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Abstract

The efficient tracking and management of goods within light commercial vehicles (LCVs) is crucial
for various industries, particularly craftsmen and parcel delivery services. This article explores the
integration of artificial intelligence (Al) and sensor technologies to enhance item tracking and optimize
logistical operations in LCVs. Two technological approaches are examined: a Bluetooth-based tracking
system and a camera-based parcel identification framework. The Bluetooth-based solution is
designed primarily for craftsmen. It employs Bluetooth tags, vehicle connectivity gateways (VCGS),
and a centralized server to provide real-time inventory monitoring and prevent tool misplacement.
The camera-based system is aimed at parcel carriers. It utilizes Al-driven object detection and pose
estimation to localize and identify parcels within the vehicle. Experimental evaluations show that
Bluetooth tracking ensures reliability in tool management and the Al-based vision system holds
promise for future scalability in parcel logistics. The findings underscore the need for adaptive
tracking methodologies to improve efficiency, reduce operational costs, and support the digital
transformation of commercial vehicle ecosystems.
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ommercial vehicles are defined as vehicles used by
a business to transport goods or people on public
roads. One prominent subclass of commercial
vehicles is light commercial vehicles (LCVs), which are
often defined as having a maximum gross weight of 3.5
tons. LCVs play a critical role in a wide array of domains
such as craftsman and parcel deliveries. Given their pivotal
role, optimizing their use in any way can prove beneficial.

The advent of connected vehicles provides one way
to do this, as it has introduced efficiencies in mobility-
related processes [1]. Integrating intelligent routing with
telematic services facilitates reductions in distance
traveled, time spent on the road, and can even improve
driver behavior toward more efficient practices [2].
Numerous automotive manufacturers currently provide
smart vehicle services [3] and/or telematic services, avail-
able through various models, such as subscription-based
or complimentary offerings. In addition, external service
providers have penetrated the market, combining vehicles
with proprietary smart devices to provide telematic
services [4].

However, LCVs serve as more than just transportation
apparatuses. For craftsmen, the LCV fulfills multiple
critical business functions [5] by serving as a storage for
power tools and inventory, a mobile workshop, and an
office where invoices are prepared and documentation is
organized. In addition, the vehicle doubles as a break room
where the operators spend their lunch breaks. In parallel,
a parcel carrier’s LCV primarily serves to convey parcels.
For this task, it is crucial to store the parcels in a system-
atic manner, which requires selecting and arranging
parcels at each delivery point for efficient last-mile delivery.
Furthermore, vehicle storage capacity must be adaptable
during a shift to accommodate delivered parcels and any
unforeseen parcel pickups.

Consequently, the development of smart applications
and services that improve user efficiency beyond mobility
is a crucial step in vehicle digitization. This article examines
methods to enhance efficiency through artificial intelli-
gence to help optimize logistical operations in LCVs via
in-vehicle item tracking. Concretely, we consider two
specific approaches, each targeting a different use. First,
we describe a Bluetooth-based strategy for managing
tools within a craftsman’s LCV. Second, we describe a
camera-based system that uses computer vision tech-
niques to identify parcels within a delivery context.
We describe each approach in detail and empirically
evaluate the potential of the systems.

The body of research within the LCV domain remains
relatively sparse. Millo et al. [6] introduced a techno-
economic evaluation framework to assess commercial
vehicle concepts, focusing on the total cost of ownership
and the payback period as key factors for fleet operators.
Their model accounts for variations in transport tasks,
vehicle size, and powertrain technology, allowing a

systematic comparison of these variables. Their frame-
work supports strategic decisions by considering payload
capacity, volumetric load, driving range, vehicle cost, and
payback period. Their work does not include specific use
cases, such as parcel delivery.

Perboli and Rosano [7] examined the role of freight
transport and parcel delivery in urban areas, especially
last-mile delivery. The study aims to identify key actors,
analyze their business models, and explore the integration
of traditional and green logistics. They also introduce a
simulation optimization tool to evaluate mixed-fleet
policies in urban delivery.

Van Duin et al. [8] addressed the rapid growth of
e-commerce and the resulting fierce competition among
parcel delivery service providers, emphasizing the need
for innovation to maintain a competitive edge. They high-
light that “last-mile delivery,” often conducted with large
LCVs delivering single parcels to doorsteps, is the most
expensive part of logistics. The literature suggests that
parcel lockers offer significant cost-savings potential. The
article includes a review of the literature on parcel lockers,
describes three analysis methods, and presents the
findings of a case study.

Figenbaum [5] examined the use of electronic travel
logs to analyze the travel behaviors of Norwegian
craftsmen and service companies. These logs were
collected from devices installed on the vehicles used by
the craftsmen. These people rely on motorized transpor-
tation to transport personnel, tools, and materials to work
sites. The research of Figenbaum evaluates the travel
patterns of craftsmen. They investigated how travel
patterns can become more sustainable by transitioning
from diesel-powered utility vehicles to battery electric
utility vehicles.

Craftsmen and parcel carriers constitute the primary
customer segments of LCVs, each possessing distinct
requirements for their vehicles based on their occupational
procedures and unique characteristics [5]. Despite these
differences, both groups of users share a common need
for an item-tracking application. An item-tracking applica-
tion is a system that enables real-time monitoring of
tagged items within the loading area of a commercial vehicle.

At the initial level, tagged items can be associated
with a specific vehicle, capturing binary loading status, as
well as the location and time of loading and unloading.
At a more advanced level, items can also be spatially
located within the loading area, with actuators indicating
the precise position of the required items. For craftsmen,
the primary requirement is the tracking of power tools.
Business owners benefit from real-time oversight of their
tool inventory, facilitating efficient coordination and
enhancing the perceived responsibility of employees for
the tools they use.

Craftsmen can also utilize real-time tracking to ensure
all necessary tools are loaded, preventing inadvertent
omissions from storage or tools being left behind at
construction sites or stolen. Material tracking, which
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includes monitoring fill levels, assists craftsmen in
adequately preparing for daily tasks. Tool and material
tracking can enable stock optimization, optimizing the
quantity of tools and materials, which minimizes the
required fixed resources. However, this process is chal-
lenging as these items are frequently stored in containers,
rendering it impractical to monitor them using cameras.

