
Systematically Deriving Domain-Specific
Transformation Languages

Katrin Hölldobler
Software Engineering

RWTH Aachen University, Germany
http://www.se-rwth.de/

Bernhard Rumpe
Software Engineering

RWTH Aachen University, Germany
http://www.se-rwth.de/

Ingo Weisemöller
Software Engineering

RWTH Aachen University, Germany
http://www.se-rwth.de/

Abstract—Model transformations are helpful to evolve, refac-
tor, refine and maintain models. While domain-specific languages
are normally intuitive for modelers, common model transforma-
tion approaches (regardless of whether they transform graphical
or textual models) are based on the modeling language’s abstract
syntax requiring the modeler to learn the internal representation
of the model to describe transformations. This paper presents
a process that allows to systematically derive a textual domain-
specific transformation language from the grammar of a given
textual modeling language. As example, we apply this systematic
derivation to UML class diagrams to obtain a domain-specific
transformation language called CDTrans. CDTrans incorporates
the concrete syntax of class diagrams which is already familiar to
the modeler and extends it with a few transformation operators.
To demonstrate the usefulness of the derived transformation
language, we describe several refactoring transformations.

Index Terms—Model transformation, concrete syntax, domain-
specific, language-specific, systematic derivation, generation

I. INTRODUCTION

Domain-specific languages (DSLs) are used in model-
driven software engineering for several reasons including less
complexity of the models and easier communication with
domain experts [1], [2]. Nevertheless, using such models in a
model-based software development process is accompanied by
the need to transform these models. Therefore, a great variety
of model transformation languages has become available over
time realizing the various types of transformations such as
refactoring, migration or translation [3], [4].

Whereas introducing DSLs for modeling is common practice,
specific transformation languages are still rare. Instead, general
purpose languages like Java or generic transformation languages
such as ATL [5] are used. Even though there is some research
done in the area of specific transformation languages [6], [7],
[8], [9], [10] (also called transformations in concrete syntax)
and specific languages has been developed for some domains
such as building models [11] or activity diagrams [12], there is
still a great need for domain-specific transformation languages
(DSTLs).

Transformations in generic languages are usually difficult to
write and to understand for an expert in a modeling language,
because the transformations address the abstract syntax of the
transformed models. Thus, they reflect the representation of
the models in a modeling tool rather than the concrete syntax

K. Hölldobler is supported by the DFG GK/1298 AlgoSyn.

of the models, a representation well-suited for human users.
However, developing a DSTL for a DSL requires a similar
effort as developing the DSL in the first place.

In graph transformation approaches a transformation is
split in two parts, a left-hand side describing a pattern and
a right-hand side describing the same model part after the
transformation has been applied. As described in [7] this
overhead of describing unchanged model parts twice can be
reduced by using an integrated notation.

Based on the idea of transformations in concrete syntax, we
developed a derivation process that allows to systematically
derive a DSTL for a textual modeling language defined by a
grammar to reduce the effort of creating DSTLs. Similar to the
derivation of delta languages described in [13], this process
involves a common base language for transformation languages
and derivation rules to obtain the DSTL. By applying these
rules a DSTL called CDTrans was developed that is able to
describe transformations for class diagrams modeled using the
UML/P class diagram language [14], [15] in a problem-oriented
way. Furthermore, for applying transformations modeled using
the CDTrans language a generator was developed that translates
those transformations to executable Java transformations.

This contribution presents the systematic derivation process
of DSTLs, its application to the UML/P class diagram language
and the resulting DSTL CDTrans. In order to substantiate the
usefulness of the derived DSTL and to demonstrate their usage
two well-known refactoring transformations taken from [16] are
described using the CDTrans language: Pulling up a common
attribute of subclasses to the super class and encapsulating
attributes by using get and set methods. Furthermore, the
application of CDTrans transformations is explained.

The remainder of this paper is outlined as follows: Sect. II
briefly describes the MontiCore Language Workbench; the
case examples to demonstrate the transformation language are
explained in Sect. III; the transformation language itself is
explained in Sect. IV, while in Sect. V the transformation
language is used to solve the case examples. Sect. VI describes
the systematic derivation of a transformation language and
in Sect. VII the application of a CDTrans transformation is
described. Subsequently, Sect. VIII discusses related work and
Sect. IX concludes this paper.

[HRW15] K. Hölldobler, B. Rumpe, I. Weisemöller:
Systematically Deriving Domain-Specific Transformation Languages.
In: Conference on Model Driven Engineering Languages and Systems (MODELS),
pp. 136-145, Ottawa, Canada, ACM New York/IEEE Computer Society, 2015
www.se-rwth.de/publications

II. MONTICORE LANGUAGE WORKBENCH

The CDTrans transformation language as well as the gen-
erator translating transformations defined using CDTrans to
executable Java transformations are implemented using the
MontiCore language workbench [17]. Furthermore, the UML/P
class diagram language, that the CDTrans language is designed
for and the systematic derivation of the CDTrans is based on
(cf. Sect. VI), is defined using a MontiCore grammar. Thus,
in this section, a brief overview of MontiCore is given that
explains its relevant features.

MontiCore supports the specification of textual languages by
providing an EBNF like grammar format. This grammar format
allows the specification of the concrete and abstract syntax
of a language by a single grammar. Amongst other things,
based on this grammar MontiCore generates a parser and lexer
as well as language processing artifacts such as visitors and
infrastructure to check context conditions [18], [19].

MCG1 grammar CD extends Common {
2 Definition =
3 "classdiagram" Name "{"
4 CDElement*
5 "}";
6

7 interface CDElement;
8

9 Class implements CDElement =
10 ["abstract"]? "class" Name ... ;
11

12 Association implements CDElement =
13 ... ;
14

15 Interface implements CDElement =
16 ... ;
17

18 ...
19 }

Listing 1. Simplified Excerpt of the UML/P Class Diagram Grammar.

An excerpt of the grammar that defines the language used
for modeling the UML/P [15] class diagrams in Lst. 2, 3 and
4 is shown in Lst. 1.

A MontiCore grammar consists of the keyword grammar,
the grammar’s name and surrounded by curly brackets a set
of productions that define the elements of the language. In
the grammar excerpt in Lst. 1 there are five productions:
Definition (l. 2), Class (l. 9), Association (l. 12),
Interface (l. 15) and CDElement (l. 7).

