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Abstract
The efficient tracking and management of goods within light commercial vehicles (LCVs) is crucial 
for various industries, particularly craftsmen and parcel delivery services. This article explores the 
integration of artificial intelligence (AI) and sensor technologies to enhance item tracking and optimize 
logistical operations in LCVs. Two technological approaches are examined: a Bluetooth-based tracking 
system and a camera-based parcel identification framework. The Bluetooth-based solution is 
designed primarily for craftsmen. It employs Bluetooth tags, vehicle connectivity gateways (VCGs), 
and a centralized server to provide real-time inventory monitoring and prevent tool misplacement. 
The camera-based system is aimed at parcel carriers. It utilizes AI-driven object detection and pose 
estimation to localize and identify parcels within the vehicle. Experimental evaluations show that 
Bluetooth tracking ensures reliability in tool management and the AI-based vision system holds 
promise for future scalability in parcel logistics. The findings underscore the need for adaptive 
tracking methodologies to improve efficiency, reduce operational costs, and support the digital 
transformation of commercial vehicle ecosystems.
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1.  Introduction

Commercial vehicles are defined as vehicles used by 
a business to transport goods or people on public 
roads. One prominent subclass of commercial 

vehicles is light commercial vehicles (LCVs), which are 
often defined as having a maximum gross weight of 3.5 
tons. LCVs play a critical role in a wide array of domains 
such as craftsman and parcel deliveries. Given their pivotal 
role, optimizing their use in any way can prove beneficial.

The advent of connected vehicles provides one way 
to do this, as it has introduced efficiencies in mobility-
related processes [1]. Integrating intelligent routing with 
telematic services facilitates reductions in distance 
traveled, time spent on the road, and can even improve 
driver behavior toward more efficient practices [2]. 
Numerous automotive manufacturers currently provide 
smart vehicle services [3] and/or telematic services, avail-
able through various models, such as subscription-based 
or complimentary offerings. In addition, external service 
providers have penetrated the market, combining vehicles 
with proprietary smart devices to provide telematic 
services [4].

However, LCVs serve as more than just transportation 
apparatuses. For craftsmen, the LCV fulfills multiple 
critical business functions [5] by serving as a storage for 
power tools and inventory, a mobile workshop, and an 
office where invoices are prepared and documentation is 
organized. In addition, the vehicle doubles as a break room 
where the operators spend their lunch breaks. In parallel, 
a parcel carrier’s LCV primarily serves to convey parcels. 
For this task, it is crucial to store the parcels in a system-
atic manner, which requires selecting and arranging 
parcels at each delivery point for efficient last-mile delivery. 
Furthermore, vehicle storage capacity must be adaptable 
during a shift to accommodate delivered parcels and any 
unforeseen parcel pickups.

Consequently, the development of smart applications 
and services that improve user efficiency beyond mobility 
is a crucial step in vehicle digitization. This article examines 
methods to enhance efficiency through artificial intelli-
gence to help optimize logistical operations in LCVs via 
in-vehicle item tracking. Concretely, we consider two 
specific approaches, each targeting a different use. First, 
we describe a Bluetooth-based strategy for managing 
tools within a craftsman’s LCV. Second, we describe a 
camera-based system that uses computer vision tech-
niques to identify parcels within a delivery context. 
We describe each approach in detail and empirically 
evaluate the potential of the systems.

The body of research within the LCV domain remains 
relatively sparse. Millo et al. [6] introduced a techno-
economic evaluation framework to assess commercial 
vehicle concepts, focusing on the total cost of ownership 
and the payback period as key factors for fleet operators. 
Their model accounts for variations in transport tasks, 
vehicle size, and powertrain technology, allowing a 

systematic comparison of these variables. Their frame-
work supports strategic decisions by considering payload 
capacity, volumetric load, driving range, vehicle cost, and 
payback period. Their work does not include specific use 
cases, such as parcel delivery.

Perboli and Rosano [7] examined the role of freight 
transport and parcel delivery in urban areas, especially 
last-mile delivery. The study aims to identify key actors, 
analyze their business models, and explore the integration 
of traditional and green logistics. They also introduce a 
simulation optimization tool to evaluate mixed-fleet 
policies in urban delivery.

Van Duin et al. [8] addressed the rapid growth of 
e-commerce and the resulting fierce competition among 
parcel delivery service providers, emphasizing the need 
for innovation to maintain a competitive edge. They high-
light that “last-mile delivery,” often conducted with large 
LCVs delivering single parcels to doorsteps, is the most 
expensive part of logistics. The literature suggests that 
parcel lockers offer significant cost-savings potential. The 
article includes a review of the literature on parcel lockers, 
describes three analysis methods, and presents the 
findings of a case study.

Figenbaum [5] examined the use of electronic travel 
logs to analyze the travel behaviors of Norwegian 
craftsmen and service companies. These logs were 
collected from devices installed on the vehicles used by 
the craftsmen. These people rely on motorized transpor-
tation to transport personnel, tools, and materials to work 
sites. The research of Figenbaum evaluates the travel 
patterns of craftsmen. They investigated how travel 
patterns can become more sustainable by transitioning 
from diesel-powered utility vehicles to battery electric 
utility vehicles.

Craftsmen and parcel carriers constitute the primary 
customer segments of LCVs, each possessing distinct 
requirements for their vehicles based on their occupational 
procedures and unique characteristics [5]. Despite these 
differences, both groups of users share a common need 
for an item-tracking application. An item-tracking applica-
tion is a system that enables real-time monitoring of 
tagged items within the loading area of a commercial vehicle.

At the initial level, tagged items can be associated 
with a specific vehicle, capturing binary loading status, as 
well as the location and time of loading and unloading. 
At a more advanced level, items can also be spatially 
located within the loading area, with actuators indicating 
the precise position of the required items. For craftsmen, 
the primary requirement is the tracking of power tools. 
Business owners benefit from real-time oversight of their 
tool inventory, facilitating efficient coordination and 
enhancing the perceived responsibility of employees for 
the tools they use.

Craftsmen can also utilize real-time tracking to ensure 
all necessary tools are loaded, preventing inadvertent 
omissions from storage or tools being left behind at 
construction sites or stolen. Material tracking, which 
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includes monitoring fill levels, assists craftsmen in 
adequately preparing for daily tasks. Tool and material 
tracking can enable stock optimization, optimizing the 
quantity of tools and materials, which minimizes the 
required fixed resources. However, this process is chal-
lenging as these items are frequently stored in containers, 
rendering it impractical to monitor them using cameras.

