
Test-Driven Semantical Similarity Analysis

for Software Product Line Extraction

Johannes Richenhagen
FEV GmbH

Neuenhofstraße 181
52078 Aachen, Germany
http://www.fev.com

Bernhard Rumpe
Software Engineering

Ahornstraße 55
52074 Aachen, Germany
http://www.se-rwth.de

Axel Schloßer
FEV GmbH

Neuenhofstraße 181
52078 Aachen, Germany
http://www.fev.com

Christoph Schulze
Software Engineering

Ahornstraße 55
52074 Aachen, Germany
http://www.se-rwth.de

Kevin Thissen
Software Engineering

Ahornstraße 55
52074 Aachen, Germany
http://www.se-rwth.de

Michael von Wenckstern
Software Engineering

Ahornstraße 55
52074 Aachen, Germany
http://www.se-rwth.de

ABSTRACT
Software product line engineering rests upon the assumption
that a set of products share a common base of similar func-
tionality. The correct identification of similarities between
di↵erent products can be a time-intensive task. Hence, this
paper proposes an automated semantical similarity analy-
sis supporting software product line extraction and mainte-
nance. Under the assumption of an already identified compa-
tible interface, the degree of semantical similarity is identi-
fied based on provided test cases. Therefore, the analysis can
also be applied in a test-driven development. This is done
by translating available test sequences for both components
into two I/O extended finite automata and performing an
abstraction of the defined behavior until a simulation rela-
tion is established. The test-based approach avoids comple-
xity issues regarding the state space explosion problem, a
common issue in model checking. The proposed approach is
applied on di↵erent variants and versions of industrially used
software components provided by an automotive supplier to
demonstrate the method’s applicability.

CCS Concepts
•Software and its engineering ! Software product
lines; Formal software verification; Software reverse engi-
neering; •Computer systems organization ! Embedded
software;

1. INTRODUCTION
Software Product Line Engineering [28] is a process of

creating and maintaining a reusable platform for a particu-
lar application domain in a planned manner. The decision

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPLC ’16, September 16 - 23, 2016, Beijing, China
c� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4050-2/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2934466.2934483

to establish and maintain a Software Product Line (SPL)
in a company is mainly driven by the demand for e�cient,
meaning cheap and short, development cycles. The develop-
ment of a generic item, being reused in di↵erent contexts, is
more cost intensive as the implementation of a specific one.
Therefore, in the industry the clone-and-own approach is
often used instead, as it is an intuitive and easily available
technique which does not enforce any structured planning
or restrict project-driven modifications [10]. Nevertheless,
clone-and-own is performed nonsystematic and issues with
increased maintenance e↵ort [10].

In the last years di↵erent approaches [34, 33, 14, 12, 38,
4] have been defined to support and systematize the general
clone-and-own approach. In addition, we defined a reactive
process in the tradition of Agile Product Line Engineering [9]
to establish and maintain a SPL in a clown-and-own manner
[36]. In this process the generic items of the SPL are software
components and in the context of FEV GmbH these software
components are defined based on PERSIST [40, 30], an in-
house standard inspired by and compliant to AUTOSAR1.

All listed approaches identify similarities between di↵erent
products based on di↵erent artifacts, like requirements, mo-
dels or source code and the overall performance of the sugge-
sted procedure depends on the quality of applied similarity
metrics. Nevertheless, most of these frameworks use only a
syntactical analysis method such as call tree graph [2], lines
of code as atomic comparison elements [11], number of same
traces to features in requirement documents [34], sequence
call graph of artefact elements (e.g. functions, classes) [14],
token- and character-based similarity of expressions [24] or
structural information from the (Java) metamodel [20]. So-
me matching algorithms use a semi-semantical approach [38,
33], which weight syntactical parts di↵erently depending on
their semantical influence on the behavior; but the similarity
calculation between di↵erent elements of the same element
kind (e.g. statechart transition) is based on string compa-
rison. In contrast to the mentioned approaches this paper
presents a full-semantical-based similarity analysis techni-
que based only on the components’ behavior specified by
their test definitions.

1http://www.autosar.org/

174
[RRSSTW16] J. Richenhagen, B. Rumpe, A. Schloßer, C. Schulze, K. Thissen, M. von Wenckstern:
Test-driven Semantical Similarity Analysis for Software Product Line Extraction.
In: International Systems and Software Product Line Conference (SPLC ’16), pages 174-183, Beijing, China, 2016. ACM.
www.se-rwth.de/publications/

http://dx.doi.org/10.1145/2934466.2934483
http://www.autosar.org/

Semantical clone analysis techniques can support the iden-
tification of similar features, however analyzing semantical
aspects of software components is a challenging task [32]. In
the context of model checking algorithms [1], the state space
explosion problem [27] provides most di�culties. In theory,
semantical analyses can already be performed, but strug-
gle with exponential complexity. Therefore, they are often
hardly practical for industry-scaled software systems.

In the past we have already developed a model checking
approach evaluating functional backward compatibility bet-
ween Simulink models [37]. This approach, even when com-
bining di↵erent techniques like syntactical clone detection on
the extracted control flow graph or a parallel state space cal-
culation to handle the state space explosion problem, could
not avoid to become impractical for larger models.

Thus, in contrast to the previous white-box approach [37],
this paper proposes a technique to perform an automated
semantical similarity analysis based on an approximation of
the provided behavior: related test cases.

In a test-driven development [3] test cases are provided
already in an early state of the development process and,
related to the given test coverage, represent a good appro-
ximation of real behavior. In addition, this approximation
does not define internal variables and so it avoids the im-
pending state space explosion.

In the following, we will describe how test specifications
are transformed to Input/Output Extended Finite Automa-
ton (I/O-EFA) and how a stepwise functional abstraction is
used to measure the semantical similarity between two soft-
ware components. Both steps are an extension of the com-
patibility analysis algorithm proposed by us in the past[37].
The proposed technique is evaluated on three di↵erent soft-
ware components and results are derived in a practical time
frame, while the derived semantical similarity measure is
comparable to expert estimations.

The outline is as follows: Sect. 2 summarizes the necessa-
ry background to be able to follow the upcoming concept.
In Sect. 3 the approach is described in all details, while in
Sect. 4 its implementation is summarized. Sect. 5 describes
the evaluation of the approach and in Sect. 6 similar ap-
proaches are discussed. Finally, a conclusion and an outlook
regarding future work are provided.

2. FOUNDATIONS
This section provides an overview about the compatibi-

lity check framework, which will be extended in this paper
by the semantical similarity analysis tool, and the classifi-
cation tree method. Classification trees will be used as test
specifications, which are transformed to I/O-EFAs to derive
semantical similarities between di↵erent test specifications.

