
The Influence of the Generator’s License on
Generated Artifacts

Carsten Kolassa and Bernhard Rumpe

Software Engineering
RWTH Aachen University, Germany

http://www.se-rwth.de/

Abstract. Open sourcing modelling tools and generators becomes more
and more important as open source software as a whole becomes more im-
portant. We evaluate the impact open source licenses of code generators
have on the intellectual property (IP) of generated artifacts comparing
the most common open source licenses by categories found in literature.
Restrictively licensed generators do have effects on the IP and therefore
on the usability of the artifacts they produce. We then show how this
effects can be shaped to the needs of the licensor and the licensee.

1 Introduction

Open source has become more and more important in the last years and has
been adopted widely in the consumer as well as the industrial market. In 2008,
85% of all enterprises were using open source software [15], more recent studies
give numbers up to 98% [31].

Open Source is not only used in business but also in development. According
to [16] 76% of all developers have used open source technology for some of their
tasks.

The reasons to develop open source software vary greatly. Some companies
provide open source software to rapidly grow their user base [18] and thus creat-
ing an industry standard. Other reasons are getting a community invested into
the project to create an ecosystem of supporting software (e.g. Plugins) arround
the original project or to allow external validation of the software (e.g. every
user could potentially security audit open source software). Individuals develop
open source software to show off their skill, to show their work to the world, for
altruistic reasons, or for potential rewards in the future [17]. Academic institu-
tions provide their software under an open source license to gain a user base,
and to foster the use of new approaches in industry. Some companies have a dual
license approach where they provide an open source version of the software to
gain a user base but offer more flexible licenses and customization to business
users [29].

The open source licenses reflect this different reasons to open source software
and to use it and differ from each other considerably [26].

It is therefore important to chose the right license that is consistent with
the reasons you license the software as open source. This is especially true for

[KR14] C. Kolassa, B. Rumpe 
The Influence of the Generator's License on Generated Artifacts
International Workshop on Open Source Software for Model Driven Engineering (OSS4MDE)
Volume 1290 of CEUR Workshop Proceedings
www.se-rwth.de/publications



generators as there are more potential pitfalls than with other software as the
generator’s license can have an influence on the intellectual property rights of
the generated artifacts.

For example a car manufacturer will not use a generator or compiler when
the license of the produced code threatens the intellectual property (IP) of his
other code or enforces a logo to be placed on the car.

To give an overview about the potential license choices for generators we
list the most common licenses and classify them according to categories found
in literature. We then show which impact the licenses have on the artifacts if
applied to a generator.

Our research questions are:
RQ1: Which impact can the open source license choice for the generator have

on the license of the artifacts?
RQ2: What possible solutions can be used to counteract unwanted effects on

the IP of the artifacts?
The paper is structured as follows: Section 2 reviews the related work. In

section 3, we describe the licenses and describe their characteristics as found
in literature. Section 4 shows which influence those characteristics have on the
license/ownership of the generated artifacts if the license is applied to a software
generator and how this influence can be shaped to meet the needs of the licensor.
Section 5 concludes the paper.

2 Related Work

Various publications analyse the rationale behind license choices and give guide-
lines which license is suitable for which project.

[22] examines the scope of licensing in open source and lists the various
considerations that determine the license of open source projects. While [24]
gives a guide to choosing an open source license in a commercial context.

[21] examines the licenses and their implications in great detail which negative
and positive implication they have on projects in general, the reasons to choose
a particular license but aso how to draft an own open source license.

[23] gives an overview about trademark, patent, and copyright law in relation
to open source and shows how to choose a commercial or open source license. It
examines the implications of linking code covered by the gpl and the implications
of creating derivative work but only from a developer perspective as well as from
a business perspective, but does not cover model driven development.

[30] shows what motivates businesses to provide open source, examines com-
mon open source licenses and how they relate to community and corporate in-
terests. It also classifies open source licenses and gives an overview of the impli-
cations of licenses for the IP of the code they cover using examples.

[28] presents how the license choice impacts interest into a project and the
development activity.