In contrast, parcel carriers require a parcel tracking 
system to streamline the loading and unloading processes, 
which are characterized by stringent temporal demands. 
During the loading phase, the parcel carriers manually 
scan the parcels using barcode devices and strategically 
arrange them within the vehicle. This process is a well-
studied process [9], and several systems are proposed in 
the literature [10, 11]. The spatial configuration of parcels 
is determined by the delivery sequence and the couriers’ 
individual methodologies, which is seen as a challenge 
due to the high number of possible configurations and 
optimization requirements. In the delivery process, the 
retrieval of specific packages can be hindered by subop-
timal vehicle organization, thus increasing operational 
stress and costs. While barcode and QR code systems 
are effective in many scenarios, they depend on direct 
line-of-sight and proper orientation. Our CNN-based 
vision system addresses these limitations by enabling 
hands-free identification even when codes are occluded 
or parcels are arbitrarily oriented.

Consequently, for both use cases, there is a compel-
ling need for innovative methodologies to enhance item 
tracking, inventory optimization, and parcel organization 
and retrieval, thereby easing the logistical challenges 
faced by craftsmen and delivery personnel.

The task of recognizing items and packages within a 
delivery vehicle presents considerable challenges. A 
limited number of brands (e.g., Zalando, Amazon) account 
for a substantial volume of parcels, leading to a prevalence 

of visually similar items. This is also valid for similar tools, 
e.g., hammers or screw drivers from the same brand. It 
is impractical to train the system for every parcel configu-
ration; hence, it must be able to reliably detect and identify 
new, unfamiliar parcels and tools. Additional challenges 
arise from the limitations of image sensors in vehicular 
environments, including restricted resolution, limited field 
of view, optical distortions, and variable lighting condi-
tions, all of which complicate accurate object detection 
and localization.

2.  Method 1: Bluetooth-Based 
Setup

2.1.  Tool Tracking System 
Overview
The tool tracking system is composed of three main 
components (Figure 1). These are Bluetooth tags, DSA 
VCG, and server. Together, these components create an 
integrated system for efficiently tracking tools, ensuring 
their availability, and optimizing their usage. We describe 
these in the following:

	 1.	 Bluetooth tags: These are small devices attached 
to the tools. Their primary function is to report 
the presence and possibly the location of a tool 
by periodically emitting radio signals.

	 2.	 DSA VCG: This is a computing unit installed in a 
craftsman’s vehicle or warehouse. The DSA VCG’s 
role is to receive signals from the Bluetooth tags, 
process this information, and then forward the 
processed signals to a centralized server. 
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  FIGURE 1    Overall system architecture including software and hardware components.
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  FIGURE 2    Web server system architecture.
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Essentially, it acts as a bridge between the 
physical tools and the digital tracking system.

	 3.	 Server: The server receives data from one or 
more DSA VCG units. It performs further 
processing of this data, stores it in a database, 
and prepares it for user interaction, often through 
graphical interfaces. This enables users to track 
and manage their tools effectively, providing 
insights into tool location and usage.

The Bluetooth tags in the car are mostly provided by 
Bosch (Bosch Professional GCC 30-4). Bluetooth tags send 
messages that a receiving antenna can utilize to detect 
if a beacon is within reach. The intervals between two 
messages are alternately 8 and 16 s. We attached two 
Bluetooth antennas (Lintech BLE Sniffer) to the DSA VCG 
via the RS232 port. The sniffers provide the DSA VCG with 
all Bluetooth messages within its detection area. To avoid 
processing a large number of messages that do not 
belong to our system, the DSA VCG filters all incoming 
messages to only process those that use a predefined 
service universally unique identifier (UUID).

After filtering the messages, the DSA VCG calculates 
which tools are currently in the vehicle based on the 
messages it received. The concrete processing steps for 
this are described later in Section 2.2 of this report. After 
deciding which tools are in the vehicle, the DSA VCG 
informs the server about the current state of the trunk, 
how the trunk content was modified since the last 
message to the server, and about the status of the vehicle 
(e.g., speed and position).

The server is based on MontiGem [12] and consists 
of three components that are distributed using different 
Docker containers: backend, database, and frontend 
(Figure 2). The backend handles all message processing 
and database updates. The database is provided in two 

different containers. One database is shared between all 
companies. It includes the information to which certain 
DSA VCGs belong and which companies exist. Additionally, 
each company also has its own database in which the 
information about the company is stored (i.e., tools, 
vehicles, user accounts, etc.). A more detailed description 
of the data structure can be found in Section 2.3. The 
frontend component provides a web app to users. After 
logging in, users can see an overview of all of their tools 
and vehicles. Location data and maps are provided exter-
nally by Microsoft Azure.

Our in-vehicle system uses motion data from a 
passive infrared (PIR) sensor, Bluetooth data from beacons, 
and location data from the global positioning system 
(GPS). This data is used to detect loading and unloading 
of the loading area in different scenarios.

2.1.1. Loading Scenario  The first scenario is loading a 
vehicle, Figure 3(a). This can happen, for example, in the 
morning when craftsmen are loading tools from a locked 
warehouse into the vehicle, or in the evening when tools 
are to be transported back to the company site when 
leaving a construction site.

In this scenario, the system may initially be switched 
off. As soon as the PIR sensor detects movement, the 
system is powered up. Once the DSA VCG is booted, the 
Bluetooth sniffers can detect Bluetooth beacons in their 
environment. If it is detected that there are Bluetooth 
beacons in the vehicle that were not present when the 
system was last switched off, these tools are marked as 
newly added. Additionally, the system tracks the current 
location via GPS to inform the server where the tools 
are loaded.

To save power, the system is switched off as soon 
as no movement has been detected for a certain (adjust-
able) period of time and the system has not been supplied 
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  FIGURE 3    Tool tracking scenarios described using state charts.
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with external power. In its prototypical implementation, 
the system is supplied with power via the vehicle’s ciga-
rette lighter. In our tests, we found that some vehicles 
supply the cigarette lighter with power permanently, while 
other vehicles only supply power when the ignition is 
switched on. Consequently, it is essential to implement 
measures that avert the system from depleting the car 
battery’s charge completely, which would consequently 
inhibit the vehicle’s ability to start. In our specific situation, 
we  addressed this issue by incorporating a voltage 
monitoring device.

2.1.2. Unloading Scenario  In the second scenario, the 
craftsman is at a construction site and takes the tools 
he needs for his work from the loading area Figure 
3(b). In this case, if the system is not already running, 
it will be  restarted by motion detected by the PIR 
sensor. In a similar way to the first scenario, the system 
also recognizes that a tool is no longer in the vehicle 
on the basis of the (un)received Bluetooth data. The 
details of the processing steps for these operations 
are described in the next section. In a similar way to 
the first scenario, the system also recognizes that a 
tool is no longer in the vehicle on the basis of the (un)
received Bluetooth data. The details of the processing 
steps for these operations are described in the next 
section. Basically, the detection of a missing tool is 
based on the fact that the Bluetooth messages of an 
unloaded tool are either not received at all or only with 
a very weak received signal strength indicator 
(RSSI) value.

