
26th Aachen Colloquium Automobile and Engine Technology 2017 211

The Next Generation of BMW’s Electrified
Powertrains: Providing Software Features
Quickly by Model-Based System Design
Dr. Stefan Kriebel, Vincent Moyses, Dr. Georg Strobl
BMW Group, Munich, Germany

Dr. Johannes Richenhagen, Dr. Philipp Orth, Prof. Dr. Stefan Pischinger
FEV Europe GmbH, Aachen, Germany

Christoph Schulze, Timo Greifenberg, Prof. Dr. Bernhard Rumpe
RWTH Aachen University, Software Engineering, Aachen, Germany

Summary

Modern vehicles are complex systems dominated by continuously evolving software
functions and highly cross-linked architectures. With shorter development cycles and
increasing cost pressure, new approaches are required to provide safe and
affordable mobility solutions. This paper tackles this by merging known computer
science techniques with state of the art methods of mechanic and electric
engineering: systems engineering is consistently done in four layers while retaining
agile efficiency at the same time. Model-based requirements replace written text.
Besides cost reduction through maintainable and reusable documentation, this
approach enables semi-automated test case derivation cutting down testing effort.
For the development of BMW's next generation electrified drivetrain efficiency and
quality objectives can be achieved. Thus, cost, quality and adaptability targets can be
met at the same time.

1 System and Software Business Model Evolution

Automotive system development is confronted with conflicting requirements on the
one side and market conditions on the other. Customers require a quicker reaction of
product development to new technical trends. This results in a shorter time-to-market
dropping from average values of five years in the 1980s to three years in the 21st
century [1]. Including upgrades and facelifts as well, this even drops to a level of one
to two years. With each system upgrade, customers demand more functionality at a
similar price level. If inflation is taken into account, this requires a required cost
reduction of 4% every year pushing available development budgets to steadily lower
levels [2].

However, concentration on cost efficiency does not resolve the trade-off to be made:
Individual, mechanically driven vehicles are being replaced by integrated mobility
systems including the electrified drivetrain, vehicle-wide functionalities, user
experience and diverse traffic scenarios. The integration is realized by complex
software systems. If these are developed with the same methods and processes as

[KMS+17] S. Kriebel, V. Moyses, G. Strobl, J. Richenhagen, P. Orth, S. Pischinger, C. Schulze, T. Greifenberg, B. Rumpe:
The Next Generation of BMW’s Electrified Powertrains: Providing Software Features Quickly by Model-Based System Design.
In: 26th Aachen Colloquium Automobile and Engine Technology, 2017.
www.se-rwth.de/publications/

212 26th Aachen Colloquium Automobile and Engine Technology 2017

during the last decades, verification and validation effort will explode. E.g., the
migration from a state-of-the-art adaptive cruise control function to an auto pilot
results in a validation effort increase by a factor in the magnitude of 100000 [3]. Test
effort, prototype vehicles and hence validation costs explode at abovementioned
budget restrictions. As a result, quality assurance is performed risk-based where
taken risks result in an explosion of software recall campaigns in the past decade [4].

For deriving right countermeasures, the weaknesses in current system engineering
need to be analyzed (Fig. 1).

Fig. 1: Quality dilemma

At the begin of the development of new functionalities, system requirements and
system architecture are difficult to be completely defined top down - they are usually
being elaborated bottom up during prototype sessions to identify a desired behavior.
However, description methods are missing to document doubtlessly for all later
stages what shall be contained in the system. As a consequence, the entire system
architecture is usually described incompletely and is therefore not maintainable. An
incomplete or even missing system architecture leads, of course, to weak
requirements on system level. Bottom up function level requirements have to be
defined without taking consistent system interfaces into account. This causes multiple
requirement alignment loops and hence early delay of project milestones. Hence, on
software level unit tests are defined without consistent system and functional
requirements which leads to additional integration loops caused by object code
mismatches.

On component level test cases are not complete, causing similar integration issues
on the vehicle level. These are mitigated by applying large vehicle fleets with intense
staff involvement: error identification time is increased through failure detection on
system level only, cost limits require a prioritization of test maneuvers.

