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Abstract—Agile development methods, model-driven engineer-
ing, and cyber-physical systems are important topics in software
engineering education. It is not obvious how to teach their
combination while respecting individual challenges posed to
students and educators. We have devised a software project class
for teaching the agile MDE for CPS. The project class was held
in three different semesters. In this paper, we report on the setup
of our exploratory study and its goals for teaching. We base our
evaluation and insights on interviews and questionnaires. Our
results show the feasibility of combination of agile MDE for CPS
but also the challenges this combination poses to students and
educators.
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I. INTRODUCTION

Software development projects represent an integral part

of most computer science and software engineering (SE)

curricula. Typically, students develop non-trivial pieces of

software in teams over extended periods of time, e.g., the

duration of a semester. The teaching goals of these project

classes are usually to expose students to real-world software

development tasks using recent technologies and techniques to

demonstrate practical but also social challenges for developing

software in teams.
Previous works reported on the benefits and challenges of

teaching SE in project classes in various settings [1], [2],

[3], [4], [5], [6], [7], [8], [9], [10]. Important parameters of

a software development project are the pursued development

process, the employed development techniques, and the nature

of the developed system. Agile software development [11]

refers to development processes built on principles of collab-

oration, self-organization, and fast response to change rather

than strictly defined and prescribed tasks. Model-driven en-

gineering [12] (MDE) puts software models in the focus of

system engineering. It is a prevalent technique in important

application domains [13], [14], [15], [16]. There are however

still challenges for the complete adoption of MDE [14], [17].

Cyber-physical systems [18] (CPS) is a term to describe sys-

tems in the intersection of computational (cyber) and physical

processes. Such systems, with all their challenges to software

engineers (the dynamics of their physical part are not easily

controlled), are of great importance for toady’s industry and

academic research. Popular examples of CPS are automated

mobile systems, smart grids, and robotics systems.
The combination of agile development with MDE fits well

with teaching goals in the CS curriculum: to develop software

in a team and learn about collaboration challenges. In addition,

the application area of CPS appears well-suited to attract and

motivate students. Previous works have reported on employing

CPS as beneficial to the teaching and learning experience [1],

[2], [3]. There is, however, a lack of reporting on well-designed

curricula for teaching MDE [5], [6], [19] and on software

project classes in general [9].

In this paper is we report results from case studies about

teaching agile MDE of CPS in software project classes. We

consider the following research questions in this context:

• Which challenges does MDE pose over using GPLs?

• Which development challenges result from CPS?

• Which Scrum elements are perceived most beneficial?

• What should guide MDE and CPS technological choices?

The case studies we have conducted address these questions in

an exploratory manner. To this effect, we employed a variant of

Scrum for MDE with robotics platforms in the project classes.

We have executed the case study in three consecutive years

with teams of different students.

Objective The objective is to explore challenges and benefits

of teaching agile SE project classes using MDE and CPS.

Case The case we investigate is a one-semester software

project class for undergraduate students (executed in

iterations over three years)

Theory Our case study employs agile practices of Scrum [20],

the MDE tools of MontiArcAutomaton [21], and LEGO

Mindstorms NXT1 and Festo Robotino2 robots as CPS.

Methods We used two kinds of data collection methods:

interviews and notes during Scrum meetings and ques-

tionnaires filled out by students.

Selection Strategy The selection of participating students

was handled centralized by the CS faculty and the se-

lection of the case under the control of the authors.

After each iteration of the case study, we have adjusted the

next iteration based on lessons learned. The students of each

iteration were presented different scenarios and technologies

for MDE of CPS. We report on the results of all three case

studies and discuss the differences and commonalities of their

execution as well as of the collected data.

Our studies show that a combination of MDE and CPS can

effectively be taught in project classes. All teams managed

1LEGO Mindstorms NXT: http://mindstorms.lego.com/
2Robotino website: http://www.festo-didactic.com/int-en/learning-systems/
education-and-research-robots-robotino/
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to produce working CPS. We learned that (1) stability and

robustness of functional capabilities are major criteria for

selecting teaching CPS platforms; (2) MDE requires additional

teaching effort; (3) Scrum must be adjusted to student needs;

and (4) employed technologies must align with teaching goals.

We detail the subject of our research further in Sec. III and

present our study design in Sec. IV. An overview of the three

independent project classes is given in Sec. V. We provide

observations in Sec. VI and a discussion in Sec. VII. Finally,

Sec. VIII concludes.

II. RELATED CASE STUDIES

Our approach to teaching a realistic SE experience relies on

agile methods, model-driven engineering, and their application

to cyber-physical systems. This section presents related case

studies along these three dimensions summarized in Table I.

TABLE I
CASE STUDIES TEACHING AGILE DEVELOPMENT AND/OR MODEL-DRIVEN

ENGINEERING AND/OR DEVELOPMENT FOR CPS.

Source Agile MDE CPS Description
[1] – – � ANSI-C education w. RCX robots
[2] – – � Java introduction w. RCX robots
[3] – – � Teaching A.I. w. RCX robots
[4] – � � DSL engineering for mobile robot
[5] ? � – MDE of a communication system
[6] – � – MDA and transformations
[8] – � – Modeling CRUD applications
[7] � � � Agile MDE with NXT robots
[9] � � ? Multiple projects w. ext. customers
[10] � – – Teaching agile in high school

Various studies have employed LEGO Mindstorms robots in

computer science education. The authors of [1] report on using

LEGO Mindstorms RCX robots (the predecessor of NXT) to

teach programming with ANSI-C to 80 undergraduate fresh-

men. The freshmen build and programmed six RCX robots for

educational examples (such as drawing on the floor or escaping

a maze). The author of [3] reports on the results from teaching

artificial intelligence with LEGO RCX robots and an ANSI-

C middleware in two classes to a total of 21 students. Both

case studies neither focused on teaching MDE, nor on agile

development. In [2], RCX robots were investigated as vehicle

for teaching introductory Java. In a similar vein, the authors

of [22] propose a roadmap for teaching Java with RCX robots.