2.1.3. Driving Scenario  The RSSI values used by the 
system to decide whether a tool is inside or outside the 
vehicle are not static. The system is programmed to 
dynamically configure itself throughout the duration of 
the journey, provided that no tools are being loaded or 
unloaded while the vehicle is in motion, Figure 3(c). This 
design allows us to place the antennas at different posi-
tions in the vehicle—provided that reception of the 
Bluetooth beacons is possible. This is particularly impor-
tant for a prototype where the antennas are not perma-
nently installed in the vehicle. When the vehicle reaches 
a speed of at least 35 km/h, it is considered to be in a 
driving state. Within this operational mode, the unloading 
of tools is prohibited. Future implementations may inte-
grate the system directly into the vehicle, allowing for the 
modification of this threshold. Alternatively, the speed 
may be assessed using data intrinsic to the vehicle instead 
of relying on GPS measurements.

As soon as the system is in reconfiguration mode 
due to a speed greater than 35 km/h, the RSSI values of 
the received Bluetooth messages are used to adjust the 
threshold values above which a tool is considered to 
be loaded or unloaded. If the speed drops again below 
35 km/h, the system is switched back to normal loading 
and unloading mode.

2.2.  DSA Vehicle Connectivity 
Gateway
This section describes the process operations that 
we perform within the vehicle using the DSA VCG. The 
VCG is connected via RS232 with two Lintech Bluetooth 
sniffers. These receive the Bluetooth messages from the 
beacons, which are attached to the tools of the craftsmen, 
and forward the messages to the DSA VCG. Power is 
supplied to the DSA VCG via an external battery, which 
is charged by the cigarette lighter. Although the VCG also 
has an internal battery, its power is not sufficient to 
supply the connected Bluetooth sniffers. A PIR sensor 
decides when the DSA VCG shall receive power from the 
external battery. In addition, the DSA VCG is also 
connected directly to the power source. So, the DSA VCG 
always receives power when motion is detected or when 
power is provided via the cigarette lighter. In addition, 
the DSA communicates via GPS with GPS satellites and 
via cellular network with our servers. The GPS location 
is continuously recorded because it may take some time 
for the system to detect a missing tool, because beacons 
may only infrequently send messages. If the craftsman 
starts driving right after unloading a tool, the system 
shall not report the current location of the vehicle as the 
location where the tool was unloaded, but instead the 
recorded location where the vehicle was when the tool 
was unloaded.

The activity diagram in Figure 4 shows how the 
system updates its database of beacon data. After 
collecting the data from our two antennas, we identify 
which Bluetooth messages refer to (Bosch) beacons by 
comparing the service UUID of the Bluetooth message 
to the service UUID of (Bosch) beacons.

Upon identifying messages that function as beacons 
for processing within our system, we proceed to distin-
guish between beacons that have undergone prior cali-
bration and those that remain pending calibration 
(Figure 4).

While the vehicle is driving, the system learns what 
RSSI values correspond to a tool being in the trunk of the 
vehicle. These values are later used as thresholds for 
loading or unloading beacons. In case we do not have 
that data available, we use general thresholds. These 
general thresholds are usually very high to prevent incor-
rectly marking a tool as loaded. Moreover, if two vehicles 
stand next to each other, the high general threshold 
prevents both vehicles from considering the same beacon 
as loaded.

If the currently processed Bluetooth message does 
not exceed its respective RSSI threshold, we discard the 
message. If the threshold is exceeded, we use the data 
to update our database. In general, our processing decides 
between three states of beacons known to the system: 
InTrunkBeacons, AllBeacons, and Unloaded. InTrunkBeacons 
are beacons that are considered within the vehicle. 
AllBeacons are beacons whose messages are received 

Downloaded from SAE International by Bernhard Rumpe, Tuesday, January 06, 2026



	 Aslandere et al. / SAE Int. J. of CAV / Volume 9, Issue 2, 2026	 7

by the antennas, including those whose RSSI values are 
too low for them to be considered in the trunk. The tools 
attached to these beacons are usually close to the vehicle, 
e.g., in the vehicle parked next to the vehicle. Unloaded 
beacons are beacons that are not received by the 
antennas at all and are considered unloaded.

The following describes more precisely how beacons 
are moved between the different states. To consider a 
beacon loaded that is currently not loaded, the beacon 
has to be seen at least n times (n is configurable).

If a beacon has already been detected n times, 
we compute an aggregated RSSI value from its current 
and past detections. We store the last m RSSI values for 
each beacon in a circular buffer and take the sum of the 
minimum and maximum values in this buffer. This value 
is then compared against the beacon- and antenna-
specific threshold we calculate during the recalibration 
phase. The thresholds are calculated using the 
same formula.

If the current value of the aggregated RSSI values 
exceeds the thresholds, the beacon will be loaded.

Unloading a beacon from the trunk uses the same 
principle: a beacon is removed when its aggregated RSSI 
value drops below the threshold. Additional rules include:

	 1.	 Tools cannot be unloaded while the vehicle is 
driving and recalibrating (speed ≥35 km/h).

	 2.	 A tool is unloaded if undetected for a set period, 
which also helps identify tools unloaded while the 
system was off.

It is also possible to unload beacons based on the 
frequency with which messages are received. If the 
connection to a beacon is weak, one might only receive 
messages from a beacon infrequently. We calculate a 
running maximum of the times between two receptions 
of a beacon. This is calculated for every beacon–antenna 
pair. If no message has been received from a beacon for 
the running max plus an additional puffer time (16 s in 
our prototype), we unload the corresponding tool. There 
are also a minimum and maximum frequency to prevent 
outliers: In our prototype, beacons are not unloaded 
based on reception frequency if they have been received 
within the last 48 s; if a beacon has not been detected 
within the last 180 s, it will be unloaded regardless of the 
running maximum. Both of these values (48 and 180) 
are adjustable.

More information about the beacon handling algo-
rithm can be found in [13].

2.3.  Server Architecture
This section elaborates on the backend architecture of 
our server, which encompasses the internal components 
and processes that remain inaccessible to end users in 
their interactions.

This data structure is used as the basis for the MySQL 
tables created for each craftsman company.

MySQL tables created for each craftsman company. 
Companies besides their name also have a start and end 

  FIGURE 4    Activity diagram of beacons describing how beacons change their state.
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  FIGURE 5    Processing pipeline for incoming messages.
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of day, and a flag for deactivating unusualTimes detec-
tions. If this is set to true, the system will notify the 
company owners about any unloads that happen outside 
their business hours, i.e., before startOfDay or after 
endOfDay. The company has employees which can 
assume different roles. The roles decide which access 
rights the employees have within the system. For example, 
Handymen may not add new vehicles to the system; only 
administrators have that right.

