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Abstract—Software-intensive systems are developed with ex-
perts of different domains. This requires reifying their domain
expertise in software, which raises the need for domain-specific
languages (DSLs) to bridge the gap between the problem space
of the experts’ experience and software development. Developing
suitable DSLs still is prohibitively complex due to the lack of
pervasive concepts for DSL reuse. Existing concepts either give
rise to a conceptual gap between their abstractions and language
definition constituents or are tied to specific technological spaces.
To mitigates this, we present a novel conceptual model for the
systematic reuse of textual DSLs. This technology-independent
model promotes modularity and reusability based on language
families that exhibit specific reuse interfaces. To realize these
concepts, we conceived an extensible modelling infrastructure
that supports engineering reusable textual DSLs using the Mon-
tiCore language workbench. This enables systematic reuse of
textual DSLs for compatible technological spaces from which
DSL engineers in many domains can greatly benefit.

I. MOTIVATION

Society increasingly depends on systems developed by
experts of various domains using domain-specific languages
(DSLs) [1]. DSLs have become innovation drivers in many
disciplines, including automotive, avionics, civil engineering,
Industry 4.0, robotics, and software engineering itself. This,
e.g., led to the engineering of over 120 DSLs for software
architectures [2] used in different domains and various tech-
nological spaces [3]. All of these need to be developed,
maintained, and evolved on their own, which is costly, error-
prone, and hinders progress in the multi-domain engineering
of modern software-intensive systems.

Research in software language engineering (SLE) [4] in-
vestigates the efficient and reliable engineering, maintenance,
deployment, use, and evolution of DSLs to support software
engineers and domain experts in efficiently developing future
systems. Despite attempts to a systematic SLE, many DSLs
are engineered ad-hoc, for very specific challenges, and very
limited purposes only [5]. Hence, research has produced a mul-
titude of solutions to facilitate creating DSLs. These include on
metamodels [6], grammars [7], or abstract data types [8], inter-
preters [9] or code generators [10], and well-formedness rules
defined in metalanguages [8] or programming languages [11].
For these, the SLE community has proposed various reuse
techniques, based on experiences from general software reuse
(e.g., polymorphic [12] and parametric [13] reuse, composi-
tion [7] or variability [14]). Although these techniques address
a wide range of scenarios, most support specific parts of DSL
definitions (e.g., abstract syntax or code generators) only and
are limited to specific technological spaces. This complicates

the engineering and customization of real-world DSLs for
different usage scenarios, which ultimately hinders systems
engineering with domain experts.

To mitigate this, we present the COLD4TXT conceptual
model for component-based language development of textual
DSLs that realize behavior with code generators (txtDSLs).
In this model, language components with explicit interfaces
of required and provided grammar rules, well-formedness
rules, and code generators are the principal elements of reuse.
Feature models arrange these components following their
required and provided extension points to language families.
Thus selecting features governs how the language components
are composed. Based on this model, we present a systematic
method to describe and resolve the component’s variability as
well as their customization.

As the technical realizations of composing grammars, well-
formedness rules, and code generators have been presented
already [10], [15], this contribution illustrates their conceptual
framework consisting of:

1) The COLD4TXT conceptual model for reusable txtDSL
components featuring explicit interfaces of required and
provided elements.

2) A systematic method for engineering languages based on
reusable txtDSL components.

3) A realization of both with the MontiCore language engi-
neering workbench.

With these, reusing language components in different lan-
guages families can greatly facilitate engineering DSLs.

In the following, Sec. II motivates our method by example.
Afterwards, Sec. III presents txtDSL language components
and Sec. IV our method to reuse theses for efficient txtDSL
engineering. Ultimately, Sec. V debates observations, Sec. VI
discusses related work, and Sec. VII concludes.

II. EXAMPLE

Consider using architecture description languages
(ADLs) [2] – DSLs for the specification of software
architectures – for the different departments of a large
corporation. In each of these departments, some developers
occasionally, maybe once a week, (re-)model parts of a
specific software architecture (e.g., of a train, a factory, or
a mobile service robot). Instead of learning overly generic
ADLs and operating with complex modeling guidelines that
describe how to properly model with these, modelers of each
department should be able to use their specific terminology
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Fig. 1. A language family comprising features of language components that
can fulfill the requirements of all three departments.

and learn only the modeling elements required for their
specific application.