The class diagram itself is defined by Definition,
whereas Class, Association and Interface define
the classes, interfaces and associations of a class diagram.
CDElement is a special case, i.e. an interface nonterminal
that is explained later in this section.

In a MontiCore grammar as in EBNF a production is
composed of a nonterminal and its definition, i.e. the right-hand
side (RHS) of the production that defines the attributes and
compositions within the abstract syntax tree. The RHS consists
of terminals surrounded by quotation marks and nonterminals.
To distinguish multiple occurrences of a nonterminal a nonter-
minal can be preceded with an identifier(a:B). For repetition
the nonterminal can be marked with a star (A*) for arbitrary

many occurrences or plus (A+) for at least one occurrence.
Alternatives are separated by a pipe (A|B) and optionality is
expresses by an appended question mark (A?).

Furthermore, MontiCore supports modularity concepts for
language reuse such as language inheritance and composition
(not shown here) [19], [15]. For language inheritance a grammar
can extend one or more existing grammars by using the
keyword extends followed by a comma separated list of
grammars after the grammar name (l. 1). As a consequence the
grammar inherits all productions of those grammars and can
define further productions itself. Thus, language developers
can reuse and combine existing languages and only need to
define new parts of a language.

A further feature to support reuse in MontiCore grammars
are interface nonterminals (l. 7). Such a nonterminal can be
used like any other nonterminal within the grammar (l. 4) and
is introduced by the keyword interface (l. 7). Interface
nonterminals are an extension of alternatives, i.e defining the
interface nonterminal CDElement is equivalent to defining
a production CDElement = Class | Association |
..., that contains one alternative for every production that im-
plements the interface nonterminal. Both, language inheritance
and interface nonterminals are designed following the principle
of object-oriented inheritance and, thus, ease the reuse and
extension of existing languages [20].

III. CASE EXAMPLE

The class diagram transformation language described in this
paper is designed to describe transformations for models of
the textual variant of the UML/P class diagram language. The
UML/P class diagram language was developed in [14] and
textually implemented in [15].

CD1 classdiagram ProfileManagement {
2

3 abstract class Profile {
4 public String profileName;
5 }
6

7 class Person extends Profile {
8 public String name;
9 public String address;

10 }
11

12 class Group extends Profile {
13 public String purpose;
14 public String address;
15 }
16 }

Listing 2. Running Example.

The diagram that serves as the running example is shown
in Lst. 2. It describes a very simple profile management e.g.
for a social network. The class diagram comprises an abstract
class Profile and two normal classes, Person and Group,
both of which extend the abstract class Profile. Profiles
have profile names, a person has a name and an address and a
group has a purpose and also an address.

To demonstrate the transformation language CDTrans two
well known example transformations from [16] have been
chosen: Pulling up a common attribute and encapsulation of

attributes. These examples have been chosen as they need to
match specific parts of the model as well as modify, create,
relocate and delete model parts.

A. Case 1: Pulling Up Attributes

Pulling up an attribute is a refactoring in which two
subclasses of a class share a common attribute. The rule
described in [16] (here called Pull Up Field) specifies that
the common attribute is removed from both subclasses and
relocated in the super class. In the running example both classes
Group and Person have the attribute address that after
applying this rule is located in their super class Profile as
depicted in Lst. 3.

CD1 classdiagram ProfileManagement {
2

3 abstract class Profile {
4 public String profileName;
5 public String address;
6 }
7

8 class Person extends Profile {
9 public String name;

10 }
11

12 class Group extends Profile {
13 public String purpose;
14 }
15 }

Listing 3. Class Diagram after Applying the Pull Up Transformation.

Certainly, this rule can be extended such that an arbitrary
number of subclasses can exist and in case all have the same
attribute it is pulled up as for example done in [21], but within
the scope of this case study we limit this case to two subclasses
but in addition require that no further subclass must exist.

B. Case 2: Encapsulation of Attributes

CD1 classdiagram ProfileManagement {
2 ...
3 class Group extends Profile {
4 private String purpose;
5 private String address;
6

7 public String getPurpose();
8 public void setPurpose(String purpose);
9 public String getAddress();

10 public void setAddress(String address);
11 }
12 }

Listing 4. Class Diagram after Applying the Encapsulating Transformation.

The second case also taken from [16] is about encapsulating
attributes, i.e. the visibility of public attributes is changed to
private and the public access is established by adding public
get and set methods for the attributes. Regarding the running
example an excerpt of the resulting class diagram is given in
Lst. 4. Due to space limitations the effect is shown for the
class Group only1.

1Please note that we have limited this example to the method signature
here, even though the method bodies could also be added by a transformation.

IV. CDTRANS

Complex transformations usually consist of transformation
rules that are applied using some kind of control structures
or application strategies [4], [3]. The CDTrans transformation
language is a language that allows textually describing trans-
formation rules for UML/P class diagrams in a class diagram
specific way. The application of these rules is dedicated to the
user and further explained in Sect. VII.

CDTrans realizes a graph-based transformation approach. It
allows to describe endogenous, in-place model transformations.
In those approaches, transformation rules consists of a left-
hand side (LHS), i.e. the pattern to be found in the model and
a right-hand side (RHS), i.e. the same model part after the
transformation is applied (see [22], [23]).

Following the principle described in [7], [24], the CDTrans
is based on the concrete syntax of the class diagram language
instead of its abstract syntax and uses an integrated notation of
the LHS and RHS of a transformation rule. In the following
the syntax to describe patterns, modifications, constraints and
negative application conditions is explained.

A. Pattern

As the notation of transformations is based on the concrete
syntax of the class diagram language a pattern without
modifications is quite similar to the model part being described.
For the first case example the three classes as well as the
common attribute String address of two classes need to
be matched. A pattern description for this part of the model is
given in Lst. 5. Even though the same order as in the model was
chosen for the classes, this is not necessary for the matching
process.

MTR1 class Profile;
2

3 class Person extends Profile {
4 public String address;
5 }
6

7 class Group extends Profile{
8 public String address;
9 }

Listing 5. Pattern for the Classes Person and Group that Extend the
Class Profile.

