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Summary 

Modern vehicles are complex systems dominated by continuously evolving software 
functions and highly cross-linked architectures. With shorter development cycles and 
increasing cost pressure, new approaches are required to provide safe and 
affordable mobility solutions. This paper tackles this by merging known computer 
science techniques with state of the art methods of mechanic and electric 
engineering: systems engineering is consistently done in four layers while retaining 
agile efficiency at the same time. Model-based requirements replace written text. 
Besides cost reduction through maintainable and reusable documentation, this 
approach enables semi-automated test case derivation cutting down testing effort. 
For the development of BMW's next generation electrified drivetrain efficiency and 
quality objectives can be achieved. Thus, cost, quality and adaptability targets can be 
met at the same time. 

1 System and Software Business Model Evolution 

Automotive system development is confronted with conflicting requirements on the 
one side and market conditions on the other. Customers require a quicker reaction of 
product development to new technical trends. This results in a shorter time-to-market 
dropping from average values of five years in the 1980s to three years in the 21st 
century [1]. Including upgrades and facelifts as well, this even drops to a level of one 
to two years. With each system upgrade, customers demand more functionality at a 
similar price level. If inflation is taken into account, this requires a required cost 
reduction of 4% every year pushing available development budgets to steadily lower 
levels [2]. 

However, concentration on cost efficiency does not resolve the trade-off to be made: 
Individual, mechanically driven vehicles are being replaced by integrated mobility 
systems including the electrified drivetrain, vehicle-wide functionalities, user 
experience and diverse traffic scenarios. The integration is realized by complex 
software systems. If these are developed with the same methods and processes as 
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during the last decades, verification and validation effort will explode. E.g., the 
migration from a state-of-the-art adaptive cruise control function to an auto pilot 
results in a validation effort increase by a factor in the magnitude of 100000 [3]. Test 
effort, prototype vehicles and hence validation costs explode at abovementioned 
budget restrictions. As a result, quality assurance is performed risk-based where 
taken risks result in an explosion of software recall campaigns in the past decade [4]. 

For deriving right countermeasures, the weaknesses in current system engineering 
need to be analyzed (Fig. 1). 

 

Fig. 1: Quality dilemma 

At the begin of the development of new functionalities, system requirements and 
system architecture are difficult to be completely defined top down - they are usually 
being elaborated bottom up during prototype sessions to identify a desired behavior. 
However, description methods are missing to document doubtlessly for all later 
stages what shall be contained in the system. As a consequence, the entire system 
architecture is usually described incompletely and is therefore not maintainable. An 
incomplete or even missing system architecture leads, of course, to weak 
requirements on system level. Bottom up function level requirements have to be 
defined without taking consistent system interfaces into account. This causes multiple 
requirement alignment loops and hence early delay of project milestones. Hence, on 
software level unit tests are defined without consistent system and functional 
requirements which leads to additional integration loops caused by object code 
mismatches. 

On component level test cases are not complete, causing similar integration issues 
on the vehicle level. These are mitigated by applying large vehicle fleets with intense 
staff involvement: error identification time is increased through failure detection on 
system level only, cost limits require a prioritization of test maneuvers. 
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2 Model-Based System Design: System Design based on Software 
Development Approaches 

One main strategy to handle the mentioned conflicts between time-to-market, cost 
reductions, arising quality issues and the increased validation time on vehicle level is 
frontloading. This means it is necessary to increase the efforts in early development 
steps like requirements development, functional design and architectural design [5]. 
In fact, frontloading is not a new idea as it shall help to reduce efforts on the more 
cost-intensive verification and validation tasks on Hardware-in-the-Loop (HiL) level or 
vehicle level. Furthermore, frontloading is recommended by many standards like 
ISO/IATF 16949 and ISO 26262. However, it cannot be easily applied as it needs an 
interdisciplinary approach combining methods from known mechanic and electric 
engineering techniques as well as computers science approaches. 

