
Taming the Complexity of
Model-Driven Systems Engineering Projects
Arvid Butting, Timo Greifenberg, Bernhard Rumpe

Software Engineering, RWTH Aachen University
www.se-rwth.de

Andreas Wortmann
University of Rennes 1, IRISA, France

andreas.wortmann@irisa.fr

Abstract—Model-driven development has shown to facilitate
systems engineering. It employs automated transformation of het-
erogeneous models into source code artifacts for software prod-
ucts, their testing, and deployment. To this effect, model-driven
processes comprise several activities, including parsing, model
checking, generating, compiling, testing, and packaging. During
this, a multitude of artifacts of different kinds are involved that
are related to each other in various ways. The complexity and
number of these relations aggravates development, maintenance,
and evolution of model-driven systems engineering (MDSE). For
future MDSE challenges, such as the development of collaborative
cyber-physical systems for automated driving or Industry 4.0, the
understanding of these relations must scale with the participating
domains, stakeholders, and modeling techniques. We motivate
the need for understanding these relations between artifacts of
MDSE processes, sketch a vision of formalizing these, and present
challenges towards it.

I. MOTIVATION

The complexity of future interconnected cyber-physical sys-
tems, such as the factory of the future, fleets of automated cars,
or smart grids poses grand challenges to software engineering.
These challenges partly arise from the number of domains,
stakeholders, and modeling techniques required to successfully
deploy such systems. Model-driven engineering has shown to
alleviate this, but introduces the challenge of managing the
multitude of different artifacts, such as configuration, models,
templates, transformations, and their relations as contributed
by the different domains. Considering, for instance, software
engineering for the factory of the future [1], successful deploy-
ment of a virtual factory [2] requires integration of modeling
techniques to describe the factory’s geometry, production pro-
cesses and their optimization, software architecture, production
systems with their interaction, manufacturing knowledge, and,
ultimately, general-purpose programming language artifacts.
The artifacts contributed by the respective domain experts are
required in different stages of the development process and
exhibit various forms of relations, such as design temporal
dependencies, run-time dependencies, or creational dependen-
cies (e.g., a model and the code generated from it).

Moreover, how artifacts interrelate not only depends on their
nature, but also on the context they are used in and the tools
they are used with. For instance, software architecture models

This research has partly received funding from the German Federal Ministry
for Education and Research under grant no. 01IS16043P. The responsibility
for the content of this publication is with the authors.

MDSE Project

Artifact

Model

Artifact

Data

correspondsTo

structures

u
s
e
s

c
re

a
te

s

Analyst

Architect

Developer

Software

Tools

data

extraction
describes artifact kinds

c
re

a
te

s

s
tr

u
c
tu

re
s

Artifact Model

Figure 1. Handling the complexity of model-driven systems engineering
projects with artifact models.

may be used for communication and documentation, model
checking, transformation into source code, or simulation of
the system part under development. In these contexts, the
relations required to understand and process such an artifact
may change: whereas the pure architecture model might be
sufficient for communicating its structural properties, transfor-
mation into source code relates it to transformation artifacts
and to the artifacts produced by this transformation.

Understanding and explicating these artifacts and their rela-
tions facilitates traceability of artifacts, change impact analy-
sis, and interoperability of software tools crucial to successful
model-driven engineering of the future systems of systems.

II. MODELING ARTIFACT RELATIONS

Typical MDSE projects require a multitude of different ar-
tifacts addressing the different domains’ concerns (cf. Fig. 1).
Managing the complexity of these artifacts requires under-
standing their relations, which entails understanding the re-
lations between their languages as well as between the devel-
opment tools producing and processing artifacts. We envision
a MDSE future in which these relations are made explicit
and machine-processable using modeling techniques. To this
end, we desire reifying this information as first-level modeling
concern in form of an explicit artifact model defined by the
lead architect of the overall MDSE project. Such a model
precisely specifies the kinds of artifacts, tools, languages,

[BGRW17] A. Butting, T. Greifenberg, B. Rumpe, A. Wortmann:
Taming the Complexity of Model-Driven Systems Engineering Projects.
Part of the Grand Challenges in Modeling (GRAND’17) Workshop. http://www.edusymp.org/Grand2017/, 2017.
www.se-rwth.de/publications/

www.se-rwth.de

and relations present in the MDSE project an thus enables
representing the MDSE project in a structured way.

Such an artifact model should be capable to describe all
different situations in terms of present artifacts and relations
that could arise during its lifetime. The current situation of the
project can be inspected by automatically extracting artifact
data from the project according to the artifact models’ entities
and relations. This data corresponds to the artifact model
ontologically, i.e., represents an instance of it at a specific
point in time. Analysts or specific software tools can employ
this data to produce an overview of the current state, reporting
issues, and identifying optimization potentials. Ultimately, this
aims at enabling a more efficient development.