Hence, while in general, these ADLs require some notion
of components, ports, and connectors, each department has
domain-specific requirements for the ADLs to be used:

• Department A (trains) requires components that support
dynamic reconfiguration via components modes [16] to
enable switching components related to country-specific
technology when the train crosses a border.

• Department B (smart factories) demands components
with assumption/guarantee contracts [17] that facilitate
correct integration of new components when the factory
reconfigures.

• Department C (robotics) demands novel connectors that
support bridging architecture models with the robot op-
erating system (ROS) [18].

Developing a general ADLs that captures all of these concepts
is not feasible as it complicates modeling in departments
where only some of these modeling elements are not required.
Alternatively developing three specific ADLs – each with
their specific infrastructure (e.g., parsers, model checkers, code
generators) – independently is costly and inefficient.

Instead, building suitable language components and com-
bining these as required can significantly reduce the effort
of fulfilling the deparments’ requirements. For our example,
consider the language family of Fig. 1: this family contains
the language features required by the different departments and
each feature is realized by a language component comprising
a combination of grammar, well-formedness rules, and code
generators. By developing independent language components
that realize the different features and by leveraging variability
modeling techniques, the configuration of the base ADL for
the different departments only requires selecting the appropri-
ate language components and (semi-)automatically integrating
these. If no appropriate features are available, developing and
integrating novel language components and integrating these

into existing language families reduces the effort of building
a suitable ADL.

Our method to engineer and reuse language components
considers both, planned variability and opportunistic reuse, and
supports semi-automated composition of language component
constituents in the technological space of the MontiCore [11]
language workbench.

III. COLD4TXT LANGUAGE COMPONENTS

The conceptual model of COLD is a vision of language
reuse that requires concretization. For txtDSLs, we have de-
veloped the COLD4TXT variant of COLD which realizes vari-
ability, explains how resolving variability affects the language
components, how variability and customizability interact, how
variability, customizability, the language facets’ artifacts relate,
and provides modeling techniques to realize this. At its core,
COLD4TXT resolves variability and customizability through
the additive composition of language components according
to their explicitly provided and required extension points.

To enable this, COLD4TXT differs from COLD: In
COLD4TXT, language families and language components
replace language concerns and language facets of COLD,
respectively: The language concerns of COLD provide both
variability and customizability. This entails that they pro-
vide the complete customizability of their intrinsic language
product line and express this towards the user despite only
a small subset of customization options being available in
the language product derived from the product line (namely
these provided by the features selected for the product). In
contrast, customizability should express means for tailoring
languages that are not resolved by variability. Therefore, the
language component comprising the derived language product
provides customizability options instead. Moreover, to enable
the proper composition of language components based on a
feature selection, the COLD4TXT language components yield
interfaces themselves. These interfaces guide and restrict their
use in the variation interface’s feature model and enable com-
posing two language components (semi-)automatically, with
only the implementation of adapters for generator composition
requiring manual interaction [10]. To explain the effects of
resolving variability and customizability in COLD4TXT, a
language component consists of a

• one language component interface,
• one customization interface,
• up to one grammar artifact,
• arbitrary many well-formedness rule artifacts, and
• arbitrary many code generator artifacts.
The language component interfaces explicitly provide or

require language grammar productions, well-formedness rules,
or code generators. Also, they may yield constraints between
these (e.g., representing whether an extension point is optional
or mandatory, or to express that selecting a provided code
generator entails selecting a grammar production as well).
The provided extension points for grammar rules identify
productions of the contained CFG that are meant for reuse
(e.g., expressions of an imperative modeling language, method
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Fig. 2. Conceptual model for txtDSL reuse focusing on language families
and their variation interfaces.

signatures of a class diagram language, . . . ). The required
extension points for grammar productions explicate produc-
tions that demand (optional or mandatory) extension for the
contained syntax to be completed.

