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TUnit – Unit Testing For Template-based Code Generators

Carsten Kolassa1 Markus Look1, Klaus Müller1, Alexander Roth1, Dirk Reiß2 , Bernhard
Rumpe1

Abstract: Template-based code generator development as part of model-driven development (MDD)
demands for strong mechanisms and tools that support developers to improve robustness, i.e., the
desired code is generated for the specified inputs. Although different testing methods have been pro-
posed, a method for testing only parts of template-based code generators that can be employed in
the early stage of development is lacking. Thus, in this paper we present an approach and an im-
plementation based on JUnit to test template-based code generators. Rather than testing a complete
code generator, it facilitates partial testing by supporting the execution of templates with a mocked
environment. This eases testing of code generators in early stages of development as well as test-
ing new or changed parts of a code generator. To test the source code generated by the templates
under test, different methods are presented including string comparisons, API-based assertions, and
abstract syntax tree based assertions.

Keywords: Model-Driven Development; Partial Code Generator Testing; Template-based Code
Generation

1 Introduction

With the increasing adoption of model-driven development (MDD) in research and in-
dustry [Hu11, Li14], code generation - systematic transformation of compact models to
detailed code [FR07] - is gaining importance. To support code generator developers in
constructing robust code generators, i.e., code generators that produce the desired code
for the specified input, sophisticated mechanisms and tools are required. They have to be
integrable into the development process and especially for agile development processes
they need to enable partial testing of code generators. Such testing as an essential activity
is, however, challenging [St07].

Current approaches for testing code generators (cf. [St07, Jö13, SWC05, Ra10, St06]) re-
quire an initial integration effort of the testing procedure, are based on string comparisons
only, or are designed to test the code generator as a whole. Other code generator testing
approaches employ formal methods [BKS04]. Setting up such tests is time-consuming and
once set up they are hard to maintain in an evolving environment, because small changes
in the code generator may lead to larger changes in the tests. Consequently, existing testing
approaches for code generators are not so easy to use in an agile development environment,
where either the code generator does not yet generate complete code artifacts that the tests
can validate or only the increment in functionality is to be tested. In summary, exisiting
work lacks approaches for partial code generator testing.
1 RWTH Aachen University, Software Engineering, Germany, http://www.se-rwth.de
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Focusing on template-based code generation, the goal of this paper is to present an ap-
proach for testing individual components of template-based code generators that can be
employed in early development stage of code generators. We introduce TUnit, an extension
of JUnit [JU15] based on the MontiCore [KRV10, Gr08, KRV08] language workbench to
support unit testing of code generator templates. In our case, testing a code generator or
parts of it means to answer the following questions: Is the set of specified inputs accepted

by the code generator template, e.g., code is generated? Does the code generator template

produce syntactically valid source code? Are the target language context conditions valid

for the generated source code? Executing a TUnit test case will run the template under
test with a mocked context (e.g. mocked variables, mocked templates, or mocked helper
functionality) on (parts of) an input model. This approach allows for testing the output of a
single template under test that is part of the overall output of the code generator, rather than
testing the whole output of a code generator run. To validate that the template output meets
the testers expectations, TUnit provides different kinds of assertion mechanisms including
abstract syntax based comparisons and abstract syntax API-based assertions. Additionally,
because string comparisons are widely used and sometimes practical, TUnit provides sup-
port for such comparisons as well. However, this approach is not robust, as the template
output can change on a regular basis, e.g., due to new or deleted whitespaces.

The contributions of this paper are: (a) an understanding of a template engine context (b)
concepts for mocking a template’s context with nested templates to allow for partial code
generator testing in early stage of the development cycle, (c) concepts for abstract syntax
based testing of the partial generated source code, and (d) an implementation of these
concepts within a widely used testing framework.

The paper is structured as follows: at first, we present an overview of related work (Sec-
tion 2) and point out their shortcomings. Next, we introduce MontiCore (Section 3), a
framework for language processing and code generation, that has been used to implement
parts of TUnit. By starting with a basic TUnit test, we point out how template-based code
generators can be unit-tested and which challenges need to be solved (Section 4). These
challenges are addressed in Section 5. Finally, we conclude our paper in Section 6.

2 Related Work

With the emerging importance of MDD, code generation has received growing attention.
In order to support code generator development and ensure code generator robustness,
different code generator testing approaches have been proposed and are presented in more
detail in [SWC05]. In the remainder of this section, we point out the main ideas of the
different testing approaches that target testing of complete code generators.