[12] analyses the open source development paradigm and shows differences
and similarities of open source development and licensing to non open source
approaches.



However, none of the above papers and books examines the intellectual prop-
erty situation of artifacts that are generated or created by open source projects
as separate case.

3 Most Common Licenses

In this section we describe the most common open source licenses and and show
their characteristics. We chose the licenses by looking at the black duck license
usage statistics [10]. This statistics are calculated from the black duck Knowl-
edgeBase which includes one million open source projects from more than 7500
sites.

We looked at the 10 most widely used licenses and decided to exclude the
Artistic License as it is mostly used in the context of the Perl Scripting language
and the Microsoft Public License because of its similarity to the Eclipse Public
License (EPL) which is more important in the context of model driven develop-
ment (as many widely used open source software for model driven development
use this license) and we decided to look only at the most recent version of each
license and exclude older versions which gives us 6 potential licenses for our
evaluation. We made the choice to include a 7th license the GNU Affero General
Public License as it addresses the privacy loophole which isn’t addressed by the
other licenses.

3.1 Comparison

Permissions for reuse: We use the classification in [30] and differentiate be-
tween three different types of licenses called Permissive, Weak Copyleft and
Strong Copyleft.
Permissive: These licences permit the redistributor to restrict access to the

modified source code (make the modified source code closed source) and
to put the changed software under a different license (even a proprietary
license).

Weak Copyleft: The license of the software cannot be changed but it only
applies to the software that is directly derived from the original software
e.g. software that incorporates copies of source code from the original
software.

Strong Copyleft: Every software that links or otherwise incorporates code
from a software licensed under a strong copyleft license needs to be
published under a compatible license [27]. Strong copyleft licenses are
often called viral as linking to one strong copyleft library forces the
whole project to be put under a compatible license.

Patent license: Some Open Source licenses automatically include a patent
granting clause that grants a non-exclusive, worldwide, royalty-free patent
license for all patents a contributor holds and that affect his contribution
to the project. In other words if a contributor contributes code to a project
that mandates a license grant and the code he contributes would be covered



by a patent he holds he needs to give a license to the users of the project
without charging them for it.

Enhanced Attribution: All open source licenses specify that that the anyone
who distributes or modifies the software needs to give credit to the original
authors. “Enhanced attribution” means that the license specifies the form of
the credits in a way that goes beyond just giving credit like the attribution
clause in the original BSD license that specifies that a special acknowledge-
ment needs to be added to all advertising materials mentioning the use of
the licensed software or a feature of the software [2]

Privacy Loophole/Provider Loophole[19]: If someone modifies an open source
software and just uses it or sells its use e.g. a service provider who sells the use
of a webclient, there is normally no obligation to make the changes available
to the community. If this loophole is closed on the other hand the changes
must be made available.

License

Perm
issions

for
reuse

Patent
license

Enhanced
A
ttribution

Privacy
Loophole

Apache License [3] Permissive grants No No

3-Clause BSD license [9] Permissive doesn’t grant No No

MIT License [1] Permissive doesn’t grant No No

Eclipse Public License [5] Weak Copyleft grants No No

Lesser GPL (LGPLv3)[8] Weak Copyleft grants No No

Gnu Public License (GPLv3) [7] Strong Copyleft grants No No

Affero General Public License (AGPLv3) [6] Strong Copyleft grants Enhanced1 Yes

Table 1: Comparison of the different licenses.

3.2 Dual Licensing/Multi Licensing

Dual licensing is the practice to distribute software under two different licenses
[29] while multi licensing is the practice to distribute it under more than two
licenses.

Dual Licensing is a common business model in open source. Examples for
famous projects with dual licenses are:

– Qt [29]
– MySQL [29]
– Asterisk [11]

1 The license allows to add clauses to require the ”preservation of specified reasonable
legal notices or author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it” [6].



