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ABSTRACT
Component & connector (C&C) architecture description lan-
guages (ADLs) combine component-based software engineer-
ing and model-driven engineering to increase reuse and to
abstract from implementation details. Applied to robotics
application development, current C&C ADLs often require
domain experts to provide component behavior descriptions
as programming language artifacts or as models of a-priori
fixed behavior modeling languages. They are limited to spe-
cific target platforms or require extensive handcrafting to
transform platform-independent software architecture mod-
els into platform-specific implementations. We have de-
veloped the MontiArcAutomaton framework that combines
structural extension of C&C concepts with integration of
application-specific component behavior modeling languages,
seamless transformation from logical into platform-specific
software architectures, and a-posteriori black-box composi-
tion of code generators for different robotics platforms. This
paper describes the roles and activities for tailoring Monti-
ArcAutomaton to application-specific demands.

Keywords
Model-Driven Engineering, Architecture Description Lan-
guages, Component & Connector Models

1. INTRODUCTION AND MOTIVATION
Engineering robotics software requires techniques to sup-

port comprehension, separation of concerns, and reuse of ex-
isting parts. Component-based software engineering (CBSE)
is a technique to enable reuse of software components be-
tween applications [2]. Software components are defined
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as general-purpose programming language (GPL) artifacts.
These are hardly reusable in different contexts (such as with
different robots) and require domain experts to compre-
hend software engineering concepts as well as GPL details.
Model-driven engineering (MDE) abstracts from this by lift-
ing models to primary development artifacts. Models can be
better comprehensible, platform-independent, and automat-
ically translated into different implementations [8]. Compo-
nent & connector (C&C) architecture description languages
(ADLs) [18] combine CBSE and MDE to enable composition
of complex software architectures from abstract component
models. Code generators translate ADL models into exe-
cutable systems.

Extensiblity is considered “a key property of modeling no-
tations” [17] and crucial for development of applications for
heterogeneous technologies as eminent in robotics. However,
most C&C software ADLs come with fixed sets of modeling
elements and component behavior modeling languages.

A recent survey on industrial use of ADLs found that ex-
isting extension mechanisms for tailoring an ADL “towards
whole company needs” are insufficient and corresponding
tools too generic [16]. This limits the principal design deci-
sions the language may express and ultimately requires to
realize important design decisions in GPL artifacts bundled
with the architecture. Similarly, only 38% of the survey
respondents generate code from ADL models. The most
important reasons for handcrafting code are “no need”, a
“different level of abstraction between software architecture
and target code”, and “limited ADL expressiveness”.

We present a methodology supported by the MontiArc-
Automaton framework that combines structural extension of
C&C concepts with integration of application-specific com-
ponent behavior modeling languages, a transformation of
platform-independent into platform-specific software archi-
tectures and composable code generators to complement lan-
guage integration flexibility. With this,

R1 the C&C language can be extended to meet specific
demands,

R2 domain experts describe component behavior using the
most appropriate application-specific modeling languages
or provide GPL implementations,

R3 logical software architectures are reused for different
target platforms, and

R4 code generators are composed to translate architecture
models of specific language combinations into imple-
mentations.
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Figure 1: Exploration platforms: a Lego NXT robot
with leJOS and a Pioneer 3-AT with ROS.

We have previously presented technical details on the ex-
tension mechanisms of MontiArcAutomaton in [27, 23, 15].
The description in this paper focuses on the methodology
of applying these and comprises of roles and activities for
the customization and extension of the MontiArcAutomaton
framework and its ADL. In the following, Sect. 2 illustrates
the issues MontiArcAutomaton tackles by example, before
Sect. 3 presents background on MontiCore and MontiArc-
Automaton. Sect. 4 describes how to use the extension
mechanisms of MontiArcAutomaton and Sect. 5 discusses
related work. Finally, Sect. 6 concludes.