26th Aachen Colloquium Automobile and Engine Technology 2017 213

2 Model-Based System Design: System Design based on Software
Development Approaches

One main strategy to handle the mentioned conflicts between time-to-market, cost
reductions, arising quality issues and the increased validation time on vehicle level is
frontloading. This means it is necessary to increase the efforts in early development
steps like requirements development, functional design and architectural design [5].
In fact, frontloading is not a new idea as it shall help to reduce efforts on the more
cost-intensive verification and validation tasks on Hardware-in-the-Loop (HiL) level or
vehicle level. Furthermore, frontloading is recommended by many standards like
ISO/IATF 16949 and ISO 26262. However, it cannot be easily applied as it needs an
interdisciplinary approach combining methods from known mechanic and electric
engineering techniques as well as computers science approaches.

Model-based systems engineering [6, 7] focuses on a continuously evolving model-
based development of architectures and requirements [8, 9]. While a systematic and
semi-formal representation of requirements is more intensive in a first step,
experience from large scale software projects shows an increased product quality.
The higher quality of documents resulting from frontloading activities reduces
following costs for validation significantly. High quality models will reduce
communication efforts, inconsistencies between requirements and reduce the
amount of defects and failures which would otherwise only be detected on later
verification levels. An easier communication is especially important in the context of
large teams, interdisciplinary exchange and collaborations with external partners and
internal departments (aspects, which are all common in the automotive domain).

The System Modeling Language (SysML) [10] is derived from the Unified Modelling
Language (UML) [10, 11] which was introduced in the 1990ies. It provides a larger
set of structural and behavioral diagram languages to specify systems from different
viewpoints on different abstraction levels, but does not provide a concrete process or
detailed guidelines which diagram types are to be used in which order or for which
level of abstractions. Similar to EAST-ADL [12], BMW has proposed a model-based
system engineering approach called SMArDT ("Specification Method for Architecture,
Design and Test") which comprises four levels: Requirements level, function design
level, architectural level, hardware resp. software design level (EAST-ADL: vehicle,
analysis, design and implementation level), as shown in Fig. 2.

SMArDT combines a systematic vertical refinement approach from layer to layer with
a horizontal hierarchical composition from the context of the overall engine to specific
modules. From layer to layer additional requirements are identified and derived from
higher level requirements, where suitable, to establish a complete tracing (as
demanded by standards like CMMI [13] or ISO26262 [14]). On the technical level a
first separation between hardware and software aspects is performed, which are then
implemented on the fourth level.

214 26th Aachen Colloquium Automobile and Engine Technology 2017

Fig. 2: SMArDT methodology overview

SMArDT supports a systematic step-by-step model-based requirement and function
specification [15, 16] due to the four abstraction layers. In consequence, on each
level the provided requirements and concepts are reevaluated and detailed, which -
in terms of frontloading - ensures a very early verification and validation on the
ongoing activities. Of course these steps are quite time-intensive but provide also
high quality artifacts which can be used to significantly speed up the overall
development process. The mentioned abstraction layers are applied for the
structured documentation whereas the applied process is meant to be agile [17].

In the context of this paper we will focus on one of several possible new
opportunities, which are provided by a high quality set of semi-formal models: the
semi-automated generation of test cases [18, 19].

2.1 Semi-automated Test Case Generation

The function models on the second layer realized by activity diagrams, state charts
and internal block diagrams provide already enough information to generate test
cases for verification purposes automatically.

A corresponding process is illustrated in Fig. 3. Based on customer models, like use
case and context diagrams, defined in the first layer, activity diagrams and state
charts are defined during the function specification. These function models are
defined in cooperation of specifier and tester to ensure that functional aspects, like
correct failure handling, are also included. Based on these models from the function
layer test cases can be generated automatically to fulfill the path coverage criteria C2c
[20]. In addition, the tester can configure specific aspects of the model, like specific
input parameter or decisions, to manipulate the test case generation for context-
related needs.

26th Aachen Colloquium Automobile and Engine Technology 2017 215

Fig. 3: Overview test case generation

Exemplary activity diagrams, which are used for test case generation, are shown in
Fig. 4. Different activities or decision node can be classified to adjust the test case
generation for specific needs (e.g. test step execution time / cost, requirements,
decision coverage). As the activity diagram and internal block diagram of the function
layer are refinements of the use case and context diagrams of the customer value
layer (see Fig. 2) and the activity diagram is based on the functional architecture
described by the block diagram, the generated test cases represent all the aspects
defined on both layers.