Both investigations do not perform case studies.

The author of [4] reports on a project class teaching MDE

with a robotics platform based on the Parallax Stamp3 robot in

a five week intensive class to two groups of 5-6 students each.

The class focused on DSL and code generator development

and the author does not report on the impact of CPS to

teaching or the usage of agile methods.

The organizers of a class on teaching software development

with LEGO NXT robots and the LeJOS middleware performed

a four question survey on the usefulness of using LEGO NXT

robots for teaching [23]. The results indicate that using these

3Parallax Stamp website: https://www.parallax.com/robots/robots-overview

robots is motivating and useful for the students. They did

neither employ agile methods, nor MDE.

The authors of [5] found that “teaching students how to

use models effectively” is a prime concern in SE education.

They present a survey from integrating MDE into a software

design class. In this class, 14 students employed a modeling

language to generate a (purely software) communication sys-

tem. Whether the student teams employed agile processes is

not documented. The authors of [9] identify designing project

classes “realistic enough” as one of the main challenges in

teaching software engineering. They employ an agile devel-

opment process called “Rugby”, which is a variant of Scrum

tailored to student requirements (identified as “part-time de-

velopers”). Similar to our approach, Rugby is based on weekly

instead of daily meetings and focuses on continuous delivery.

The authors report on four project classes with over 300
students working for various external clients. These classes

required the students to use UML for informal modeling only.

Data was collected via an online survey and its results indicate

that Rugby is considered beneficial by the students and that

the students improved their programming skills as well as

their modeling skills. The authors of [19] similarly identify

teaching realistic MDE as the “main challenge we face now

is to succeed in building specialized high-level curricula so

that engineers will be able to rapidly deploy MDE solutions

in industry”. The authors of [6] report qualitative experiences

from applying MDA with a group of 52 students in a 13
week project class. In this class, the students faced challenges

in DSL development and model transformation. The main

findings are that (1) teaching MDA cannot reuse previous

knowledge from code-centric approaches; (2) there is a lack

of efficient tools; and (3) there is no “good textbook” yet.

The authors of [24] report on a teaching metamodelling and

MDE tooling development using UML to up to 150 master

students. A case study on teaching ‘pragmatic’ MDE [8] to

a group of 58 students by modeling CRUD applications and

generating code for these also performed a survey at the end.

This survey of 10 questions hints at the positive effect of a

pragmatic approach to teaching MDE. None of these studies

focused on agile development for CPS.

A two semester case study on teaching agile methods [25]

with a total of 88 students identified the challenge that teaching

agile development in realistic projects tends to shift focus

to technical issues instead of process issues. To mitigate

this, the authors propose various changes to their classes

including agile mini projects in the beginning of the class

and removing software requirements from student assessment.

Instead, assessment should be solely focused on the students’

use of agile practices. The classes neither did cover MDE,

nor CPS, but focused on agile methods. A study with four

high school classes [10] employed a survey to investigate

the student reception of agile development during a case

study focusing on pure software development. The authors

found that the students neither enjoyed employing test-first

development, nor user stories nor time boxing. The effect of

pair programming, however, was considered beneficial by the



students.

Finally, we have reported preliminary results of the first

iteration of the project class in [7]. Our current work extends

this report with data and findings from two additional years

employing industrial robots instead of LEGO NXT robots

and more advanced software platforms. In addition, we have

included a focus on Scrum in the latter two iterations of the

class.

III. RESEARCH CONTEXT

This section gives a brief overview of the research subject by

providing background on the techniques employed in our case

studies. This includes our choices for an agile development

method, MDE, and CPS. It also describes the context of the

class in the computer science curriculum.

1) Agile: Agile software development [11] refers to devel-

opment processes built on principles of collaboration, self-

organization, and fast response to change rather than strictly

defined and prescribed tasks. Requirements are often infor-

mally documented in user stories and refined, implemented,

and validated together with stake holders during the project.

A popular process model for agile development is Scrum [20].

Scrum consists of iterative sprints – time boxed development

phases – which contain daily Scrum meetings. Each sprint

begins with a sprint planning meeting in which the work for

this sprint is defined (and documented in the sprint backlog).

It ends with a sprint review on the product and a sprint

retrospective on the process. Ideally, each sprint produces a

working deliverable that improves customer value. Major roles

in the process are (1) the product owner, who represents the

customers and prioritizes backlog items accordingly; (2) the

Scrum master, who is responsible for Scrum process quality;

and (3) the development team.

2) MDE: Model-driven engineering [12] puts software

models in the focus of system engineering. It is a prevalent

technique in important application domains [13], [14], [15],

[16]. MDE uses models as main development artifacts that

serve communication as well as code generation. Development

is model-driven but integration with existing or newly devel-

oped code is often required. One framework for the MDE

of robotic systems is MontiArcAutomaton [21]. It combines

MDE of a system’s architecture and its behavior with powerful

extension mechanisms and integration of handcrafted code and

frameworks. The main modeling formalisms employed in our

case study are component and connector models [26] and au-

tomata to describe reactive behavior [27]. MontiArcAutomaton

supports code generation to multiple platforms [7], [28].

3) CPS: Cyber-physical systems [18] (CPS) is a term to

describe systems in the intersection of computational (cyber)

and physical processes. Such systems, with all their challenges

to software engineers (the dynamics of their physical part

are not easily controlled), are of great importance for toady’s

industry and academic research. We have selected the educa-

tional robotics framework LEGO Mindstorms NXT for the first

class to demonstrate CPS development. Code run on the robots

was either generated from MontiArcAutomaton or written in

Java using the LeJOS4 API. The second and third iteration

of the class employed the industrial Robotino platform using

again MontiArcAutomaton code generators and extensions

developed for ROS [29] in Python and for SmartSoft [30].