2.1 Compatibility Analysis Framework
The behavioral compatibility analysis framework [37] ana-

lyses with model checking techniques whether the behavi-
or of one Component & Connector (C&C) software model,
e.g. graphical Simulink or textual MontiArc [19] model, is
compatible to another one. Therefore it transforms C&C
components via control flow graphs to Input/Output Ex-
tended Finite Automata (I/O-EFAs) [35, 41], which con-
tains a set of states S, set of internal variables D, sets of
in-/output variables U and Y as well as a set of transiti-

ons E (oe
[ge(d,u)]�������������!

y=he(d,u);d=fe(d,u)
te) going from a start state

oe 2 S to an end state te 2 S when its guard condition
is satisfied by producing outputs and updating data accor-
ding to its specified output he : D ⇥ U ! Y and update
fe : D⇥U ! D functions. By unfolding all I/O-EFAs’ inter-
nal variable combinations to new states and moving the out-
put calculation from transitions to states, these I/O-EFAs
become Input/Output Transition Systems (I/O-TSs); this
step often causes the state space explosion problem [1]. The
simulation preorder algorithm [17] creates a binary relati-
on between the states of both I/O-TSs: state q simulates
state p when all possible (output-value-)traces starting from
q are a superset of all possible (output-value-) traces star-
ting from p. If I/O-TS A’s start state simulates I/O-TS B’s
start state then the behavior of deterministic automaton A
includes also the deterministic behavior of B; if additionally
B also simulates A then both deterministic automata are in
a (bi)simulation relation [17]. If the C&C model A is not
compatible to the C&C model B, the compatibility check
framework uses the in-/output trace of the simulation pre-
order algorithm to generate a counterexample for the input
models. MontiArcAutomaton [31], an extension of MontiArc
with I/O!-automata [35], is used for the technical represen-
tation of I/O-EFAs and I/O-TS in the compatibility checker.

2.2 Classification Tree Method
The classification tree method [18], a partition testing

[26] approach, supports the systematic creation of black box
tests. This is done in two steps: first, the input/output (I/O)
domain of the software under test is divided into relevant
aspects, which mostly corresponds to the software interface’s
I/O parameters. Then, these relevant aspects are divided in-
to disjoint classifications where each of them may contain va-
rious classes. This gradual partitioning of I/O domain crea-
tes a tree structure.

Second, for each created classification an arbitrary class
is chosen to define a test; various combinations of selected
classes lead to di↵erent tests. This is usually realized with
combination tables having classification tree as a head (one
class is one column) and tests as individual entries.

3. SEMANTICAL ANALYSIS
This concept, deriving a similarity measure by a stepwise

abstraction of the provided automata, describes a method
to automatically derive the level of semantical similarity of
two software components. In the following, the suggested
approach be explained in detail:

Fig. 1 illustrates the basic steps to derive a similarity mea-
sure based on two test specifications from di↵erent softwa-
re components. In a first step (1�), structural compatibili-
ty needs to be ensured, before semantical similarity can be
identified. Therefore, the similarity of two di↵erent interfaces
needs to be investigated and adequate port matches needs
to be identified before related behavior can be analyzed. The
structural similarity analysis of software components’ inter-
faces is a topic currently investigated by us in parallel, but
this paper focuses only on the semantical similarity aspects.
Therefore, it is assumed that step 1� is done either due to a
separate analysis technique or performed manually. In gene-
ral to continue with step 2� a set of compatible port matches
needs to be identified. Otherwise, no similarity is provided.
In 2� test specifications are transformed to I/O-EFAs. This
current approach creates no internal variables, and so, the
update function fe can be ignored. Steps 3� and 4� use the

175

Counterexample Guided Semantical Similarity Analysis
AD

Test
specifications

Similarity
statement

Evaluation of the
performed behavior

abstractions

[c
om

pa
ti

bl
e]

Return incompatible
ports

[incompatible]

2

1

3

4

5

6
[simulation
successful]

[Counterexample
found]

Port matching

Create
I/O-EFAs

Behavior
abstraction

Transform
I/O-EFAs
to I/O-TSs

Check for
simulation relation

Transform
I/O-EFAs
to I/O-TSs

Legend

already presented steps
of compatibility analysis

new steps for semantical
similarity analysis

Figure 1: Overview of the analysis of semantical similarity.

I/O-EFA to I/O-TS transformation and an adapted simula-
tion algorithm of the compatibility analysis framework (c.f.
Subsect. 2.1). If the compatibility analyzer provides a coun-
terexample in 4�, this example is used to abstract the beha-
vior of the automaton which could not be simulated. Steps
3� to 5� are repeated until no further counterexamples can
be derived. Based on the amount of abstractions performed
in step 6� an overall similarity measure between both test
specifications is derived.

The example used throughout this paper to illustrate the
concept’s details consists of four di↵erent variants of a light
system control unit. These four variants describe partly over-
lapping behavior, therefore a semantical similarity between
these variants can be identified. All variants define the sa-
me interface, consisting of two inputs and one output. The
indicator if a control button is currently pressed or not and
the current volt value of the connected battery are the in-
puts and the expected volt value for the attached light bulb
is the output. The first very simple light system BasicHold
transfers directly the ingoing volt value of the battery to the
light bulb, if the button is pressed and zeroes otherwise.

The second light system LimitHold represents nearly the
same functionality, but the transferred volt value is limited
to 5 which is half of the max. value. A more advanced va-
riant (BasicPush) does not require to hold the button, but
transfers the full volt value if the button is pressed once. If
the button is pressed twice, the light is o↵ again and the volt
value is not transferred. Finally, the most advanced variant
(StepwisePush) provides limited light (max. 5 volt) after the
pressing the button once and provides full light after pressing
it twice. Pressing it a third time, the light goes o↵ again.

The described behavior of the di↵erent variants is illu-
strated in a classification tree (CT) in Fig. 2, whereby the
test sequence for the most advanced variants are illustra-
ted separately. To save space not all possible test sequences
are shown, but only the connection between the di↵erent
test steps are illustrated in CT format. For BasicPush and
StepwisePush a pressed button is indicating a state change,
meaning another step in the test sequence. In addition, test
sequences indicating a loop are shown (second and followi-
ng ones for BasicPush and StepwisePush). As demonstrated
in Fig. 1 given test specifications are transformed into I/O-
EFAs in a first step. As we believe that a well-structured I/O
EFA provides a better illustration of the described functio-

nality the result of the transformation is already shown in
Fig. 3, before the transformation will be explained in detail.