In contrast, parcel carriers require a parcel tracking
system to streamline the loading and unloading processes,
which are characterized by stringent temporal demands.
During the loading phase, the parcel carriers manually
scan the parcels using barcode devices and strategically
arrange them within the vehicle. This process is a well-
studied process [9], and several systems are proposed in
the literature [10, 11]. The spatial configuration of parcels
is determined by the delivery sequence and the couriers’
individual methodologies, which is seen as a challenge
due to the high number of possible configurations and
optimization requirements. In the delivery process, the
retrieval of specific packages can be hindered by subop-
timal vehicle organization, thus increasing operational
stress and costs. While barcode and QR code systems
are effective in many scenarios, they depend on direct
line-of-sight and proper orientation. Our CNN-based
vision system addresses these limitations by enabling
hands-free identification even when codes are occluded
or parcels are arbitrarily oriented.

Consequently, for both use cases, there is a compel-
ling need for innovative methodologies to enhance item
tracking, inventory optimization, and parcel organization
and retrieval, thereby easing the logistical challenges
faced by craftsmen and delivery personnel.

The task of recognizing items and packages within a
delivery vehicle presents considerable challenges. A
limited number of brands (e.g., Zalando, Amazon) account
for a substantial volume of parcels, leading to a prevalence

of visually similar items. This is also valid for similar tools,
e.g., hammers or screw drivers from the same brand. It
is impractical to train the system for every parcel configu-
ration; hence, it must be able to reliably detect and identify
new, unfamiliar parcels and tools. Additional challenges
arise from the limitations of image sensors in vehicular
environments, including restricted resolution, limited field
of view, optical distortions, and variable lighting condi-
tions, all of which complicate accurate object detection
and localization.

2.1. Tool Tracking System
Overview

The tool tracking system is composed of three main
components (Figure 1). These are Bluetooth tags, DSA
VCG, and server. Together, these components create an
integrated system for efficiently tracking tools, ensuring
their availability, and optimizing their usage. We describe
these in the following:

1. Bluetooth tags: These are small devices attached
to the tools. Their primary function is to report
the presence and possibly the location of a tool
by periodically emitting radio signals.

2. DSA VCG: This is a computing unit installed in a
craftsman’s vehicle or warehouse. The DSA VCG's
role is to receive signals from the Bluetooth tags,
process this information, and then forward the
processed signals to a centralized server.

m Overall system architecture including software and hardware components.
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Essentially, it acts as a bridge between the
physical tools and the digital tracking system.

3. Server: The server receives data from one or
more DSA VCG units. It performs further
processing of this data, stores it in a database,
and prepares it for user interaction, often through
graphical interfaces. This enables users to track
and manage their tools effectively, providing
insights into tool location and usage.

The Bluetooth tags in the car are mostly provided by
Bosch (Bosch Professional GCC 30-4). Bluetooth tags send
messages that a receiving antenna can utilize to detect
if a beacon is within reach. The intervals between two
messages are alternately 8 and 16 s. We attached two
Bluetooth antennas (Lintech BLE Sniffer) to the DSA VCG
via the RS232 port. The sniffers provide the DSA VCG with
all Bluetooth messages within its detection area. To avoid
processing a large number of messages that do not
belong to our system, the DSA VCG filters all incoming
messages to only process those that use a predefined
service universally unique identifier (UUID).

After filtering the messages, the DSA VCG calculates
which tools are currently in the vehicle based on the
messages it received. The concrete processing steps for
this are described later in Section 2.2 of this report. After
deciding which tools are in the vehicle, the DSA VCG
informs the server about the current state of the trunk,
how the trunk content was modified since the last
message to the server, and about the status of the vehicle
(e.g., speed and position).

The server is based on MontiGem [12] and consists
of three components that are distributed using different
Docker containers: backend, database, and frontend
(Eigure 2). The backend handles all message processing
and database updates. The database is provided in two

m Web server system architecture.

different containers. One database is shared between all
companies. It includes the information to which certain
DSA VCGs belong and which companies exist. Additionally,
each company also has its own database in which the
information about the company is stored (i.e., tools,
vehicles, user accounts, etc.). A more detailed description
of the data structure can be found in Section 2.3. The
frontend component provides a web app to users. After
logging in, users can see an overview of all of their tools
and vehicles. Location data and maps are provided exter-
nally by Microsoft Azure.

Our in-vehicle system uses motion data from a
passive infrared (PIR) sensor, Bluetooth data from beacons,
and location data from the global positioning system
(GPS). This data is used to detect loading and unloading
of the loading area in different scenarios.

The first scenario is loading a
vehicle, Figure 3(a). This can happen, for example, in the
morning when craftsmen are loading tools from a locked
warehouse into the vehicle, or in the evening when tools
are to be transported back to the company site when
leaving a construction site.

In this scenario, the system may initially be switched
off. As soon as the PIR sensor detects movement, the
system is powered up. Once the DSA VCG is booted, the
Bluetooth sniffers can detect Bluetooth beacons in their
environment. If it is detected that there are Bluetooth
beacons in the vehicle that were not present when the
system was last switched off, these tools are marked as
newly added. Additionally, the system tracks the current
location via GPS to inform the server where the tools
are loaded.

To save power, the system is switched off as soon
as no movement has been detected for a certain (adjust-
able) period of time and the system has not been supplied
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m Tool tracking scenarios described using state charts.
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with external power. In its prototypical implementation,
the system is supplied with power via the vehicle’s ciga-
rette lighter. In our tests, we found that some vehicles
supply the cigarette lighter with power permanently, while
other vehicles only supply power when the ignition is
switched on. Consequently, it is essential to implement
measures that avert the system from depleting the car
battery’s charge completely, which would consequently
inhibit the vehicle’s ability to start. In our specific situation,
we addressed this issue by incorporating a voltage
monitoring device.

In the second scenario, the
craftsman is at a construction site and takes the tools
he needs for his work from the loading area Figure
3(b). In this case, if the system is not already running,
it will be restarted by motion detected by the PIR
sensor. In a similar way to the first scenario, the system
also recognizes that a tool is no longer in the vehicle
on the basis of the (un)received Bluetooth data. The
details of the processing steps for these operations
are described in the next section. In a similar way to
the first scenario, the system also recognizes that a
tool is no longer in the vehicle on the basis of the (un)
received Bluetooth data. The details of the processing
steps for these operations are described in the next
section. Basically, the detection of a missing tool is
based on the fact that the Bluetooth messages of an
unloaded tool are either not received at all or only with
a very weak received signal strength indicator
(RSSI) value.