The pattern requires those three classes, their relation, i.e.
Person and Group extend the class Profile, and the
common attribute. As can be seen from this example there is
no need to include irrelevant details in the pattern. Additional
attributes as well as the keyword abstract that are present in
the model have been omitted in the pattern. Those details
are not relevant for the model part that should be matched.
Omitting those model parts is not equivalent to requiring a
non-abstract class or not allowing the classes to have any
further attributes. Instead, there is nothing said about whether
the classes are abstract or have any further attributes. Thus,
arbitrary classes fulfilling the described properties are possible
matches. Furthermore, there is no need to start at the class
diagram level, e.g. this pattern starts at the class level.

It describes the correct part of exactly this model but in
general a transformation rule needs to be more general and

should be applicable to different models. In order to allow
more general transformation rules, the CDTrans transformation
language has a concept called schema variables. Those variables
can be used to (1) bind a model element to a variable which
will be useful e.g. for modifications such as moving elements
and (2) to abstract from concrete values such as names.

MTR1 class $parent;
2

3 class $_ extends $parent {
4 Attribute $A1;
5 }
6

7 class $_ extends $parent {
8 Attribute $A2;
9 }

10

11 where {
12 $A1.deepEquals($A2)
13 }

Listing 6. Pattern with Schema Variables and Constraint.

Lst. 6 is a generalization of the pattern given in Lst. 5.
Instead of the concrete names of the classes schema variables
$_ and $parent are used for the names of the classes and the
attributes are replaced by the schema variables $A1 resp. $A2
plus its type Attribute (which is discussed in Sect. VI-E).

A schema variable is composed of a $-sign and an arbitrary
name for this variable. Schema variables can be used for all
elements of a class diagram, e.g. classes, attributes, methods
or names. The CDTrans language offers the following two
options to bind variables:

ElementType SchemaV ariable; (1)
ElementType SchemaV ariable [[Element]] (2)

The first variant can be understood as a black box variant,
an arbitrary element of the corresponding type will be bound
to the variable during the pattern matching. This variant is used
for the attributes in Lst. 6. The second variant instead is a white
box variant. In this case the concrete syntax of the element
is given in the double square brackets. For demonstrating this
variant it was used for the attribute in Lst. 8.

Furthermore, the CDTrans language has a special treatment
of schema variables for names. On the one hand schema
variables for names only consist of the variable itself without
the type; on the other hand using the same variable for two
name occurrences in a model requires equality of the two
names but not the same identity as it is the case for other two
occurrences of the same schema variable. This variant is used
in Lst. 6 ($parent) and Lst. 8 ($type and $attrname).

The $_-variable is a special case, it just replaces the concrete
value but is does not bind any value. Thus, the pattern abstracts
from the concrete names, but does not enforce both classes to
have the same name.

B. Negative Elements

Another feature of the CDTrans language are negative
elements. Negative elements are negative application conditions
[25], [26]. Negative elements are elements that must not be
present at the specified position of the model to find a match

for a pattern. Thus, a transformation can only be successfully
applied if there is no match for the negative elements described
in a transformation. The CDTrans language provides the
following syntax to describe negative elements:

not [[Element]]

The requirement of the "Pulling-Up-Attributes" case (i.e.
there exists no further subclass) is a typical use case for negative
elements. The positive variant would require to describe all
other available classes or to formulate a rather complicated
constraint to achieve the same effect. For the case example the
following line needs to be added to complete the pattern:

not [[class $_ extends $parent;]]

C. Modifications

The CDTrans language uses an integrated notation for the
LHS and the RHS part of a transformation. To describe
modifications the CDTrans offers the following operator:

[[Element? :- Element?]]

This operator looks quite similar to a description of the
LHS/RHS form and has a similar meaning. The element left
of the :- is replaced by the element right of it. But in contrast
to the common LHS/RHS form, this operator can be used
for elements instead of complete patterns. Furthermore, this
operator can be used to create or delete elements. In the former
case the left-hand side is empty, in the latter the right-hand
side is empty. The replacement of keywords and names is done
by the same operator. Examples for replacements are shown
in line 2 and 6 of Lst. 7. Here, the attribute $A1 is moved
from one class (l. 6) to another (l. 2). In line 4 of Lst. 8 the
keyword private is deleted and public is added.

D. Application Constraints and Assignments

The CDTrans language allows to specify a where-block that
allows to define an application constraint for the transformation
and assign values to schema variables. If an application
constraint is defined, a transformation is only applied if (1) the
pattern is found in the model and (2) the application constraint
holds. The syntax of a where-block is the following:

where { Assignment ∗ BooleanExpression? }

A where-block consists of the keyword where followed by
an arbitrary number of assignments of schema variables and
an optional boolean expression (i.e. the application constraint)
surrounded by curly brackets.

The assignments allow to assign values to schema variables
that are not assigned during pattern matching, i.e. that are
only part of the RHS of a modification (Sect. IV-C). An
example for an assignment is shown in Line 12-13 of Lst. 8 that
shows a solution for the case example 2. Here, the assignments
concatenate the name of the get and set methods.

Within the boolean expression all elements bound to schema
variables can be used to formulate an application constraint.
An example of an application constraint is given in Line 15

of Lst. 7 that shows a solution for the first case example.
This constraint requires the two attributes of the subclasses to
be equivalent. As can be seen from this example within the
constraint the signature of the abstract syntax of the model
elements can be used. Furthermore, as CDTrans transformations
are translated to Java any static helper methods can be used.

V. SOLUTIONS FOR THE CASE EXAMPLES

In this section possible realizations of the two case example
transformations using the CDTrans transformation language
are explained.

A. Case 1: Pulling Up Attributes

Lst. 7 shows a transformation realizing the first case example
transformation, i.e. pulling up a common attribute.

MTR1 class $parent {
2 [[:- Attribute $A1;]]
3 }
4

5 class $_ extends $parent {
6 [[Attribute $A1; :-]]
7 }
8

9 class $_ extends $parent {
10 [[Attribute $A2; :-]]
11 }
12

13 not [[class $_ extends $parent;]]
14

15 where { $A1.deepEquals($A2) }

Listing 7. Transformation to Pull up a Common Attribute.

