering and Advanced Applications, SEAA
2020, Portoroz, Slovenia, August 26-28, 2020. pp. 171–178. IEEE (2020).
https://doi.org/10.1109/SEAA51224.2020.00036

28. Schuh, G., Häfner, C., Hopmann, C., Rumpe, B., Brockmann, M., Wortmann, A.,
Maibaum, J., Dalibor, M., Bibow, P., Sapel, P., Kröger, M.: Effizientere Produk-
tion mit Digitalen Schatten. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb
115(special), 105–107 (April 2020)

29. Um, J., Popper, J., Ruskowski, M.: Modular augmented reality platform for smart
operator in production environment. In: 2018 IEEE Industrial Cyber-Physical Sys-
tems (ICPS). pp. 720–725. IEEE (2018)

30. Vathoopan, M., Johny, M., Zoitl, A., Knoll, A.: Modular fault ascription and cor-
rective maintenance using a digital twin. IFAC-PapersOnLine 51(11), 1041–1046
(2018)

31. Verner, I., Cuperman, D., Fang, A., Reitman, M., Romm, T., Balikin, G.: Robot
online learning through digital twin experiments: a weightlifting project. In: Online
Engineering & Internet of Things, pp. 307–314. Springer (2018)

32. Wally, B., Vyskočil, J., Novák, P., Huemer, C., Šindelář, R., Kadera, P., Mazak,
A., Wimmer, M.: Production Planning with IEC 62264 and PDDL. In: 17th Int.
Conf. on Industrial Informatics (INDIN). vol. 1, pp. 492–499. IEEE (2019)

https://doi.org/10.1109/SEAA51224.2020.00036

	Towards Development Platforms for Digital Twins: A Model-Driven Low-Code Approach