The RSSI values used by the
system to decide whether a tool is inside or outside the
vehicle are not static. The system is programmed to
dynamically configure itself throughout the duration of
the journey, provided that no tools are being loaded or
unloaded while the vehicle is in motion, Figure 3(c). This
design allows us to place the antennas at different posi-
tions in the vehicle—provided that reception of the
Bluetooth beacons is possible. This is particularly impor-
tant for a prototype where the antennas are not perma-
nently installed in the vehicle. When the vehicle reaches
a speed of at least 35 km/h, it is considered to be in a
driving state. Within this operational mode, the unloading
of tools is prohibited. Future implementations may inte-
grate the system directly into the vehicle, allowing for the
modification of this threshold. Alternatively, the speed
may be assessed using data intrinsic to the vehicle instead
of relying on GPS measurements.

As soon as the system is in reconfiguration mode
due to a speed greater than 35 km/h, the RSSI values of
the received Bluetooth messages are used to adjust the
threshold values above which a tool is considered to
be loaded or unloaded. If the speed drops again below
35 km/h, the system is switched back to normal loading
and unloading mode.

2.2. DSA Vehicle Connectivity
Gateway

This section describes the process operations that
we perform within the vehicle using the DSA VCG. The
VCG is connected via R5232 with two Lintech Bluetooth
sniffers. These receive the Bluetooth messages from the
beacons, which are attached to the tools of the craftsmen,
and forward the messages to the DSA VCG. Power is
supplied to the DSA VCG via an external battery, which
is charged by the cigarette lighter. Although the VCG also
has an internal battery, its power is not sufficient to
supply the connected Bluetooth sniffers. A PIR sensor
decides when the DSA VCG shall receive power from the
external battery. In addition, the DSA VCG is also
connected directly to the power source. So, the DSA VCG
always receives power when motion is detected or when
power is provided via the cigarette lighter. In addition,
the DSA communicates via GPS with GPS satellites and
via cellular network with our servers. The GPS location
is continuously recorded because it may take some time
for the system to detect a missing tool, because beacons
may only infrequently send messages. If the craftsman
starts driving right after unloading a tool, the system
shall not report the current location of the vehicle as the
location where the tool was unloaded, but instead the
recorded location where the vehicle was when the tool
was unloaded.

The activity diagram in Figure 4 shows how the
system updates its database of beacon data. After
collecting the data from our two antennas, we identify
which Bluetooth messages refer to (Bosch) beacons by
comparing the service UUID of the Bluetooth message
to the service UUID of (Bosch) beacons.

Upon identifying messages that function as beacons
for processing within our system, we proceed to distin-
guish between beacons that have undergone prior cali-
bration and those that remain pending calibration
(Eigure 4).

While the vehicle is driving, the system learns what
RSSI values correspond to a tool being in the trunk of the
vehicle. These values are later used as thresholds for
loading or unloading beacons. In case we do not have
that data available, we use general thresholds. These
general thresholds are usually very high to prevent incor-
rectly marking a tool as loaded. Moreover, if two vehicles
stand next to each other, the high general threshold
prevents both vehicles from considering the same beacon
as loaded.

If the currently processed Bluetooth message does
not exceed its respective RSSI threshold, we discard the
message. If the threshold is exceeded, we use the data
to update our database. In general, our processing decides
between three states of beacons known to the system:
InTrunkBeacons, AllBeacons, and Unloaded. InTrunkBeacons
are beacons that are considered within the vehicle.
AllBeacons are beacons whose messages are received
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m Activity diagram of beacons describing how beacons change their state.
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by the antennas, including those whose RSSI values are
too low for them to be considered in the trunk. The tools
attached to these beacons are usually close to the vehicle,
e.g, in the vehicle parked next to the vehicle. Unloaded
beacons are beacons that are not received by the
antennas at all and are considered unloaded.

The following describes more precisely how beacons
are moved between the different states. To consider a
beacon loaded that is currently not loaded, the beacon
has to be seen at least n times (n is configurable).

If @ beacon has already been detected n times,
we compute an aggregated RSSI value from its current
and past detections. We store the last m RSSI values for
each beacon in a circular buffer and take the sum of the
minimum and maximum values in this buffer. This value
is then compared against the beacon- and antenna-
specific threshold we calculate during the recalibration
phase. The thresholds are calculated using the
same formula.

If the current value of the aggregated RSSI values
exceeds the thresholds, the beacon will be loaded.

Unloading a beacon from the trunk uses the same
principle: a beacon is removed when its aggregated RSSI
value drops below the threshold. Additional rules include:

1. Tools cannot be unloaded while the vehicle is
driving and recalibrating (speed >35 km/h).

2. Atool is unloaded if undetected for a set period,
which also helps identify tools unloaded while the
system was off.

@

It is also possible to unload beacons based on the
frequency with which messages are received. If the
connection to a beacon is weak, one might only receive
messages from a beacon infrequently. We calculate a
running maximum of the times between two receptions
of a beacon. This is calculated for every beacon—antenna
pair. If no message has been received from a beacon for
the running max plus an additional puffer time (16 s in
our prototype), we unload the corresponding tool. There
are also a minimum and maximum frequency to prevent
outliers: In our prototype, beacons are not unloaded
based on reception frequency if they have been received
within the last 48 s; if a beacon has not been detected
within the last 180 s, it will be unloaded regardless of the
running maximum. Both of these values (48 and 180)
are adjustable.

More information about the beacon handling algo-
rithm can be found in [13].

2.3. Server Architecture

This section elaborates on the backend architecture of
our server, which encompasses the internal components
and processes that remain inaccessible to end users in
their interactions.

This data structure is used as the basis for the MySQL
tables created for each craftsman company.

MySQL tables created for each craftsman company.
Companies besides their name also have a start and end
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of day, and a flag for deactivating unusualTimes detec-
tions. If this is set to true, the system will notify the
company owners about any unloads that happen outside
their business hours, i.e., before startOfDay or after
endOfDay. The company has employees which can
assume different roles. The roles decide which access
rights the employees have within the system. For example,
Handymen may not add new vehicles to the system; only
administrators have that right.

Containers are our base entity for both storages and
vehicles. Exactly one container in the system must be the
default container. This container gets assigned all newly
added tools before they're first detected by any DSA VCG.
In addition to the serial number of the DSA VCG, the
containers also have a name and location info. These can
be set by the user to identify the container. The location
info can be used for storages at job sites that do not have
a recognizable address. The optional information that can
be added to vehicles is only used as a convenience for
the users. It is not actually processed, besides being
displayed to the user when viewing information about a
specific vehicle.

Each container can have a location. The location
contains a GPS longitude/latitude and an address calcu-
lated by Azure Maps using the longitude/latitude informa-
tion. To save costs, the address is only calculated
on-demand when a user requests a website where the
address for that location needs to be displayed. The
meaning of precise/imprecise locations is explained at
the end of this section.