4) Curriculum: The project class is implemented as a

mandatory module in the CS bachelor and international master

curriculum. It is taught by the whole CS faculty. The different

groups compete for the best students which compete for

limited project places. Some prescribed goals of teaching are:

• Using state-of the art/modern tools.

• Develop simple software architectures.

• Test software.

• Self-management.

• Group effects and team challenges.

• Presentation of results.

Students of the CS bachelor program had an introduction to

Java in a programming class and to MDE in a general SE

class. Students of the international master degree were offered

an optional class on MDE with focus on UML. At the time

of our case studies, neither MontiArcAutomaton, nor general

component & connector (C&C) architecture modeling were

taught in any class.

IV. STUDY DESIGN

The main focus of our case studies is the exploration of

teaching the agile model-driven engineering of cyber-physical

systems as a project class. We designed case studies around

the following guiding questions of our exploratory study:

R1 Which challenges does MDE pose over using GPLs?

R2 Which development challenges result from CPS?

R3 Which Scrum elements are perceived most beneficial?

R4 What should guide MDE and CPS technological choices?

The case studies were executed as classes for the duration

of one semester. They were taught in winter 2012/13 (in the

following denoted by C1), winter 2013/14 (C2), and summer

2014 (C3) at RWTH Aachen University by two supervisors

each. All three case studies used the MontiArcAutomaton [21]

modeling language and tools in combination with different

GPLs. This allows us to address question R1. The case studies

cannot be seen in a comparative manner or as replications. In

each execution, the target CPS and the employed technologies

changed. We present these differences in Sec. V. Employing

Scrum in all three case studies allows us to address question

R3 and the different choices of CPS allow a broader view on

questions R2 and R4. We now describe the structure of the

class and data collection common to all case studies.

A. Class Structure and Subjects

Project classes are mandatory for students at RWTH Aachen

University and are awarded with 7 ECTS for successful

participation (16 weeks). Classes are centrally organized for

students from various degree programs, including computer

science bachelor and master, software systems engineering,

and media informatics. The central organization influenced

4LeJOS website: http://www.lejos.org
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Fig. 1. Project class structure: Two weeks before semester begin, the
students prepared technological foundations, which were presented at the
kickoff meeting. After two subsequent weeks of modeling training, the CPS
project started. Only on C1 this was followed by a tool chain improvement
part. In C2 and C3 the last four weeks were part of the CPS project.

our case design in various ways. First, we had to make

sure the class respects globally prescribed teaching goals (see

Sec. III-4). Second, the duration of the case study was limited.

Finally, our selection of participants was regulated. However,

these restrictions in case design fit naturally to our objective

of analyzing this kind of class.

We selected between 8 and 14 students according to their

preferences and motivation statements each year. The students

had different levels of experience with MDE (see Sec. III-4).

Java is the default GPL for many classes at RWTH Aachen

University and taught in the first semester of the computer

science bachelor. Thus, most students had experience in pro-

gramming with it. As none of the advanced MDE lectures is

mandatory, modeling experience ranged from none to mod-

eling exercises with UML. Most of the students neither had

experience in agile development, nor in SE for CPS.

All classes comprised at least one weekly meeting of

two hours. Whenever problems occurred, additional meetings

were scheduled. Students employed a variant of the Scrum

methodology. Similar to [9], we changed the daily Scrum

meetings, which were infeasible due to the students’ varying

schedules, to weekly meetings. The meetings also included

student presentations on the progress of their tasks. Due to the

small team sizes, the Scrum masters also acted as developers.

Finding that enacting both roles is more challenging than

expected, we changed this to employing teams of two (C2) and

three (C3) Scrum masters. Students were evaluated based on

their progress reports, development activity, and final results.

We structured the project classes into multiple stages as

depicted in Fig. 1: two weeks prior to semester begin, each stu-

dent was assigned a topic relevant to the class and we provided

introduction materials (publications, websites, tutorials) to pre-

pare that topic. The topics included MontiArcAutomaton [21],

its underlying language workbench MontiCore [31], Scrum,

the robotics middleware to be employed, and the development

infrastructure (e.g., Maven, continuous integration, etc.). The

most important topics were assigned to multiple students to

ensure sufficient expertise in the teams. The complete list of

topics is available in the appendix. After two weeks of prepara-

tion, the students presented the technologies to their colleagues

and the supervisors at the kickoff meeting. Afterwards, the

supervisors presented the user stories to the project class

To become familiar with MontiArcAutomaton and its be-

havior modeling capabilities, the students performed small

modeling tasks using pen and paper (e.g., designed initial

system architectures and behavior models) in the subsequent

two weeks. Afterwards, the team elected Scrum master(s),

split into development teams along the system functionalities,

components and related requirements identified in the paper

modeling stages. Then they began the respective robotics

logistics projects. During that stage, the two supervisors en-

acted the roles of customers. Development ended with a final

presentation of the working robotic systems.

In C1, which used a less complex robotics platform, the

last four weeks were reserved for MontiArcAutomaton infras-

tructure improvement. This stage was dropped from the other

project classes, due to negative feedback.

B. Data Collection

We employed two forms of data collection throughout all

case studies. We conducted interviews with all students and

asked them to fill out questionnaires

1) Interviews: We conducted informal interviews with the

students on a weekly basis. These took part in open meetings

after daily Scrum and sprint planning. In the interviews, we

mainly addressed MDE (R1) and CPS (R2) challenges. In

early meetings and before deadlines, when students struggled

with organizational challenges, also Scrum practices (R3)

were discussed. It is important to note that we treated these

interviews also as part of our teaching activities, i.e., the

interview meeting was also used for giving advice and trying

to actively address challenges the students faced. The result of

interviews are informal personal notes summarized in Sec. VI.