– Sendmail [11]

The software is normally distributed freely under a restrictive open source license
that allows the open source community to participate on the development but
that makes it difficult to use the software in a commercial environment. But the
software is also available under a proprietary software license for a license fee,
which allows creating proprietary applications that are based on it (e.g. com-
mercial applications that use the QT library which would’t be possible using the
open source version) or that allows OEMs (Original Equipment Manufacturers),
ISVs (Independent Software Vendors), VARs (Value Added Resellers) to com-
bine and/or distribute the software together with or as commercially licensed
software (like in the case of MySQL [25]).

It is also possible to multi license only parts of a software it sometimes makes
sense to license a single file under two different open source licenses for example
to allow its use in two different projects whose licenses are incompatible to each
other or to put some parts of the software under a less restrictive license to allow
its reuse while the rest of the software remains under a restrictive license.

4 The Ownership of the Generated Code

The question under which license the generated artifacts are is a very important
one. The relationship is tricky as the generated artifacts are derived from the
models (that are owned by the user of the software) but to some extent also
include parts from the generator itself and usually work together with a runtime
environment and libraries.

4.1 Are Generated Artifacts Derivative Work?

Derivative work according to US copyright law is: “work based upon one or more
preexisting works” [4], in software this includes work that contains substantial
chunks of source code from another work. Generated source code is therefore
derivative work when source code of the original program in our case the gener-
ator was used, modified, translated or otherwise changed in any way to create
the new program. If the open source license requires that derivative work needs
to be published under the same or a compatible license and the generated arti-
facts are derivative work they automatically need to be open source when they
are redistributed, this is the case for all copyleft licenses.

It is important to notice that the mere output of a program itself is not
covered by the license of that program. Only if the output constitutes derivative
work of the generating program there is this legal dependency between generator
output and generator.

Figure 1 shows an example where the generator copies chunks from its own
code into the generated artifact which means that the artifact is derivative work.

An example for such a generator is bison the GNU parser generator which
copies parts of itself into the parser source code it generates. Therefore every



Parts that are direct 
copies from generator 
sourcecode or from 
templates that are part 
of the generator

«gen»

Generator

Output

<<generator>>

Generator
Model

«handwritten»

Legend:
Provided under a 

copyleft license

generates
The restrictive license
of the generator causes
the output to be derivative
work which needs to be 
distributed under the same 
or a compatible license as 
the generator.

Can only be distributed

under a license compatible 

with the license of the 

generator

Created and owned by

the user of the generator

Fig. 1: Relationship of generator and artifacts that causes the artifacts to be
derivative work.

parser generated with bison would be derivative work of bison but the license
of bison makes an explicit exception to the GPL [14], that allows to include
the bison parser generator’s source code in other projects without having to put
them under the GPL.

Another example for generators that include parts of themselves into gen-
erated code are generators based on the Monticore [20] language workbench.
Monticore uses templates to generate source code these templates for example
generate class definitions and their content is directly put into the generated
artifacts. If those templates are licensed under a copy left license the generated
code is derivative work and needs to be treated accordingly.

Both weak and strong copyleft licenses impose the restriction that deriva-
tive work that includes substantial parts of the original work needs to be put
under the same or a compatible license only permissive licenses don’t have that
restriction.

4.2 Dependencies on Libraries

For strong copyleft licenses it isn’t enough that the work is not derivative to cause
implications of the license to the work depending on it. Strong copyleft licenses
define a term “Corresponding Source” which is the code for shared libraries and
dynamically linked subprograms that use the work. This “Corresponding Source”
needs to be licensed under the same license if the original work is licensed under a
strong copyleft license. An example would be a library that is licensed under the
GPL and that is used as a shared library by generated artifacts (see Figure 2).
These artifacts then need to be licensed under the GPL as well.

For weak copyleft licenses there is no such requirement as merely using a
library imposes no effect on the license of the artifacts.



Generator

Output

<<generator>>

Generator
Model

<<library>>

Library provided as

part of the generator

framework

compiles

«handwritten»

<<linkes>>

Legend:

Provided under 

a strong copyleft license

generates

<<executable>>

Program

Can only be distributed

under a license compatible 

with the license of the 

library

«gen»

Created and owned by

the user of the generator

Fig. 2: Relationship of generator and artifacts that causes a dependency between
program and library which causes the program to be under the same license as
the library it links to.