The tools encompass, most significantly, a media
access control (MAC) address. This address is used to
identify the beacon attached to the tool. Users read the
MAC address by scanning a 2D code printed on the
(Bosch) beacon using a scanner app on their phones and

m Processing pipeline for incoming messages.

then provide the MAC address to us when adding the
tool to the system. The other information is only used to
display the tools in the system.

In addition to storing information, the server is also
responsible for processing incoming messages, Figure 5,
received by the DSA VCGs. Incoming messages are
formatted in JavaScript Object Notation (JSON) format.
Each message contains a serial number of a DSA VCG
that determines to which craftsman company the message
applies. Moreover, each message contains the current
location and isDriving (i.e., speed >35 km/h) of the vehicle
and a timestamp when the message was created.

Regarding the content of the trunk, the messages
contain a list of the beacons that were added to the trunk
since the last update message (addedBeacons), a list of
all beacons that are currently considered in the trunk
(beaconsiInTrunk), and a list of remove events, each telling
the backend where a specific beacon was unloaded.

During the “update database” step of our processing
pipeline, the backend decides how to assign tools to
vehicles based on the updates received from the vehicles.
Since the server backend has global knowledge about
the system state, i.e., knows the states of all vehicles and
tools instead of only the state of one vehicle and its tools,
it can prevent unwanted situations. For example, if two
vehicles stand next to each other, this can prevent a tool
from being continuously moved between the vehicles.
Generally, the rules assume that storages and vehicles
do not have overlapping antenna perception areas.
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= The loading container is a storage (i.e., not a
vehicle), or

= The loading container is driving.
e Containers load tools that are “still in the trunk” if
= The tool is currently unloaded, or

= The container is driving and does not already
have this tool loaded.

e Containers remove tools that are reported as
removed if

= The tool is currently loaded by that container, and

= The container is a vehicle.

The rules that containers may not unload tools loaded
by other containers prevent error situations where a tool
is moved from one container to another and where the
new owner of the tool then reports having loaded the
tool before the previous owner has reported having
unloaded it.

The server manages system locations by distin-
guishing between precise and imprecise data. When
craftsmen revisit a job site, their vehicles may not
be parked in the exact same spot, and GPS accuracy can
vary. Thus, imprecise locations are used to record where
tools are unloaded. If a tool is unloaded at a site with an
existing imprecise location in the database, it is assigned
to that location. Conversely, when tracking vehicle posi-
tions for online display, precise locations as reported by
the vehicle are utilized.

2.4. User Interfaces

The tool tracking system is designed to serve multiple
types of users in different situations.

The most powerful user interface is the desktop
version [Figure 6(a)] for the company owner or asset
manager. This interface provides a continuous, real-time
overview of all company tools. As a result, since the
ownership of tools is now traceable, field workers handle
equipment more carefully, leading to a considerable
reduction in tool losses.

Another key user of the system is the driver of an
LCV who needs an overview of the tools in their vehicle’s
trunk. An in-vehicle display [Figure 6(b)] shows both the
tools currently loaded and the unloading locations for any
tools that have been removed. The primary goal is to
prevent the driver from leaving the job site with any tools
left behind. While the vehicle is driving, a reduced Ul is
shown to reduce distractions.

Upon arriving at a construction site, craftsmen utilize
a secondary interface via a smartphone [Figure 6(c)].
Occasionally, they need special tools shared among them.
The smartphone app grants access to tools within their
own LCV and across all company vehicles, facilitating the
location and tracking of special tools throughout the fleet.
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The customer journey outlines the routines and
requirements of craftsmen. Each morning, craftsmen
convene to review the day’s schedule and collect neces-
sary special tools. Standard power tools, such as cordless
drills and cutters, remain in their vehicles overnight. In
contrast, rare and costly tools, like specific measurement
instruments, are shared among workers and stored
centrally at the company’s headquarters after each
workday. An in-vehicle interface provides updates on the
loading status of both standard and special tools, enabling
craftsmen to verify their equipment before departing for
the job site. Upon arrival, they unload tools, with the
system recording the time, location, and status of each
tool to prevent any from being left behind.

Craftsmen occasionally require a special tool during
a job. Instead of contacting headquarters or colleagues,
they can use a smartphone app to locate the tool. This
interface provides access to tools not just in their own
vehicle but across the entire company fleet, allowing them
to swiftly identify and contact the appropriate person for
tool retrieval.

Finally, the company owner can review the load status
of the entire fleet at any time. The interface provides
up-to-date locations of the tools, and different views allow
the owner to see lists of tools or a map with the live
location. Furthermore, the user can review detailed infor-
mation about their tools, such as invoices, maintenance
documentation, and maintenance intervals.

We present an Al system for parcel identification using
cameras on delivery vehicles. It assists couriers by accu-
rately locating parcels during loading and unloading.
Utilizing a YOLO-based architecture [14], it ensures rapid
and precise detection, even in complex settings. Object
pose estimation helps segment parcels for feature
analysis, regardless of the camera angle. Similarity
learning distinguishes parcels by unique attributes like
size, shape, and color. The system must recognize
unknown parcels from limited brand samples, overcoming
challenges like sensor limitations and variable lighting,
which are addressed by enhancing the vision pipeline with
reasoning capabilities.

3.1. System Overview

At the sorting center, the parcels are cataloged using an
Al-driven system that extracts three key pieces of infor-
mation: parcel side embeddings, human-interpretable
attributes, and parcel dimensions. Each parcel is scanned
from multiple angles, and its visual features are encoded
into a similarity embedding. In addition, attributes such
as brand logos, labels, tape color, and barcodes are
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identified and stored. The parcel’s physical dimensions
are also recorded to assist in later identification. This
catalogue serves as a reference for downstream processing.

Later, when parcels are inside the LCV, the system
attempts to re-identify them using onboard image
sensors. The detection pipeline consists of two
primary branches:

1. Re-ldentification Branch: This branch generates a
similarity embedding for each detected parcel and
compares it against the cataloged embeddings
from the sorting center. The goal is to find the
closest match based on visual appearance.

2. Attribute Extraction Branch: In parallel, a second
branch extracts human-interpretable attributes,
such as brand information and unique parcel
markings, which further refine the
identification process.

In the final stage, a reasoning system combines infor-
mation from both branches, leveraging similarity scores,
extracted attributes, and size constraints to match the
observed parcel with its corresponding entry in the
catalog. This hybrid approach ensures accurate and robust
parcel identification, even under challenging conditions
such as occlusions or varying orientations within the van.