Line 5-7 and 9-11 describe a pattern of two classes with
arbitrary names (indicated by the variable $_) that extend
the same super class with an arbitrary name that is bound
to the variable $parent (same variables for names means
equality). Both classes furthermore have an attribute bound to
the variable $A1 resp. $A2 (choosing the same variable for
the attributes would require identity). The constraint in line
15 requires this two attributes to be equal. The pattern of the
super class is described in line 1. The modification of this
transformation is described by the lines 2, 6 and 10 where the
replacement operator is used to remove the attributes $A1 and
$A2 from the subclasses (l. 6 and 10) and add the attribute
$A1 to the super class (l. 2). Finally, the negative element in
line 13 enforces that the transformation is only applicable if
there is no further class that extends the super class $parent.

B. Case 2: Encapsulation of Attributes

Lst. 8 shows a transformation realizing the second case
example transformation, i.e. encapsulating attributes.

Lines 1-9 describe the pattern of a class with an arbitrary
name (indicated by the $_ variable) with a public attribute
whose type and name are arbitrary but bound to the variables
$type resp. $attrname. For demonstrating a white box
schema variable the attribute is bound to the variable $A (l. 3-
5). The modification in line 4 changes the public visibility
of the attribute to private. In line 7 the method signature for
the get method is added and in line 8 the signature of the
set method is added. For the return type of the method as

well as for the type of the attribute of the set method the
type of the attribute is used. The attribute name is used for
the parameter name. The transformation uses variables for
the names of the methods that are not defined in the pattern
part of the transformation ($set and $get). The assignments
within the where-block are used to assign the values (here
Strings for the names of the methods) to those variables. The
names for the methods are composed of the prefix get resp. set
and the name of the attribute. Please note that this will lead
to getaddress and setaddress instead of camel cased names
but this can easily be corrected by using a Java class that
capitalizes the attribute name within the String concatenation,
e.g. WordUtils.capitalize(...) of the Apache Commons [27] or
the StringTransformations.capitalize(...) of MontiCore.

MTR1 class $_ {
2

3 Attribute $A [[
4 [[public :-]] [[:- private]] $type $attrname;
5]]
6

7 [[:- public $type $get ();]]
8 [[:- public void $set ($type $attrname);]]
9 }

10

11 where {
12 $get = ("get").concat($attrname);
13 $set = ("set").concat($attrname);
14 }

Listing 8. Transformation to Encapsulate Attributes

VI. SYSTEMATIC DERIVATION OF A DSTL

In this section the derivation rules for systematically creating
DSTLs and the common grammar for DSTLs are described.
To ease the development of DSTLs a grammar called TFCom-
mons has been developed that defines the modeling language
independent parts of a derived DSTL. This grammar is used as
a base grammar for DSTLs derived according to the derivation
rules described later in this section. The derivation can be
automated by e.g. traversing the modeling language grammar
using a visitor and thereby creating the transformation language
grammar according to the derivation rules.

A. Common Base Grammar for Transformation Languages

Lst. 9 shows an excerpt of the TFCommons grammar
that defines the modeling language independent part of a
DSTL. This grammar basically provides the syntax for schema
variables, names and their replacements, and the where-block
that allows defining an application constraint and assignments
for schema variables.

The TFIdentifier defined in line 3-4 is used within the
transformation language for names (cf. derivation rule 4a). The
nonterminal Ident is either a schema variable or a concrete
name (to be matched in the model). Thus, the TFIdentifier
provides the replacement operator for names (concrete ones or
those bound to schema variables). Please note that names can
only be replaced but not deleted or created.

Furthermore, the nonterminal Where provides the syntax
to describe the where-block of a transformation. It allows

MCG1 grammar TFCommons extends Common {
2

3 TfIdentifier =
4 Ident | "[[" Ident ":-" rhs:Ident "]]";
5

6 Where = "where" "{"
7 Assignment*
8 constraint:BooleanExpression?
9 "}";

10

11 Assignment = SchemaVar "=" value:Expression ";";
12 ...
13 }

Listing 9. Simplified Excerpt of the Common Grammar for DSTLs.

several assignments of schema variables (cf. l. 7 and 11) and
an application constraint (cf. l. 8).

B. Derivation Rules

The grammar for a DSTL is created by systematically
applying derivation rules. It consists of a nonterminal for the
transformation rule itself and nonterminals to describe pattern,
modifications and negative elements of all nonterminals and
optional keywords (i.e. keywords that can be set, removed or
replaced) of the modeling language. These derivation rules are
explained in the following sections.

Interface Nonterminals: As the initial step, for every non-
terminals and every optional keyword such as abstract or
public an interface nonterminal is created. This nonterminal
is used to bundle the nonterminals created in further derivation
rules. Thus, the first rule is split into three subrules:

1a. For every interface nonterminal N ∈ L create an interface
nonterminal N in the transformation language TL. If N ∈ L
extends interface nonterminals I ∈ L, N ∈ TL extends I ∈
TL.

1b. For every nonterminal N ∈ L create an interface non-
terminal N in the transformation language TL. If N ∈ L
implements interface nonterminals I ∈ L, N ∈ TL extends
I ∈ TL.

Using the same name for interface nonterminals of TL
as for the nonterminals in L was a deliberate decision to
ease the derivation rule for the nonterminals describing the
pattern (cf. rule 4a). Furthermore, the relation between normal
and interface nonterminals, i.e. nonterminals implementing
interface nonterminals and interface nonterminals extending
other interface nonterminals is reflected by the interface
nonterminals created for the transformation language.

1c. For every optional keyword k ∈ L create an interface
nonterminal K in the transformation language.

The name of this interface nonterminal is derived from the
keyword the same way as MontiCore derives the name for
attributes corresponding to optional keywords but capitalized,
e.g. "abstract" becomes Abstract, "+" becomes Plus,
and private:"-" becomes Private.

Modification: In order to allow modification of every model
element nonterminals providing the replacement operator are
created for every nonterminal and every optional keyword

of the modeling language L. Modification for names are
provided by the common grammar explained in Sect. VI-A.
The replacement for keywords and nonterminals differ, thus, the
second derivation rule is split into the following two subrules:

2a. For every (interface) nonterminal N ∈ L create a
nonterminal N_Rep of the following form:

N_Rep implements N =

"[[" lhs:N? ":-" rhs:N? "]]";

By introducing the nonterminals N_Rep for nonterminals
of L a transformation can describe replacing one element by
another one, adding an element (LHS is empty) and removing
an element (RHS is empty).