4.3 Explicitly shaping the license implications of open source
licenses on generated code.

The license implication both for incorporating source of the generator in gen-
erated artifacts as well as having dependencies to strong copyleft licensed code
can create practical problems for users of the generator.

For example a company that uses such a generator to create a product would
need to license it as open source under a compatible license. This prevents some
business models, e.g. the software could not be distributed as closed source.
This is often not intended as the licensor sometimes wants to only protect the
generator but not the artifacts.

We identify the following ways to explicitly prevent these dependencies from
having practical effects:

Adding an exception in the license. In this approach en exception is added to a
restrictive license to allow exactly the usage of dependent or derivative artifacts
that is intended by the licensor. This is the approach that the GNU parser
generator used it has the advantage that the intentions of the licensor are clear
as it is clearly stated what impact the license of the generator should have on
the dependent artifacts.

The disadvantage of this approach is that a modified version of a license
(adding an exception is a modification) is a new license. This creates problems for
distributors of open source software as they normally use automated approaches
to package software which need standardized licenses with clear compatibilities
and incompatibilities to other open source licenses.

Users as well as distributors need to check these non standardized exceptions
and handle them accordingly this creates additional effort.



Duallicensing or multilicensing the files the artifacts are derived from or depen-
dent on. If the generator is under a copyleft license as a whole the licensor can
still release parts of it under a less restrictive license. The licensee can then
choose the license that applies as both are valid. This solution is recommended
by [13] for website templates but can also be applied to generating software. In
the case of Monticore based generators for example this means releasing the tem-
plates under a permissive license as well while the code parts that don’t affect
the IP of the generated artifacts are only released under a restrictive license.

Preventing the dependency from having practical effects by using a permissive
license for the files the artifacts are derived from or dependent on. The third
way to prevent dependencies to have practical effects is using a permissive license
for the whole project if possible. This has the disadvantage that others can freely
use the code of the original work even commercially or in own generators which
is often not wanted.

4.4 Summary

RQ1: Which impact can the open source license choice of the generator have
on the license of the artifacts?

Answer: The license can have an influence on the artifacts. When the artifacts
are derivative work in the case of Weak-Copyleft or Strong-Copyleft licenses
or when the artifacts have dependencies on libraries that are part of the
generator framework e.g. dependencies on a library in the case of Strong-
Copyleft licenses.

RQ2: What possible solutions can be used to counteract possibly detrimental
effects?

Answer: There are three ways to shape minimize the restrictions:
– Adding an exception to the license of the generator.
– Dual licensing the code that creates the dependency under a more per-

missive license.
– Using a more permissive license that prevents the problem in the first

place.

5 Conclusion

The license of the generator can have an impact on generated artifacts. Generator
providers need to take that into account when choosing the license of their
generator. The effects can be positive and deliberate for example to make the
open source version of a generator less attractive when the dual licensing business
strategy is employed and thus forcing commercial users to license the commercial
version of the generator while still being able to benefit from the open source
community. But they can also have detrimental effects when a generator that
is only available under a restrictive license creates artifacts that are derivative
work or have dependencies that cause that the artifacts cannot be used in a



commercial environment although the licensor wants to allow that and only
intended to protect the generator’s code not the artifacts it creates. It is therefore
important to know the effects of the license choice on the artifact and to apply
the shown solutions if the effects are not as intended.