Specifying required well-formedness rules within the in-
terface either demands for giving complete specifications
of the required well-formedness rules behavior (i.e., their
implementation) or specifying conditions under which an
independently provided well-formedness rule is suitable for
the required rule (i.e., some form of acceptance tests). The
former entails having a specification that is precise enough to
become a implementation automatically and the latter testing
rarely would be complete. Hence, we decided to consider
the set of well-formedness rules of a language component as
its extension point. Thus, a language component can provide
arbitrary many well-formedness rules that may or may not be
used by other components, but it cannot (yet) describe that
it requires additional well-formedness rules. This is subject
to ongoing work. For code generators, language components
leverage the notions of producer interface and product inter-
face as introduced in [10]. Hence, language components may
provide and require extension points that declare exactly one
producer interface and one product interface. The customiza-
tion interfaces of language interfaces comprise parameters of
well-formedness rules and generators that are not meant to
be resolved through the closed variation of language families
but enable open customization instead. Such customization
could be the numbers of initial states supported in models
of a language component for an automaton DSL or the path
a generator should produce artifacts in.

The language interfaces ground their required and provided
extension points the artifacts of their language components.
Here, the red concepts (solid lines) represent the language
components and the yellow concepts (dashed lines) highlight
their customization interface parts. The language components
are part of language families as depicted in Fig. 2: aside from
at least one language component, a language family contains
a variation interface comprising a single feature model and
a mapping that relates features to language component inter-
faces. By transitivity of language interface extension points,
this also identifies one language component per feature. The
feature model of the variation interface is developed by a
language family designer that intends to derive similar DSLs
of joint buildings blocks. As such, she models how selecting

language family CorpADL {

components

MontiArc, ContractAutomata, ComplexPortTypes, Expressions;

variation interface root BaseADL {

mandatory Components {

optional AsmGarContracts { optional Invariants; }

optional GenericPortTypes;

}

// additional features relations

}

root feature BaseADL uses MontiArc;

abstract feature Components;

feature AsmGarContracts uses ContractAutomata {

binds production Automaton to Components.ArcElement;

binds generator Automaton2Java to Components.BehaviorGenerator;

binds wfrs NonHierarchical; 

}

feature Invariants uses Expressions {

binds production Expression to AsmGarContracts.Expr.

binds Expression.All;

binds generator Expressions2POJO to AsmGarContracts.Guard2Java;

}

// additional features definitions

}
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Fig. 3. Textual model of the CorpADL language family of Fig. 1.

language component ContractAutomata {

grammar mc.automata.ca.ContractAutomata;

provides production ConractAutomatonMain;

provides AsmAutomaton for production AssumptionAutomaton;

provides GarAutomaton for production GuaranteeAutomaton;

requires mandatory Expr for production IGuardExpression;

provides generator Automaton2Java for ContractAutomatonMain {

producer IAutomatonGen; 

product IAutomatonPairRealization;

}

requires generator Guard2Java for IGuardExpression {

producer IGuardExpressionGenerator;

product IGuardExpression

}

provides wfrs Hierarchical { 

mc.automata.ca.coco.base.*;

mc.automata.ca.coco.hierarchical.*; 

}

provides wfrs NonHierarchical { 

mc.automata.ca.coco.base.*;

mc.automata.ca.coco.NoHierarchy; 

}

parameters { 

int max for mc.automata.cocos.NumHierarchyLevels.initialize;

String prefix for IAutomatonGen.generate;

} 

}
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Fig. 4. Model of the ContractAutomata component sketched in Fig. 1.

a specific child feature implements the extension points of its
parent feature and specifies constraints between features in the
Feature2ComponentMappting.

The language components are composed based on the
arragement of language components in the variation interfaces’
feature model. From this, a new language component compris-
ing their (possibly composed) artifacts together with a derived
interface are synthesized. If there are required extension points
not fulfilled by the selected features, these become part of the
new component’s interface.

COLD4TXT is realized in a language engineering frame-
work using the MontiCore language workbench. To this end,
we have developed modeling languages for language families,
language components, feature configurations, and customiza-
tion configurations as well as a toolchain that supports resolv-
ing variability and customizability.



language component Expressions {

grammar mc.basic.expressions.Expressions;

provides production Expression; 

provides wfrs All { mc.basic.expressions.*; }

provides transformation Expressions2POJO for Expression {

producer IExpressionJavaGenerator; 

product IExpression;

}

}
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Fig. 5. Model of the Expression component sketched in Fig. 1.