Containers are our base entity for both storages and 
vehicles. Exactly one container in the system must be the 
default container. This container gets assigned all newly 
added tools before they’re first detected by any DSA VCG. 
In addition to the serial number of the DSA VCG, the 
containers also have a name and location info. These can 
be set by the user to identify the container. The location 
info can be used for storages at job sites that do not have 
a recognizable address. The optional information that can 
be added to vehicles is only used as a convenience for 
the users. It is not actually processed, besides being 
displayed to the user when viewing information about a 
specific vehicle.

Each container can have a location. The location 
contains a GPS longitude/latitude and an address calcu-
lated by Azure Maps using the longitude/latitude informa-
tion. To save costs, the address is only calculated 
on-demand when a user requests a website where the 
address for that location needs to be displayed. The 
meaning of precise/imprecise locations is explained at 
the end of this section.

The tools encompass, most significantly, a media 
access control (MAC) address. This address is used to 
identify the beacon attached to the tool. Users read the 
MAC address by scanning a 2D code printed on the 
(Bosch) beacon using a scanner app on their phones and 

then provide the MAC address to us when adding the 
tool to the system. The other information is only used to 
display the tools in the system.

In addition to storing information, the server is also 
responsible for processing incoming messages, Figure 5, 
received by the DSA VCGs. Incoming messages are 
formatted in JavaScript Object Notation (JSON) format. 
Each message contains a serial number of a DSA VCG 
that determines to which craftsman company the message 
applies. Moreover, each message contains the current 
location and isDriving (i.e., speed ≥35 km/h) of the vehicle 
and a timestamp when the message was created.

Regarding the content of the trunk, the messages 
contain a list of the beacons that were added to the trunk 
since the last update message (addedBeacons), a list of 
all beacons that are currently considered in the trunk 
(beaconsInTrunk), and a list of remove events, each telling 
the backend where a specific beacon was unloaded.

During the “update database” step of our processing 
pipeline, the backend decides how to assign tools to 
vehicles based on the updates received from the vehicles. 
Since the server backend has global knowledge about 
the system state, i.e., knows the states of all vehicles and 
tools instead of only the state of one vehicle and its tools, 
it can prevent unwanted situations. For example, if two 
vehicles stand next to each other, this can prevent a tool 
from being continuously moved between the vehicles. 
Generally, the rules assume that storages and vehicles 
do not have overlapping antenna perception areas.

•	Containers load a newly added tool if
◼◼ The tool is currently unloaded, or
◼◼ The tool is currently loaded by a storage (i.e., not 
by another vehicle), or
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◼◼ The loading container is a storage (i.e., not a 
vehicle), or

◼◼ The loading container is driving.

•	Containers load tools that are “still in the trunk” if
◼◼ The tool is currently unloaded, or
◼◼ The container is driving and does not already 
have this tool loaded.

•	Containers remove tools that are reported as 
removed if

◼◼ The tool is currently loaded by that container, and
◼◼ The container is a vehicle.

The rules that containers may not unload tools loaded 
by other containers prevent error situations where a tool 
is moved from one container to another and where the 
new owner of the tool then reports having loaded the 
tool before the previous owner has reported having 
unloaded it.

The server manages system locations by distin-
guishing between precise and imprecise data. When 
craftsmen revisit a job site, their vehicles may not 
be parked in the exact same spot, and GPS accuracy can 
vary. Thus, imprecise locations are used to record where 
tools are unloaded. If a tool is unloaded at a site with an 
existing imprecise location in the database, it is assigned 
to that location. Conversely, when tracking vehicle posi-
tions for online display, precise locations as reported by 
the vehicle are utilized.

2.4.  User Interfaces
The tool tracking system is designed to serve multiple 
types of users in different situations.

The most powerful user interface is the desktop 
version [Figure 6(a)] for the company owner or asset 
manager. This interface provides a continuous, real-time 
overview of all company tools. As a result, since the 
ownership of tools is now traceable, field workers handle 
equipment more carefully, leading to a considerable 
reduction in tool losses.

Another key user of the system is the driver of an 
LCV who needs an overview of the tools in their vehicle’s 
trunk. An in-vehicle display [Figure 6(b)] shows both the 
tools currently loaded and the unloading locations for any 
tools that have been removed. The primary goal is to 
prevent the driver from leaving the job site with any tools 
left behind. While the vehicle is driving, a reduced UI is 
shown to reduce distractions.

Upon arriving at a construction site, craftsmen utilize 
a secondary interface via a smartphone [Figure 6(c)]. 
Occasionally, they need special tools shared among them. 
The smartphone app grants access to tools within their 
own LCV and across all company vehicles, facilitating the 
location and tracking of special tools throughout the fleet.

The customer journey outlines the routines and 
requirements of craftsmen. Each morning, craftsmen 
convene to review the day’s schedule and collect neces-
sary special tools. Standard power tools, such as cordless 
drills and cutters, remain in their vehicles overnight. In 
contrast, rare and costly tools, like specific measurement 
instruments, are shared among workers and stored 
centrally at the company’s headquarters after each 
workday. An in-vehicle interface provides updates on the 
loading status of both standard and special tools, enabling 
craftsmen to verify their equipment before departing for 
the job site. Upon arrival, they unload tools, with the 
system recording the time, location, and status of each 
tool to prevent any from being left behind.

Craftsmen occasionally require a special tool during 
a job. Instead of contacting headquarters or colleagues, 
they can use a smartphone app to locate the tool. This 
interface provides access to tools not just in their own 
vehicle but across the entire company fleet, allowing them 
to swiftly identify and contact the appropriate person for 
tool retrieval.

Finally, the company owner can review the load status 
of the entire fleet at any time. The interface provides 
up-to-date locations of the tools, and different views allow 
the owner to see lists of tools or a map with the live 
location. Furthermore, the user can review detailed infor-
mation about their tools, such as invoices, maintenance 
documentation, and maintenance intervals.

3.  Method 2: Camera-Based 
Setup
We present an AI system for parcel identification using 
cameras on delivery vehicles. It assists couriers by accu-
rately locating parcels during loading and unloading. 
Utilizing a YOLO-based architecture [14], it ensures rapid 
and precise detection, even in complex settings. Object 
pose estimation helps segment parcels for feature 
analysis, regardless of the camera angle. Similarity 
learning distinguishes parcels by unique attributes like 
size, shape, and color. The system must recognize 
unknown parcels from limited brand samples, overcoming 
challenges like sensor limitations and variable lighting, 
which are addressed by enhancing the vision pipeline with 
reasoning capabilities.

3.1.  System Overview
At the sorting center, the parcels are cataloged using an 
AI-driven system that extracts three key pieces of infor-
mation: parcel side embeddings, human-interpretable 
attributes, and parcel dimensions. Each parcel is scanned 
from multiple angles, and its visual features are encoded 
into a similarity embedding. In addition, attributes such 
as brand logos, labels, tape color, and barcodes are 
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  FIGURE 6    Tool tracking user interfaces.
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identified and stored. The parcel’s physical dimensions 
are also recorded to assist in later identification. This 
catalogue serves as a reference for downstream processing.