In the following, the transformation from test specificati-
ons to I/O-EFAs is described first. Then the details of the
semantical similarity analysis are explained.

3.1 Test Specifications
This section explains necessary information needed to be

provided by test specifications in order to derive meaningful
automata.

A test specification includes one or more test sequences
for exactly one software component. Every test specification
must also include the components’ interface which defines
for each in-/output parameter its data type as well as an
ordered range of its values containing all representatives of
equivalence classes this parameter belongs to (a common
step done during the classification tree method). These re-
presentatives are boundary values of their equivalence clas-
ses. E.g. a valid range specification for a double input para-
meter V Lamp accepting values 0, 5, and 10 is, for example,
V Lamp = double{0, 5, 10}.

Fig. 2 already illustrates four test specifications for dif-
ferent light system controlling components. To describe an
inner loop the last two test steps of a test sequence needs
to define the same behavior, as demonstrated for BasicPush
and StepwisePush. It is important that the test specifications
specify always deterministic component behavior; otherwise
they cannot be analyzed with the simulation algorithm pre-
sented in [37]. Underspecified behavior (normally provided
by test specifications) is replaced with a deterministic, but
unknown, behavior during the transformation. The proce-
dure is described in the following.

3.2 Automaton Construction
This section explains how to construct I/O-EFA automata

based on components’ test specifications. Since tests always
define components’ in-/output behaviors as finite sequences,
the I/O-EFA definition in Subsect. 2.1 will be extended by
a final state f0 2 S expressing no further defined in-/output
behavior (the I/O-EFA maybe behave arbitrary). In the re-
sult shown in Fig. 3 the final state is omitted, as the descri-
bed behavior intends a closed loop. If the defined behavior
shall be interpreted as a closed loop (meaning corresponding
transition target the start state instead of the final state) is

176

VLamp

0 5 10

Button

On Off

VBat

0 5 10

Sequences
BasicHold LimitHold BasicPush StepwisePush

On On On

Off Off

OffOnOn

On On

Off

Off

Test step
Different behavior

for same input

Figure 2: Test sequences for di↵erent simplified light
control systems.

On / VLamp=VBat

Off / VLamp=0

On / VLamp=VBat

Off / VLamp=0

Off / VLamp=VBat

On / VLamp=0

Off / VLamp=0

On && VBat >5 / VLamp=5

On / VLamp=VBat

Off / VLamp=VBat

On / VLamp=0

On && VBat <=5 / VLamp=VBat

Off && VBat >5 / VLamp=5Off / VLamp=0

Off && VBat <=5 / VLamp=VBat

On && VBat <=5 / VLamp=VBat

On && VBat >5 / VLamp=5

Basic
Hold

Limit
Hold

Basic
Hold

Basic
Push

Limit
Hold

Limit
Push

Basic
Push

StepwisePush

BasicHold LimitHold

BasicPush

Legend

State
Name

Guard / Output

Teststep
Indicator

Figure 3: Derived I/O EFAs based on the test spe-
cification shown in Fig. 2.

part of an additional transformation step described later.
Test specifications are transformed into I/O-EFAs, by crea-

ting for each output one automaton in the following way:
In-/Output variables: I/O-EFA’s in- and output varia-
bles with their data types and ranges can be directly derived
from the component’s interface in the test specification.
Internal variables: each I/O-EFA has an empty set of in-
ternal variables because tests do not specify internal varia-
bles either.
Transitions: for each test step in a test sequence a tran-
sition is created; its guard condition is a conjunction with
all input parameters’ values of the used tests, its output
function assignment contains the values of the test’s corre-
sponding output parameters and its source as well as target
state depends on the test steps occurrence in the related test
sequence. If the last two steps of a test sequence are the sa-
me, the test step is interpreted as an inner loop. In this case
start and target state of the transition are the same.
States: the set of states also depends on the amount of dif-
ferent test steps in the test sequences. Therefore, for each
transition Ei 2 E, created from a test step i of a test se-
quence, its own new target state si 2 S is created. These

Off && VBat = 0 / VLamp=0
On && VBat = 10 / VLamp=5
On && VBat =5 / VLamp=5

LimitHold

f0

On && VBat =0 / VLamp=0

Off && VBat = 5/ VLamp=0
Off && VBat = 10/ VLamp=0

!(On && VBat = 0) && !(On && VBat =5) && 5 && !(Off && VBat = 10) / VLamp=ΦΦΦΦ

s0

Figure 4: Formal representation of an derived I/O-
EFA without loop and additional transitions to avoid
underspecified behavior.

transitions have the respective target state of the transition
ei�1 2 E as a source state which was created in the previous
test step i� 1. In this way, a test sequence is represented as
an I/O-EFA transition sequence.

It is possible that test sequences are partially identical
meaning that two transition sequences contain a subset of
identical transitions. For this reason, only transitions with
a di↵erent source state or a disjunct guard condition will
be added to the I/O-EFA in order to avoid creating a non-
deterministic automaton.

Test specifications are often underspecified by not defining
an expected output for every possible input. Therefore, the
created I/O-EFA would be incomplete since not every pos-
sible input is covered by an outgoing transition. In order to
fully specify the I/O-EFA, for each state an additional tran-
sition targeting the final state is added. As guard condition
the conjunction of all negated guards of all other outgoing
transitions, and as output assignment the special character
�, representing undefined or arbitrary output, is added.

To illustrate the I/O-EFA construction from a test specifi-
cation, in comparison to the automata represented in Fig. 3,
Fig. 4 shows the concrete I/O-EFA for the software com-
ponent LimitHold. In this example, additional transitions
representing underspecified behavior (the transition guard
will never become true as the test provides no underspeci-
fication) are shown. In addition no loop is defined, but all
transitions end in the final state.

The previously constructed I/O-EFAs have guards with
only constant input values as well as output assignments
only returning fixed values, because only single fixed values
were used as in-/output parameters in these test specifica-
tions. However, for continuous data types mostly di↵erent
representatives for in-/outputs are used in di↵erent tests
describing similar or equal behavior. In addition, intervals
between two test values (equivalence class representatives)
are interpreted as underspecification. Therefore, solely com-
paring the continuous input parameters to fixed values and
evaluating the output assignment of fixed values is not su�-
cient for further analysis. Instead, the I/O-EFAs need to be
enhanced by not explicitly defined behavior.