The language family CorpADL of our example (cf. Fig. 1)
can be represented as illustrated in Fig. 3. This family de-
scribes which language components it comprises (ll. 2-3),
its variation interface in terms of a feature model (ll. 4-
10), and defines its features (ll. 11-24). A feature either is
a root feature (at most one), an abstract feature solely for
grouping other features (such as the feature Component),
or is realized by a language component. Each feature of the
latter kind defines how the provided extension points of its
language component are mapped to the required extension
points of its parent feature. For instance, selecting the feature
Invariants entails that (1) its production Expression
will be embedded [15] into the extension point Expr of
the language component AsmGarContracts (l. 21); (2) its
well-formedness rules provided via the extension point All
will be reused (l. 22); and (3) its code generator provided via
the extension point Expressions2POJO will be embedded
into the code generator Guard2Java of language component
AsmGarContracts (l. 23). The well-formedness rules of
the language family ensure that these mappings are valid w.r.t.
the language components illustrated in Fig. 4 and Fig. 5.

The next section explains how these language components
are combined.

IV. DERIVING LANGUAGES

Modeling language families with COLD4TXT first demands
its instantiation for a specific technological space by providing
modules for (1) analysing the compatibility of COLD4TXT
models with the referenced technology space artifacts and (2)
composing these artifacts according to COLD4TXT specifica-
tions as depicted in Fig. 6. The former modules, for instance,
check whether a well-formedness rule provided by a language
component exists or whether a grammar production declared
as an extension point indeed is an interface production. The
latter modules take composition instructions (the binding map-
pings) and related artifacts, and compose these accordingly.
For MontiCore, these modules are provided. Language engi-
neers than can use this instance of COLD4TXT to engineer
language components. Language family developers then can
reuse these in different contexts through arranging these in
the variation interfaces. Language family users then select the
desired language features matching their requirements and use
the COLD4TXT instance to synthesize a suitable language
component. If this language component is incomplete w.r.t. its
mandatory required extension points or parameters, it cannot
be used as a DSL yet. Then, the language family user has to

specify the missing customization configuration, before a fully
configured language component and the artifacts for a DSL in
the corresponding technological space are derived.

For MontiCore, these artifacts are a synthesized CFG the
union of the selected well-formedness rules, and a code
generator composed along its producer and product interfaces.
These artifacts can be processed by MontiCore to produce a
DSL that is completely independent of language families and
language components. Moreover, the (possibly incomplete)
language components derived from resolving variability and
customizability can be used as parts of other language families
again, which facilitates their reuse.

Based on a feature configuration, the COLD4TXT frame-
work composes the language components associated with
the selected features pairwise and top-down. The result-
ing component yields the provided extension points of the
parent and child components. For each mandatorily re-
quired extension point (e.g., Expr of language component
ContractAutomata), if an implementation is defined by
the binding mappings in the variation interface’s feature
model, then this extension point becomes optional and is
copied to the interface of the new component as well. The
sets of well-formedness rules from the parent component and
the ones from the selected provided extension point of the
child component are merged and provided as a new extension
point in the new component. For the CFGs, COLD4TXT
expects the responsible modules of the specific technology
space to produce combined CFGs and adapters between the
participating code generators accordingly.

For instance, selecting the features “Asm/Gar Contracts”
and “Invariants” depicted in Fig. 1 with the variation interface
specified in Fig. 3 entails combining the language components
ContractAutomata (Fig. 4) and Expressions (Fig. 5)
accordingly. The resulting language component is given in
Fig. 7. This component uses a synthesized CFG featuring
contract automata and expressions (l. 2), the union of selected
well-formedness rules, and the composed code generators.
Its interface reduces the cardinality of the required grammar
extension point Expr to optional (l. 7), adds the provided
extension point Expression (l. 8) as well as the code
generator for expressions (ll. 14-17) from the Expressions
language component of Fig. 5, and provides a new set of
well-formedness rules (ll. 19-23). As this component does not
require further extension, specifying values for its parameters
enables MontiCore to derive a complete DSL from it.