Later, when parcels are inside the LCV, the system 
attempts to re-identify them using onboard image 
sensors. The detection pipeline consists of two 
primary branches:

	 1.	 Re-Identification Branch: This branch generates a 
similarity embedding for each detected parcel and 
compares it against the cataloged embeddings 
from the sorting center. The goal is to find the 
closest match based on visual appearance.

	 2.	 Attribute Extraction Branch: In parallel, a second 
branch extracts human-interpretable attributes, 
such as brand information and unique parcel 
markings, which further refine the 
identification process.

In the final stage, a reasoning system combines infor-
mation from both branches, leveraging similarity scores, 
extracted attributes, and size constraints to match the 
observed parcel with its corresponding entry in the 
catalog. This hybrid approach ensures accurate and robust 
parcel identification, even under challenging conditions 
such as occlusions or varying orientations within the van.

3.2.  Algorithms
The goal is to build a system that can localize and identify 
parcels robustly using the image sensors in a LCV. The 
overall architecture of our proposed framework is shown 
in the figure below. It consists of five modules. The first 
module focuses on localizing parcels using a single-shot 
object detection algorithm, YOLOv5. The second module 
uses a pose detection algorithm to identify the side faces 
of each parcel. The remaining modules operate on these 
side faces. We use a pipeline with two branches. The first 
branch compresses each parcel’s side to a similarity 
embedding. The second branch complements the simi-
larity embedding with visual human-interpretable attri-
butes (e.g., brand, labels, tape color). Finally, the matching 
module combines the output of the two branches and 
attempts to match the observed parcel against an indexed 
catalogue of available parcel information. In the next 
section, we discuss the implementation of these compo-
nents, as well as ideas on how to implement the attribute 
classification network and the matching module.

3.2.1. Real-Time Tracking  To efficiently track parcels in 
real time, our system leverages the YOLOv5 object detec-
tion model. YOLOv5 scans the scene for parcels and iden-
tifies their locations within the image space. Once a parcel 
is detected, a bounding box with a margin is applied to 
isolate the parcel from its surroundings. This cropped 
image is then fed into the 3D pose estimation model, 
which determines the parcel’s orientation and extracts 
relevant side faces for further processing.

Using YOLOv5 for initial parcel localization simplifies 
the pose estimation task by narrowing down the region 
of interest, reducing computational complexity, and 
improving accuracy. YOLOv5 [14] is particularly well-suited 
for this task due to its ability to perform fast and accurate 
detections while handling multiple object types, such as 
parcels, bags, and envelopes, within the same scene.

3.2.2. 3D Pose Estimation and Side Extraction  In order 
to extract the faces of each parcel, we need to estimate 
the 6 degrees of freedom (DoF) of the object. These 6 
DoF can be separated into a translation (lateral movement 
in x, y, z) and a rotation (pitch, yaw, roll). The capability of 
most deep learning models to estimate the 6 DoF pose 
depends on 3D information such as the object’s CAD 
model or 3D sensors (lidar) [15–17]. To reduce the overall 
cost of the solution, only 2D information (images) can 
be used as input. Therefore, our objective is to determine 
the 6DoF pose of parcels using a single RGB image.

We propose a convolutional neural network (CNN)–
based approach to achieve this. From the 3D bounding 
cuboid defined by the 6 DoF, each parcel side can then 
be extracted for further processing. An additional benefit 
is that we get the relative dimensions of each parcel. 
This information helps to limit the search space in the 
smart matching step. To achieve this, a CNN is used. The 
CNN identifies the pixel coordinates for each vertex of 
the parcel(s). Next, CNN predicts the relative size of the 
parcel(s) based on the pixel coordinates of its corners. 
Once CNN has found these coordinates, along with the 
size of the parcel, a 3D pose can be estimated using the 
perspective-n-point algorithm. The perspective n-point 
algorithm [18] is a well-known method to estimate the 
3D pose of an object from a set of 2D image points. In 
this context, the algorithm takes as input the dimensions 
of the parcel, as well as a set of 2D pixel coordinates 
representing the vertices of the parcel in the image.

This algorithm iteratively maps the 2D pixel coordi-
nates to the correct 3D corner. This mapping involves 
solving a system of equations that relates the 2D and 3D 
coordinates, using triangulation. This leads to an estima-
tion for the position and orientation of the parcel in the 
3D space. The model should be able to detect multiple 
parcels and be robust to occlusions, changes in back-
ground, and lighting conditions. We use the Center Pose 
model [19] to find the corners and relative dimensions for 
each parcel.

3.2.3. Parcel Re-Identification  After extracting the sides 
of a parcel, we propose to train a CNN to transform the 
image of a parcel’s side into a descriptive embedding 
vector—a fingerprint—that can be used to compute a simi-
larity score for pairs of images. Importantly, the representa-
tion used should allow recognition beyond the set of parcels 
used in the training. An established approach to learn such 
an effective image embedding consists of training a deep 
CNN with a Siamese network architecture [20] according 
to the triplet ranking loss [21] (Figures 7 and 8).
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  FIGURE 7    Parcel tracking system overview.
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  FIGURE 8    Siamese network embeddings.
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Classical CNNs modify parameters for image classi-
fication, while Siamese neural networks assess feature 
distances between input images. They employ identical 
network configurations to produce embedding vectors 
from the same dataset. The model generates embed-
dings for novel images and compares them in pairs 
against a gallery of known images, assigning the highest 
re-identification probability to the pair with the highest 
score according to the network.

Preprocessing: We first modify the images so that 
the CNN becomes rotational and perspective equivariant. 
As the courier can rotate the parcel in any direction and 
can move freely within the van, the resulting images of 
the parcel sides that are extracted from the video stream 
can have any rotation and perspective. To be able to 
match multiple images of the same parcel, the model 
must be insensitive to these transformations. However, 
the convolution operation is only translation equivariant. 
We propose to solve this by applying a perspective trans-
form. For computing the homograph matrix, we define 
the source plane by the four vertices of the detected 
parcel side, and we define the destination plane as a 
rectangle with the same aspect ratio as the source plane 
and a horizontal base. Finally, the resulting rectangular 
images are rescaled to 300 by 300 pixels, keeping the 
aspect ratio of the raw image and padding with black 
pixels (Figure 9).

As a result of this preprocessing step, the only 
remaining possible variation between a gallery image and 
a query image is due to 90° rotations, varying light condi-
tions, differences in image quality, and partial occlusions. 
The first can be addressed by augmenting the gallery 
with 90° rotations or by normalizing the rotation using 
PCA. The latter must be  “learned” by the Siamese 
network [20].