3.2. Algorithms

The goal is to build a system that can localize and identify
parcels robustly using the image sensors in a LCV. The
overall architecture of our proposed framework is shown
in the figure below. It consists of five modules. The first
module focuses on localizing parcels using a single-shot
object detection algorithm, YOLOV5. The second module
uses a pose detection algorithm to identify the side faces
of each parcel. The remaining modules operate on these
side faces. We use a pipeline with two branches. The first
branch compresses each parcel’s side to a similarity
embedding. The second branch complements the simi-
larity embedding with visual human-interpretable attri-
butes (e.g., brand, labels, tape color). Finally, the matching
module combines the output of the two branches and
attempts to match the observed parcel against an indexed
catalogue of available parcel information. In the next
section, we discuss the implementation of these compo-
nents, as well as ideas on how to implement the attribute
classification network and the matching module.

To efficiently track parcels in
real time, our system leverages the YOLOV5 object detec-
tion model. YOLOV5 scans the scene for parcels and iden-
tifies their locations within the image space. Once a parcel
is detected, a bounding box with a margin is applied to
isolate the parcel from its surroundings. This cropped
image is then fed into the 3D pose estimation model,
which determines the parcel's orientation and extracts
relevant side faces for further processing.
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Using YOLOVS for initial parcel localization simplifies
the pose estimation task by narrowing down the region
of interest, reducing computational complexity, and
improving accuracy. YOLOV5 [14] is particularly well-suited
for this task due to its ability to perform fast and accurate
detections while handling multiple object types, such as
parcels, bags, and envelopes, within the same scene.

In order
to extract the faces of each parcel, we need to estimate
the 6 degrees of freedom (DoF) of the object. These 6
DoF can be separated into a translation (lateral movement
in X, y, z) and a rotation (pitch, yaw, roll). The capability of
most deep learning models to estimate the 6 DoF pose
depends on 3D information such as the object’s CAD
model or 3D sensors (lidar) [15=17]. To reduce the overall
cost of the solution, only 2D information (images) can
be used as input. Therefore, our objective is to determine
the 6DoF pose of parcels using a single RGB image.

We propose a convolutional neural network (CNN)-
based approach to achieve this. From the 3D bounding
cuboid defined by the 6 DoF, each parcel side can then
be extracted for further processing. An additional benefit
is that we get the relative dimensions of each parcel.
This information helps to limit the search space in the
smart matching step. To achieve this, a CNN is used. The
CNN identifies the pixel coordinates for each vertex of
the parcel(s). Next, CNN predicts the relative size of the
parcel(s) based on the pixel coordinates of its corners.
Once CNN has found these coordinates, along with the
size of the parcel, a 3D pose can be estimated using the
perspective-n-point algorithm. The perspective n-point
algorithm [18] is a well-known method to estimate the
3D pose of an object from a set of 2D image points. In
this context, the algorithm takes as input the dimensions
of the parcel, as well as a set of 2D pixel coordinates
representing the vertices of the parcel in the image.

This algorithm iteratively maps the 2D pixel coordi-
nates to the correct 3D corner. This mapping involves
solving a system of equations that relates the 2D and 3D
coordinates, using triangulation. This leads to an estima-
tion for the position and orientation of the parcel in the
3D space. The model should be able to detect multiple
parcels and be robust to occlusions, changes in back-
ground, and lighting conditions. We use the Center Pose
model [19] to find the corners and relative dimensions for
each parcel.

After extracting the sides
of a parcel, we propose to train a CNN to transform the
image of a parcel’s side into a descriptive embedding
vector—a fingerprint—that can be used to compute a simi-
larity score for pairs of images. Importantly, the representa-
tion used should allow recognition beyond the set of parcels
used in the training. An established approach to learn such
an effective image embedding consists of training a deep
CNN with a Siamese network architecture [20] according
to the triplet ranking loss [21] (Figures 7 and 8).



12

Downloaded from SAE International by Bernhard Rumpe, Tuesday, January 06, 2026

(1M Parcel tracking system overview.

Parcel #1

Parcel delivery office

Loading

Parcel #2

Parcel #n

Gallery

e R
=]

EHN [
- T =L

Form: box
Brand: Amazon
Barcode: top

Form: box
Brand: Ziggo
Barcode: top

Form: box
Brand: Mord
Barcode: 1o

3D pose estimation
+ side extraction

Parcel localization

r_i_+

m Siamese network embeddings.

Positive Anchor

Negative

Al components

P>  Pose estimation network
. Embedding network

Attribute classification network

Smart
matching

Similarity embedding
+ attribute classification

| _SAuNNEEENNEER

Form: box
Brand: Amazon
Barcode: 1op

— >

— Parcel ID

Form: box
Brand: Amazon
Barcode: lop

© Ford Motor Company; SAE International

o —

IITTTTTTTT]

A
Shared
i weights

|

Embedding
space

© Ford Motor Company; SAE International



Downloaded from SAE International by Bernhard Rumpe, Tuesday, January 06, 2026

Classical CNNs modify parameters for image classi-
fication, while Siamese neural networks assess feature
distances between input images. They employ identical
network configurations to produce embedding vectors
from the same dataset. The model generates embed-
dings for novel images and compares them in pairs
against a gallery of known images, assigning the highest
re-identification probability to the pair with the highest
score according to the network.

Preprocessing: We first modify the images so that
the CNN becomes rotational and perspective equivariant.
As the courier can rotate the parcel in any direction and
can move freely within the van, the resulting images of
the parcel sides that are extracted from the video stream
can have any rotation and perspective. To be able to
match multiple images of the same parcel, the model
must be insensitive to these transformations. However,
the convolution operation is only translation equivariant.
We propose to solve this by applying a perspective trans-
form. For computing the homograph matrix, we define
the source plane by the four vertices of the detected
parcel side, and we define the destination plane as a
rectangle with the same aspect ratio as the source plane
and a horizontal base. Finally, the resulting rectangular
images are rescaled to 300 by 300 pixels, keeping the
aspect ratio of the raw image and padding with black
pixels (Eigure 9).

As a result of this preprocessing step, the only
remaining possible variation between a gallery image and
a query image is due to 90° rotations, varying light condi-
tions, differences in image quality, and partial occlusions.
The first can be addressed by augmenting the gallery
with 90° rotations or by normalizing the rotation using
PCA. The latter must be “learned” by the Siamese
network [20].

Model: The baseline model utilizes the model
described by Koch et al. [20], where a Siamese CNN
framework with six layers. Rectified linear units (RelLU)
are employed in the first layers, followed by sigmoidal
units in the final layers. The model comprises convolu-
tional layers with a single channel, filters of variable size,
and a stride of 1. Filter counts are multiples of 16, starting
at 32 for the first two layers and increasing to 64 in later

m Perspective transform.
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layers. The output feature maps are activated by a ReLU
function, subsequent to a max-pooling operation with
dimensions and a stride of 2. A filter map for every layer
of the initial twin is denoted as described by Koch
et al. [20].