Model-based systems engineering [6, 7] focuses on a continuously evolving model-
based development of architectures and requirements [8, 9]. While a systematic and 
semi-formal representation of requirements is more intensive in a first step, 
experience from large scale software projects shows an increased product quality. 
The higher quality of documents resulting from frontloading activities reduces 
following costs for validation significantly. High quality models will reduce 
communication efforts, inconsistencies between requirements and reduce the 
amount of defects and failures which would otherwise only be detected on later 
verification levels. An easier communication is especially important in the context of 
large teams, interdisciplinary exchange and collaborations with external partners and 
internal departments (aspects, which are all common in the automotive domain). 

The System Modeling Language (SysML) [10] is derived from the Unified Modelling 
Language (UML) [10, 11] which was introduced in the 1990ies. It provides a larger 
set of structural and behavioral diagram languages to specify systems from different 
viewpoints on different abstraction levels, but does not provide a concrete process or 
detailed guidelines which diagram types are to be used in which order or for which 
level of abstractions. Similar to EAST-ADL [12], BMW has proposed a model-based 
system engineering approach called SMArDT ("Specification Method for Architecture, 
Design and Test") which comprises four levels: Requirements level, function design 
level, architectural level, hardware resp. software design level (EAST-ADL: vehicle, 
analysis, design and implementation level), as shown in Fig. 2. 

SMArDT combines a systematic vertical refinement approach from layer to layer with 
a horizontal hierarchical composition from the context of the overall engine to specific 
modules. From layer to layer additional requirements are identified and derived from 
higher level requirements, where suitable, to establish a complete tracing (as 
demanded by standards like CMMI [13] or ISO26262 [14]). On the technical level a 
first separation between hardware and software aspects is performed, which are then 
implemented on the fourth level. 



214  26th Aachen Colloquium Automobile and Engine Technology 2017 

 

Fig. 2: SMArDT methodology overview 

SMArDT supports a systematic step-by-step model-based requirement and function 
specification [15, 16] due to the four abstraction layers. In consequence, on each 
level the provided requirements and concepts are reevaluated and detailed, which - 
in terms of frontloading - ensures a very early verification and validation on the 
ongoing activities. Of course these steps are quite time-intensive but provide also 
high quality artifacts which can be used to significantly speed up the overall 
development process. The mentioned abstraction layers are applied for the 
structured documentation whereas the applied process is meant to be agile [17].  

In the context of this paper we will focus on one of several possible new 
opportunities, which are provided by a high quality set of semi-formal models: the 
semi-automated generation of test cases [18, 19].  

2.1 Semi-automated Test Case Generation 

The function models on the second layer realized by activity diagrams, state charts 
and internal block diagrams provide already enough information to generate test 
cases for verification purposes automatically. 

A corresponding process is illustrated in Fig. 3. Based on customer models, like use 
case and context diagrams, defined in the first layer, activity diagrams and state 
charts are defined during the function specification. These function models are 
defined in cooperation of specifier and tester to ensure that functional aspects, like 
correct failure handling, are also included. Based on these models from the function 
layer test cases can be generated automatically to fulfill the path coverage criteria C2c 
[20]. In addition, the tester can configure specific aspects of the model, like specific 
input parameter or decisions, to manipulate the test case generation for context-
related needs. 
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Fig. 3: Overview test case generation 

Exemplary activity diagrams, which are used for test case generation, are shown in 
Fig. 4. Different activities or decision node can be classified to adjust the test case 
generation for specific needs (e.g. test step execution time / cost, requirements, 
decision coverage). As the activity diagram and internal block diagram of the function 
layer are refinements of the use case and context diagrams of the customer value 
layer (see Fig. 2) and the activity diagram is based on the functional architecture 
described by the block diagram, the generated test cases represent all the aspects 
defined on both layers.  

To be able to generate test cases from activity diagrams or state charts, besides a 
correct use of the SysML language, the explicit definition of expected output needs to 
be defined on an abstract level. While this is common for state charts the activity 
diagram language has been adjusted to fulfill these needs. Besides these technical 
requirements, high quality semi-formal models, representing an abstract but distinct 
functional description, are necessary to generate test cases, which can be used to 
verify a system based on defined requirements. These models are provided by the 
process and guidelines provided by SMArDT. 

During the system requirement and function specification phase labels from a 
keyword database are reused to define interfaces and conditional aspects. These 
keywords are mapped to concrete platform-specific signals and their specific test 
execution. During the data dictionary implementation step for each keyword (and 
related signals) a concrete test sequence is implemented to be able to perform the 
initialization and evaluation automatically. 