CoGenTe is a tool for testing code generators [Ra10]. It takes a syntactic and a semantic
meta-model of the input language and a test specification, which is a coverage criterion
over the meta-model. A generator creates a test-suite that can test any code generator
for the particular input language. The generated test-suite is derived using a constraint
generator, an inference tree generator, and a constraint solver. Each test-suite comprises
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several input models and expected outputs in the target language. To test a code generator,
the test-suite input models are passed to the code generator and the generated output is
compared to the expected output of the test-suite. In contrast to this approach, we present
an approach to test parts of a code generator for predefined input models.

Another approach to test code generators has been proposed in [St06, St07]. It is based on
a formal specification of the code generator transformation as a graph rewriting rule and
comprises three steps. In the first step - model-in-the-loop - the test model is transformed
into an executable model that is simulated. In the second step - software-in-the-loop -
the generated model is transformed by the code generator into executable code. Both,
the execution results of the simulated model and the execution results of the executed
code are finally compared. Existing approaches can be applied to extend this approach by
automatically generating the input test-cases [Ze06, Sa08]. In contrast to this technique,
our approach uses an instance of the input languge rather than a formal specification.
Furthermore, no intermediate model is used for simulation. Our proposed approach works
directly on the input model and not only strings but also abstract syntax trees (ASTs) can be
compared. Furthermore, an AST-based API is provided that allows to check the generated
output.

An instance of the above code generator testing approach to generate JUnit tests has been
proposed in [Jö13]. Code generators are modeled as services from atomic service inde-
pendent building blocks (SIBs). Such SIBs are used to model test cases, which are part of
test suites. A code generator transforms the test cases into JUnit test scripts. The execution
footprint - basically a string of the SIBs that have been executed - of direct execution of
the test data and the execution footprint of the generated and compiled code are compared.
The test is successful if the footprints are equal. In this paper, we focus on partial testing
of code generators and use, e.g., AST comparisons for validating the generated output.

3 Language Processing and Code Generation with MontiCore

The MontiCore framework [KRV10, Gr08, KRV08] is the foundation for all aspects of
language definition, language processing, and template-based code generation in TUnit.
In the remainder of this paper, we regard a model as an instance of a language that is
processed by the MontiCore framework and used for code generation. The basic struc-
ture of the MontiCore framework is shown in Figure 1. The components depicted in the
upper left corner including Grammar, MontiCore, Symboltable Entries, Model,

Parser+Infrastructure and AST are used for language definition and language pro-
cessing, i.e., processing an input model. All other components and the components Symbol-
table Entries and AST are used for code generation.

The MontiCore framework uses a grammar defining the language to be processed and gen-
erates a parser and infrastructure for language processing, which are used to parse models.
Each input model needs to conform to the grammar. When reading and processing models,
the parser creates an AST that represents their internal structure. This abstract represen-
tation of the input model is used for both: further language processing steps and code
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Fig. 1: Overview of MontiCore components for language processing and code generation [Sc12].

generation. Besides the AST, MontiCore uses the Symboltable Entries component to
create symbol table entries for each symbol of the processed models. Each symbol table
entry contains information about the model structure, an element’s name, and context in-
formation. This stored information is used for referencing symbols in different models and
can be used to extend the language processing by defining constraints for the input model
or for code generation to retrieve additional information on model symbols.

3.1 Template-based Code Generation with MontiCore

The MontiCore code generation process is based on a template mechanism. Templates
written in FreeMarker [Fr15] describe what is to be generated. These templates, which
are hierarchically structured via sub-templates, contain target code and FreeMarker ex-
pressions that finally produce target code. An overview of a template and its context is
depicted in Figure 2. The result of the code generation process is the actual output labeled
generated code in the figure.
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Fig. 2: Elements of the template engine context for template-based code generation in MontiCore.
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Each code generation process is started by invoking a root template, which usually calls
one or more sub-templates. A template has access to its template engine context object,
which contains variables, helper objects, called templates, and symbol table entries, as
depicted in Figure 2. A simplified example of a FreeMarker template is given in List. 1.
For a better presentation of the template engine context, this listing shows two variables,
the ast, and one helper.

FreeMarker

1 // Variables: paramType , paramName

2 // Helpers: methodHelper

3 public ${ast.returnType} ${ast.name}

4 (${paramType} ${paramName })

5 ${methodHelper.printThrowsDecl(ast)}

List. 1: The (simplified) template for generating a Java method.