2) Questionnaire: We have used a questionnaire to system-

atically capture the opinion of students about their project. The

questionnaire addresses aspects of our guiding questions. We

handed out questionnaires at the end of the development stage.

In the second and third project class, we also conducted a first

survey after four weeks of development.

The questionnaires are composed from sections investigat-

ing the students’ learning effort, model usage, development

effort, and process perception. The last section about Scrum

was not part of the questionnaire in the first case study.

The questionnaires comprise five types of questions inquiring

(1) percentage values; (2) Likert scales from 1 to 10; (3) fre-

quencies; (4) yes/no/don’t know tuples; and (5) ordering of

the answer options. The complete questionnaires’ sections –

with aggregated results – are presented in Sec. VI.

a) Learning Effort: The first six questions of the ques-

tionnaires inquire how long the students spent on understand-

ing the respective project classes’ technologies, applying these,

making conceptual mistakes, and the effort in understanding

their team members’ artifacts. The questions aim to uncover

challenges of using MDE over GPLs (R1), hint at the devel-

opment challenges arising from CPS (R2), and may guide the

selection of technological choices (R4). The repetition of the
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questions (after 4 weeks and end of development) intends to

examine the effect of teaching MDE over time.

b) Model Usage: The second section of the question-

naires includes ten questions on the usage and reception of

artifacts. It queries the students’ confidence in their artifacts

and their team members’ artifacts, the effort to fix bugs in these

artifacts, and their usage in terms of documentation, testing,

and reuse. The questions of this section aim at uncovering

how the students’ familiarity with the modeling languages

developed over time and whether the the central modeling

artifacts are sufficiently comprehensible. Questions 13-14 ex-

amine whether the students consider behavior models suitable

to CPS development and hints at whether this combination

of modeling and domain challenges is suitable for further

project classes (R4). Questions 15-16 aim at uncovering the

complexity of development technologies with respect to each

other (R2, not in first case study). Again, this section allows

a comparison of MDE vs. GPL (R1), but also an assessment

of all technologies employed (R2, R4).

c) Agile Process Reception: The last section of the ques-

tionnaire was part of the second survey of the latter two classes

only and contains three questions on the the applicability of

our Scrum variant and its implementation artifacts (R3).

V. THE PROJECT CLASSES

The individual project classes aim at introducing students

to agile MDE with architecture description languages in the

context of complex systems to resemble and prepare for state-

of-the-art industry practice (as advocated for, e.g., in [16],

[9]). The teaching objectives are that the students (1) master

agile software engineering using a variant of Scrum and its

activities and artifacts; (2) learn model-driven engineering

with architecture description languages; (3) familiarize with

modeling infrastructure including model checking and code

generation; (4) solve a ‘realistic’ project that requires models

as primary development artifacts;

A. NXT Java Coffee Delivery (C1)

In the project class of winter term 2012/13, eight computer

science master level students used the MontiArcAutomaton

ADL with embedded automata to develop a robotic coffee

delivery system as reported in [7]. The system5, depicted in

Fig. 2, consists of three LEGO NXT robots and uses the LeJOS

NXT Java middleware to interface the robots. Consequently,

the students used MontiArcAutomaton’s Java code generator

and implemented behavior of technical components in Java

where necessary.

The system enables users to request coffee via a website

hosted on a smart phone server. The smart phone is con-

nected to the coffee preparation robot shown in Fig. 2 via

Bluetooth. Upon receiving a request, the server commands

the coffee delivery robot to load a plastic mug provided by

the mug provider robot. The coffee delivery robot then drives

to the coffee preparation robot, signals it via Bluetooth to

5Winter 2012/13 video: https://www.youtube.com/watch?v=xvlYN-6awfk
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Fig. 2. The distributed robotic coffee service implemented with LEGO NXT
robots using the LeJOS JVM as middleware.

prepare coffee, and finally drives to the user who requested

the coffee. Lacking sophisticated localization, the students

created a navigation system based on black lanes with colored

junctions, where the sequence of colors uniquely identifies a

room. The software architecture of this system comprises 35
component type definitions (23 specific to the project and 12
imported from provided libraries) in 60 component instances.

Of the component types, 15 are composed and 8 are atomic.

All 8 atomic components yield behavior automata and the

12 imported atomic component types had handcrafted Java

implementations.

B. Robotino ROS Python Transport Service (C2)

Inspired by the iserveU service robotics research

project [32], we updated the project class to feature a

more realistic robotic logistics scenario using a Festo

Robotino6 robot. In the winter term of 2013/14, nine

computer science master level students were assigned the

task to develop a robotic logistics application that supports

hospital staff (i.e., pick up and deliver items, guide and follow

persons).7 The students again used MontiArcAutomaton with

automata, but with Python code generation for the robot

operating system (ROS) [29] to interface the Robotino robot.

Hence, they also implemented component behavior in Python

where necessary. While there is an, at the time, unstable Java

implementation of ROS8, we switched to Python to mitigate

the effect of the students’ previous knowledge of Java.

The robot, depicted in Fig. 3, uses a front-mounted laser

sensor and integrated distance sensors to navigate and a Kinect

and speakers for user interaction. The software architecture

deployed to solve the logistics challenges with this robot

comprised 31 component types used in 39 instances. 5 of

the component types are composed and 26 are atomic. Of

the atomic component types, 9 contain embedded behavior

6Robotino website: http://servicerobotics.eu/robotino/
7Winter 2013/14 video: https://www.youtube.com/watch?v=u6LF8KjvDgM
8ROSjava website: http://wiki.ros.org/rosjava
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Fig. 3. The Robotino ROS transport service robot with Kinect, speakers,
and front-mounted laser scanner.

models and the remaining 17 atomic component types rely on

handcrafted Python implementations.