References

1. The MIT License (MIT) (1988), http://opensource.org/licenses/MIT, accessed:
2014-07-18 Archived by (WebCite at http://www.webcitation.org/6RBCNyR6K)

2. BSD 4-clause ”Original” or ”Old” License (Jun 1999), https://spdx.org/

licenses/BSD-4-Clause, accessed: 2014-07-18 Archived by (WebCite at http:

//www.webcitation.org/6RBCvX2Ug)

3. Apache License, Version 2.0 (Jan 2004), http://www.apache.org/licenses/

LICENSE-2.0.html, accessed: 2014-07-18 Archived by (WebCite at http://www.

webcitation.org/6RBCKOptH)

4. 17 USC 101: U.S. Copyright Act (found in Title 17) Definitions (October 2005),
october 2005

5. Eclipse Public License (Jun 2007), https://www.eclipse.org/legal/epl-v10.

html, accessed: 2014-07-18 Archived by (WebCite at http://www.webcitation.

org/6RBD8jAxB)

6. Gnu affero general public license (Jun 2007), http://www.gnu.org/licenses/

agpl-3.0.html, accessed: 2014-07-18 Archived by (WebCite at http://www.

webcitation.org/6RBDAXKp1)

7. GNU GENERAL PUBLIC LICENSE (Jun 2007), http://www.gnu.org/

copyleft/gpl.html, accessed: 2014-07-18 Archived by (WebCite at http://www.

webcitation.org/6RBC6medP)

8. GNU LESSER GENERAL PUBLIC LICENSE (Jun 2007), http://www.gnu.org/
copyleft/lgpl.html, accessed: 2014-07-18 Archived by (WebCite at http://www.
webcitation.org/6RBCxG23g)

9. The BSD 3-Clause License (Jun 2007), http://opensource.org/licenses/

BSD-3-Clause, accessed: 2014-07-18 Archived by (WebCite at http://www.

webcitation.org/6RBCpqN1s)

10. BlackDuck: Top 20 Open Source Licenses, http://www.blackducksoftware.com/
resources/data/top-20-open-source-licenses, accessed: 2014-07-18 (Archived
by WebCite at http://www.webcitation.org/6RB5Dj9Av)

11. DiBona, C., Stone, M., Cooper, D.: Open sources 2.0: The continuing evolution. ”
O’Reilly Media, Inc.” (2005)

12. Feller, J., Fitzgerald, B.: A framework analysis of the open source software devel-
opment paradigm. In: Proceedings of the twenty first international conference on
Information systems. pp. 58–69. Association for Information Systems (2000)

13. Foundation, F.S.: Frequently Asked Questions about the GNU Licenses, http:

//www.gnu.org/licenses/gpl-faq.html, accessed: 2014-07-18 Archived by (We-
bCite at http://www.webcitation.org/6RBHH4EKt)

14. Foundation, F.S.: GNU General Public License v2.0 w/Bison exception,
https://spdx.org/licenses/GPL-2.0-with-bison-exception, accessed: 2014-
07-18 Archived by (WebCite at http://www.webcitation.org/6RBDDWcfb)

15. Gartner: User Survey Analysis: Open-Source Software, Worldwide, 2008 (2008),
http://www.gartner.com/DisplayDocument?id=757916

http://opensource.org/licenses/MIT
http://www.webcitation.org/6RBCNyR6K
https://spdx.org/licenses/BSD-4-Clause
https://spdx.org/licenses/BSD-4-Clause
http://www.webcitation.org/6RBCvX2Ug
http://www.webcitation.org/6RBCvX2Ug
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.webcitation.org/6RBCKOptH
http://www.webcitation.org/6RBCKOptH
https://www.eclipse.org/legal/epl-v10.html
https://www.eclipse.org/legal/epl-v10.html
http://www.webcitation.org/6RBD8jAxB
http://www.webcitation.org/6RBD8jAxB
http://www.gnu.org/licenses/agpl-3.0.html
http://www.gnu.org/licenses/agpl-3.0.html
http://www.webcitation.org/6RBDAXKp1
http://www.webcitation.org/6RBDAXKp1
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.webcitation.org/6RBC6medP
http://www.webcitation.org/6RBC6medP
http://www.gnu.org/copyleft/lgpl.html
http://www.gnu.org/copyleft/lgpl.html
http://www.webcitation.org/6RBCxG23g
http://www.webcitation.org/6RBCxG23g
http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/BSD-3-Clause
http://www.webcitation.org/6RBCpqN1s
http://www.webcitation.org/6RBCpqN1s
http://www.blackducksoftware.com/resources/data/top-20-open-source-licenses
http://www.blackducksoftware.com/resources/data/top-20-open-source-licenses
http://www.webcitation.org/6RB5Dj9Av)
http://www.gnu.org/licenses/gpl-faq.html
http://www.gnu.org/licenses/gpl-faq.html
http://www.webcitation.org/6RBHH4EKt
https://spdx.org/licenses/GPL-2.0-with-bison-exception
http://www.webcitation.org/6RBDDWcfb
http://www.gartner.com/DisplayDocument?id=757916