To be able to generate test cases from activity diagrams or state charts, besides a
correct use of the SysML language, the explicit definition of expected output needs to
be defined on an abstract level. While this is common for state charts the activity
diagram language has been adjusted to fulfill these needs. Besides these technical
requirements, high quality semi-formal models, representing an abstract but distinct
functional description, are necessary to generate test cases, which can be used to
verify a system based on defined requirements. These models are provided by the
process and guidelines provided by SMArDT.

During the system requirement and function specification phase labels from a
keyword database are reused to define interfaces and conditional aspects. These
keywords are mapped to concrete platform-specific signals and their specific test
execution. During the data dictionary implementation step for each keyword (and
related signals) a concrete test sequence is implemented to be able to perform the
initialization and evaluation automatically.

Combining the mapping between keyword and signal database (and their test
implementation) with the semi-automated test case generation, the effort to define,
setup and execute verification tests is reduced significantly.

In addition, because of the neutral nature of customer and function models the
generated test cases can be reused for different platforms.

216 26th Aachen Colloquium Automobile and Engine Technology 2017

Fig. 4: Examples for test case generation configuration

3 Application: Project „MTSF“

SMArDT and the approach for semi-automated test case generation is currently used
in an ongoing series development project to define BMW's upcoming generation of
electric drives. In collaboration with the FEV Europe GmbH and the Software
Engineering Chair of the RWTH Aachen University additional modeling guidelines for
function models have been identified to allow a semi-automated test case generation,
called "Model-based Testing of Software-based Functions" (MTSF).

During the development, efforts have been monitored systematically to evaluate if the
proposed expectations are fulfilled. In Fig. 5 a first evaluation on five different
functions is shown, which highlights the additional effort on function specification
level for specifier and tester to be able to derive test cases. In relation to the
complexity of the function the amount of effort, but also the amount of generated test
cases, is increasing.

Function A is the first measured function including diagnosis and safety aspects and
thereby highlighted the additional benefits in the context of these areas. As a path-
wise test case generation requires logical branches to increase the amount of test
cases, error detection and handling mechanisms highly increase the potential for
automated test case generation.

26th Aachen Colloquium Automobile and Engine Technology 2017 217

Fig. 5: Additional effort for automated test case generation

Regarding the measured efforts it needs to be considered that the additional
guidelines for test case generation have been applied the first time in a serious
development context. Thereby, reduced efforts can be expected once the approach
is established. In addition, not only the effort could be reduced, but also the quality of
models is increased, because of the semi-formal nature of the introduced guidelines.

Nevertheless, comparing the measured efforts with ongoing traditional development,
the expectations can already be matched, as reduced efforts on requirement
interpretation and verification tasks are already negating the additional efforts on
function specification level as shown in Fig. 6.

Based on the current experiences further improvements on the test generation
configuration are already identified to increase the quality of resulting test cases even
more.

Fig. 6: Reduced effort due to MTSF

218 26th Aachen Colloquium Automobile and Engine Technology 2017

Fig. 7: Integrated toolchain from requirement to test case

The overall process is supported by an integrated toolchain as represented in Fig. 7.
A fluent connection between the tools DOORS, PTC, ECU Test and HPQC is
established to sustain the ongoing industrialization.

4 Summary & Outlook

The MTSF system engineering approach tackles the current conflict between solid
requirements, test case and architecture definition for complex systems and cost and
time pressure due to mobility market conditions. The method bases on model-based
description of system functionalities through clearly defined abstraction levels. Semi-
formal description enables efficient requirement alignment and semi-automated test
case generation.

In this paper, the design on the higher abstraction levels was focused sharing
application experiences for the next generation of BMW's electrified powertrains. For
the first time, model-based specification was applied to system level development of
automotive series products. Driven by a systematic function architecture definition,
more than 50 functions reflect the designed behavior of energy management,
charging and torque provision. Considering coverage criteria, test costs and
execution time, test cases were derived semi-automatically for defined model paths.
At the end of the workflow, automatically executable test sequences were produced.