The primary input for templates is the AST which is constructed by processing a model
file. For presentational reasons, we primarily focus on class diagrams as an input model,
i.e., the AST describes the abstract syntax of a class diagram and AST elements are ele-
ments from class diagrams including classes, associations, methods, interfaces, and enu-
merations [Sc12]. A template is called with an AST element of the corresponding model
and, in our case, generates Java source code. This AST element can be accessed through
the context variable ast as shown in an excerpt of a template in List. 1. In this listing,
the method name of the corresponding AST class is invoked in line 3 to return the name
of the model element which is represented by the AST element. This is denoted by the
FreeMarker specific syntax ${...}. Additionally, the template excerpt in List. 1 shows
how variables (paramName and paramType) and helpers (methodHelper) are used. The
meaning of variables and helpers is explained in more detail in the following.

A template may define local variables, which can be used and modified inside the template.
The value for each variable is set when the template is called. For example, the template
outlined in List. 1 expects that the values for the variables paramName and paramType

are set when the template is called. The values of these variables are accessed in line 4 to
introduce the name and the type of the method parameter into the generated code.

According to the principle of separation of concerns, templates contain target code and
simple computations including string concatenations, loops and if-else conditions. In ad-
dition to that, further functionality can be implemented in helper classes in Java which are
invoked from templates. When a template is called, an instance of the helper class is passed
to the template and can be accessed through a helper variable. In List. 1, methodHelper
in line 5 is a helper variable and it is used to invoke the helper method printThrowsDecl

which returns the Java throws declaration of the method. The AST is a special kind of
helper variable, as it can be used to invoke specific methods from the AST classes.

In order to test templates in isolation, we need to be able to replace either all or only some
of the variables and helpers in a template’s context with mocked ones. For instance, it
might be desirable to apply a specific mock helper class instead of the helper class which
would be used by default. Or it might be desired to set the variables to specific values.
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4 Code Generator Template Testing with TUnit
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Fig. 3: Overview of our code generator testing approach.

A template-based code generator typically comprises multiple code generator templates in
order to generate source code from an input model. For ease of presentation we assume
that a code generator accepts one class diagram as input and generates Java source code. In
addition, each code generator has access to a symbol table, where the symbols of all sym-
boltable models are stored to identify referenced symbols. Figure 3 depicts an overview
of our white-box approach to test code generator templates. In our approach TUnit test
cases define the tests, symboltable models used in tests, and the templates under test. Us-
ing this input, the templates under test are executed but only for the elements of the model
that have been predefined in the TUnit test case. The generated output may then either be
compared to the expected output or the TUnit’s AST API can be used to define assertions.
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Fig. 4: An example of a code generator’s template hierarchy to generate a Java class.

To give a more detailed understanding of how our testing approach works, we assume that
the code generator’s templates are structured as depicted in Figure 4 and that we want to
test the JavaAttribute template from the template hierarchy. Its FreeMarker source code
is listed in List. 2. For each class diagram attribute that is passed as input to this template
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the template generates a Java variable declaration with public visibility. For instance,
by passing the AST of the class diagram attribute “int attributeName = 5;” the template
generates the Java variable declaration statement “public int attributeName = 5;”. Here,
the value 5 is the default value. Line 1 of List. 2 generates the variable declaration and line
2 generates the variable instantiation by checking if a value has been defined in the input
model. Finally, a semicolon is used to close the Java variable declaration.

FreeMarker

1 public ${ast.printType ()} ${ast.name}

2 <#if ast.value??> = ${ast.printValue ()} </#if>

3 ;

List. 2: The (simplified) template for generating a Java attribute.

4.1 Unit Testing Templates

To present the testing concepts for template-based code generators, we extended the JUnit
testing framework to support the different testing approaches for code generator templates.
Subsequently, we introduce the resulting TUnit and the realized concepts for early stage
unit testing templates.

Java

1 @RunWith(de.se.rwth.tunit.TUnitRunner.class)

2 @TemplateUnderTest(templateName="JavaAttribute",

3 type = ASTCDAttribute.class)

4 public class TUnitTestClass {

5 @Test

6 @InputModel(fileName = "src/test/" +

7 "resources/input/JavaAttribute.cd")

8 public void templateTestMethod () { ... }

9 }

List. 3: Skeleton of a TUnit test class with one test method.