To this end, the artifact model comprises, among others, the
organization of artifacts in the file system, the configuration
of the tool chain, the trace of the last tool chain execution as
well as static knowledge relations between artifacts leading to
an architectural view including input models, artifacts forming
specific tools or the target product, artifacts managed by the
tools, output artifacts, and handcrafted artifacts.

This model depends on the technologies and tools used
to develop the target product. Hence, it must be tailored
specifically to each MDSE project. Globally, parts of such
a model could be reused from similar projects (which might
be achieved employing language engineering and composition
methods on the artifact modeling language). For instance,
model parts describing the interfaces of tools could be reusable
as well as the types of specific artifacts and their relations
might be applicable to multiple projects. Nevertheless, we
assume each project will require manual artifact modeling to
adjust existing structures. Ultimately, creating such an artifact
model would

• ease communication, specification, and documentation of
artifact, tool, and language dependencies,

• enable automated dependency analysis between artifacts
and tools,

• support change impact analysis in terms of artifact tool,
or language changes,

• support checking compliance of tools and proposing ar-
tifact, tool, and relation adaptations to ’glue’ tool chains,

• facilitate an integrated view on the usage of tools in
concrete scenarios,

• enable data-driven decision making, and
• enable computation of metrics and project reports to

reveal optimization potentials within the tool chain.

III. CHALLENGES OF ARTIFACT MODELING

There are few approaches towards such an artifact model.
The approach described in [3] focusses on the integration of
tools and the specification of tool chains and transformations
between artifacts. Thus, artifacts managed within different
tools are related to each other. The authors of [4] focus on an
artifact-oriented way to describe a model-based requirements
engineering process. Both approaches consider the require-
ment and design phases of MDSE projects only, but do not
take code generation phases or implementation phases into
account. Also, the tools themselves are not considered in the

presented models. The authors of [5] contributed the idea of
providing project data to analysts and software tools, but do
not combine this idea with an explicit artifact model. Hence,
there are still open challenges, which have to be overcome
towards efficient and sophisticated artifact modeling.

First, the definition of a methodology on how to create
artifact models tailored to the needs of a particular MDSE
project. This includes:

• defining the scope of the MDSE project where artifact
modeling can help taming the complexity,

• the development and selection of suitable modeling lan-
guages, tools and guidelines,

• the creation of model libraries providing reusable con-
cepts common for system engineering projects, and

• development of reusable algorithms based on artifact
models providing valuable analysis for common problems
of system engineering projects.

Second, defining mechanisms, tools, and infrastructure sup-
porting extraction and understanding of artifact data, including

• visualization capabilities, such as those proposed in [6],
• a methodology for integrating the different automated

analysis tools to a given infrastructure,
• common interfaces for accessing artifact data, and the
• handling large amounts of artifact data efficiently.
Third, overcome modeling challenges, such as
• providing ways of defining and ensuring compliance be-

tween related software tools, such as editors, generators,
or transformations, and

• integrating process data and historical data into such an
artifact model to enable comprehending the state and
changes of artifacts and their relations over time.

IV. CONCLUSION

Model-driven development can facilitate systems engineer-
ing. However, it introduces new challenges, of which taming
the complexity of participating artifacts and their relations is
an important one. We argue that investigating and reifying
these is crucial to the successful deployment of future systems
of systems and presented particular challenges future research
should address to achieve this.

REFERENCES

[1] A. Khan and K. Turowski, “A Survey of Current Challenges in Man-
ufacturing Industry and Preparation for Industry 4.0,” in Proceedings
of the First International Scientific Conference Intelligent Information
Technologies for Industry (IITI 2016). Springer, 2016, pp. 15–26.

[2] S. Jain and D. Lechevalier, “Standards Based Generation of a Virtual Fac-
tory Model,” in Proceedings of the 2016 Winter Simulation Conference.
IEEE Press, 2016, pp. 2762–2773.

[3] P. Braun, Metamodellbasierte Kopplung von Werkzeugen in der Softwa-
reentwicklung. Logos, 2004.

[4] D. Méndez Fernández and B. Penzenstadler, “Artefact-based requirements
engineering: the AMDiRE approach,” Requirements Engineering, vol. 20,
no. 4, pp. 405–434, 2015.

[5] J. Czerwonka, N. Nagappan, W. Schulte, and B. Murphy, “Codemine:
Building a Software Development Data Analytics Platform at Microsoft,”
IEEE software, vol. 30, no. 4, pp. 64–71, 2013.

[6] T. Greifenberg, M. Look, and B. Rumpe, “Visualizing MDD Projects,”
in Software Engineering Conference (SE’17), ser. LNI. Bonner Köllen
Verlag, 2017, pp. 101–104.

	Motivation
	Modeling Artifact Relations
	Challenges of Artifact Modeling
	Conclusion
	References