In a first step the guards of the transitions are extended
by interval checks on input ports with continuous data ty-
pes. These intervals are created by using the range values’
limits that are specified in the interface of the test specifi-
cation (due to the gradual partitioning of the I/O domain).
Each interval is formed of a value from the value range as
the lower limit and its subsequent larger value as upper li-
mit. In this way, all input values between the values, that are

177

On && VBat > 5 && VBat <= 10 / VLamp=5

LimitHold

f0

On && VBat >=0 && VBat <= 5 / VLamp=VBat

Off && VBat >= 0 && VBat <= 10 / VLamp=0

!(On && VBat >=0 && VBat <= 5) && 7 && !(Off && VBat >= 0 && VBat <= 10)
/ VLamp=ΦΦΦΦ

s0

Figure 5: I/O-EFA with interpolated output.

explicitly used in the tests, are also covered by the transiti-
ons. Since the range values between the limits are elements
of a common equivalence class, it can be assumed that they
cause a similar behavior [7]. The behavior that is defined by
the transition can therefore be assigned to them.

Next, the output assignments of the transitions of I/O-
EFAs for output ports that have continuous data types are
expanded. The fixed values in these output assignments are
replaced by continuous functions. These continuous functi-
ons are in turn calculated by a linear interpolation based
on the border values of the derived guard interval and the
related output interval defined in the test specification.

Fig. 5 shows the I/O-EFA with interpolated behavior of
test specification for LimitHold.

By removing contradictory transitions and interpreting
test specifications as loops (final state equals start state for
all transitions which do not represent underspecified beha-
vior), the automaton described in Fig. 3 can be derived.

In case of a larger set of states, the interpretation of a loop
is more di�cult; for example, for BasicPush or StepwisePush
(see Fig. 3) the target of a loop is ambiguous: if a repetiti-
on of the same behavior is not stated explicitly in the test
sequence, the target state of the loop cannot be identified.

3.3 Counterexample Guided Abstraction
Similarity Metric

The CEGAS (Counterexample Guided Abstraction Simi-
larity) metric analyzes similarity of an I/O-EFA B to an
I/O-EFA A by creating a simulation relation between the
I/O-EFAs’ initial states. For this purpose, the behavior in
which B di↵ers from A is identified and removed from B
iteratively based on provided counterexamples. The CEGAS
metric is inspired by the CEGAR (Counterexample Guided
Abstraction Refinement) paradigm [6]. However, instead of
concretizing abstract behavior, concrete behavior is abstrac-
ted until equal functionality under the established modifica-
tions is identified. The compatibility framework’s simulation
algorithm provides a counterexample, if I/O-EFA B cannot
be simulated by I/O-EFA A. This counterexample is used to
abstract the I/O-EFA B - by replacing the output function
of the transition, not being simulated by A, with � - before
the simulation algorithm checks them again. The character
� is introduced to define an undefined and therefore arbi-
trary behavior. The simulation algorithm has been modified
to take � into consideration during the simulation. If the
output function of a transition is defined as �, every possi-
ble output is considered as equal. These new simulation and
subsequent removal steps, reducing the defined behavior of
B, are repeated until a simulation relation is established.

On / VLamp=VBat

Off / VLamp=0 Off / VLamp=0

On && VBat >5 / VLamp=ΦΦΦΦ

On && VBat <=5 / VLamp=VBat

Basic
Hold

Limit
Hold

BasicHold LimitHold

On / VLamp= ΦΦΦΦ

Off / VLamp=0

Basic
Hold

BasicHold

Off / VLamp=0

On && VBat >5 / VLamp=5

On && VBat <=5 / VLamp=VBat

Limit
Hold

LimitHold

2 / 3

1 / 2

CEGAS(..) = (5 – (1 + 1)) / (2 + 3) = 3 / 5 = 0.6

Figure 6: Application of CEGAS metric to analyze
the similarity between BasicHold and LimitHold.

The semantical similarity between two components with
the direction A to B (B is simulated by A) is the amount
of transitions with defined outputs divided by the overall
amount of transitions in the modified I/O-EFA B. As the
simulation relation is not a symmetrical one, the derived
degree would also be directed. By establishing a simulati-
on relation from B to A due to the abstraction of A both
simulation directions can be evaluated to derive an undirec-
ted similarity measure. Let A, B original I/O-EFAs and A0,
B0 I/O-EFAs abstracted during an unbounded simulation;
the symmetric degree of similarity GCEGAS (A,B) between
A and B is calculated as follows:

GCEGAS (A,B) =
|MCEGAS (A

0, B0)|
|Mall|

:=
{e|e 2 EA0 [EB0 , he 6= �}

{e|e 2 EA [EB}

Hence, MCEGAS (A
0, B0) contains all transitions with speci-

fied behavior (no �) of A0 and B0, while Mall contains all
transitions of the unmodified automatons A and B.

The application of the CEGAS-metric is demonstrated in
Fig. 6. For the sake of simplicity, this figure shows, similar
to Fig. 5 the representation from Fig. 3 with no final state
or further transitions representing underspecified behavior.
BasicHold can simulate LimitHold, if the limiting transition
(red one in top right automaton) is abstracted, while Limi-
tHold can simulate BasicHold if general output assignment
regarding VLamp (red transition in bottom left automaton)
is abstracted. Applying the symmetric CEGAS metric for
both automata a similarity of 0.6 is derived.

While the CEGAS metric provides good results for state-
less functionality (only one state), for stateful functionality,
like for BasicPush or StepwisePush, a related comparison
could derive misleading results. Problems occur if additio-
nal states divide similar or same subgraphs of the automata.
This is demonstrated in Fig. 7, where semantical similarity
analysis of BasicHold and BasicPush is shown.

In this example a simulation from BasicPush to BasicHold
can only be achieved if the whole automaton is abstracted.
In consequence the degree of similarity is reduced signifi-
cantly. Only if the derived automaton was interpreted as
loopless, which is not the standard interpretation for an au-
tomaton consisting of start and end state only (as described

178

On / VLamp=VBat

Off / VLamp=0

Basic
Hold

BasicHold

On / VLamp=VBat

Off / VLamp=0

Off / VLamp= ΦΦΦΦ

On / VLamp= ΦΦΦΦ

Basic
Hold

Basic
Push

BasicPush

On / VLamp= ΦΦΦΦ

Off / VLamp= ΦΦΦΦ

Basic
Hold

BasicHold

On / VLamp=VBat

Off / VLamp=0

Off / VLamp=VBat

On / VLamp=0

Basic
Hold

Basic
Push

BasicPush

2 / 4

0 / 2

CEGAS(..)= (6 - (2 + 2)) / 6 = 1 / 3 = 0.33

Figure 7: Application of the CEGAS metric to analy-
ze the similarity between BasicHold and BasicPush.