V. DISCUSSION

In contrast to the purely conceptual models of DSL
reuse [19], [20], COLD4TXT on capturing all DSL definition
constituents at a sufficient level of abstraction to support the
precise explanation of the effects of composing these, binding
their variability, and resolving their customizability on its own.

The conceptual model of COLD4TXT aims to be inde-
pendent of technological spaces as long as these enable to
(1) identify grammar extension points; (2) compose grammars,
sets of well-formedness rules, and code generators without
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to facilitate creating DSLs.

language component ContractAutomataWithExpresssions {

grammar mc.automata.ca.ContractAutomataWithExpressions;

provides production ConractAutomatonMain;

provides AsmAutomaton of production AssumptionAutomaton;

provides GarAutomaton of production GuaranteeAutomaton;

requires optional Expr for production IGuardExpression;

provides production Expression;

provides transformation Automaton2Java for ContractAutomatonMain {

producer IAutomatonGen; 

product IAutomatonPairRealization;

}

provides transformation Expressions2POJO for Expression {

producer IExpressionJavaGenerator; 

product IExpression;

}

provides wfrs All { 

mc.automata.ca.coco.base.*;

mc.automata.ca.coco.NoHierarchy;

mc.basic.expressions.*;

}

parameters { 

int max for mc.automata.cocos.NumHierarchyLevels.initialize;

String prefix for IAutomatonGen.generate;

} 

}
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Fig. 7. Language component synthesized as result from selecting the features
“Asm/Gar Contracts” and “Invariants” of Fig. 3.

eliminating the extension points in the process; (3) describe
code generators and the generated products in terms of their
interfaces; (4) identify parameters of well-formedness rules
and code generators in an object-oriented fashion. While
these are strong assumptions, we currently investigate applying
COLD4TXT and its realization within the technological spaces
of Neverlang [7] and Xtext [21]. Moreover, it currently only
supports embedding in the sense of [10], whereas there are
various other composition operators for txtDSLs. Whether and
how supporting these is possible, also is ongoing research.

In the future, we aim to extend the notion of language
components to feature additional constituents (e.g., model-to-
model transformations or editor fragments).

VI. RELATED WORK

Research on Language product lines (LPLs) [15], [22],
[23] is scattered across different kinds of DSL definition con-
stituents and technological spaces. And while we developed a
notion of LPLs for the technological space of MontiCore [15]
in particular, there currently is no actionable understanding
of the variability of complete txtDSLs (i.e., encompassing all
four kinds of constituents). Moreover, (closed) variation rarely
is connected with (open) customization to systematically reuse
DSLs in general. There are only a few solutions that consider
either txtDSL variation or customization across different kinds
of DSL definition constituents. These include a few language
workbenches [24], such as Argyle [23], Neverlang [7], or the
combination of SDF and FeatureHouse [22].

In Argyle [23], DSLs are constructed from language assets
that resemble concerns and comprise syntax, data types, and
code generation templates. A feature model arranges assets
according to their dependencies, which demands their white-
box apriori composition that hinders the reuse of facets.
In contrast, COLD4TXT will be based on our exploratory
work [15] that makes extension points of concerns explicit and
supports the black box composition of their artifacts through
the generation of suitable adapters between these.

SDF and FeatureHouse realize variability based on compo-
sitional language modules containing grammar rules, typing
rules, and evaluation rules [22]. It also focuses on the white-
box composition of artifacts and interpretation. Similar partial
solutions towards variation or customization of selected kinds
of DSL definition constituents are available from a variety
of language workbenches. For instance, ableC [25] is an
extensible C language that leverages attribute grammars to
reuse syntax and semantics, MPS [21] enables reuse of projec-
tional languages with views and model transformations, and
Spoofax [8] supports reuse of textual, interpreted languages.
All of these focus on specific technological spaces.



VII. CONCLUSION

We have presented the novel COLD4TXT conceptual frame-
work to facilitate reusing textual DSLs through systematic
variability and customizability. In COLD4TXT, language fam-
ilies capture txtDSL variability as feature models and realize
it via composition of language components according to
their interfaces. Composing language components yields new
language components that may demand further extension or
customization before these can be translated into complete
DSLs for specific contexts. This facilitates engineering textual
DSLs for different contexts and fosters the application DSLs.
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