In JUnit, test runners are used to execute the test methods implemented in a test class. As
TUnit introduces custom annotations that are used for configuration purposes, the default
JUnit runner is not appropriate to execute the template tests properly. Due to this, TUnit
integrates its own test runner that is aware of the semantics of the annotations and knows
how to execute the template tests. Thus, each TUnit test class has to be annotated with
the TUnit specific test runner as shown in line 1 in List. 3. This listing shows a complete
skeleton for a simple TUnit test class.

Three crucial aspects that are relevant when testing template-based generators are: Which

template is under test? Which input model is used for the template under test? Which parts

of the input model are relevant for the test? TUnit introduces two annotations that define
the template under test and the test input model.
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The mandatory annotation @TemplateUnderTest is used to define the template under test
and is used for all test methods of the test class. The annotation provides two mandatory
attributes: templateName and type. In templateName, the path to the template under
test and its name have to be defined. In type, the type of the AST node that is handled
by the template has to be stated so that the template is only invoked for the specified type.
When executing a template test, each test method is executed by first parsing the specified
input model.The created AST is then traversed and the template under test is executed for
each AST element that is of the specified type. Finally, the test method is actually called.
List. 3 shows the TUnit test for the JavaAttribute template. This template is invoked
for AST nodes of type ASTCDAttribute.

The input model – defined with the mandatory @InputModel annotation – can either be
defined on test class level, then the given input model is used in all test methods, or on test
method level, then the input model is only used for that particular test method. In each test
method, the template under test will be applied for the corresponding input model.

4.2 Referencing Generated Output by Model Elements

Defining which template and model elements are under test is the first step to test tem-
plates. A further essential step in testing templates is to validate that the template output
meets the testers expectations. In JUnit, such expectations are expressed using assert meth-
ods. For instance, the assert method assertEquals ensures that two values are equal or
the assert method assertNotNull ensures that a specific value is not null.

Input Model

MontiCore
Parser

«creates»
TUnit test

runner
2

1

:ASTCDClass

m:ASTCDMethod

a:ASTCDAttribute

b:ASTCDAttribute

1

2

AST

a.attr

b.attr

piece of
Java code

Fig. 5: For each element that fits the specified type of the TUnit test, the template is called and the
output is stored in a file.

A prerequisite for being able to formulate such assert statements is that the tester can
access the output produced by the template. As explained in Section 4.1, the input model
is first parsed when executing a test method. The resulting AST is then traversed and
the template is executed for each AST element of the specified type. The output of each
template application is stored individually in a distinct file. As the input model for the
template may contain multiple elements of the specified type, it is possible that multiple
output files are created when executing one test method. Figure 5 shows how TUnit handles
the output generated by a template. In this figure, it is assumed that the input model is
a class diagram consisting of methods and attributes and that the template under test is
defined for AST nodes of type ASTCDAttribute. According to Figure 5, the input model
contains a class with two attributes. As a result, TUnit creates one file which contains
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the output of the template application to the first attribute (a.attr) and another file for the
output of the template application to the second attribute (b.attr).

In a concrete test case, a tester usually wants to validate the expectations concerning a
specific output, e.g. the output produced for the first attribute in Figure 5. To accomplish
this, one option for a tester would be to construct the name of the output file by himself.
This is possible as TUnit creates the output files according to a specific naming convention.
However, a disadvantage is that it becomes more laborious to define tests. Moreover, the
names of the output files will change as soon as the input model will be updated. Testers
would need to update the statically referenced output files after each input model update.

To cope with this problem, TUnit (a) traces which output file was created for which AST
element and (b) provides an API that allows to retrieve a particular AST element and that
returns the corresponding generated file. In Figure 5, the traceability is depicted by the
numbers. Thus, the testers can use the API to uniquely identify a specific AST element
and the generated file is returned without expecting the testers to construct the concrete
path to the output file on their own. Currently, this API is restricted to class diagram input
models. Additionally, the API can only be used to address single model elements only, i.e.,
a model element can be specified in a fully qualified way.

In order to create a test case for a generator template, we subsequently present two asser-
tion variants that both rely on defining the complete expected output.

4.3 Assertions for Code Generator Templates

The most basic approach is to perform a simple string comparison between the actual
output and an expected string. The tester has to define the complete string that is expected
as a result of the template application. A disadvantage of this approach is that the testers
are forced to denote the complete expected string, which can be quite laborious and error-
prone. Moreover, this approach is rather fragile, as every two varying characters will result
in a failing test, e.g., whitespace issues. To cope with the latter problem, TUnit offers a
more flexible string comparison method which can be configured to neglect specific types
of differences, e.g. differences concerning tabulator characters or indentation.