On / VLamp=VBat

Off / VLamp=0

Off / VLamp=VBat

On / VLamp=0

On / VLamp=ΦΦΦΦ

Off / VLamp=ΦΦΦΦ

On / VLamp=ΦΦΦΦ

Off && VBat >5 / VLamp=ΦΦΦΦOff / VLamp=0

Off && VBat <=5 / VLamp=ΦΦΦΦ

On && VBat <=5 / VLamp=VBat

On && VBat >5 / VLamp=ΦΦΦΦ

Basic
Hold

Basic
Push

Limit
Hold

Limit
Push

Basic
Push

StepwisePush

BasicPush

CEGAS(..) = (12 – (6 + 4))/12 = 2 / 12 = 0.16

Figure 8: Application of the CEGAS metric to ana-
lyze the similarity between StepwisePush and Basic-
Push.

in Subsect. 3.2), a similarity of 0.66 could be derived. This
result again would be too high, a similarity of 0.5 is ex-
pected. By performing an n-bounded simulation it can be
identified that a 1-bounded symmetric simulation relation is
given while a 2-bounded simulation relation is not provided
for both directions. Nevertheless, in Fig. 8 the comparison
between StepwisePush and BasicPush describes a constella-
tion, for which both currently described approaches cannot
derive a correct similarity measure.

Even the state BasicHold is quite similar to the state Li-
mitHold (see Fig. 6: 0.6) and the BasicPush states are equal,
the CEGAS metric can only derive a similarity of 0.16. A n-
bounded approach is not detecting any similarity if the start
state cannot be changed to identify subgraphs of both au-
tomata establishing a n-bounded simulation relation (state
BasicPush, 1-bounded).

If the idea of identifying most applicable subgraphs is com-
bined with the CEGAS approach (i.e., identify subgraphs
with less needs for abstraction until a n-bounded simulation
relation can be established) a similarity relation of 0.44 is
derived, as shown in Fig. 9.

Starting at state BasicPush less abstractions needs to be
performed to establish a 3-bounded simulation. Still, for si-
mulating BasicPush with StepwisePush it is necessary to
abstract all transitions from state BasicPush, while this is

only necessary to establish a 1-bounded simulation relation
between the states LimitPush and BasicPush. In addition,
di↵erent subgraphs and their similarities based on di↵erent
boundaries (2 and 1) are illustrated in Fig. 9. These candi-
dates can be taken into consideration if a general behavior
should be extracted based on a similarity analysis. Conside-
ring the described examples, a n-bounded counterexample
guided abstraction metric is defined by:

Let A, B be original I/O-EFAs and A0
n,ai

, B0
n,bj be ab-

stracted I/O-EFAs based on a n-bounded simulation starting
at states ai and bj ; the symmetric degree of similarity
GCEGASn(A,B) between A and B is calculated as follows:

GCEGASn(A,B) = maxi,j

✓
|MCEGAS (A

0
n,ai

,B0
n,bj

)|

|Mall|

◆

The highest similarity of all possible start state constellati-
ons between A and B is extracted for a given boundary n to
define the similarity. This metric supports the identification
of subgraphs and, thus, parts of the overall behavior of two
di↵erent software components which are strongly similar.

Instead of considering the di↵erent boundaries separately
and taking only the maximum into consideration all deri-
ved subgraphs can be included by applying the sieve formu-
la of the principle of inclusion and exclusion [39]. Thereby,
overlapping subgraphs are only considered once and each
subgraph is weighted by its size in relation to the overall
automaton. Nevertheless, the amount of additional calcu-
lations to derive all possible subgraphs and to identify all
overlapping parts seems not worth the e↵ort. Although, the
supplemental calculations do not provide any additional hin-
ts for a proper extraction of a general behavior. In addition,
the resulting similarity measures did not match our expec-
tations as the size of the resulting subgraphs influenced the
result significantly. Therefore, this approach is not discussed
any further in this paper.

4. IMPLEMENTATION
The software prototype is implemented in Java and uses

the compatibility analysis framework.
The implemented prototype proceeds the following four

steps: test specifications are read from external files and con-
verted into an internal intermediate format. I/O-EFAs must
be generated from the internal intermediate format accor-
ding to the presented methodology. The generated I/O-EFAs
are modified and compared according to the provided para-
meter. The results from the comparisons of the I/O-EFAs
are evaluated depending on the parameter and a similarity
measure is issued.

In the prototype, these four steps are each implemented
in a separate component in order to be able to easily ex-
change specific logic. For the determination of details in the
construction and analysis of these I/O-EFAs, such as port
mapping between both I/O-EFAs or selected parameters,
the prototype receives a configuration as input including the-
se details. Therefore, this data can either be defined manu-
ally or provided by a structural similarity analysis algorithm
currently under development in parallel.

The implemented prototype can process test specifications
in form of classification trees with their corresponding com-
bination table of test sequences as presented in Subsect. 2.2.
A specific format for classification trees is provided by CTE

179

Basic
Push

Basic
Hold

On / VLamp=VBat

Off / VLamp=0

Off / VLamp=VBat

On / VLamp=0

On / VLamp=VBat

Off / VLamp=VBat

On / VLamp=0

Off && VBat >5 / VLamp=5Off / VLamp=0

Off && VBat <=5 / VLamp=VBat

On && VBat <=5 / VLamp=VBat

On && VBat >5 / VLamp=5

Basic
Hold

Basic
Push

Limit
Hold

Limit
Push

Basic
Push

StepwisePush

Basic
Hold

Limit
Hold

0.66Basic
Push

Basic
Push

1
Limit
Push

0.2

5 / 8 1 / 4

(7 / 8) / 2 = 0.44

Limit
Push

0.41

Basic
Hold

Basic
Push

0.78
Basic

Hold

Basic
PushLimit

Hold

Limit
Push

0.38

Limit
Hold

Basic
Push

3-bounded simulation

2-bounded
simulation

1-bounded
simulation

Basic
Hold

Basic
Push

0.68

Limit
Push

Basic
Push

Figure 9: Application of the n-bounded CEGAS me-
tric to analyze the similarity between StepwisePush
and BasicPush.

files of the Classification Tree Editor2 by Berner and Matt-
ner; this tool is used for functional test specifications at FEV
GmbH.

Analogous to the implementation of the compatibility ana-
lysis framework, Microsoft’s SMT solver Z3 [25] is used to
check satisfiability of guards and to compare output functi-
ons during the construction and analysis of I/O-EFAs.

5. EVALUATION
In this section we demonstrate the feasibility of the ap-

proach regarding runtime and regarding the quality of the
derived similarity measure.