2. EXAMPLE
Consider a robotics company that is going to produce

robots for exploration of unknown areas. These robots are
supposed to explore the area they are deployed to until they
approach an obstacle, log it, back up, rotate, and start ex-
ploring again. The company is going to produce systems for
different requirements: a cheap system for indoor education
purposes and a robust system for outdoor exploration. Both
systems are depicted in Fig. 1. The educational system - on
the left - comprises of a Lego NXT robot equipped with an
inexpensive computation unit, a front-mounted ultrasonic
sensor, and the leJOS NXJ operating system1 to interface
the NXT hardware with Java. The outdoor exploration sys-
tem uses Pioneer 3-AT robot with multiple front-mounted
ultrasonic sensors, a powerful on-board computer, and the
robot operating system ROS [20] to interface the hardware
with Python.

Although both platforms require different GPLs, sensors,
and actuators they provide similar functionality To reduce
engineering costs by reusing the same logical software archi-
tecture for both systems (R3), the company uses an C&C
ADL with embedded component behavior modeling languages
and a GPL-independent data type language. A software en-
gineer decomposes the system’s functionality into nine com-
ponent types as depicted in Fig. 2. The composed com-
ponent type ExplorerBot contains two subcomponents of
types Button and UltraSonic that provide input to a sub-
component of type ExplorationControl. ExplorationCon-
trol is composed from a Controller, which translates inputs
into navigation commands, and a Logger, which persists dis-
tance data. The navigation commands are passed to a com-
ponent of type Navigation that contains a Translator and
two instances of component type Motor to translate navi-
gation commands into control of two parallel motors that

1Website of leJOS: http://www.lejos.org/
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Figure 2: Platform-independent ExplorerBot Compo-
nent and Connector model.

propel the robot.
To ensure optimal component scheduling, the software en-

gineer wants to specify their order in the ExplorerBot com-
ponent type – a feature that requires to extend the ADL and
add modeling elements to represent subcomponent schedules
as well as well-formedness rules to check whether a schedule
is valid (R1). The component types Button, UltraSonic,
Logger, and Motor require specific GPL implementations as
they use APIs to interface drivers of hardware components or
operating system functionality. The integration and binding
of specific implementations to components is a necessity for
the project’s engineers (R2). The engineers decide to model
the behavior of the component types Timer and Controller
with variant of UML activity diagrams (AD) popular at the
company. Using ADs to model component behavior requires
extending the ADL with the AD language and integration
of new code generators (R2 and R4).

3. PRELIMINARIES
In ongoing efforts we are creating the extensible C&C

ADL MontiArcAutomaton2 that integrates application-specific
component behavior modeling languages with full support
for extension and code generation to multiple platforms. Its
powerful modeling language extension and integration mech-
anisms are implemented on top of the MontiCore language
workbench, which we present in Sect. 3.1. We introduce the
MontiArcAutomaton framework in Sect. 3.2.

3.1 The MontiCore Language Workbench
MontiCore [14] is a workbench for the compositional de-

velopment of domain specific languages (DSLs). It com-
prises of a language to describe concrete and abstract syntax
of DSLs and generators to create language processing infras-
tructure. For a specific DSL, tools to parse textual models
and to translate these into an abstract representation, as well
as frameworks for well-formedness checking [31], language
integration [9], and template-based code generation [29] are
generated from the DSLs context-free grammar.

The language integration mechanisms of MontiCore real-
ize a syntax-oriented approach towards black-box language

2MontiArcAutomaton website: http://monticore.de/
robotics/montiarcautomaton/.
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Figure 3: The MontiArcAutomaton framework processes C&C models with embedded component behavior
models of application-specific languages to produce artifacts for arbitrary GPLs. To this end, it provides
extension points for behavior languages and code generators that need to be implemented by different roles.