Loss function: The training methodology for the
proposed network entails reorganizing the preprocessed
sample set into a balanced matrix of both similar and
dissimilar image pairs. Each similar pair consists of two
unigue images of the same parcel, while each dissimilar
pair comprises two images from different parcels.

Initially, each training example consists of three
unique images: an anchor (i), a positive (i,), and a negative
(in)- The selection ensures that i, and i, belong to the same
category, while i, does not. Considering a distance function
d(X, Y) in the embedding space, where X, Y € D, and E())
denotes the image i's embedding evaluated by the CNN,
the loss function to be minimized is given as [20]:

Loy = max(O,d(E(ia),E(iP)) ~d(E(i,)E (i) + a)

where a represents a predetermined margin to be main-
tained between the two distances.

Ensuring swift convergence necessitates the precise
selection of relevant triplets. We adopt a “hard” mining
approach for selecting positive examples and utilize a
“semi-hard” strategy for identifying negative examples.

Post Processing: The key points and the relative
cuboid dimensions are used to find the optimal bounding
cuboid. This is achieved using the PnP algorithm. The PnP
solver is designed to determine the 3D box based on its
eight vertices. It accomplishes this by matching the pixel
coordinates of the eight vertices in the image to the real
3D model of the box. If the dimensions of the box are
known, a 3D representation can be created that only
requires the position and rotation to match the image
(6 DoF). The algorithm iteratively searches for the position
and rotation by using the 2D points one by one and
mapping them to the correct 3D point. When only one
point is used, the position is fixed, but the box can still
rotate (3 DoF remain). Each additional point decreases
the DoF by one, so using a total of four points can solve

Original image

Perspective
transform
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m Parcel embeddings.

the problem. We use eight points because each point is
an estimation with an error margin, and using multiple
points helps to find the best combination of all the points
and dimensions for accurate results.

Attribute Classification: The output vector generated
by the Re-ID network theoretically contains all the visual
details of a parcel, making it potentially sufficient to solve
the re-identification problem. However, due to the simi-
larity in appearance among parcels, the Re-ID network
often struggles to find the correct match. To complement
the results of the Re-ID branch, we employ the attribute
branch, which utilizes human-interpretable information
(attributes) to restrict the search space using logical
reasoning. By incorporating this information, we can
significantly enhance accuracy. Attributes can include
labels, barcodes, text on the parcels, and more. The attri-
bute network takes the same image as input as the Re-ID
network. Detecting these attributes is a typical object
detection task, which can be accomplished using state-
of-the-art neural networks such as YOLO-based models
[14], faster R-CNN, and others.

Matching: A naive approach for solving the parcel
matching problem is by selecting a single side of the
parcel (e.g., the side with the largest visible face area),
generating its embeddings, and matching it with the most
similar gallery embedding. This is the traditional approach
used in re-identification applications (e.g., person re-iden-
tification). However, this naive deep learning—based
approach may fail to re-identify some parcels, as parcels
can have a generic look, the gallery could contain many
similar parcels, and essential parts could be occluded by

© Ford Motor Company; SAE International

other objects. To resolve this, we propose to integrate
the deep similarity learning approach with reasoning to
(1) correct some of the mistakes made by the deep
learning model and (2) perform out-of-distribution detec-
tion to avoid incorrect matches. Attribute information
helps narrow the search space by either hard filtering out
parcels that don't match query attributes or soft scoring
them based on attribute similarity. In soft scoring, each
attribute is weighted by its reliability, with more accurate
ones weighted higher. The final match score combines
the attribute score and embedding similarity via a
weighted sum (Eigure 10).

At
present, the central component of our Re-ID pipeline is
a deep convolutional embedding network. Although these
networks excel in numerous visual tasks, they are
frequently perceived as black boxes, making interpreta-
tion challenging. However, providing a clear and compre-
hensible explanation is crucial for the practical implemen-
tation of deep neural networks. This is essential both to
establish trust in the model and to assist in model
comprehension and debugging. Understanding can
be approached by analyzing the network at both the
output layer and the intermediate convolutional layers.

A low-dimensional representation of parcel embed-
dings: At the output layer, we can try to gain insight into
the embeddings or feature representations of our image.
One way to understand the generated embeddings is to
visualize them in a low-dimensional space such as 2D or
3D. This is achievable through methods like PCA (principal



Downloaded from SAE International by Bernhard Rumpe, Tuesday, January 06, 2026

component analysis), which reduce the dimensionality of
high-dimensional embedding vectors while largely main-
taining their pairwise distances. By visualizing the reduced-
dimensional embeddings, we can get an idea of how the
network grouping images of the same or similar parcels
together. This idea is illustrated in the figure for the
embeddings of different sides of 11 parcels. Each dot
represents the embedding vector corresponding to a
randomly augmented view (i.e., rotated and/or scaled) of
the original image. As desired, embeddings of the same
(side of) a parcel are typically clustered together in the
2D space.

Understanding convolutions through attention:
Attention mechanisms allow us to determine which
convolutional feature transformations are emphasized,
focusing on key regions of the input data for embedding
creation. Attention weights facilitate the identification of
crucial input areas. Grad-CAM [22] excels in highlighting
vital areas of the image, employing backpropagation
gradients to elucidate network decisions. Nonetheless,
Grad-CAM and related attention methods are mainly
tailored for classification tasks, posing challenges when
adapted to embedding networks. We address these chal-
lenges by proposing an adaptation of the Grad-CAM
technique specifically for embedding networks, building
on the foundation laid by Chen [23] (Figure T1).

Grad-CAM [23] was initially designed for classification
tasks to assess the significance of each neuron by utilizing
gradient information that reaches the final convolutional
layer(s) of 2 CNN, aiding in decision-making, such as iden-
tifying an “Amazon parcel” image. Neurons in these layers
detect class-specific semantic information like an Amazon
logo or certain tape on a parcel. For class ¢, the class
discriminative map is derived by first calculating the
gradient of the pre-softmax score y¢ concerning the
feature map Ak € RY*? of a convolutional layer, where k
indicates the channel index [23]:

o)

Subsequently, the gradients are averaged to deter-
mine the neuron importance weight o, within each
channel [23]:

m Grad-CAM output.
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where (i, j) represents the spatial index and u - v indicates
the spatial resolution of the feature map [23]. This weight
is termed a grad-weight. Grad-CAM is subsequently
constructed as a weighted sum of feature maps, with a
RelLU operator applied [22, 23]:

K

L° =ReLU| ) ‘afA*
2

RelU is utilized since our focus is on features that
enhance the target class (i.e., pixels whose intensity should
be raised to amplify y¢). Consequently, Grad-CAM gener-
ates a class-specific heatmap consistent with the dimen-
sions of the feature map.