The evaluation of the proposed concept has been perfor-
med on preselected software components currently under de-
velopment at FEV GmbH. To demonstrate the concept’s fea-
sibility a preselection of available software components has
been performed according to the following criteria:

At least two extrinsically matches of the software compo-
nent in relation to the evaluation of [36] are provided for
such a software component. For at least two matches, test
specifications have been specified in the supported format
by di↵erent persons; therefore, these test specifications are
di↵erent. For such a match parts of the software components
interface needs to be compatible. Based on the available im-
plementation the behavioral similarity can be evaluated ma-
nually in an adequate time frame. The behavior of the dif-
ferent software components defined for the compatible part
of the interface needs to be similar to some degree or equal.
For the following groups representative matches needs to
be preselected for evaluation: discrete/non-discrete output,
stateless/stateful behavior, additional ports/equal interface.

The last criteria focuses on evaluating di↵erent advanced
mechanisms of the proposed concept and on highlighting

2Newer version is called TESTONA, available at
http://www.testona.net/en

known gaps and fields of improvements. The comparison
between discrete and non-discrete outputs demonstrates the
usage of interpolated intervals. Di↵erences between stateless
and stateful behavior allow identifying possible issues arising
when switching between these behaviors. The comparison of
similar interfaces enables highlighting issues arising while
freezing additional ports in one of these interfaces.

For each of the mentioned groups an adequate match could
be found. Two functions of a virtual temperature sensor com-
ponent provide a stateless equal behavior regarding the mat-
ching parts of the non-discrete interface represented by dif-
ferent test specifications. Two functions of di↵erent virtual
park brake components describe a discrete interface, whereby
the calculation of the same output is influenced by additional
ingoing signals for one component. Only for a more complex
stateful behavior an adequate match with supporting test
cases in the same format could not be provided. Therefore,
a controller software component has been identified, who-
se evolution history provides adequate input. This example
also highlights the usability of the proposed approach to im-
prove the handling of evolution of one software component
or of a whole software product line.

To protect the intellectual property of the analyzed func-
tionality no details of the mentioned software components
can be described.

Tab. 1 lists the mentioned matches (first column), their
sizes regarding matching interface ports (fifth and sixth co-
lumn), as well as their a�liation to the mentioned groups
(second column). The fourth column list the amount of test
steps available describing the behavior related to the identi-
fied port matches. The degree of behavioral similarity men-
tioned in the third column has been defined by an expert
based on the available implementations similar to the esti-
mations done by Berger, Rendel and Rumpe [4].

In a first step, an I/O-EFA has been created for each
software component and the related test specification; the
resulting duration of the transformation step is shown the
last column of Tab. 1. The duration is mainly driven by the
amount of SMT calls to correctly construct the automaton.

Tab. 2 represents the results on the similarity analysis.
The results for the Sensor function are as expected and
match the experts’ suggestion. In the case of the Park Bra-
ke function one variant provides an additional input port. In
both situations the behavior is identical, if the corresponding
ingoing signal is fixed to a specific value. Therefore the more
advanced variant A is capable of simulating variant B under
specific conditions. The compatibility algorithm is capable
of deriving this condition [37], but this approach can only be
performed, if no abstraction is done and only for one addi-
tional port. If no condition for the additional port is derived,
the simulation cannot be performed, as a non-determinism
is provided during simulation. It is necessary to add the ad-
ditional ports to the other automaton as well and extend the
available transitions by corresponding conditions (and add
new transitions) to remove possible non-determinism during
simulation. How this is done is illustrated in Fig. 10 by a sim-
plified example. Missing conditions and transitions regarding
the Boolean parameter B are added without changing the
behavior of automaton OneInput. Afterwards it is possible
to apply the counterexample guided abstraction to simulate
OneInput with TwoInputs. Sadly, in the given time frame
we were not able to generalize and implement this procedu-
re. Instead we applied the transformation steps manually to

180

http://www.testona.net/en

Software Component Group A�liation Similarity Test Steps In Out Dur. (ms)
Sensor (Var. A)

non-discrete, stateless, equal interface 33%
5 1 1 412

Sensor (Var. B) 3 1 1 268
Park Brake (Var. A)

discrete, stateless, additional ports 75%
17 3 2 3930

Park Brake (Var. B) 5 2 2 651
Controller (Ver. 1)

discrete, stateful, additional ports 90%
149 23 3 131702

Controller (Ver. 2) 165 24 3 167750

Table 1: Software components used during evaluation.

!A / O = False

A / O = True

One
Input

Two
Inputs

OneInput TwoInputs

A && B / O = True

A && !B
/ O = ΦΦΦΦ

!A && B
/ O = False

!A && !B
/ O = False

!A && B
/ O = False

A && B / O = True

One
Input

Two
Inputs

OneInput TwoInputs

A && B / O = True

A && !B
/ O = False

!A && B
/ O = False

!A && !B
/ O = False

A && !B
/ O = ΦΦΦΦ

!A && !B
/ O = False

Figure 10: Handling of additional ports.

be able to derive a similarity measure without freezing the
additional port. Under this condition it was able to derive
an overall similarity of 75 %, a value equal to the expert
suggestion.

The results for the di↵erent versions of the controller com-
ponent, struggle with the same issue: the simulation from
version 3 to 2 can only be applied if the additional port is
restricted to a specific value. Again, by adapting the automa-
ton manually, an equal similarity measure could be derived
in the other direction. Summarizing the above the derived
similarity measures are close to the expert estimations (as
shown in Tab. 2) and, in addition, the necessary time frame
to execute an unbounded counterexample guided abstracti-
on similarity analysis is in a practical range.

Sadly, bounded similarity analysis was not necessary by
the provided examples, as only parallel step sequences or
slight modifications of single test steps have been introdu-
ced between versions 1 and 2. No in-between test steps have
been introduced in the available sequences and, therefore,
no issues, as drafted in Fig. 9, arise. Consequently, the fea-
sibility of the bounded similarity analysis regarding runtime
could not be analyzed. In addition, unequal interfaces could
only be handled by manual modifications.

The described evaluation is only of a demonstrative cha-
racter. It could be shown that for the shown cases runtime
and precision of the measured similarity are in a practical
range. In comparison to our evaluation of the compatibili-
ty analysis on Simulink models [37] the approach provides
results in a suitable duration by avoiding a state space ex-
plosion based on internal variables. As before fixed-point
data types are approximated by integer data types, but as
long as all conditions and output calculations specified in
the test cases can be represented technically the precision of

SW
comp.