C. Robotino SmartSoft Java Transport Service (C3)

In summer term 2014, we assigned the task of developing a

robotic logistics application to 14 students from different com-

puter science programs.9 To interface the Robotino, a tablet PC

and a website were used. In this class, the students controlled

the robot via the SmartSoft [30] middleware. SmartSoft was

controlled via a protocol for which we provided a Java imple-

mentation. The students employed MontiArcAutomaton with

extended automata that support Java in guards and actions.

This extension increases expressiveness of behavior models

but students also used Java for providing component behaviors

not conveniently expressible with automata. The resulting

software architecture comprises 28 component types, of which

6 are composed. Of the atomic component types 4 contain

behavior automata and 18 have Java implementations. In total,

the architecture comprises 32 component instances.

VI. OBSERVATIONS AND RESULTS

This section describes the observations from the question-

naires, and the interviews. Tables I-III present the survey ques-

tions with aggregated (average of provided answers) results

(1) from the single questionnaire performed in C1 as C12;

(2) from the first and second questionnaire of C2 as C21 and

C22; and (3) from the first and second questionnaire of C3
as C31 and C32. We discuss our observations along the four

research questions and lessons learned throughout the three

case studies.

R1: Which challenges does MDE pose over using GPLs?

Teaching: It is important to note that students were

familiar with the employed GPLs or at least their foundations

9Summer 2014 video: https://www.youtube.com/watch?v=TIspANC9TY4

TABLE II
THE FIRST PART OF OUR QUESTIONNAIRE INVESTIGATES THE EFFORT OF

MODELING AND PROGRAMMING ACTIVITIES. QUESTIONS NOT PART OF

THE INDICATED SURVEY ARE DENOTED BY “–”.

Question/Answer C12 C21 C22 C31 C32

1.) What percentage (0% - 100%) of the time did you spend on understanding . . .
C&C modeling 86.0 21.1 13.8 14.7 5.0
Behavior modeling 29.0 21.7 14.4 12.7 5.0
Code generation 33.3 11.8 11.8 16.2 6.4
LeJOS 10.7 15.0 – – –
Python – 14.4 16.4 – –
ROS – 26.7 43.7 – –
SmartSoft – – – 40.0 46.8

2.) What percentage (0% - 100%) of the time did you spend on. . .
modeling C&C structure 19.3 35.0 16.7 16.9 10.1
modeling behavior 36.4 14.4 18.9 6.1 4.8
implementing Java behavior 20.0 – – 40.5 36.5
implementing Python behavior – 45.0 64.4 – –
building LEGO robots 24.3 – – – –
implementing SmartSoft modules – – – 30.2 23.3

3.) What percentage (0% - 100%) of the time was wasted because you tried
something that was conceptually wrong (i.e., you tried something not supposed to
be possible that way) while. . .
modeling C&C structure 12.8 4.4 5.0 12.5 8.3
modeling behavior 33.6 3.3 9.4 8.5 7.9
building LEGO robots 40.7 – – – –
implementing Java behavior 12.9 – – 26.0 7.1
using SmartSoft modules – – – 35.5 16.8
implementing Python behavior – 33.9 8.3 – –
using ROS modules – 11.1 6.1 – –

4.) What percentage (0% - 100%) of the time was wasted because you tried
something that failed due to bugs in the code generator while. . .
modeling C&C structure 25.7 8.9 14.4 12.5 8.1
modeling behavior 52.1 15.0 27.8 6.0 8.8
building LEGO robots 2.1 – – – –
implementing Java behavior 5.7 – – 24.6 9.4
implementing Python behavior – 27.8 10.0 – –

5.) How many times did you revise or recreate the. . .
C&C models 1.3 1.9 3.0 3.0 11.0
Behavior models 1.8 0.7 2.9 0.5 1.2
LEGO robots 1.3 – – – –
Java behavior implementations 0.4 – – 7.6 12.2
SmartSoft modules – – – 4.6 2.8
Python behavior implementations – 1.6 6.1 – –
ROS modules – 0.2 3.0 – –

6.) Rate from 1 (simple) – 10 (almost impossible) the effort to understand and
work on artifacts created by your team members.
C&C models 4.4 2.2 4.0 3.0 3.9
Behavior models 6.3 3.3 4.6 2.3 4.7
LEGO robots 2.9 – – – –
Java behavior implementations 4.3 – – 3.0 4.3
SmartSoft modules – – – 7.3 8.8
Python behavior implementations – 3.0 3.1 – –
ROS modules – 4.3 6.1 – –

from previous classes. However, the concepts of MDE and

MontiArcAutomaton modeling languages were new to most

students. This strongly influenced the plan of the project class

by reserving additional time for technology seminars and ar-

chitecture modeling feedback (see Sec. IV-A). Understanding

and working with the synchronous message passing semantics

of the behavior modeling languages (based on Focus [33]) was

a particular challenge to students. Initially, students of two

classes modeled behavior for event-driven communication.

The students of all classes reported to have made more

conceptual mistakes on modeling structure and behavior than

on implementing behavior using GPLs (Q3). Interestingly,

only in the intermediate questionnaires after four weeks of

C2 and C3 students reported to have made more conceptual

mistakes using GPLs.

We also asked students to estimate the efforts to understand

MDE and GPL artifacts (Q6). In general, understanding the

MDE artifacts of other team members was rated slightly

more difficult than understanding GPL artifacts. Estimations

changed in C2 and C3, where the middlewares became
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TABLE III
THE SECOND PART OF OUR QUESTIONNAIRE INVESTIGATES THE

STUDENTS’ CONFIDENCE AND USAGE OF MODELS.