Embedding networks cannot be directly adapted for
Grad-CAM, as they lack per-class scoring during training
or testing. To address this issue, we utilize pairwise
distances between samples as a differentiable activation
for calculating grad-weights. Our approach involves
sampling several dissimilar images from a designated
anchor image of a parcel to determine visual attention
within the anchor. We formally alter the described per-
class gradient following [23] by Chen et al.:

Thus, the grad-weights for an anchor image can
be calculated as [23]:

1 e oL

k
(x¥)

4. Tool Tracking

We evaluated the tool tracking system over a period of
11 months with three trade companies from different
trades with different vehicle types. A total of 139 different
tools were tracked across 22 containers. During the first
trial, our main focus was on improving the reliability of
the system. As the system still had an increased number
of incorrect measurements at this time, we will not
consider the measured data from the first test any
further here.
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In the other two trials, the status of tools was changed
from seen to not seen or vice versa, a total of 10,409
times on the server side. The status of tools was changed
from loaded to unloaded or vice versa a total of 7242
times. The location of tools was changed a total of 8519
times, and the assignment of a tool to a container 1513
times. A total of 205,482 location changes were recorded
for the containers.

We also conduct an assessment of the system using
arange of handyman services. The system demonstrated
its capacity to monitor missing tools effectively and did
not exhibit any malfunctions throughout the process.
Although instances of missing signals and GPS signal
anomalies were observed, attributed to external influ-
ences, these factors did not impact the system’s perfor-
mance, as the system ensures continuous updates of
the signals.

This pilot demonstrated a favorable response from
the company owner, craftsmen, and administration. The
system was perceived as helpful in providing a better
overview of tool locations, saving time in tool search, and
reducing physical effort. Concerns were raised by the
craftsmen regarding the privacy settings of the system.
They expressed fears that the tool tracking system could
be misused by the company owner. The craftsmen viewed
the tool tracking system as a “wolf in sheep’s clothing,”
believing that the company owner might use it to track
the workers rather than just the tools. Since the system
requires real-time location data of the vehicles to track
the tools, this also reveals the real-time location of the
craftsmen. In response, we developed an optional location
tracking feature. The company owner can choose between
tracking only the loading and unloading locations or
opting out of location tracking altogether. This option led
to an increased acceptance rate among all users.

The potential cost savings were based on reduced
tool search and thus less time for calling colleagues to
locate special tools. It was estimated that checking for all
tools before leaving the construction site takes between
5 and 10 min per day and vehicle. This sums up to 1.75
and 3.5 h/month and vehicle (assumption: 21 working days
per month). Additionally, phone calls conducted by the
administration were normally made to find special tools,

m Orthographic and perspective dataset.

taking an average of 15 min/day, resulting in a time saving
of 1.3 h/month and vehicle (@assumption: 21 working days
per month and 4 vehicles per company). The tool tracking
system was also helpful in reducing tool loss, with two
tools saved from being forgotten in just 8 weeks of
testing. The range of monetary value of the tools was
from 100€ to 4000<€. Taken together, there was a time-
saving potential between 315 and 4.8 h/month and vehicle
and two prevented tool losses.

4.2. Parcel Tracking

4.2.1. Dataset We created an image dataset from a
diverse set of parcels including the most representative
form factors (i.e., boxes, bags, and envelopes) and
brands. High-resolution color photos (3648 by 5472
pixels) were taken from multiple sides of each parcel,
with the parcel in the center of the image, in order to
train and evaluate the machine learning models. The
dataset can be broken down into two subsets with
different properties. We refer to them as the ortho-
graphic and perspective dataset (Figure 12).

The orthographic dataset comprises orthographic
views of 2 to 6 sides of 64 different parcels, totaling 408
images, all captured against a white background. To
segment the parcel within each image, a YOLO object
detector was applied [14], followed by manual post-
processing to refine the region of interest.

In contrast, the perspective dataset features perspec-
tive views and images of handheld parcels, which often
result in partial occlusions, making it more indicative of
real-world scenarios. This dataset consists of 725 images
representing 59 parcels, with the 3D pose manually anno-
tated for 443 of these images. We trained the pose esti-
mation model on the perspective dataset and a variation
of the perspective dataset. We will first discuss the results
of the perspective dataset before discussing the results
for the variation. All images have a green background to
create a simple and controlled environment for early
stage model training. However, to better reflect real-world
deployment conditions, additional images are needed
featuring more complex backgrounds, natural lighting,

Orthographic dataset

.-

Perspective dataset

B Em
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and varied parcel handling. To supplement this, we also
considered using synthetic data to increase diversity and
robustness, as in Lens et al. [24].

4.2.2.Pose Estimation The network was trained on the
perspective dataset, consisting of 243 training images
and 43 test images, over 85 epochs. Not all available
images were used due to the lack of annotations, as
annotating 6D poses is labor-intensive and costly. It is
common for object detectors to use intersection over
union (loU) as a metric to evaluate the performance. For
the bounding box, this results in the formula:

A
loU = Overlap

Union

In loU 50%, the predicted bounding box or segmenta-
tion mask is considered correct if the overlap with the
ground truth is at least 50%. Therefore, the higher the
loU 50% value, the better the performance of the algo-
rithm in accurately localizing or segmenting the object of
interest. However, centerpose predicts 3D bounding
boxes, so we modify the formula and use volume instead
of area. This results in:

Vi
loU = Overlap

Union

The average IoU is 59% on the train set and 56% on
the test set. The loU 50% for the train set is 72% and 65%
for the test set (Eigure 13).

In a later experiment, the green background was
replaced with a random background. This adaptation
allows the network to handle more complex scenes.
However, since the boxes are placed randomly within
these images, some results appear visually unnatural.

We retrained centerpose with this random back-
ground dataset, initializing it with the weights for cereal
boxes from the Objectron dataset [25]. After training for
20 epochs, the network began to overfit, meaning that
while it performed well on the training data, its perfor-
mance on unseen data deteriorated. This suggests that
the model became too specialized to the training data
and struggled to generalize to new examples.

m Results pose estimation.

TABLE 1 Overview of loU results.