Dur.
(ms)

Derived
Similarity

Expert
Similarity

Sensor 4214 30 (0 / 60)% 33%
Park Brake 5283 88 (75 / 100*) % 75%
Controller 315784 97 (92,5 / 100*) % 90%

Table 2: Results of the similarity analysis (directed
similarity in brackets,* with fixed ports).

the similarity analysis is not influenced.
Nevertheless, the small sample size of the available soft-

ware components, the small amount of involved people defi-
ning the test specifications and the amount of available ex-
perts deriving similarity statements manually are significant
threads to validity of any general statement. In addition,
the proposed similarity measure is only applicable to iden-
tify branch-based di↵erences, as the abstraction is currently
done transition-wise. In consequence, a similarity between
function A + B and function A + B + C is not identified.
Internal logical loops can only be identified correctly if the
test specifications are defined as requested. Normally, this is
not the case and a manual transformation step needs to be
performed to address this point.

6. RELATED WORK
Apart from our presented method, there are many rela-

ted approaches for analyzing the behavior compatibility or
similarity of software components.

Cordy et al.[8] apply CEGAR to improve model checking
on software product lines. By defining SPL-specific abstrac-
tions the state space explosion problem is avoided in the
majority of the evaluated cases.

Chaki et al. describe an automatic verification of C pro-
grams against specifications in the form of labelled transition
systems (LTS) [5]. A method called MAGIC (Modular Ana-
lysis of Programs In C) is implemented, which can create a
LTS based on the source code of a C program. After crea-
ting the LTS, the method then verifies by the use of a weak
simulation relation, if the given specification is an abstrac-
tion of the LTS that was created from the C program. To
avoid state space explosion, the verification of large softwa-
re systems is divided into smaller verifications of individual
procedures.

Fischbein et al. [13] define the software architecture of
an entire product line and its individual products by modal
transition systems (MTS) to be able to perform an analysis
in order to check, whether a product is a valid implementati-
on of the software architecture of its product line. However,
the existing semantics of MTSs are not su�ced to distin-
guish valid implementations from invalid implementations in
the context of software product line engineering [13]. The-

181

refore, new semantics for MTSs are defined which are based
on the branching bisimulation relation [16] of LTSs.

In the general field of code clone detection techniques se-
veral approaches are defined to identify type 4 (functional)
clones [32]: Gabel et al. define a scalable detection of se-
mantical clones based on program dependency graphs [15].
The underlying graph similarity problem is reduced to a
tree-based similarity problem by establishing an additional
mapping to the related syntax. Other approaches focus on
a l-length path matching on attributed directed graphs [22]
or on the application of a lossy filter to prune the search
space of underlying program dependency graphs [23]. Ne-
vertheless, none of the approaches take test specifications
as a suitable approximation of the defined functionality in-
to consideration or perform the similarity analysis based on
iterative simulation approaches, which promises very precise
results.

In the software retrieval community a test-driven reuse
cycle is considered [21]: promising candidates are identified
based on interface specifications and afterwards a set of tests
cases is executed on these candidates to retrieve the required
functionality.

Reiss extends this idea to apply transformations on deri-
ved most promising candidates to match the specified test
specifications [29]. For this purpose subparts of the availa-
ble code are investigated. In relation to our approach test
specifications needs to be executed and a detailed similarity
measure cannot be derived.

7. CONCLUSION
This paper describes a complete approach to derive a se-

mantical similarity measure based on test specifications by
performing a counterexample guided abstraction. It is shown
how test specifications are transformed to I/O-EFAs and
how test sequences need to be defined to represent inner
loops. A simplified example is introduced to illustrate the
concept but also to highlight the possible issues by com-
paring two I/O automata derived from test specifications
to derive a similarity measure based on a simulation rela-
tion. Together with a syntactical similarity analysis based
on interfaces (parallel ongoing work) and a corresponding
port matching, the defined approach suits the demands of
the reactive process defined in [36] to identify new poten-
tials for reuse. The evaluation illustrates the applicability
of the concept on test specifications provided by an indu-
strial context. Nevertheless, after the application of extrin-
sically and structural filters, the amount of available test
samples was highly restricted due to access, file format and
timing constraints. Furthermore advanced temporal aspects
are currently not included in either the provided test spe-
cifications or the transformed automata. In addition, the
suggested approach requires available test specifications as
input. A white box semantical similarity analysis based on
available Simulink models is not supported. The Simulink
Design Verifier3 generates test input to achieve a defina-
ble level of model coverage (up to MC/DC). Combining the
features of the Design Verifier with the presented concepts
enables us to derive test specifications from Simulink models
semi-automatically and derive a semantical similarity mea-
sure in whitebox scenarios, without facing the state space
explosion problem. In addition, the Design Verifier establis-

3 http://www.mathworks.com/products/sldesignverifier/

hes a traceability between di↵erent test steps and blocks of
the analyzed Simulink model. Combined with the high pre-
cision of the CEGAS metric common semantical parts could
be identified and extracted from a Simulink model directly.

Furthermore, a much larger data set would be available for
evaluation and, in addition, the currently introduced concept
will be applicable in more scenarios.

8. REFERENCES
[1] C. Baier and J.-P. Katoen. Principles of model

checking. MIT Press, 2008.
[2] J. Bayer, J.-F. Girard, M. Würthner, J.-M. DeBaud,

and M. Apel. Transitioning legacy assets to a product
line architecture. In Software Engineering
ESEC/FSE’99, pages 446–463. Springer, 1999.

[3] K. Beck. Test-Driven Development: By Example.
Addison-Wesley Professional, 1 edition, Nov. 2002.

[4] C. Berger, H. Rendel, and B. Rumpe. Measuring the
ability to form a product line from existing products.
In Variability Modelling of Software-intensive Systems,
2010.

[5] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and
H. Veith. Modular Verification of Software
Components in C. IEEE Transactions on Software
Engineering, 30(6):388–402, 2004.

[6] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-Guided Abstraction Refinement. In
Proceedings of the 12th International Conference for
Computer-Aided Verification, volume 1855 of Lecture
Notes in Computer Science, pages 154–169, 2000.

[7] J.-F. Collard and I. Burnstein. Practical Software
Testing. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2002.

[8] M. Cordy, P. Heymans, A. Legay, P.-Y. Schobbens,
B. Dawagne, and M. Leucker. Counterexample guided
abstraction refinement of product-line behavioural
models. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, FSE 2014, pages 190–201, 2014.

[9] J. Dı́az, J. Pérez, P. P. Alarcón, and J. Garbajosa.
Agile product line engineering - a systematic literature
review. Software: Practice and Experience,
41(8):921–941, July 2011.

[10] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski,
M. Becker, and K. Czarnecki. An exploratory study of
cloning in industrial software product lines. In
Proceedings of the 2013 17th European Conference on
Software Maintenance and Reengineering, CSMR ’13,
pages 25–34, Washington, DC, USA, 2013. IEEE
Computer Society.