integration of grammar-based languages. With these, Mon-
tiCore enables language aggregation, language embedding,
and language inheritance. Language aggregation combines
several languages into a loosely coupled language family,
which enables a combined interpretation of independent mod-
els that reside in different artifacts. A typical application are
orthogonal system aspects, e.g., a component modeling lan-
guage and its data types. Language embedding combines
languages by embedding elements of one language into dis-
tinguished extension points of another. This enables using
both languages in a single artifact and lends itself to em-
bedding component behavior modeling languages into com-
ponent modeling language elements of ADLs. Language in-
heritance is used to refine or to extend an existing language.
Inheritance is used to extend the MontiArcAutomaton ADL
with additional modeling elements. In each case of reuse, the
language processing infrastructure for all languages is gen-
erated by MontiCore. Its language integration mechanisms
support all levels of syntax-oriented language integration,
i.e., they integrate concrete syntax, abstract syntax, and
well-formedness rules [31]. Detailed descriptions of Monti-
Core [13], language integration [10], and code generation [29]
are available.

3.2 The MontiArcAutomaton Architecture
Modeling Framework

At is core, MontiArcAutomaton contains an ADL extend-
ing the MontiArc ADL [11], embeds a component behav-
ior modeling language based on I/Oω automata [26], and
aggregates UML/P class diagrams (CD) [28] to describe
data types. All languages are implemented with MontiCore.
The MontiArcAutomaton ADL [26] describes logically dis-
tributed software architectures as C&C systems in which
components perform computations and connectors regulate
communication. Components are black-boxes with stable
interfaces of typed, directed ports and are either atomic or
composed. The data types of ports are defined as UML/P
CDs. Atomic components feature a component behavior de-
scription, either as a model of an embedded language [25],
or as GPL artifacts. Composed components contain a hi-
erarchy of subcomponents and their behavior emerges from
their combination. MontiArcAutomaton distinguishes com-

ponent types and subcomponent instances, supports generic
types, component configuration parameters, and introduces
component variables. Architecture models are parsed by
the generated language processing infrastructure, checked
for well-formedness, and transformed into executable sys-
tem using multiple code generators [23, 24]. Different target
platforms are supported by model and code libraries [27].

4. TAILORING MONTIARCAUTOMATON
Each tailoring activity is performed by roles involved in

the MontiArcAutomaton development process (illustrated
with the related artifacts in Fig. 3). We distinguish between
the following roles and their specific technical skills:

application modeler: models C&C architecture and behav-
ior, selects libraries, binds abstract to platforms-specific
components

application programmer: provides GPL implementations of
components if not possible to generate

model library provider: provides platform-independent com-
ponents and data types

code library provider: implements modeled library compo-
nent types in GPL if not possible to generate

language engineer: develops and integrate modeling languages

generator developer: provides code generators for languages
and specific run-time system (RTS)

RTS developer: provides run-time system in platform GPL

The activities for tailoring the framework are organized in
three stages addressing customization of the modeling lan-
guage, development of the application model, and composi-
tion of code generators. An overview of the tailoring activi-
ties is shown in Fig. 4. Each stage starts with a decision node
and has two alternative actions depending on the necessity
of customization. The first stage distinguishes whether the
MontiArcAutomaton language family has to be extended or
not. The case of extending the MontiArcAutomaton ADL
with new structural modeling elements and adding compo-
nent behavior modeling languages is described in Sect. 4.1.
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Figure 4: The stages and activities involved in tailor-
ing MontiArcAutomaton, developing C&C applica-
tions, and generating platform-specific target code.

In the second stage, a robotics application is modeled. Here
either a platform specific architecture is developed or the ar-
chitecture is kept platform-independent by means of model
libraries and bindings. Details of the activity for devel-
oping a platform-independent architecture are provided in
Sect. 4.2. Finally, in the third stage code generators are se-
lected. If a monolithic code generator for the combination
of ADL features, behavior languages, and target platform
exists, it can be used. Otherwise, an appropriate code gen-
erator has to be composed from other code generators as
described in Sect. 4.3. Engineering C&C applications with
MontiArcAutomaton using its provided features, languages,
and monolithic code generators, i.e., always selecting the up-
per branches in the activity shown in Fig. 4, are documented
in [25, 24].