Avgtrain Avgtest IloU50 IloU50

loU (%) loU (%) train (%) test (%)
Perspective dataset 59 56 72 65
Random background 67 50 86 54
Random background 70 55 88 64

(query only)
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The evaluation results show an average loU of 67%
for training and 50% for testing. The loU50% scores are
86% and 54%, respectively. Although these percentages
may seem low, visual inspection indicates that the results
remain acceptable.

One challenge in the dataset is the high number of
parcels aligned parallel to the camera plane, making depth
estimation particularly difficult for the network. After
removing these images, the evaluation showed a 3%
improvement in training performance and a 10% increase
in the test set. Table 1 provides an overview of all loU results.
Lens et al. [24] leverage diffusion models to generate real-
istic, annotated synthetic data. Incorporating this pipeline
could enhance performance by pretraining the model on
the synthetic dataset before fine-tuning it on real data.

4.2.3. Parcel Re-ldentification To evaluate the embed-
ding network, we simulate the parcel re-identification
(Re-ID) task. This is a content-based image retrieval (CBIR)
problem, where the model must match an image of a
parcel (i.e, a query image) with an image of a parcel in
the gallery. Therefore, the embeddings are first generated
for the query image and each gallery image. Next, the
cosine distance between the query and the embedding
of each gallery image is computed. The pair with the
smallest distance is then regarded as a match. We consider
two different evaluation settings:

1. Parcel Re-ID: The gallery only contains the top-
down view (i.e., the side with the label) while the
query can be an image of any side of a parcel in
the gallery.

2. Parcel Side Re-ID: The gallery contains an
orthographic view of each side of the parcels. A
query is matched with the correct parcel if the
query and the matched gallery image belong to
the same parcel (Figure 14).
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m Embeddings space of color profile and CNN-based embeddings.

(a) Color profile-based embeddings

To train the embedding network, we randomly split
the parcels in the orthographic dataset in a train and test
dataset using an 80%—-20% ratio. From the training set,
we create batches of 100 samples per epoch by randomly
sampling images of ten parcels from the training set and
applying a random set of augmentations to these images.
These augmentations include a horizontal and vertical
flip, zooming out up to 50% of the original size, and a
rotation around the center.

As our evaluation metric, we use the top-k accuracy
classification score on the test set. This metric computes
the number of times where the gallery parcel that
matches with the query is among the top-k gallery parcels
with the smallest embedding distance. Effectively, the
top-T1accuracy corresponds to the percentage of parcels
that would be identified correctly. Values of k > 1 give an
indication of how the embeddings would perform when
used to create a selection of potential matches which can
be refined with additional methods.

As a simple baseline for our deep learning embed-
dings, we use color histograms. They represent one of
the first CBIR techniques. The core idea is to take an
image, translate it into a color-based histogram, and use
these histograms to retrieve images with similar color
profiles. To create the color histogram, we compute the
histogram for each color channel with 32 equally spaced
bins. By concatenating these histograms, we obtain a
vector of length 96. Finally, we apply L2 normalization to
this vector such that we compare images by the cosine
similarity between their color histograms. Using this
approach, we obtain a top-1 accuracy of 38% and top-3
accuracy of 57% on the train set in the parcel Re-ID setting
with basic augmentations. The key limitation of color
profiles is their sole reliance on color, ignoring textures,
edges, and image content.

The parcel Re-ID setting is practically the most
straightforward setting, as it only requires a top-view
picture to be taken in the PDO. However, it can be chal-
lenging to visually match two different sides of the same

(b) CNN-based embeddings

»
s
© Ford Motor Company; SAE International

parcel, as they do not necessarily share any visual cues.
For example, a logo might be printed on only one side of
the parcel. Using basic augmentations in this setting,
we obtain a top-1accuracy of 40% and a top-3 accuracy
of 76%. Surprisingly, the top-1 accuracy is only slightly
better than the baseline model based on the color profile.
Yet, the CNN-based embedding network results in much
better embeddings (Figure 15).

The parcel side Re-ID setting is comparatively much
easier. With respect to the previous setting, we first only
adapt the gallery by adding an orthographic picture of
each side of the test parcels. As each query is now a
rotated or scaled version of a gallery image, we obtain
a high top-1accuracy of 87% and top-3 accuracy of 93%.
However, in a realistic setting, the query images are
independently taken from the gallery images in a
different environment with varying lighting and video
quality and from different angles. To evaluate the effect
of these distortions, we applied a set of more advanced
augmentations to the query images. As Table 2 illus-
trates, each of these transformations decreases the
performance. The performance of the embedding
networks is currently suboptimal. We hypothesize that
increasing the amount of training data could significantly
enhance their performance.

The integration of Al and sensor technologies into LCV
presents significant opportunities for optimizing goods
tracking, inventory management, and delivery efficiency.
This study explored two distinct approaches: a Bluetooth-
based tracking system tailored for craftsmen and a
camera-based Al solution designed for parcel carriers.
The Bluetooth-based system demonstrated high reliability
in tool tracking and inventory monitoring, reducing the
likelihood of misplaced or stolen equipment. However, its
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m Top-Taccuracy regarding to

varying transformations.

Example

Top 1 accuracy
93%

Transformation
Original

Random rotation 89%

Color jitter 43%
(varying brightness, hue,

contrast and saturation)

Gaussian noise 40%

Perspective transforms via 10%

a shear transformation

© Ford Motor Company; SAE International

applicability remains limited to predefined objects
equipped with Bluetooth beacons, making it less suitable
for dynamic parcel logistics.

The Al-driven camera-based system showed promise
in real-time parcel identification, leveraging object detec-
tion, pose estimation, and similarity learning for robust
recognition. While this approach enhances the flexibility
of tracking diverse package types without requiring prior
tagging, challenges such as lighting variations, occlusions,
and computational constraints remain. Future advance-
ments in deep learning models and sensor fusion tech-
niques may further improve the accuracy and scalability
of vision-based tracking systems.

Overall, this research highlights the necessity of
selecting tracking methodologies based on specific
use-case requirements. For craftsmen, Bluetooth tracking
offers a structured and reliable solution, while Al-based
vision systems hold potential for broader logistics applica-
tions. Future work should explore hybrid tracking frame-
works that combine multiple sensing modalities to
maximize accuracy and adaptability in coommercial vehicle
environments. Building on this, we also see potential in

TABLE 2 Performance of re-identification systems.

Setting Test dataset
Parcel re-ID Orthographic
Parcel side Re-ID

Perspective

© Ford Motor Company; SAE International

Top-1acc (%)

38
40
87
42

leveraging intelligent loading strategies and support real-
time decision-making, such as dynamic routing based on
the precise location and delivery order of parcels.
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