2b. For every optional keyword k ∈ L create a nonterminal
K_Rep of the following form:

K_Rep implements K =

"[[" "k" ":-" "]]" | "[[" ":-" "k" "]]";

This rule handles all optional keywords separately, thus,
the replacement of keywords differ from the replacement for
nonterminals as keywords can either be added or removed
but not be replaced as replacing a keyword by itself is not
needed. Please note that for some languages this systematic
handling of keyword might be counterintuitive e.g. adding
private and removing public could be more intuitively modeled
by replacing public by private. Therefore, depending on the
modeling language a manual adaptation of the systematically
derived language could further improve the DSTL.

Negative Elements: For every nonterminals and every
optional keyword, nonterminals to describe negative elements
are created. The following two subrules describe the structure
that is created for those nonterminals:

3a. For every (interface) nonterminal N ∈ L create a
nonterminal N_Neg of the following form:

N_Neg implements N = "not" "[[" N "]]";

3b. For every optional keyword k ∈ L create a nonterminal
K_Neg of the following form:

K_Neg implements K = "not" "[[" K "]]";

Pattern: Finally, the concrete syntax of the modeling
language needs to be transferred to the transformation language
to describe pattern. Thus, nonterminals for the pattern are
created according to the two subrules:

4a. For every nonterminal N ∈ L create a nonterminal N_-
Pattern of the following form:

N_Pattern implements N =

SyntaxOfN |

"N" SchemaVar (";" | "[[" SyntaxOfN "]]");

where SyntaxOfN is a modified copy of the productions
RHS of the nonterminal N. Within this copy all occurrences of

keywords are replaced by the interface nonterminal introduced
for the keyword and all name occurrences are replaced by
the nonterminal TFIdentifier defined in the TFCommons
grammar.

Please note that nonterminals occurring in the copy need not
be changed as they refer to the interface nonterminals of the
transformation language created by rule 1. Thus, they already
allows patterns, modification or negative elements.

4b. For every interface nonterminal N ∈ L create a nonter-
minal N_Pattern of the following form:

N_Pattern implements N =

"N" SchemaVar ";";

Interface nonterminals define no concrete syntax itself,
instead nonterminals implementing those nonterminals define
the concrete syntax. However, this rule provides the black
box variant of schema variables for interface nonterminals. By
providing this variant a transformation is able to match an
arbitrary element that implements the interface nonterminal in
L. An example use case is an interface nonterminal Type that
is implemented by nonterminals representing different kinds
of types. If the concrete type is irrelevant a transformation can
match the Type element itself.

4c. For every optional keyword k ∈ L create a nonterminal
K_Pattern of the following form:

K_Pattern implements K = "k";

As the concrete syntax of a keyword is the keyword itself,
there is no need for schema variables for keywords. Thus, the
nonterminal K_Pattern has no alternatives.

Transformation Rule: As the last step a nonterminal that
represents a complete transformation rule is needed. Thus, this
rule creates a nonterminal that combines all nonterminals to
form a transformation rule:

5. Create a nonterminal TFRule of the following form:

TFRule = (AlternativeOfNTs)* Where?;

where AlternativeOfNTs is an alternative of all interface
nonterminals created for nonterminals of L.

This nonterminal allows all elements of a model as top level
elements in a transformation rule. Therefore, a transformation
rule needs not start at the top level element of a model, e.g. the
class diagram definition. Instead, the transformation developer
can concentrate on the concrete model part that should be
transformed. Furthermore, this nonterminal adds the where-
block to the transformation rule.

C. Context Condition

The systematic derivation in conjunction with the reuse of
the nonterminals structure of the modeling language already
achieves that the structure of a transformation is always conform
to a model structure, e.g. classes cannot be specified within
other classes, modifications may only add the correct type

of element, etc.. However, there are some context conditions
regarding the transformation specific parts of the transformation
that must hold for a transformation to be valid.

1) A schema variable must be unique.: As a schema variable
is bound during pattern matching or is assigned within the
where-block of a transformation those variables must be unique.
Nevertheless, they may occur within the pattern/assignment,
the RHS/and the constraint referring to the same element.
Exception: Two occurrences of the same schema variable for
names as this means equality of the name not the same identity.

2) A schema variable on the RHS of a modification must
either occur within the pattern or be assigned within the where-
block.: By formulating this context condition it is guaranteed
that a modification that has an element on its RHS actually
adds or moves this element. Allowing not assigned variables
on the RHS would either shadow a mistake or change the
behavior of the replacement operator. Therefore, a not assigned
variable must be reported as an error.

3) A schema variable used within the where-block must
exist.: Schema variables can be used inside a where-block
either as part of the application constraint or be assigned with
a value. In case a schema variable is used within the constraint
it must be part of the pattern. If a variable is assigned it must
exist on the RHS of a modification only.

4) There must not occur negative elements on the RHS of a
modification.: Negative elements are elements that must not be
present at the specified position, thus, they can only constrain
the pattern part of a transformation. For modifications creating
new elements there is no need for negative elements. For
modification moving elements the negative elements should
be specified in conjunction with the pattern describing the
elements that is moved.

5) Negative elements must not be nested.: To avoid double
or more negation of elements and thus keep this operator
simple, this context condition forbids using negative elements
within negative elements. This limitation is compensated by
the application constraint that allows to formulate an arbitrary
boolean expression using the schema variables, their signature
and arbitrary static Java methods (cf. Sect. IV-D).

6) There must not occur a modification within a negative
element.: Negative elements are elements not to be present,
hence, modifying elements that are not present in a model is
not possible. Hence, modifications within negative elements
should not be possible and, thus, be reported as an error.

Depending on the modeling language there might be further
conditions that must hold with regard to the modeling language.
An example of such a condition could be that a transformation
must not remove the visibility of a method without adding a
new visibility.