Model: The baseline model utilizes the model 
described by Koch et al. [20], where a Siamese CNN 
framework with six layers. Rectified linear units (ReLU) 
are employed in the first layers, followed by sigmoidal 
units in the final layers. The model comprises convolu-
tional layers with a single channel, filters of variable size, 
and a stride of 1. Filter counts are multiples of 16, starting 
at 32 for the first two layers and increasing to 64 in later 

layers. The output feature maps are activated by a ReLU 
function, subsequent to a max-pooling operation with 
dimensions and a stride of 2. A filter map for every layer 
of the initial twin is denoted as described by Koch 
et al. [20].

Loss function: The training methodology for the 
proposed network entails reorganizing the preprocessed 
sample set into a balanced matrix of both similar and 
dissimilar image pairs. Each similar pair consists of two 
unique images of the same parcel, while each dissimilar 
pair comprises two images from different parcels.

Initially, each training example consists of three 
unique images: an anchor (ia), a positive (ip), and a negative 
(in). The selection ensures that ia and ip belong to the same 
category, while in does not. Considering a distance function 
d(X, Y) in the embedding space, where X, Y ∈ , and E(i) 
denotes the image i’s embedding evaluated by the CNN, 
the loss function to be minimized is given as [20]:

	 ( ) ( )( ) ( ) ( )( )( )enc max 0, , ,a p a nL d E i E i d E i E i α= − +
	

where α represents a predetermined margin to be main-
tained between the two distances.

Ensuring swift convergence necessitates the precise 
selection of relevant triplets. We adopt a “hard” mining 
approach for selecting positive examples and utilize a 
“semi-hard” strategy for identifying negative examples.

Post Processing: The key points and the relative 
cuboid dimensions are used to find the optimal bounding 
cuboid. This is achieved using the PnP algorithm. The PnP 
solver is designed to determine the 3D box based on its 
eight vertices. It accomplishes this by matching the pixel 
coordinates of the eight vertices in the image to the real 
3D model of the box. If the dimensions of the box are 
known, a 3D representation can be created that only 
requires the position and rotation to match the image 
(6 DoF). The algorithm iteratively searches for the position 
and rotation by using the 2D points one by one and 
mapping them to the correct 3D point. When only one 
point is used, the position is fixed, but the box can still 
rotate (3 DoF remain). Each additional point decreases 
the DoF by one, so using a total of four points can solve 

  FIGURE 9    Perspective transform.
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  FIGURE 10    Parcel embeddings.
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the problem. We use eight points because each point is 
an estimation with an error margin, and using multiple 
points helps to find the best combination of all the points 
and dimensions for accurate results.

Attribute Classification: The output vector generated 
by the Re-ID network theoretically contains all the visual 
details of a parcel, making it potentially sufficient to solve 
the re-identification problem. However, due to the simi-
larity in appearance among parcels, the Re-ID network 
often struggles to find the correct match. To complement 
the results of the Re-ID branch, we employ the attribute 
branch, which utilizes human-interpretable information 
(attributes) to restrict the search space using logical 
reasoning. By incorporating this information, we  can 
significantly enhance accuracy. Attributes can include 
labels, barcodes, text on the parcels, and more. The attri-
bute network takes the same image as input as the Re-ID 
network. Detecting these attributes is a typical object 
detection task, which can be accomplished using state-
of-the-art neural networks such as YOLO-based models 
[14], faster R-CNN, and others.

Matching: A naïve approach for solving the parcel 
matching problem is by selecting a single side of the 
parcel (e.g., the side with the largest visible face area), 
generating its embeddings, and matching it with the most 
similar gallery embedding. This is the traditional approach 
used in re-identification applications (e.g., person re-iden-
tification). However, this naïve deep learning–based 
approach may fail to re-identify some parcels, as parcels 
can have a generic look, the gallery could contain many 
similar parcels, and essential parts could be occluded by 

other objects. To resolve this, we propose to integrate 
the deep similarity learning approach with reasoning to 
(1) correct some of the mistakes made by the deep 
learning model and (2) perform out-of-distribution detec-
tion to avoid incorrect matches. Attribute information 
helps narrow the search space by either hard filtering out 
parcels that don’t match query attributes or soft scoring 
them based on attribute similarity. In soft scoring, each 
attribute is weighted by its reliability, with more accurate 
ones weighted higher. The final match score combines 
the attribute score and embedding similarity via a 
weighted sum (Figure 10).

3.2.4. Model Transparency and Interpretability  At 
present, the central component of our Re-ID pipeline is 
a deep convolutional embedding network. Although these 
networks excel in numerous visual tasks, they are 
frequently perceived as black boxes, making interpreta-
tion challenging. However, providing a clear and compre-
hensible explanation is crucial for the practical implemen-
tation of deep neural networks. This is essential both to 
establish trust in the model and to assist in model 
comprehension and debugging. Understanding can 
be approached by analyzing the network at both the 
output layer and the intermediate convolutional layers.

A low-dimensional representation of parcel embed-
dings: At the output layer, we can try to gain insight into 
the embeddings or feature representations of our image. 
One way to understand the generated embeddings is to 
visualize them in a low-dimensional space such as 2D or 
3D. This is achievable through methods like PCA (principal 
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component analysis), which reduce the dimensionality of 
high-dimensional embedding vectors while largely main-
taining their pairwise distances. By visualizing the reduced-
dimensional embeddings, we can get an idea of how the 
network grouping images of the same or similar parcels 
together. This idea is illustrated in the figure for the 
embeddings of different sides of 11 parcels. Each dot 
represents the embedding vector corresponding to a 
randomly augmented view (i.e., rotated and/or scaled) of 
the original image. As desired, embeddings of the same 
(side of) a parcel are typically clustered together in the 
2D space.

Understanding convolutions through attention: 
Attention mechanisms allow us to determine which 
convolutional feature transformations are emphasized, 
focusing on key regions of the input data for embedding 
creation. Attention weights facilitate the identification of 
crucial input areas. Grad-CAM [22] excels in highlighting 
vital areas of the image, employing backpropagation 
gradients to elucidate network decisions. Nonetheless, 
Grad-CAM and related attention methods are mainly 
tailored for classification tasks, posing challenges when 
adapted to embedding networks. We address these chal-
lenges by proposing an adaptation of the Grad-CAM 
technique specifically for embedding networks, building 
on the foundation laid by Chen [23] (Figure 11).

Grad-CAM [23] was initially designed for classification 
tasks to assess the significance of each neuron by utilizing 
gradient information that reaches the final convolutional 
layer(s) of a CNN, aiding in decision-making, such as iden-
tifying an “Amazon parcel” image. Neurons in these layers 
detect class-specific semantic information like an Amazon 
logo or certain tape on a parcel. For class c, the class 
discriminative map is derived by first calculating the 
gradient of the pre-softmax score yc concerning the 
feature map Ak ∈ ℝu × υ of a convolutional layer, where k 
indicates the channel index [23]:
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Subsequently, the gradients are averaged to deter-
mine the neuron importance weight c

kα  within each 
channel [23]:
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where (i, j) represents the spatial index and u ⋅ υ indicates 
the spatial resolution of the feature map [23]. This weight 
is termed a grad-weight. Grad-CAM is subsequently 
constructed as a weighted sum of feature maps, with a 
ReLU operator applied [22, 23]:
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ReLU is utilized since our focus is on features that 
enhance the target class (i.e., pixels whose intensity should 
be raised to amplify yc). Consequently, Grad-CAM gener-
ates a class-specific heatmap consistent with the dimen-
sions of the feature map.