A more advanced method of creating assertions is to perform an AST comparison. In
the course of this comparison, it can be ensured that two AST nodes are (not) equal by
including not only the AST node itself but also children elements of the AST node. For
this purpose the tester has to define the expected output, which needs to be parsed to build
the corresponding AST. Moreover, the template output needs to be parsed to build the AST
as well. The AST comparison can then be performed based on these two ASTs. It has to
be taken into account that the template output can contain only parts of complete files, e.g.
a variable declaration. Due to this, a prerequisite for this approach is a parser for the target
language and target language constructs.

Comparing two ASTs means to traverse both ASTs and compare the contained objects.
Figure 6 illustrates the comparison of a generated and an expected AST. The one on the
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left-hand side has been generated by the FreeMarker template shown in List. 2 for the
class attribute int attributeName = 5;. The AST on the right-hand side of Figure 6 is
the AST which was built out of the expected template output. An AST comparison of the
generated and the expected AST will reveal the unmatching parts. In Figure 6, this is the
variable name and the variable type. As a result, the TUnit assertion will report an error
indicating this. A side effect of an AST-based comparison is that the AST of the target
language is at hand. This AST can be used to check target language context conditions
that may check, e.g. if a variable has been defined before usage. In this way a primary step
towards semantically checking the generated code is performed.
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OD

generated AST
expected AST

name does
not match

type does
not match
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boolean isPublic = true
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Fig. 6: A comparison of the generated AST (left) and the expected AST (right).

By explicitly stating which template is under test, which input models are used for testing
and how the assertions should be handled, template unit testing can be enabled up to the
point when the template’s context is of relevance for the test. In the following section, the
challenge of testing templates that rely on context information is addressed.

5 Context-Aware Unit Testing Code Generator Templates

A code generator template that is under test is not always fully self-contained and thus
independent of the template engine context. In other words, it requires certain inputs or
values to be accessible during execution. For MontiCore code generators such a context
may contain variables, helpers, symbol table entries, and template references. Figure 7
shows the same template hierarchy as Figure 4 but the template under test changed to the
JavaMethod template, which needs extra context information.
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Fig. 7: Testing a code generator template with context.
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FreeMarker

1 // Variables: paramType , paramName

2 // Helpers: methodHelper

3 public ${ast.printReturnType ()} ${ast.printName ()}

4 (${paramType} ${paramName })

5 ${methodHelper.printThrowsDecl(ast)}

6 ${tc.include (" cd2data.core.templates.JavaMethodBody", ast)}

List. 4: The (simplified) template for generating a Java method.

Assuming that the template under test is the JavaMethod template, List. 4 shows the
FreeMarker source code, which is an extended version of the template excerpt shown be-
fore in List. 1. For example, to generate a Java method the template JavaMethod is ex-
ecuted with the input “void methodName(String param){};”, which is stated in the
class diagram. The variable ast is used to access the elements of the method declara-
tion - in this case the return type of the method and the method name. The parameter
type and parameter name are passed to the template as variables. Additionally, the helper
methodHelper is used to print Java throws declarations. An instance of this helper is
passed as well to the template. In addition, a sub template (see line 6 in List. 4) is called to
print the body of the method.

While variables, helper, and symbol table entries of a template under test can easily be
mocked to provide enough context for the template to be executed in a test, mocking
template references influences the depth of the test with respect to the template hierarchy,
i.e., the more templates are mocked, the less templates of the overall template hierarchy are
tested. For instance, the JavaMethod template, which is currently under test, references
the JavaMethodBody template, i.e., this sub-template is called and its generated code is
embedded in the generated code of the parent template. We refer to the mocking of sub-
templates as pruning the sub-templates of the template under test.

5.1 Mocking Helpers and Template Variables

In order to mock calls to helper methods, TUnit provides the annotation @InitHelpers.
This annotation can be used to annotate at most one method in the test class and TUnit
expects this method to return a map of strings as keys and objects as values. The strings
denote the names of the helper variables and the objects the associated instances of the
helper classes. Thus, the tester can define the object to be used when accessing a particular
helper variable. He can also implement mocks for helper classes and assign mock objects
to the helper variables.