Question/Answer C12 C21 C22 C31 C32

7.) Rate the amount of documentation 1 (no documentation) – 10 (well documented)
of the artifacts of the team.
C&C models 4.4 6.2 5.6 4.4 7.7
Behavior models 5.1 5.1 4.9 4.9 4.4
LEGO robots 2.6 – – – –
Java behavior implementations 4.7 – – 7.0 7.7
SmartSoft modules – – – 3.3 2.1
Python behavior implementations – 7.4 7.9 – –
ROS modules – 2.8 5.0 – –

8.) Rate your confidence in the correctness of the artifacts created by you from 1
(no confidence) – 10 (works perfectly).
C&C models 7.2 8.6 8.0 8.8 8.2
Behavior models 6.3 6.5 6.5 8.3 5.2
LEGO robots 7.4 – – – –
Java behavior implementations 6.5 – – 7.8 7.6
SmartSoft modules – – – 4.6 7.4
Python behavior implementations – 6.8 7.2 – –
ROS modules – 2.9 7.3 – –

9.) Rate your confidence in the correctness of the. . . artifacts created by your team
members from 1 (no confidence) – 10 (works perfectly).
C&C models 7.1 7.8 7.9 9.0 7.2
Behavior models 6.1 6.1 6.1 7.8 6.3
LEGO robots 8.9 – – – –
Java behavior implementations 6.6 – – 7.1 7.2
SmartSoft modules – – – 8.5 5.4
Python behavior implementations – 6.7 7.7 – –
ROS modules – 4.5 6.0 – –

10.) Rate the effort to fix bugs in the. . . artifacts 1 (simple) – 10 (almost impossible).
C&C models 6.3 4.6 4.6 3.7 3.7
Behavior models 6.3 5.3 5.2 3.5 2.8
LEGO robots 4.7 – – – –
Java behavior implementations 3.2 – – 4.2 5.3
SmartSoft modules – – – 8.5 8.2
Python behavior implementations – 2.8 4.8 – –
ROS modules – 4.6 7.3 – –

11.) How often did you run interactive tests with. . .
C&C models 15.1 0.3 2.0 4.5 2.3
Behavior models 43.6 0.3 2.8 3.6 1.7
LEGO robots 33.3 – – – –
Java behavior implementations 11.6 – – 10.1 51.1
SmartSoft modules – – – 1.0 7.2
Python behavior implementations – 0.0 15.1 – –
ROS modules – 0.0 43.8 – –

12.) How many non-interactive regression tests did you implement for. . .
C&C models 0.0 2.0 5.6 0.0 14.2
Behavior models 0.0 0.3 1.1 0.0 0.0
LEGO robots 0.0 – – – –
Java behavior implementations 0.3 – – 4.3 20.6
SmartSoft modules – – – 0.0 0.0
Python behavior implementations – 1.5 6.2 – –
ROS modules – 0.0 0.3 – –

13.) What percentage of the components you’ve
developed does use automata?

57.3 – 10.2 – 6.0

14.) What percentage of the components do you
think could have been developed using automata?

64.6 – 19.3 – 7.9

15.) How many days do you think would it take
to reuse your solution with another (similar, e.g.,
Roomba) robot?

– – 5.0 – 18.9

16.) Please order the technologies by the complexity to understand these:
C&C models – – 2.9 – 3.6
Behavior models – – 3.8 – 3.3
Continuous integration – – 4.4 – 2.3
Python behavior implementations – – 1.9 – –
ROS nodes – – 4.4 – –
Maven – – – – 3.9
Java behavior implementations – – – – 1.7
SmartSoft modules – – – – 5.9

more powerful, and hence, more complex. In these classes,

behavior modeling was considered as simple (or as complex)

as implementing behavior with the respective GPLs and C&C

modeling was considered even easier.

We observed an interesting difference between structural

C&C modeling and behavior modeling. The students in all

classes were most confident in the correctness of C&C models,

followed by Java implementations and Python implementa-

tions (Q8 and Q9). This reception is independent of consid-

ering their own artifacts or the artifacts of colleagues. Inter-

TABLE IV
THE THIRD PART OF OUR QUESTIONNAIRE WAS PERFORMED ONLY IN THE

LATTER TWO PROJECT CLASSES IN THEIR RESPECTIVE SECOND SURVEYS

AND INVESTIGATES DEVELOPMENT EFFORTS AND THE PROCESS.

Question/Answer C22 C32

17.) Do you think Scrum helped to enable you develop the common
code base? (Yes/No/Don’t know)

7/0/1 9/0/3

18.) Rate the different parts of the established Scrum methodology 1 (totally
useless) – 10 (great benefit). Rate 0 if you do not know what is meant by the
proposed artifact / methodology.
Product Backlog 5.9 5.3
Impediment Backlog 6.3 4.1
Sprint Backlog 5.1 5.7
Daily Scrum 8.6 7.9
Sprint Planning Meeting 9.1 8.5
Sprint Retrospective 5.6 6.2
Definition Of Done 6.0 5.5

19.) Rate the concrete implementation of the different parts of the Scrum
methodology 1 (bad implementation) – 10 (best possible integration). Rate 0 if
you do not understand the question.
Product Backlog 6.5 3.5
Impediment Backlog 6.0 2.9
Sprint Backlog 4.9 4.1
Daily Scrum 8.2 7.3
Spring Planning Meeting 8.6 7.4
Sprint Retrospective 6.4 5.6
Definition Of Done 6.8 4.2

estingly, regression tests to provide confidence in correctness

were mainly implemented for GPL artifacts only (Q12).