D. Application of the Derivation Rules

In this section the derivation process is demonstrated by
applying the derivation rules to the class diagram grammar
shown in Lst. 1. Lst. 10 shows a simplified excerpt of the
derived grammar defining the CDTrans language.

As shown in Lst. 10 the derived grammar extends the
common grammar for DSTLs TFCommons (l. 1) providing
replacements for names, schema variables and the where-block.

Applying the first derivation rule (1a-1c) the interface
nonterminals to bundle the pattern, modification and negative
element nonterminals are created (l. 7-11). According to
the rule, interface nonterminals are created for the interface
nonterminals (cf. CDElement in l. 7), normal nonterminals
(cf. Definition, Class, l. 8-9) and optional keywords2 (cf.
Abstract, l. 10). Furthermore, the implements relation of
Class and CDElement is reflected by the Class interface
nonterminal extending the CDElement nonterminal.

According to the second derivation rule (2a-2b) the
replacement nonterminals (cf. Definition_Rep, l. 14-16)
and Abstract_Rep, l. 35-37) are created.

After applying the third derivation rule nonterminals for
describing negative elements are created (cf. Definition_-
Neg in l. 19-20, Abstract_Neg in l. 40-41).

Nonterminals for describing patterns in concrete syntax as
well as for schema variables are created according to the
fourth derivation rule (cf. Definition_Pattern in l. 23-
32, Abstract_Pattern in l. 44-45). As described by this
rule, occurrences of names are replaced by TFIdentifier
(cf. l. 24 and 29). References to other nonterminals need
not be changed (cf. l. 25 and 30). Furthermore, occurrences
of keywords are replaced by their corresponding interface
nonterminals (not shown here).

Finally, according to the fifth derivation rule the nonter-
minal describing a transformation rule is created (cf. l. 4-5).

E. Discussion

The process of deriving a DSTL is completely systematic
and based on the grammar of the modeling language L. The
main part of the DSTL is based on the concrete syntax of L.
For typing and abstraction purposes the nonterminal names
of L are used for the typing of schema variables. Thus, these
names become part of the concrete syntax of the DSTL. A
schema variable on its own (i.e. without the type) is sufficient
if the type can be inferred from the environment of the
variable but for nonterminals in alternatives the type cannot
be inferred correctly (at least for the black box variant). Thus,
the systematic derivation includes types for schema variables.
However, the derived grammar can be extended manually using
the language inheritance feature of MontiCore to refine this
part of the concrete syntax. Furthermore, using inheritance
keywords such as not, delimiters or operators can be refined
to eliminate possible conflicts regarding keywords of L.

The structure of the derived DSTL depends on the structure
of L. The abstract syntax of L might contain folded or expanded
productions. Even though this does not affect the concrete
syntax of L, it leads to less or more nonterminals in the DSTL
as replacements, negations and variables are created for every
nonterminal of L. Thus, if the DSTL’s structure is too fine-
grained or too coarse, restructuring L solves this issue.

2class and classdiagram are also keywords but not optional.

MCG1 grammar CDTrans extends TFCommons {
2

3 //5
4 TFRule = (Definition | Class | ...)*
5 Where?;
6

7 interface CDElement; // 1a
8 interface Definition; // 1b
9 interface Class extends CDElement; // 1b

10 interface Abstract; // 1c
11 ...
12

13 // 2a
14 Definition_Repl implements Definition =
15 "[[" lhs:CDDefinition?
16 ":-" rhs:CDDefinition? "]]";
17

18 // 3a
19 Definition_Neg implements Definition =
20 "not" "[[" CDDefinition "]]";;
21

22 // 4b
23 Definition_Pattern implements Definition =
24 "classdiagram" TfIdentifier "{"
25 CDElement*
26 "}"
27 | "Definition" SchemaVar ";"
28 | "Definition" SchemaVar "[["
29 "classdiagram" TfIdentifier "{"
30 CDElement*
31 "}"
32 "]]";
33

34 // 2b
35 Abstract_Rep implements Abstract =
36 "[[" lhs:Abstract ":-" "]]"
37 | "[[" ":-" rhs:Abstract "]]";
38

39 // 3b
40 Abstract_Neg implements Abstract =
41 "not" "[[" Abstract "]]";
42

43 // 4c
44 Abstract_Pattern implements Abstract =
45 "abstract";
46 ...
47 }

Listing 10. Simplified Excerpt of the CDTrans Grammar

Another problem are nonterminals that do not define any
mandatory concrete syntax. As all nonterminals are allowed
as top level elements within a transformation rule such
nonterminals might result in parsing problems as the parser
could infinitely often parse an empty nonterminal. However,
restructuring L or excluding those nonterminals from the
alternative of the TFRule nonterminal solves this problem.

As MontiCore supports language inheritance, a modeling
language L might extend another language SL. Within this
derivation process only nonterminals defined in L are consid-
ered. However, the same derivation process can be used to
derive a transformation language TSL for SL. Thus, using
language inheritance the transformation language TL for L can
extend TSL such that TL inherits all nonterminals to describe
transformations of elements defined by SL.

Finally, deriving nonterminal names from keywords might
result in naming clashes. For example, a nonterminal Asso-
ciation that contains the keyword association would

result in two nonterminals called Association within the
transformation language grammar. In order to avoid this either
the modeling language could be adapted or the derivation rules
for keyword can add an additional suffix such as Keyword.

VII. APPLYING A CDTRANS TRANSFORMATION

The CDTrans transformation language is accompanied with
a generator that takes a transformation as input and generates
a Java class that is able to execute the transformation. The
generated Java class realizes the pattern matching for the pattern
part of the transformation using a search plan based pattern
matching approach [28], [29] and in case a match has been
found applies the changes described by the transformation.
This workflow from creating a transformation to applying it is
depicted as an activity diagram in Fig. 1.

Create
Transformation

User Parser/Generator

Read

Transformation T

Generate Java Tranformation

T

TJava

Model M

Input

Model M

A1

A2

Read M

Create

OD Notation

A4

A6

Create Java

Transformation

TJava

A5

AD
TJava

Transform M

to MT

MT

A3

A7

A8

Figure 1. Workflow to Translate and Apply a Transformation.