A template can rely on multiple variables that need to be set when calling that template.
TUnit supports mocking of variables by providing the annotation @InitVariables. At
most one method in the test class can be annotated with @InitVariables and this method
must return a map of strings and strings. The keys of this map denote the variable names
to be mocked. The associated values will be used as the variable value when calling the
template. In this way, the tester can easily define values for variables needed by a template.
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5.2 Mocking Symbol Table

As the symbol table stores information about referenced symbols and is part of the code
generator template context, it needs to be mocked for testing as well. For mocking symbol
tables, TUnit provides the @SymbolTablePath annotation for each test class. The overall
idea is to provide a set of symbol table models to define all references that are possible and
then to create a test model referencing these symbols.

GrammatikGrammatikSymboltable
Entries

«creates»

Reference Models

Model Template Under Test

«uses»

«uses»
«references»

Fig. 8: Overview of the symbol table mocking approach.

In order to extend or mock the symbol table for testing, the testers need to create one or
multiple models conforming to the input language of the code generator template, e.g.,
class diagram language. By annotating a TUnit test class with the @SymbolTablePath

annotation, the path to the input models that should be used for building the set of symbol
table entries is defined. TUnit loads each model and stores all symbols in one symbol
table that is provided to the code generator template during execution. An overview of this
approach is presented in Figure 8.

This approach of providing symbol table entry information to the template under test is
inline with the TUnit’s overall approach to separate context information that need to be
provided and defining inputs for the template under test. Consequently, context informa-
tion and in particular symbol table models can be reused for varying inputs.

5.3 Mocking Sub-Template Calls

A TUnit test case may not fail for all defined inputs but the overall code generator may
still produce invalid code. This is due to embedded sub-template calls in templates under
test. The mentioned example of the invalid code produced by the code generator may hap-
pen if the embedded sub-template calls are mocked. In contrast, without pruning the sub-
templates, creating the TUnit test may be time-consuming, because all helpers, variables,
symbol table entries, and template references need to be considered. Clearly, without prun-
ing any sub-templates, the test coverage, i.e., the amount of templates that are executed in
one TUnit test, is higher.

When to prune sub-templates depends on the template and the testing strategy. A testing
strategy that can be used is to always try to neglect pruning sub-templates if the sub-
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templates do not generate a crucial part of the overall generated code. If the sub-templates
are crucial, they should be pruned and tested in a separate TUnit test. Obviously, the term
crucial depends on the tester and the context.

To allow a tester to test templates in isolation, i.e., by abstracting away from the results
of sub-templates, TUnit provides the annotation @TemplateSubstitutionPolicy that
has to be defined at the test class level. With this annotation, the tester can configure the
strategy on how to mock sub-template calls:

• Replace with empty: Every sub-template call is replaced with the empty string. This
imitates the situation that no sub-templates are called at all.

• Replace all with template: Instead of calling the sub-templates, every time a self-
defined template is called. The output of applying this template is inserted instead
of the original template.

• Replace with string: In this case, a string is defined that is returned instead of the
result of calling the sub-templates.

• Provide method: This strategy is the most flexible strategy, as it allows for configur-
ing which specific sub-template call is replaced by which specific string or template.
This has to be implemented in a method annotated with @InitSubtemplates.

If the template substitution policy is not specified for a test class, the sub-template calls are
not mocked and the results of the sub-template calls are inserted into the template output
as usual.

5.4 Checking Failures with Assertions

One deficiency of the assertion mechanisms presented in Section 4.3 is that the testers have
to denote the complete expected output. In case a template generates a large file but only
small parts of the output should be checked, applying either of them is too laborious.

In the following, a further variant is proposed, which allows for performing checks for
dedicated parts of the AST resulting from the template application. In essence, TUnit
provides an API that contains assert methods for different kinds of AST nodes. In the
following, a few class diagram specific examples are given:

• assertHasClass(ASTCompilationUnit, String): Ensures that the given com-
pilation unit contains a class with a specific name.

• assertHasAttribute(ASTClass, String, Type): Validates that the given class
contains an attribute with the given name and a given type.