MDE tooling maturity: One challenge of MDE is the

maturity of the available tooling. Students expressed that a

considerable amount of their time was wasted due to bugs in

the code generator (Q4). In addition, students reported that the

lack of automated tests for MDE artifacts (Q12) results from

lack of convenient automation (not models but the generated

code had to be tested). The students of the first class C1
complained about (later improved) code generation times of

up to five minutes.

MDE Motivation: From comparisons of GPL solutions

vs. MDE solutions, some students were not convinced to apply

MDE for behavior modeling. No student questioned C&C

architecture modeling, but in classes C1 and C2 students asked

why they should create automata when they could use GPLs to

implement behavior. Nonetheless, the students were positive

that their model-driven solutions could be reused with different

platforms with little effort (Q15).

R2: Which development challenges result from CPS?

We have executed the case study three times with different

robots and middlewares. These combinations posed different

challenges to the students.

Middlewares: The class C1 employed Java and the

educational LeJOS NXT middleware, which required less time

to comprehend than ROS or SmartSoft (Q1). The students

of C2 and C3 had to program more middleware-specific

component implementations than the students of C1 (Q2).

Moreover, these components were revised more often (Q5).

Specifically, changes were necessary, when switching from

simulators to real systems. In line with this, the effort to fix

bugs in the middleware modules (Q10), which often amounted

to guessing magic numbers (i.e., for laser scanner configura-

tion, navigation, or color sensor thresholds), was higher. This
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challenge was greater for ROS and SmartSoft than the LEGO

NXTs. In interviews, the students of classes C2 and C3 also

complained about the amount of technologies required to set

up the development environment for the Robotino robots.

Hardware challenges: The students of C1 reported to

have spent much time on designing and constructing the LEGO

robots (Q2) to overcome their hardware limitations as well

as their physical and mechanical challenges (e.g., the lack of

localization sensors or the challenge of creating enough force

with the LEGO motors to enable pushing the coffee machine

buttons with a mobile robot). In the beginning of C2, the

students were provided with the new Robotino platform and a

separated laser scanner. Connecting the laser to the platform

again posed unforeseen hardware challenges to the students.

Having attached the laser scanner, the students found that the

uniform corridors of our department pose severe localization

challenges.

Robot Availability: During C2, the students started using

the robot later due to technical difficulties. They complained

about the complex transition from a simulator to the real robot.

In comparison, students of C1 appreciated that they were able

to take their robots home and work on them during weekends.

R3: Which Scrum elements are perceived most beneficial?

In C1, where we first applied Scrum, we suggested daily

Scrum meetings via Skype. The students denied this as too

complicated to schedule with other activities. Later, their main

complaints were lack of common development standards, het-

erogeneous level of information, and lack of communication.

The majority of students participating in C2 and C3 con-

sidered our variant of Scrum helpful to develop the common

code base (Q17). In both classes, the ‘daily scrum’ (which ac-

tually was performed weekly) and the weekly sprint planning

meetings were considered most helpful (Q18). In C3, 3 of

14 students were unsure about the benefits of Scrum, whereas

in C2, only 1 of 9 was unsure about these (differences to

participant numbers arise from students giving no answer to

this question at all). This might be partly due to the team of

C3 including students from bachelor programs without any

previous software project experience (cf. Sec. IV-A).

To our surprise, the students of C2 considered the sprint

backlog least useful, whereas the students of C3 considered

the sprint backlog rather useful and the impediment backlog

least useful. Both findings might be due to the respective

backlog implementations as a wiki: the team of C2 rated

the sprint backlog having the worst implementation and the

team of C3 rated the impediment backlog having the worst

implementation (Q19).

The weekly interviews showed that scaling Scrum to project

class sizes might be challenging when an inexperienced Scrum

master is also part of the development team. We tried to

address this by defining two Scrum masters in C2 and three

in C3. While the two Scrum masters of C2 cooperated in

this role very well, the three Scrum masters of C3 reported to

be very challenged by enacting their roles. Nonetheless, the

students in all classes reported that they learned or improved

working in agile software development teams.

R4: What should guide MDE and CPS technological choices?

Although LeJOS was considered less complex for program-

ming the NXT robots, their construction required larger effort

than expected (Q2). Nonetheless, the students of C2 and C3
spent much more time dealing with middleware challenges

than the students of C1. Overall, for teaching purposes with

a specific focus on modeling, the load with “accidental com-

plexities” [17] imposed by middleware or platform challenges

should be reduced. With the aim of teaching a realistic

experience in MDE with CPS, we consider these complexities

part of the learning.

Middleware maturity: The students of C2 and C3 com-

plained about the available documentation and reported vary-

ing levels of frustration dealing with the middlewares’ infras-

tructures. These elements were rated the most challenging to

fix (Q10). Fortunately, the developers of SmartSoft at Ulm

University of Applied Sciences were very helpful to assist the

students of C3.

Hardware challenges: In line with the challenges identi-

fied from employing CPS, the students reported being unsatis-

fied with the sensor quality of the LEGO robots (C1) and were

unhappy with the hardware challenges posed by connecting the

laser scanner to the Robotino (C2).

Robot Availability: As mentioned in the previous section

the availability of the CPS is an important factor. LEGO NXT

robots (C1) can easily be obtained and replaced while larger

robots (C2, C3) can only be used inside the university and

defects risk success of the project.

A. Lessons Learned

Performing these case studies helped us to better under-

stand the challenges of teaching agile MDE with CPS. For

instance, fulfilling the teaching objective of using state-of-

the-art development tools (such as the modeling languages,

robot middlewares, and robot platforms) was as instructive

as it was challenging (e.g., due to lack of documentation or

bugs). All students learned modeling software architectures

and improved their agile teamwork skills. However, we might

not have enforced testing enough as the amount of interactive

tests and regression tests remained low throughout all three

case studies. Overall, we consider the following lessons most

crucial to performing similar project classes:

L1: Employ stable, well-documented platforms: Al-

though realistic, development of CPS might come with com-

plex hardware challenges (such as imprecise LEGO sensors

or the complex Robotino laser scanner installation), we found

the students’ effort for this less instructive than expected.