Combining the mapping between keyword and signal database (and their test 
implementation) with the semi-automated test case generation, the effort to define, 
setup and execute verification tests is reduced significantly.  

In addition, because of the neutral nature of customer and function models the 
generated test cases can be reused for different platforms.  
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Fig. 4: Examples for test case generation configuration 

3 Application: Project „MTSF“ 

SMArDT and the approach for semi-automated test case generation is currently used 
in an ongoing series development project to define BMW's upcoming generation of 
electric drives. In collaboration with the FEV Europe GmbH and the Software 
Engineering Chair of the RWTH Aachen University additional modeling guidelines for 
function models have been identified to allow a semi-automated test case generation, 
called "Model-based Testing of Software-based Functions" (MTSF).  

During the development, efforts have been monitored systematically to evaluate if the 
proposed expectations are fulfilled. In Fig. 5 a first evaluation on five different 
functions is shown, which highlights the additional effort on function specification 
level for specifier and tester to be able to derive test cases. In relation to the 
complexity of the function the amount of effort, but also the amount of generated test 
cases, is increasing. 

Function A is the first measured function including diagnosis and safety aspects and 
thereby highlighted the additional benefits in the context of these areas. As a path-
wise test case generation requires logical branches to increase the amount of test 
cases, error detection and handling mechanisms highly increase the potential for 
automated test case generation. 
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Fig. 5: Additional effort for automated test case generation 

Regarding the measured efforts it needs to be considered that the additional 
guidelines for test case generation have been applied the first time in a serious 
development context. Thereby, reduced efforts can be expected once the approach 
is established. In addition, not only the effort could be reduced, but also the quality of 
models is increased, because of the semi-formal nature of the introduced guidelines.  

Nevertheless, comparing the measured efforts with ongoing traditional development, 
the expectations can already be matched, as reduced efforts on requirement 
interpretation and verification tasks are already negating the additional efforts on 
function specification level as shown in Fig. 6. 

Based on the current experiences further improvements on the test generation 
configuration are already identified to increase the quality of resulting test cases even 
more. 

 

Fig. 6: Reduced effort due to MTSF 
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Fig. 7: Integrated toolchain from requirement to test case 

The overall process is supported by an integrated toolchain as represented in Fig. 7. 
A fluent connection between the tools DOORS, PTC, ECU Test and HPQC is 
established to sustain the ongoing industrialization. 

4 Summary & Outlook 

The MTSF system engineering approach tackles the current conflict between solid 
requirements, test case and architecture definition for complex systems and cost and 
time pressure due to mobility market conditions. The method bases on model-based 
description of system functionalities through clearly defined abstraction levels. Semi-
formal description enables efficient requirement alignment and semi-automated test 
case generation.  

In this paper, the design on the higher abstraction levels was focused sharing 
application experiences for the next generation of BMW's electrified powertrains. For 
the first time, model-based specification was applied to system level development of 
automotive series products. Driven by a systematic function architecture definition, 
more than 50 functions reflect the designed behavior of energy management, 
charging and torque provision. Considering coverage criteria, test costs and 
execution time, test cases were derived semi-automatically for defined model paths. 
At the end of the workflow, automatically executable test sequences were produced.  

The overall development effort could be reduced while working within given market 
and product milestones. Even more importantly, system quality is increased: more 
test cases are defined, test coverage can be determined in early stages, bugs can be 
identified at earlier design stages. Also, requirements, test cases and development 
artefacts can be aligned easily and traced doubtlessly.  

Next steps will include the continuation of system development on lower abstraction 
levels. Quality gains will be observed - when reaching the vehicle test level, a 
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significant reduction of prototypes and debugging phases is expected. The MTSF 
method will be expanded application-wise to other vehicle development domains 
outside the powertrain. Also, Failure-tree-analysis for e.g. safety applications will be 
facilitated. Next method development steps will focus the industrialization for large, 
distributed and cross-enterprise development teams. Here, we especially expect 
further work on bridging established development cultures of computer and 
engineering science domains. 
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