After creating a transformation T (A1) the transformation
will be read in by the generator (A2) and translated to a Java
transformation TJava (A3). This transformation is returned to
the user/modeler who provides a model M (A6) as input for
the transformation TJava. The transformation TJava reads in
the model (A7), does the pattern matching, modifies the model
and thereby produces the transformed model MT (A8).

The generator translating those transformations is imple-
mented using MontiCore [17]. A two-step process was chosen
to translate the domain-specific transformation (DST). In the
first step (A4) the DST is translated to a generic object
diagram based notation describing the LHS and RHS of the
transformation rule. In the second phase (A5) of the generation
this generic notation is used to generate the Java transformation
class. This translating generator is composed of two interacting
generators where the outcome of the first generator (i.e the
generic LHS/RHS notation) is used as the input for the second
generator. Choosing this two-step process allows a reuse of the
second generator for further transformation languages similar
to CDTrans and different front ends that could translate to the
LHS/RHS notation and use the second generator, e.g. delta
languages [13]. We forego the details of this two generators
and plan to detail this approach in a further publication.

VIII. RELATED WORK

Similar to e.g. PROGRES [30], Fujaba [31], eMoflon [32]
and Henshin [33] the CDTrans transformation language is
a graph transformation approach and supports endogenous
model transformations [4]. But in contrast to those approaches
CDTrans reuses the concrete syntax of the modeling language.

A DSTL for UML diagrams using the graphical concrete
syntax of UML is presented in [8]. However, there seems not to
be any implementation though. In [34] a generator framework
to translate domain-specific transformations to executable Java
transformations is proposed but there is no explanation how
this should be achieved in practice.

In [6], [35], the metamodel of a pattern language able to
describe the LHS/RHS pattern of a transformation is generated
based on the metamodel of a modeling language. Compared
to the systematic derivation of abstract and concrete syntax
presented in this paper the transformation language developer
has to create a concrete syntax for the abstract syntax.

The approach presented in [36], [9], generates a graphi-
cal transformation language based on a graphical modeling
language. To reuse the concrete syntax the DSTL developer
needs to link the abstract syntax to the concrete syntax of
the modeling language. In [12] a DSTL for UML 2 activity
diagrams [37] based on this approach is presented. Another
tool for domain-specific transformations for graphical models
is AToMPM [10] based on T-Core [38].

Inferring model transformations from examples [39] is a
similar approach to DSTLs. Example source and target models
are used as the LHS resp. RHS and are aligned by the user.
However, to correct and generalize a transformation, the user
must operate on the abstract syntax.

Similar to the systematic derivation presented here, is
the approach presented in [13]. This approach derives delta
languages from modeling languages. However, the derivation
process is specific for delta languages.

The approach presented in [40] provides transformation
primitives that can be combined to create a DSTLs. This
approach focuses on creating transformation languages by
combining and configuring transformation language elements
rather then defining a systematic on how to create a language.

IX. CONCLUSION

Model transformations are helpful to evolve, refactor, refine
and maintain (domain-specific) models. While DSLs are
normally intuitive for modelers, common model transformation
approaches use the abstract syntax of the modeling language,
that is usually hidden from the modeler, to describe trans-
formations. To alleviate the use of abstract syntax, in this
paper a process to systematically derive a DSTL was presented
that looks very similar to the concrete underlying modeling
language. We are convinced that the resulting DSTL is almost
as intuitive as the modeling language and provides easy access
to novel users. In particular it prevents users from learning the
metamodel or abstract syntax of the modeling language.

This systematic process was demonstrated by applying it to
the UML/P class diagram language to derive the transformation

language CDTrans. The derivation rules defined for this process
combine the concrete syntax of class diagrams with a few
transformation specific operators. The resulting transformation
language is able to describe endogenous model transformations
in a domain-specific manner. Although this process was
developed based on MontiCore it can also be transferred to
other language development frameworks [17]. We assume the
presented concept to be helpful to ease the use of transformation
languages by untrained developers.

REFERENCES

[1] M. Fowler, Domain-specific languages. Pearson Education, 2010.
[2] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop

domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, pp.
316–344, 2005.

[3] T. Mens and P. V. Gorp, “A taxonomy of model transformation,”
Electronic Notes in Theoretical Computer Science, vol. 152, pp. 125 –
142, 2006.

[4] K. Czarnecki and S. Helsen, “Feature-based survey of model transfor-
mation approaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–645,
2006.

[5] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Science of computer programming, vol. 72, no. 1,
pp. 31–39, 2008.

[6] T. Baar and J. Whittle, “On the usage of concrete syntax in model trans-
formation rules,” in International Andrei Ershov memorial conference
on Perspectives of systems informatics (PSI), 2007.

[7] B. Rumpe and I. Weisemöller, “A Domain Specific Transformation
Language,” in Workshop on Models and Evolution (ME), 2011.

[8] M. Schmidt, “Transformations of UML 2 Models Using Concrete Syntax
Patterns,” in Rapid Integration of Software Engineering Techniques, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2007,
vol. 4401, pp. 130–143.

[9] R. Grønmo and B. Møller-Pedersen, “Concrete syntax-based graph
transformation,” 2009, research Report 389.

[10] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. V. Mierlo,
and H. Ergin, “AToMPM: A Web-based Modeling Environment,” in
MODELS’13: Invited Talks, Demos, Posters, and ACM SRC., 2013, pp.
21–25.

[11] J. Steel and R. Drogemuller, “Domain-Specific Model Transformation in
Building Quantity Take-Off,” in Model Driven Engineering Languages
and Systems, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, vol. 6981, pp. 198–212.

[12] R. Grønmo, B. Møller-Pedersen, and G. Olsen, “Comparison of Three
Model Transformation Languages,” in Model Driven Architecture -
Foundations and Applications, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2009, vol. 5562, pp. 2–17.

[13] A. Haber, K. Hölldobler, C. Kolassa, M. Look, K. Müller, B. Rumpe, and
I. Schaefer, “Engineering Delta Modeling Languages,” in Proceedings
of the 17th International Software Product Line Conference (SPLC’13).
Tokyo, Japan: ACM, September 2013, pp. 22–31.

[14] B. Rumpe, Modellierung mit UML, 2nd ed., ser. Xpert.press. Springer
Berlin, September 2011.