4.1 Language Family Extension
In case an existing MontiArcAutomaton language family

is insufficient for the development of a new robotics appli-
cation, it has to be extended. The extension mechanism
comprises of extending the MontiArcAutomaton ADL (R1)
and adding the most-appropriate component behavior mod-
eling languages (R2). This activity is carried out by the
roles application modeler and language engineer and shown
in Fig. 5.

The application modeler examines the MontiArcAutomaton
ADL for required features. These requirements are passed
to the language engineer, who thus refines or extends the
C&C modeling part of the MontiArcAutomaton ADL using
the language inheritance feature of MontiCore. An example
for this kind of extension is adding scheduling information as

discussed in the example in Sect. 2 as R1. Afterwards, the
application modeler identifies the required component be-
havior modeling languages. If new behavior languages have
to be created or existing ones have to be extended, this task
is passed to the language engineer again. In our running ex-
ample an existing language for activity diagrams was chosen
to extend the language family (see Sect. 2, R2). After all
languages meet the application modeler’s requirements, the
language engineer integrates these into a new language fam-
ily. In our example, this language family is also extended
with well-formedness rules for scheduling information and
embedded ADs.

4.2 Platform-Independent and Platform-
Specific Architectures

The integration of components with platform-specific im-
plementations renders an architecture platform-specific. When
developing robotics applications for multiple platforms this
dependency should be avoided (R3). MontiArcAutomaton
uses platform-independent model libraries, platform-specific
code libraries, and bindings to enable a late commitment to
actual platforms [27]. We show how to apply these mecha-
nisms for stage 2 in the activity in Fig. 6.

First, the application modeler identifies component types
requiring platform-specific implementations that cannot be
generated from behavior models. In our example scenario,
the component types Button, UltraSonic, Logger, and Mo-
tor require specific GPL implementations because they in-
teract with platform-specific APIs. The model library provider
creates models of these components, which the application
modeler then uses to model the platform-independent ar-
chitecture. Platform-independent components that require
GPL implementations are bound in a platform-specific ap-
plication model. For each platform the application mod-
eler identifies matching code libraries provided by the code
library developer. In Sect. 2, e.g., platform-specific imple-
mentations of the UltraSonic sensor are required for the Lego
NXT and Pioneer 3-AT robot.

4.3 Code Generator Development and
Configuration

MontiArcAutomaton enables to use monolithic code gen-
erators for specific language aggregates, as well as compo-
sition of modular and reusable code generators (R4). The
composition of modular code generators is aligned with the
language extension mechanisms of the framework [23] and
defines code generator kinds for three different concerns: (1)
component generators produce code representing component
hulls [30], i.e., ports, variables, messaging infrastructure,
and the hierarchies of composed components, (2) behavior
generators process models of a single embedded behavior
language to produce component behavior code, and (3) type
generators produce code to represent data types in the tar-
get GPL.

The activity of code generator composition begins with
the application modeler identifying required code generators
suitable for the intended target platforms. First, a proper
component generator has to be selected. If no such gener-
ator exists, a generator developer needs to provide it. To
integrate generated component code with handcrafted and
generated behavior code, the component generator relies on
a run-time system (RTS) provided by a run-time system de-
veloper. Afterwards, for each component behavior language,
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target platform, and RTS, a suitable behavior generator is
selected. This may include the generator developer to de-
velop proper generators. Finally, data type generators (e.g.,
for types used by ports) for the target platform’s GPL are as
well provided by a code generator developer. After selection
of proper code generators, transformation into executable
systems can be invoked.