Embedding networks cannot be directly adapted for 
Grad-CAM, as they lack per-class scoring during training 
or testing. To address this issue, we  utilize pairwise 
distances between samples as a differentiable activation 
for calculating grad-weights. Our approach involves 
sampling several dissimilar images from a designated 
anchor image of a parcel to determine visual attention 
within the anchor. We formally alter the described per-
class gradient following [23] by Chen et al.:
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Thus, the grad-weights for an anchor image can 
be calculated as [23]:
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4.  Results

4.1.  Tool Tracking
We evaluated the tool tracking system over a period of 
11 months with three trade companies from different 
trades with different vehicle types. A total of 139 different 
tools were tracked across 22 containers. During the first 
trial, our main focus was on improving the reliability of 
the system. As the system still had an increased number 
of incorrect measurements at this time, we will not 
consider the measured data from the first test any 
further here.

  FIGURE 11    Grad-CAM output.
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  FIGURE 12    Orthographic and perspective dataset.
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In the other two trials, the status of tools was changed 
from seen to not seen or vice versa, a total of 10,409 
times on the server side. The status of tools was changed 
from loaded to unloaded or vice versa a total of 7242 
times. The location of tools was changed a total of 8519 
times, and the assignment of a tool to a container 1513 
times. A total of 205,482 location changes were recorded 
for the containers.

We also conduct an assessment of the system using 
a range of handyman services. The system demonstrated 
its capacity to monitor missing tools effectively and did 
not exhibit any malfunctions throughout the process. 
Although instances of missing signals and GPS signal 
anomalies were observed, attributed to external influ-
ences, these factors did not impact the system’s perfor-
mance, as the system ensures continuous updates of 
the signals.

This pilot demonstrated a favorable response from 
the company owner, craftsmen, and administration. The 
system was perceived as helpful in providing a better 
overview of tool locations, saving time in tool search, and 
reducing physical effort. Concerns were raised by the 
craftsmen regarding the privacy settings of the system. 
They expressed fears that the tool tracking system could 
be misused by the company owner. The craftsmen viewed 
the tool tracking system as a “wolf in sheep’s clothing,” 
believing that the company owner might use it to track 
the workers rather than just the tools. Since the system 
requires real-time location data of the vehicles to track 
the tools, this also reveals the real-time location of the 
craftsmen. In response, we developed an optional location 
tracking feature. The company owner can choose between 
tracking only the loading and unloading locations or 
opting out of location tracking altogether. This option led 
to an increased acceptance rate among all users.

The potential cost savings were based on reduced 
tool search and thus less time for calling colleagues to 
locate special tools. It was estimated that checking for all 
tools before leaving the construction site takes between 
5 and 10 min per day and vehicle. This sums up to 1.75 
and 3.5 h/month and vehicle (assumption: 21 working days 
per month). Additionally, phone calls conducted by the 
administration were normally made to find special tools, 

taking an average of 15 min/day, resulting in a time saving 
of 1.3 h/month and vehicle (assumption: 21 working days 
per month and 4 vehicles per company). The tool tracking 
system was also helpful in reducing tool loss, with two 
tools saved from being forgotten in just 8 weeks of 
testing. The range of monetary value of the tools was 
from 100€ to 4000€. Taken together, there was a time-
saving potential between 3.15 and 4.8 h/month and vehicle 
and two prevented tool losses.

4.2.  Parcel Tracking
4.2.1. Dataset  We created an image dataset from a 
diverse set of parcels including the most representative 
form factors (i.e., boxes, bags, and envelopes) and 
brands. High-resolution color photos (3648 by 5472 
pixels) were taken from multiple sides of each parcel, 
with the parcel in the center of the image, in order to 
train and evaluate the machine learning models. The 
dataset can be broken down into two subsets with 
different properties. We  refer to them as the ortho-
graphic and perspective dataset (Figure 12).

The orthographic dataset comprises orthographic 
views of 2 to 6 sides of 64 different parcels, totaling 408 
images, all captured against a white background. To 
segment the parcel within each image, a YOLO object 
detector was applied [14], followed by manual post-
processing to refine the region of interest.

In contrast, the perspective dataset features perspec-
tive views and images of handheld parcels, which often 
result in partial occlusions, making it more indicative of 
real-world scenarios. This dataset consists of 725 images 
representing 59 parcels, with the 3D pose manually anno-
tated for 443 of these images. We trained the pose esti-
mation model on the perspective dataset and a variation 
of the perspective dataset. We will first discuss the results 
of the perspective dataset before discussing the results 
for the variation. All images have a green background to 
create a simple and controlled environment for early 
stage model training. However, to better reflect real-world 
deployment conditions, additional images are needed 
featuring more complex backgrounds, natural lighting, 
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and varied parcel handling. To supplement this, we also 
considered using synthetic data to increase diversity and 
robustness, as in Lens et al. [24].

4.2.2. Pose Estimation  The network was trained on the 
perspective dataset, consisting of 243 training images 
and 43 test images, over 85 epochs. Not all available 
images were used due to the lack of annotations, as 
annotating 6D poses is labor-intensive and costly. It is 
common for object detectors to use intersection over 
union (IoU) as a metric to evaluate the performance. For 
the bounding box, this results in the formula:

	
Overlap

Union
IoU

A
A

=
	

In IoU 50%, the predicted bounding box or segmenta-
tion mask is considered correct if the overlap with the 
ground truth is at least 50%. Therefore, the higher the 
IoU 50% value, the better the performance of the algo-
rithm in accurately localizing or segmenting the object of 
interest. However, centerpose predicts 3D bounding 
boxes, so we modify the formula and use volume instead 
of area. This results in:
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The average IoU is 59% on the train set and 56% on 
the test set. The IoU 50% for the train set is 72% and 65% 
for the test set (Figure 13).

In a later experiment, the green background was 
replaced with a random background. This adaptation 
allows the network to handle more complex scenes. 
However, since the boxes are placed randomly within 
these images, some results appear visually unnatural.

We retrained centerpose with this random back-
ground dataset, initializing it with the weights for cereal 
boxes from the Objectron dataset [25]. After training for 
20 epochs, the network began to overfit, meaning that 
while it performed well on the training data, its perfor-
mance on unseen data deteriorated. This suggests that 
the model became too specialized to the training data 
and struggled to generalize to new examples.