• assertHasMethod(ASTClass, String, Type, List<Type>): Ensures that the
passed class contains a method with the specified name, return type, and the given
list of parameter types.
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Java

1 // Retrieval of template output omitted here

2 String testOutputPath = ...

3

4 ASTMethodDeclaration actMethodDecl =

5 PartialParsing.parseMethodDeclaration(

6 new File(testOutputPath));

7

8 ASTJavaAssert.assertMethodReturnTypeEquals(

9 actMethodDecl , "void");

10

11 ASTJavaAssert.assertMethodNameEquals(

12 actMethodDecl , "methodName");

13

14 ASTJavaAssert.assertMethodHasParameter(

15 actMethodDecl , "String", "param");

List. 5: Example for AST-based API assertions.

List. 5 shows an example for using the AST-based API. As in the previous example, the
actual template output needs to be parsed to create the AST. In the course of this, the parser
reports an error, if the code does not represent a valid method declaration. Subsequently,
it is at first checked, whether the return type of the parsed method declaration equals the
expected return type (line 8 to 9). After that, it is checked that the method name of the
parsed method declaration equals the expected name (line 11 to 12) and that the method
has a particular parameter (line 14 to 15).

The main advantage of this strategy is that it is usually less laborious to apply it compared
to the previously introduced assertion mechanisms as the testers do not have to denote the
complete expected result string. Furthermore, this strategy is usually less fragile as the
test results are not necessarily affected by every single character change. One potential
downside is that the offered API focuses on high-level checks. Hence, it is not well suited
to check for all kinds of fine-grained details. Moreover, the API is bound to a particular
target language. Consequently, a new API has to be provided in case a new target language
is used.

In the presented example of the template under test in List. 4, we have not considered the
case that a sub-template may generate a file rather than a string that is embedded in the
parent template. These generated files can also be checked with TUnit; however, the testers
need to manually consider such “side effects” by manually extending the test to consider
the generated artifacts.
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6 Conclusion and Future Work

The use of code generators in MDD demands for strong testing concepts to develop robust
code generators. Most existing approaches to test code generators rely on testing the code
generator as a whole, by executing the complete code generator. Testing only selected
templates or validating fragments of code is not easily possible in these approaches.

In this paper, we have presented a method and TUnit– an extension of JUnit – as corre-
sponding tool support for testing code generators. It can be employed early in the devel-
opment of code generators where no complete source code artifacts are generated. Since
templates are executed in a context that includes helpers, variables, symbol table refer-
ences, and template references, TUnit provides means to mock specific parts of this con-
text. TUnit takes input models for a code generator and executes the template under test on
selected parts of these models. To validate the template output, three assertion strategies
have been presented. First, a string comparison between the actual output and the expected
output, which needs to be defined explicitly. Second, an AST comparison based on the in-
put model AST and an expected AST. Third, an AST-based API comparison that allows for
executing checks on dedicated parts of the AST that is created from the template output.

Currently, the input model has to be a complete class diagram. In future work we plan
to support pieces of class diagrams, e.g. a class only or a method declaration. Besides
comparing ASTs to find assertion violations, it is also possible to employ transformation
languages. Assuming that a transformation language for the generated language exists
[WR11, We12], assertions can be defined by defining patterns that need to be matched in
the generated code. If a pattern cannot be found, then the assertion is violated. Otherwise,
the assertion is correct. Finally, a general question to be addressed is the efficiency of the
proposed approach.

References

[BKS04] Baldan, Paolo; König, Barbara; Stürmer, Ingo: Generating Test Cases for Code Genera-
tors by Unfolding Graph Transformation Systems. In: Graph Transformations, volume
3256 of LNCS. Springer Berlin Heidelberg, 2004.

[FR07] France, Robert; Rumpe, Bernhard: Model-Driven Development of Complex Software: A
Research Roadmap. In: Future of Software Engineering 2007 at ICSE. IEEE Computer
Society, 2007.

[Fr15] FreeMarker Template Language. http://www.freemarker.org/, October 2015.

[Gr08] Grönniger, Hans; Krahn, Holger; Rumpe, Bernhard; Schindler, Martin; Völkel, Steven:
MontiCore: A Framework for the Development of Textual Domain Specific Languages.
In: Companion of the 30th International Conference on Software Engineering. ICSE
Companion ’08. ACM, 2008.

[Hu11] Hutchinson, John; Whittle, Jon; Rouncefield, Mark; Kristoffersen, Steinar: Empirical As-
sessment of MDE in Industry. In: Proceedings of the 33rd International Conference on
Software Engineering. ICSE ’11. ACM, 2011.



236 Markus Look, Klaus Müller, Alexander Roth, Dirk Reiß, Bernhard Rumpe
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