We now focus on the activity of developing new code gen-
erators shown in Fig. 7. This activity combines extension
of the MontiArcAutomaton ADL, integration of new com-
ponent behavior languages, introduction of a new data type
language, and usage of a new target platform. The gener-
ator developer begins with identifying the missing genera-
tor’s type. Component generators and behavior generators
require selection of a matching RTS. Afterwards, the gen-
erator developer defines the generator’s provided behavior,
i.e., the processable component behavior languages. Then,
she implements the generator’s model-to-model or model-to-
text transformations, and identifies the code generator’s en-
try point and input requirements (cf. [23]). In collaboration
with the language engineer, the generator developer iden-
tifies whether the code generator requires additional well-

formedness rules to reject models using language features the
code generator does not support (such as non-determinism).
If such well-formedness rules are required, the generator de-
veloper creates these. Ultimately, the generator developer
creates a generator model documenting the RTS, provided
behaviors, entry point, and well-formedness rules of the new
generator. MontiArcAutomaton relies on these models for
actual generator composition as explained in [23].

5. RELATED WORK
Multiple architecture modeling languages and frameworks

for C&C systems have been brought forth [18, 16, 21]. These
have emerged from different domains, such as automotive
[1, 12], avionics [7], or robotics [30, 6, 3] and focus differ-
ent challenges of architecture engineering from academic and
industrial perspectives. Most of these are “first-generation
ADLs” [17] that are“solely focused”on technology instead of
business-related or domain-specific aspects. The flexible in-
tegration of DSLs with ADLs is rare and usually overly com-
plicated (cf. the “Behavior Annex” of AADL [7]). The ADL
xADL [4, 5] focuses on architecture extensibility as well. It
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is based on the xArch3 meta model for XML-based ADLs,
shares many features with MontiArcAutomaton (such as
atomic and composed component types, instantiation, com-
ponent behavior models). Extension in xADL focuses on
language extension on the meta model level and does nei-
ther support black-box language integration, nor integra-
tion of language processing infrastructure [19]. Also, xADL
does not consider code generator composition. Instead, its
architecture instantiation schemas [4] tie software architec-
ture models to specific implementations. In architecture
modeling frameworks driven by the demands of a specific
domain, extensibility usually is less focused and domain-
specific issues are challenged foremost. Popular robotics ar-
chitecture modeling frameworks [21], such as SmartSoft [30],
RobotML [6], BRICS [3], or SafeRobots [22], enable seam-
less development of robotics software architectures. These
frameworks provide solutions to domain-specific issues, such
as advanced communication patterns, deployment, or plan-
ning, that are not tackled by MontiArcAutomaton. Al-
though most of these frameworks employ state of the art
language workbenches, they neither focus ADL extension,
nor integration of application-specific behavior languages, or
code generator composition. The authors of [30] explicate
this as “freedom from choice” to support application devel-
opers in creating solutions instead of dealing with framework
mechanisms. To the best of our knowledge, neither generic
ADLs, nor domain-specific ADLs provide an explicit exten-
sion methodology from language extension to generator com-
position.

6. SUMMARY
We have presented main activities for extending the ADL

and framework MontiArcAutomaton. Our methodology com-
bines structural extension of C&C concepts, integration of
application-specific component behavior modeling languages,
transformation of platform-independent into platform-specific

3xArch website: http://isr.uci.edu/architecture/xarch/.

software architectures and composable code generators to re-
flect language integration flexibility. The activities realizing
this methodology rely on the language integration mecha-
nisms of MontiCore [10], as well as on the C&C nature [26],
binding concepts [27], and code generators [23] of Monti-
ArcAutomaton. The presented methodology comprises of
three stages: customization of the modeling language, de-
velopment of the application models, and composition of
code generators. Depending on the project’s needs not all
activities are necessary: off-the-shelf MontiArcAutomaton
embeds I/Oω automata as component behavior modeling
language, can be used for modeling platform-specific soft-
ware architectures, and provides code generators for Java,
Python, and Mona [24]. With the presented methodology,
ADLs can be tailored to specific needs and the resulting soft-
ware architectures can be used with different platforms us-
ing platform-independent components and specifically com-
posed code generators. In the future, we plan to examine
how language engineers can be further assisted in creating
ADL extension and valid language aggregates.
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