The evaluation results show an average IoU of 67% 
for training and 50% for testing. The IoU50% scores are 
86% and 54%, respectively. Although these percentages 
may seem low, visual inspection indicates that the results 
remain acceptable.

One challenge in the dataset is the high number of 
parcels aligned parallel to the camera plane, making depth 
estimation particularly difficult for the network. After 
removing these images, the evaluation showed a 3% 
improvement in training performance and a 10% increase 
in the test set. Table 1 provides an overview of all IoU results. 
Lens et al. [24] leverage diffusion models to generate real-
istic, annotated synthetic data. Incorporating this pipeline 
could enhance performance by pretraining the model on 
the synthetic dataset before fine-tuning it on real data.

4.2.3. Parcel Re-Identification  To evaluate the embed-
ding network, we simulate the parcel re-identification 
(Re-ID) task. This is a content-based image retrieval (CBIR) 
problem, where the model must match an image of a 
parcel (i.e., a query image) with an image of a parcel in 
the gallery. Therefore, the embeddings are first generated 
for the query image and each gallery image. Next, the 
cosine distance between the query and the embedding 
of each gallery image is computed. The pair with the 
smallest distance is then regarded as a match. We consider 
two different evaluation settings:

	 1.	 Parcel Re-ID: The gallery only contains the top-
down view (i.e., the side with the label) while the 
query can be an image of any side of a parcel in 
the gallery.

	 2.	 Parcel Side Re-ID: The gallery contains an 
orthographic view of each side of the parcels. A 
query is matched with the correct parcel if the 
query and the matched gallery image belong to 
the same parcel (Figure 14).

  FIGURE 13    Results pose estimation.

© Ford Motor Company; SAE International

TABLE 1  Overview of IoU results.

Avg train 
IoU (%)

Avg test 
IoU (%)

IoU50 
train (%)

IoU50 
test (%)

Perspective dataset 59 56 72 65
Random background 67 50 86 54
Random background 
(query only)

70 55 88 64
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To train the embedding network, we randomly split 
the parcels in the orthographic dataset in a train and test 
dataset using an 80%–20% ratio. From the training set, 
we create batches of 100 samples per epoch by randomly 
sampling images of ten parcels from the training set and 
applying a random set of augmentations to these images. 
These augmentations include a horizontal and vertical 
flip, zooming out up to 50% of the original size, and a 
rotation around the center.

As our evaluation metric, we use the top-k accuracy 
classification score on the test set. This metric computes 
the number of times where the gallery parcel that 
matches with the query is among the top-k gallery parcels 
with the smallest embedding distance. Effectively, the 
top-1 accuracy corresponds to the percentage of parcels 
that would be identified correctly. Values of k > 1 give an 
indication of how the embeddings would perform when 
used to create a selection of potential matches which can 
be refined with additional methods.

As a simple baseline for our deep learning embed-
dings, we use color histograms. They represent one of 
the first CBIR techniques. The core idea is to take an 
image, translate it into a color-based histogram, and use 
these histograms to retrieve images with similar color 
profiles. To create the color histogram, we compute the 
histogram for each color channel with 32 equally spaced 
bins. By concatenating these histograms, we obtain a 
vector of length 96. Finally, we apply L2 normalization to 
this vector such that we compare images by the cosine 
similarity between their color histograms. Using this 
approach, we obtain a top-1 accuracy of 38% and top-3 
accuracy of 57% on the train set in the parcel Re-ID setting 
with basic augmentations. The key limitation of color 
profiles is their sole reliance on color, ignoring textures, 
edges, and image content.

The parcel Re-ID setting is practically the most 
straightforward setting, as it only requires a top-view 
picture to be taken in the PDO. However, it can be chal-
lenging to visually match two different sides of the same 

parcel, as they do not necessarily share any visual cues. 
For example, a logo might be printed on only one side of 
the parcel. Using basic augmentations in this setting, 
we obtain a top-1 accuracy of 40% and a top-3 accuracy 
of 76%. Surprisingly, the top-1 accuracy is only slightly 
better than the baseline model based on the color profile. 
Yet, the CNN-based embedding network results in much 
better embeddings (Figure 15).

The parcel side Re-ID setting is comparatively much 
easier. With respect to the previous setting, we first only 
adapt the gallery by adding an orthographic picture of 
each side of the test parcels. As each query is now a 
rotated or scaled version of a gallery image, we obtain 
a high top-1 accuracy of 87% and top-3 accuracy of 93%. 
However, in a realistic setting, the query images are 
independently taken from the gallery images in a 
different environment with varying lighting and video 
quality and from different angles. To evaluate the effect 
of these distortions, we applied a set of more advanced 
augmentations to the query images. As Table 2 illus-
trates, each of these transformations decreases the 
performance. The performance of the embedding 
networks is currently suboptimal. We hypothesize that 
increasing the amount of training data could significantly 
enhance their performance.

5.  Conclusion
The integration of AI and sensor technologies into LCV 
presents significant opportunities for optimizing goods 
tracking, inventory management, and delivery efficiency. 
This study explored two distinct approaches: a Bluetooth-
based tracking system tailored for craftsmen and a 
camera-based AI solution designed for parcel carriers. 
The Bluetooth-based system demonstrated high reliability 
in tool tracking and inventory monitoring, reducing the 
likelihood of misplaced or stolen equipment. However, its 

  FIGURE 14    Embeddings space of color profile and CNN-based embeddings.

©
 F

or
d 

M
ot

or
 C

om
pa

ny
; S

AE
 In

te
rn

at
io

na
l

Downloaded from SAE International by Bernhard Rumpe, Tuesday, January 06, 2026



	 Aslandere et al. / SAE Int. J. of CAV / Volume 9, Issue 2, 2026	 19

applicability remains limited to predefined objects 
equipped with Bluetooth beacons, making it less suitable 
for dynamic parcel logistics.

The AI-driven camera-based system showed promise 
in real-time parcel identification, leveraging object detec-
tion, pose estimation, and similarity learning for robust 
recognition. While this approach enhances the flexibility 
of tracking diverse package types without requiring prior 
tagging, challenges such as lighting variations, occlusions, 
and computational constraints remain. Future advance-
ments in deep learning models and sensor fusion tech-
niques may further improve the accuracy and scalability 
of vision-based tracking systems.

Overall, this research highlights the necessity of 
selecting tracking methodologies based on specific 
use-case requirements. For craftsmen, Bluetooth tracking 
offers a structured and reliable solution, while AI-based 
vision systems hold potential for broader logistics applica-
tions. Future work should explore hybrid tracking frame-
works that combine multiple sensing modalities to 
maximize accuracy and adaptability in commercial vehicle 
environments. Building on this, we also see potential in 

leveraging intelligent loading strategies and support real-
time decision-making, such as dynamic routing based on 
the precise location and delivery order of parcels.
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