The overall development effort could be reduced while working within given market
and product milestones. Even more importantly, system quality is increased: more
test cases are defined, test coverage can be determined in early stages, bugs can be
identified at earlier design stages. Also, requirements, test cases and development
artefacts can be aligned easily and traced doubtlessly.

Next steps will include the continuation of system development on lower abstraction
levels. Quality gains will be observed - when reaching the vehicle test level, a

26th Aachen Colloquium Automobile and Engine Technology 2017 219

significant reduction of prototypes and debugging phases is expected. The MTSF
method will be expanded application-wise to other vehicle development domains
outside the powertrain. Also, Failure-tree-analysis for e.g. safety applications will be
facilitated. Next method development steps will focus the industrialization for large,
distributed and cross-enterprise development teams. Here, we especially expect
further work on bridging established development cultures of computer and
engineering science domains.

5 References

[1] PRASAD, B.
Analysis of pricing strategies for new product introduction
Pricing Strategy and Practice, Vol. 5 Issue: 4, pp.132-141
Bingley (UK), 1997

[2] MOHR, D. et al.
The road to 2020 and beyond: What’s driving the global automotive industry?
Mc Kinsey & Company, Inc.
Stuttgart, 2013

[3] HÜBNER, H.-P.
Automatisiertes Fahren – Wohin geht die Fahrt?
Proc. 18. Kongress Fortschritte in der Automobilelektronik
Ludwigsburg, 2014

[4] STEINKAMP, N.
2016 Automotive Warranty & Recall Report: Industry Insights for the Road
Ahead
Chicago, 2015

[5] KRIEBEL, S.
Economic High Quality Software for Automotive Systems
3d Congress on Real Time, INCHRON; Braunschweig
2011

[6] WYMORE, A. W.
Model-Based Systems Engineering
CRC Press, Inc.
USA, 1993

[7] ESTEFAN, J. A.
Survey of Model-Based Systems Engineering (MBSE) Methodologies
Incose MBSE Focus Group
2007

220 26th Aachen Colloquium Automobile and Engine Technology 2017

[8] GRÖNNINGER, H. et al.
View-Centric Modeling of Automotive Logical Architectures
In: Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung
eingebetteter Systeme IV. Informatik-Bericht 2008-02, CFG-Fakultät, TU
Braunschweig,
2008

[9] KRIEBEL, S.
Timing propagation in the development of software-based automotive systems
4th Symtavision NewsConference on Timing Analysis, Braunschweig
2010

[10] WEILKIENS, T.
Systems Engineering with SysML/UML: Modeling, Analysis, Design
Morgan Kaufmann
USA, 2008

[11] RUMPE, B.
Agile Modeling with UML: Code Generation, Testing, Refactoring
Springer International
Germany, 2017

[12] CUENOT, D. et al.
Managing Complexity of Automotive Electronics Using the EAST-ADL
12th IEEE International Conference on Engineering Complex Computer
Systems
2007

[13] PAULK, M.
Capability Maturity Model for Software
John Wiley & Sons
2002

[14] HILLEBRAND, M.
Funktionale Sicherheit nach ISO 26262 in der Konzeptphase der Entwicklung
von Elektrik/Elektronik Architekturen von Fahrzeugen
KIT Scientific Publishing
Germany, 2012

[15] GRÖNNINGER, H. et al.
View-Centric Modeling of Automotive Logical Architectures
4th European Congress ERTS - Embedded Real Time Software, Toulouse
2008

[16] GRÖNNINGER, H. et al.
In: Proceedings of the Object-oriented Modelling of Embedded Real-Time
Systems (OMER4) Workshop, Paderborn,
2007

26th Aachen Colloquium Automobile and Engine Technology 2017 221

[17] LINZ, T.
Testen in Scrum-Projekten Leitfaden für Softwarequalität in der agilen Welt
dpunkt.verlag, 2. Auflage
2016

[18] PRETSCHNER, A. et al.
Model-based testing for real. STTT 5(2-3): 140-157
2004

[19] PHILIPPS, J. et al.
Model-Based Test Case Generation for Smart Cards.
Electronic Notes in Theoretic Computer Science 80: 170-184
2003

[20] LIGGESMEYER, P.
Software-Qualität: Testen, Analysieren und Verifizieren von Software
Spektrum Verlag
2009

222 26th Aachen Colloquium Automobile and Engine Technology 2017