16. Hammond, J.S., Brown, V., Murphy, P., Curran, R.: Development Landscape: 2013
Developer Forrsights North America And Europe (2013)

17. Hars, A., Ou, S.: Working for free? Motivations of participating in open source
projects. In: System Sciences, 2001. Proceedings of the 34th Annual Hawaii Inter-
national Conference on. pp. 9–pp. IEEE (2001)

18. Hecker, F.: Setting up shop: The business of open-source software. IEEE software
16(1), 45–51 (1999)

19. Johnston, S.: Simple workload & application portability (SWAP). In: Computer
Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on.
pp. 37–42. IEEE (2014)

20. Krahn, H., Rumpe, B., Völkel, S.: Monticore: a framework for compositional de-
velopment of domain specific languages. International journal on software tools for
technology transfer 12(5), 353–372 (2010)

21. Laurent, A.M.S.: Understanding Open Source and Free Software Licensing.
O’Reilly Media, first edition,annotated edn. (8 2004)

22. Lerner, J., Tirole, J.: The scope of open source licensing. Journal of Law, Eco-
nomics, and Organization 21(1), 20–56 (2005)

23. Lindberg, V.: Intellectual Property and Open Source: A Practical Guide to Pro-
tecting Code. O’Reilly Media, 1 edn. (7 2008)

24. Lindman, J., Paajanen, A., Rossi, M.: Choosing an open source software license
in commercial context: A managerial perspective. In: Software Engineering and
Advanced Applications (SEAA), 2010 36th EUROMICRO Conference on. pp. 237–
244 (Sept 2010)

25. MySql: Commercial License for OEMs, ISVs and VARs, http://www.mysql.com/
about/legal/licensing/oem/, accessed: 2014-07-18 Archived by (WebCite at
http://www.webcitation.org/6RBMbAzJi)

26. Rosen, L.: Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall, 1 edn. (8 2004), http://amazon.com/o/ASIN/0131487876/

27. Sen, R., Subramaniam, C., Nelson, M.L.: Open source software licenses: Strong-
copyleft, non-copyleft, or somewhere in between? Decision support systems 52(1),
199–206 (2011)

28. Stewart, K.J., Ammeter, A.P., Maruping, L.M.: Impacts of license choice and or-
ganizational sponsorship on user interest and development activity in open source
software projects. Information Systems Research 17(2), 126–144 (2006)

29. Välimäki, M.: Dual licensing in open source software industry. Systemes dInfor-
mation et Management 8(1), 63–75 (2003)

30. Widenius, M.M., Nyman, L.: The Business of Open Source Software: A Primer.
Technology Innovation Management Review 4(January 2014: Open Source Busi-
ness) (2014)

31. Zenoss Inc.: 2010 Open Source Systems Management Survey (2010)

http://www.mysql.com/about/legal/licensing/oem/
http://www.mysql.com/about/legal/licensing/oem/
http://www.webcitation.org/6RBMbAzJi
http://amazon.com/o/ASIN/0131487876/

	Lecture Notes in Computer Science
	Introduction
	Related Work
	Most Common Licenses
	Comparison
	Dual Licensing/Multi Licensing

	The Ownership of the Generated Code
	Are Generated Artifacts Derivative Work?
	Dependencies on Libraries
	Explicitly shaping the license implications of open source licenses on generated code.
	Summary

	Conclusion