[11] S. Duszynski, J. Knodel, and M. Becker. Analyzing
the source code of multiple software variants for reuse
potential. In Reverse Engineering (WCRE), 2011 18th
Working Conference on, pages 303–307. IEEE, 2011.

[12] D. Faust and C. Verhoef. Software product line
migration and deployment. Software: Practice and
Experience, 33(10):933–955, 2003.

[13] D. Fischbein, S. Uchitel, and V. A. Braberman. A
foundation for behavioural conformance in software
product line architectures. In ROSATEA, ISSTA 2006
workshop, pages 39–48. ACM, 2006.

182

http://www.mathworks.com/products/sldesignverifier/

[14] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and
A. Egyed. Enhancing clone-and-own with systematic
reuse for developing software variants. In Proceedings
of the 2014 IEEE International Conference on
Software Maintenance and Evolution, ICSME ’14,
pages 391–400, Washington, DC, USA, 2014. IEEE
Computer Society.

[15] M. Gabel, L. Jiang, and Z. Su. Scalable detection of
semantic clones. In 30th International Conference on
Software Engineering, pages 321–330, May 2008.

[16] R. Glabbeek and W. Weijland. Branching Time and
Abstraction in Bisimulation Semantics. Journal of the
ACM, 43(3):555–600, 1996.

[17] R. v. Glabbeek. The Linear Time-Branching Time
Spectrum I - The Semantics of Concrete, Sequential
Processes. In Handbook of Process Algebra, chapter 1.
Elsevier, 2001.

[18] M. Grochtmann and K. Grimm. Classification trees
for partition testing. Software Testing, Verification
and Reliability, 3(2):63–82, 1993.

[19] A. Haber, J. O. Ringert, and B. Rumpe. MontiArc -
Architectural Modeling of Interactive Distributed and
Cyber-Physical Systems. Technical Report
AIB-2012-03, RWTH Aachen University, February
2012.

[20] R. Holmes and R. J. Walker. Systematizing pragmatic
software reuse. ACM Transactions on Software
Engineering and Methodology (TOSEM), 21(4):20,
2012.

[21] O. Hummel and W. Janjic. Test-driven reuse: Key to
improving precision of search engines for software
reuse. In Finding Source Code on the Web for Remix
and Reuse, pages 227–250. Springer, 2013.

[22] J. Krinke. Identifying similar code with program
dependence graphs. In Eighth Working Conference on
Reverse Engineering, pages 301–309, 2001.

[23] C. Liu, C. Chen, J. Han, and P. S. Yu. Gplag:
Detection of software plagiarism by program
dependence graph analysis. In Proceedings of the 12th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’06,
pages 872–881, New York, 2006.

[24] T. Mende, F. Beckwermert, R. Koschke, and G. Meier.
Supporting the grow-and-prune model in software
product lines evolution using clone detection. In
Software Maintenance and Reengineering, 2008.
CSMR 2008. 12th European Conference on, pages
163–172. IEEE, 2008.

[25] L. Moura and N. Bjørner. Z3: An E�cient SMT
Solver. In TACAS, volume 4963 of LNCS. Springer,
2008.

[26] T. J. Ostrand and M. J. Balcer. The
category-partition method for specifying and
generating functional tests. Communications of the
ACM, 31(6):676–686, June 1988.

[27] R. Pelánek. Fighting State Space Explosion: Review
and Evaluation. In Formal Methods for Industrial
Critical Systems, volume 5596 of Lecture Notes in
Computer Science, pages 37–52. Springer Berlin
Heidelberg, 2009.

[28] K. Pohl, G. Böckle, and F. J. Linden. Software
Product Line Engineering: Foundations, Principles

and Techniques. Springer, 1 edition, 2005.
[29] S. P. Reiss. Semantics-based code search. In

Proceedings of the 31st International Conference on
Software Engineering, ICSE ’09, pages 243–253,
Washington, DC, USA, 2009. IEEE Computer Society.

[30] J. Richenhagen, H. Venkitachalam, S. Pischinger, and
I. A. Schloßer. Persist–a scalable software architecture
for the control of diverse automotive hybrid
topologies. In 15. Internationales Stuttgarter
Symposium, pages 37–56. Springer, 2015.

[31] J. O. Ringert, B. Rumpe, and A. Wortmann.
Architecture and Behavior Modeling of Cyber-Physical
Systems with MontiArcAutomaton. Number 20 in
Aachener Informatik-Berichte, Software Engineering.
Shaker Verlag, 2014.

[32] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison
and Evaluation of Code Clone Detection Techniques
and Tools: A Qualitative Approach. Science of
Computer Programming, 74(7):470–495, May 2009.

[33] J. Rubin and M. Chechik. Combining related products
into product lines. In Fundamental Approaches to
Software Engineering, pages 285–300. Springer, 2012.

[34] J. Rubin, K. Czarnecki, and M. Chechik. Managing
cloned variants: A framework and experience. In
Proceedings of the 17th International Software Product
Line Conference, SPLC ’13, pages 101–110, New York,
NY, USA, 2013. ACM.

[35] B. Rumpe. Formale Methodik des Entwurfs verteilter
objektorientierter Systeme. Herbert Utz Verlag
Wissenschaft, 1996.

[36] B. Rumpe, C. Schulze, J. Richenhagen, and
A. Schloßer. Agile Synchronization between a Software
Product Line and its Products. In Informatik 2015,
volume P-246 of LNI, pages 1687–1698. Bonner Köllen
Verlag, 2015.

[37] B. Rumpe, C. Schulze, M. v. Wenckstern, J. O.
Ringert, and P. Manhart. Behavioral Compatibility of
Simulink Models for Product Line Maintenance and
Evolution. In International Conference on Software
Product Line (SPLC), pages 141–150, Nashville,
Tennessee, 2015. ACM New York.

[38] U. Ryssel, J. Ploennigs, and K. Kabitzsch. Automatic
variation-point identification in function-block-based
models. In Proceedings of the Ninth International
Conference on Generative Programming and
Component Engineering, GPCE ’10, pages 23–32, New
York, NY, USA, 2010. ACM.

[39] A. Steger. Diskrete Strukturen 1. Kombinatorik,
Graphentheorie, Algebra. Springer, Berlin, 2. edition,
2007.

[40] H. Venkitachalam, J. Richenhagen, and S. Pischinger.
A generic control software architecture for battery
management systems. Technical report, SAE
Technical Paper, 2015.

[41] C. Zhou and R. Kumar. Semantic Translation of
Simulink Diagrams to Input/Output Extended Finite
Automata. Discrete Event Dynamic Systems,
22(2):223–247, 2012.

183