[15] M. Schindler, Eine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P, ser. Aachener Informatik-Berichte, Software-Engineering.
Aachen: Shaker, 2012, vol. 11.

[16] M. Fowler, Refactoring: Improving the Design of Existing Programs.
Addison-Wesley, 1999.

[17] H. Krahn, B. Rumpe, and S. Völkel, “MontiCore: a Framework for Com-
positional Development of Domain Specific Languages,” International
Journal on Software Tools for Technology Transfer (STTT), vol. 12, no. 5,
September 2010.

[18] H. Krahn, “MontiCore: Agile Entwicklung von domänenspezifischen
Sprachen im Software-Engineering,” Ph.D. dissertation, RWTH Aachen
University, 2010.

[19] S. Völkel, Kompositionale Entwicklung domänenspezifischer Sprachen,
ser. Aachener Informatik Berichte, Software Engineering. Shaker Verlag,
2011, vol. 9.

[20] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and
S. Völkel, “Design Guidelines for Domain Specific Languages,” in
OOPSLA Workshop on Domain-Specific Modeling (DSM), 2009.

[21] S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, and P. V. Gorp,
“Evaluation of model transformation approaches for model refactoring,”
Science of Computer Programming, vol. 85, pp. 5–40, 2014.

[22] M. Nagl, “Graph-Grammatiken, Theorie, Implementierung, Anwendun-
gen,” Vieweg, Braunschweig, 1979.

[23] F. Jouault and I. Kurtev, “Transforming models with ATL,” in satellite
events at the MoDELS 2005 Conference. Springer, 2006, pp. 128–138.

[24] I. Weisemöller, Generierung domänenspezifischer Transformation-
ssprachen, ser. Aachener Informatik-Berichte, Software-Engineering.
Aachen: Shaker, 2012, vol. 12.

[25] H. Ehrig and A. Habel, “Graph Grammars with Application Conditions,”
in The Book of L. Springer Berlin Heidelberg, 1986, pp. 87–100.

[26] A. Habel, R. Heckel, and G. Taentzer, “Graph grammars with negative
application conditions,” Fundamenta Informaticae, vol. 26, no. 3, pp.
287–313, 1996.

[27] The Apache Software Foundation, “Apache Commons Lang 3.4
API,” August 2006, https://commons.apache.org/proper/commons-
lang/javadocs/api-3.4/index.html.

[28] A. Zündorf, “Graph pattern matching in PROGRES,” in Graph Grammars
and Their Application to Computer Science, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 1996, vol. 1073, pp.
454–468.

[29] G. Veit Batz, M. Kroll, and R. Geiß, “A first experimental evaluation
of search plan driven graph pattern matching,” in Applications of
Graph Transformations with Industrial Relevance, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2008, vol. 5088, pp.
471–486.

[30] A. Schürr, Operationales Spezifizieren mit Programmierten Grapherset-
zungssystemen: Formale Definitionen Anwendungsbeispiele and Werkzeu-
gunterstützung. Wiesbaden: Deutscher Universitäts-Verlag, 1991.

[31] T. Fischer, J. Niere, L. Torunski, and A. Zündorf, “Story Diagrams: A
New Graph Rewrite Language Based on the Unified Modeling Language
and Java,” in Theory and Application of Graph Transformations, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2000,
vol. 1764, pp. 296–309.

[32] E. Leblebici, A. Anjorin, and A. Schürr, “Developing eMoflon with
eMoflon,” in Theory and Practice of Model Transformations, ser. Lecture
Notes in Computer Science. Springer International Publishing, 2014,
vol. 8568, pp. 138–145.

[33] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin:
Advanced Concepts and Tools for In-Place EMF Model Transformations,”
in Proceedings of MoDELS’10, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2010, vol. 6394, pp. 121–135.

[34] T. Reiter, E. Kapsammer, W. Retschitzegger, W. Schwinger, and
M. Stumptner, “A Generator Framework for Domain-Specific Model
Transformation Languages,” in 8th International Conference on Enter-
prise Information Systems (ICEIS), 2006, pp. 27–35.

[35] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wimmer,
“Explicit Transformation Modeling,” in Models in Software Engineering,
ser. Lecture Notes in Computer Science, vol. 6002. Springer Berlin
Heidelberg, 2010, pp. 240–255.

[36] R. Grønmo, “Using concrete syntax in graph-based model transforma-
tions,” Ph.D. dissertation, University of Oslo, 2009.

[37] Object Management Group, “Unified Modeling Language:
Superstructure Version 2.0 (05-07-04),” August 2005,
http://www.omg.org/docs/formal/05-07-04.pdf.

[38] E. Syriani, H. Vangheluwe, and B. LaShomb, “T-Core: a framework
for custom-built model transformation engines,” Software & Systems
Modeling, pp. 1–29, 2013.

[39] G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger, and M. Wimmer,
“Model Transformation By-Example: A Survey of the First Wave,” in
Conceptual Modelling and Its Theoretical Foundations, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2012, vol. 7260, pp.
197–215.

[40] J. Sánchez Cuadrado, E. Guerra, and J. de Lara, “Towards the Systematic
Construction of Domain-Specific Transformation Languages,” in Mod-
elling Foundations and Applications, ser. Lecture Notes in Computer
Science. Springer International Publishing, 2014, vol. 8569, pp. 196–
212.

	Introduction
	MontiCore Language Workbench
	Case Example
	Case 1: Pulling Up Attributes
	Case 2: Encapsulation of Attributes

	CDTrans
	Pattern
	Negative Elements
	Modifications
	Application Constraints and Assignments

	Solutions for the Case Examples
	Case 1: Pulling Up Attributes
	Case 2: Encapsulation of Attributes

	Systematic Derivation of a DSTL
	Common Base Grammar for Transformation Languages
	Derivation Rules
	Context Condition
	A schema variable must be unique.
	A schema variable on the RHS of a modification must either occur within the pattern or be assigned within the where-block.
	A schema variable used within the where-block must exist.
	There must not occur negative elements on the RHS of a modification.
	Negative elements must not be nested.
	There must not occur a modification within a negative element.

	Application of the Derivation Rules
	Discussion

	Applying a CDTrans Transformation
	Related Work
	Conclusion
	References