Research prototypes (MontiArcAutomaton and SmartSoft) and

open source environments (ROS) might add a lot of accidental

complexities for students that can quickly end in frustration.

L2: Prepare sufficient MDE teaching materials: Results

from the questionnaires and interviews show that students

found MDE challenging. In general, students had sufficient
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background in GPLs but much of MDE technology was new

new to them. It is important to address this lack of knowledge

either by adding a strong teaching component to the class or

by requiring participation in MDE lectures.

L3: Adequately adjust Scrum for students: Adjusting

Scrum to weekly meetings and employing teams of Scrum

masters what parallely acted as developers was considered

beneficial. However, the Daily scrum and weekly sprint plan-

ning meetings were considered significantly more useful by the

students than the additional Scrum artifacts. We believe this

is due to the additional management effort, which is justified

by the aim of teaching agile development and not just coding.

L4: Align employed technology with teaching goals:
The students of both C2 and C3 spent notable time with

middleware challenges at the cost of modeling activities. When

designing such a class, consider the employed MDE and CPS

technologies carefully to reflect teaching goals. Finding the

right level of complexity is however not easy and depends on

many factors.

L5: Be aware of the limitations of educational CPS:
The LEGO NXT hardware (e.g., the quality and reliability of

sensors) restricts the realism of robotics projects. The students

of C1 put considerable effort in designing a navigation system

based on black lanes and adhesive tape. Whether third-party

sensors mitigate this, has to be evaluated.

VII. THREATS TO VALIDITY

Our case studies have been executed without a control

group. This raises threats to the case study’s internal valid-

ity (causality) and to its external validity (generalizability).

Results from questions we explored, e.g., using MDE instead

of GPLs, could help design such controlled experiments.

Threats to these case studies’ internal validity arise from the

participants lacking previous modeling experience. Instead the

students had previous classes on Java, which interfered with

estimating the benefits of MDE over GPLs. This selection

bias probably manifested in the greater confidence in Java

artifacts compared to behavior models. Also, the instruments to

evaluate the students’ experience are subject to issues: surveys

induce biases and interviews were informal. Furthermore,

participants might interpret the Likert scales differently and

may have avoided extreme responses (central tendency bias).

Moreover, the students provided answers based on their self-

perception only. Following [5], we tried to mitigate this bias

through interviews. However, as these project classes were on

MDE for CPS and the students knew that they were graded,

the case studies may also be subject to compensatory rivalry

among the students. As the study did not separate the students

into control group and experimental group, the effect of such

rivalry can be hardly estimated.

Threats to external validity arise from (1) performing the

project classes in the educational context of RWTH Aachen

University where the students participated for a graded cer-

tificate; (2) the number of participating students; (3) the

interviews being conducted by the supervisors instead of more

neutral interviewers; and (4) applying the lessons learned in

one project class to the subsequent classes (e.g., number of

Scrum masters, changes in platform and GPL), hence the

classes become less comparable.

Threats to construct validity arise from employing surveys.

The style of questions and answer options might have influ-

enced the answers. For instance, using Likert scales from 1 to

10 might have been to fine grained for some answers. Also

querying for percentages often produced answers with sums

greater than 100%. Using other forms of data collection (such

as commit inspection or online forms) could have produced

more direct, detailed, or validated results.

Whether the observations of these three case studies are

reproducible with other groups or whether the same students

would perform differently in other projects is hardly pre-

dictable in a university context. Moreover, the project classes

were performed in different semesters. Hence, the modeling

techniques and tooling advanced from one class to another.

VIII. CONCLUSION

We have reported results from an exploratory study on

teaching agile MDE for CPS with realistic challenges. The

study spans three project classes in different semesters at

RWTH Aachen University. In these classes, the students

employed a variant of Scrum tailored to their roles as part-

time developers. The teams successfully engineered complex

robotics applications employing modern modeling techniques,

robot platforms, and middlewares. To understand the effect

of teaching agile MDE for CPS, we instrumented the project

classes with interviews and surveys. Through these, we uncov-

ered challenges of teaching agile MDE in the context of CPS.

We documented these challenges to support future project class

designs.

APPENDIX

Topics prepared by the students and presented in the kickoff

meetings.

A. NXT Java Coffee Delivery (Winter 2012/13)

• MontiCore [31]: parser generation, language composi-

tion, code generation (1 student each)

• MontiArcAutomaton [21]: C&C modeling, behavior

modeling with automata, code generation (1 student each)

• Tooling incl. SVN and SSElab platform (1 student)

• LeJOS LEGO Java middleware (1 student)

• Mavenbuild manager (presented by supervisor)

• Scrum [20] (presented by supervisor)

B. Robotino ROS Python Transport Service (Winter 2013/14)

• MontiCore [31]: overview, parser generation, language

composition, code generation (1 student each)

• MontiArcAutomaton [21]: modeling overview, code gen-

eration (1 student each)

• Robotino platform and ROS [29] (2 students)

• Maven build manager (1 student)

• Scrum [20] (presented by supervisor)
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C. Robotino SmartSoft Java Transport Service (Summer 2014)

• MontiCore [31]: overview (2 students), language compo-

sition (2 students), code generation (1 student)

• MontiArcAutomaton [21]: C&C modeling (1 student),

behavior modeling with automata (2 students)

• SmartSoft middleware [30] (2 student)

• Robotino platform and simulator (1 student)

• Scrum [20] (1 student)

• Maven build manager (1 student)

One student joined the class after topic assignments and did

not prepare a presentation.
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