Systematic Language Extension Mechanisms
for the MontiArc Architecture
Description Language

Arvid Butting®, Arne Haber!-2, Lars Hermerschmidt!3, Oliver Kautz!,
Bernhard Rumpe’, and Andreas Wortmann' ™)

! Software Engineering, RWTH Aachen University, Aachen, Germany
{Butting ,Haber ,Hermerschmidt ,Kautz,Rumpe, WOrtmann}@se—rwth .de
2 Schier Consult GmbH, Braunschweig, Germany
3 AXA Konzern AG, Cologne, Germany
http://www.schier-consult.de,
http://www.axa.de

Abstract. Architecture description languages (ADLs) combine the ben-
efits of component-based software engineering and model-driven devel-
opment. Extending an ADL to domain-specific requirements is a major
challenge for its successful application. Most ADLs focus on fixed fea-
tures and do not consider domain-specific language extension. ADLs
focusing on extensibility focus on syntactic augmentation only and nei-
ther consider semantics, nor the ADL’s tooling. We present a systematic
extension method for the MontiArc component and connector ADL that
enables extending its syntax and infrastructure. The MontiArc ADL is
built on top of the MontiCore workbench for compositional modeling lan-
guages and leverages its powerful language integration facilities. Based
on these, we conceived systematic extension activities and present their
application to customizing MontiArc for three different domains. This
application of software language engineering to ADLs reduces effort for
their extension and the presented method guides developers in applying
it to their domain. This ultimately fosters the application of ADLs to
real-world domain-specific challenges.

Keywords: Model-driven engineering - Architectural programming -
Action languages - Software language composition

1 Introduction

Component-based software engineering (CBSE) is a software engineering
methodology that advocates the vision of composing complex software sys-
tems from off-the-shelf components. Through this, the individual components
are supposed to be reused more often, better evaluated, and hence more mature.
Nonetheless, most approaches to CBSE rely on exchanging binary or source code
components, which are noisy [33] solution domain [8] artifacts that are specific

E - E [BHH+17] A. Butting, A. Haber, L. Hermerschmidt, O. Kautz, B. Rumpe, A. Wortmann:

Systematic Language Extension Mechanisms for the MontiArc Architecture Description Language.
- In: Modelling Foundations and Applications (ECMFA’17). Springer International Publishing, 2017.
www.se-rwth.de/publications/




54 A. Butting et al.

to the general programming language (GPL) they are formulated in. This com-
plicates their reuse and comprehension.

Model-driven development (MDD) lifts models to primary development arti-
facts that are more abstract, closer to the solution domain, less noisy, better
comprehensible, and automatically translatable into solution domain artifacts.
Architecture description languages (ADL) [23] are modeling languages for the
development of complex software systems. They combine the benefits of CBSE
and MDD and have been developed for and applied to multiple challenging
domains including automotive [3], avionics [6], and robotics [30]. For each of
these domains, completely new ADLs with domain-specific syntax and seman-
tics have been developed from scratch. This is expensive, which is why extending
ADLs to specific requirements is one of the major challenges to their successful
application [21]. However, most ADLs focus on fixed domain-specific challenges
and do not support domain-specific extension. Where this is possible (such as
with AADL [6] or xADL [25]), the extensions are mainly of syntactic nature.
Leveraging software language engineering enables implementing better extensible
ADLs. Based on state-of-the-art software language composition mechanisms [4],
we have conceived the MontiArc ADL [17] for extensive systematic extension on
top of the MontiCore [20] language workbench. The language engineering mech-
anisms of MontiCore enable to adjust MontiArc’s syntax and infrastructure to
domain-specific requirements. Core modeling elements of the MontiArc ADL
have been introduced in [17] and an earlier variant extension method has been
presented in [12]. Furthermore, the behavior language embedding mechanisms of
the MontiArc derivative MontiArcAutomaton have been presented in [27]. This
paper specifically contributes

— an augmented method for the structured extension of MontiArc with new syn-
tax and semantics beyond behavior language embedding that considers reuse
of well-formedness rules and no longer distinguishes between code generation
and simulation; and

— three case studies describing applying this method to extending MontiArc for
security architectures, robotics, and cloud-based systems.

In the following, Sect.2 motivates the benefits of ADL extension by exam-
ple, before Sect. 3 explains necessary preliminaries. Afterwards, Sect. 4 presents
the MontiArc extension method and Sect.5 describes its application to three
domains. Subsequently, Sect.6 highlights related work and discusses the app-
roach, and Sect. 7 concludes.

2 Example

Consider a company developing distributed cloud systems for massive open
online courses. For better abstraction and reuse, the company decides to model
the structure of the systems using a component and connector (C&C) ADL.
However, the company requires that the architecture’s components can (a) be



Systematic Language Extension Mechanisms for the MontiArc ADL 55

composed from other components to define logical hierarchies; (b) explicate ser-
vice level requirements; and (c) replicate themselves to scale if necessary. Instead
of creating a new ADL from scratch, the company decides to extend an ADL
already supporting composed components. They analyze the necessary changes
in the ADL’s syntax and semantics and determine two extension requirements.
R1: The syntax supports specifying and storing service level information for
each component. Its semantics ensures that the service level for each composed
component is at least as good as the sum of service levels of its subcomponents.
R2: The syntax supports specifying and storing replication conditions per com-
ponent. Its semantics includes this information to control component replication
at runtime.

The base ADL that the company’s software engineers will extend is domain-
agnostic and features only the core concepts depicted in black in Fig. 1: In this
metamodel, a component type has a name and an arbitrary number of incoming
and outgoing ports, which define the interface of a component. Furthermore, it
can declare subcomponents that have a name and a component type. Each port
has a data type and a name. Component types define an arbitrary number of
connectors to connect their subcomponents.

The base ADL defines its static semantics (well-formedness) by a set of indi-
vidual rules and translational dynamic semantics (behavior) via code generation.
The static semantics include that (a) at least one port of each component type’s
subcomponents is connected by at least one connector; (b) connected subcom-
ponents (i.e., sources and targets of connectors) are actually declared in the
same component type; and (c) that the types of connected ports are compatible.
The dynamic semantics of an ADL govern how messages are passed between
components. This ADL employs event-driven message passing in which compo-
nents start to compute whenever at least one message has arrived. The dynamic
semantics are realized by translating components to Java classes implementing
this behavior.

The extensions to the metamodel are annotated and highlighted in Fig. 1:
Relative to this metamodel, R1 is translated into an extension of the syntax
and semantics for component types. The syntactic extension is realized as the
new property serviceLevel of ComponentType and the semantic extension as a

subcomponents
ComponentType P
connectors name type ‘
. i —3 serviceLevel
RI: Service level , . . Subcomponent
information outgoing l llncomlng
source * * name
‘ Connector }—> Port R2: Boolean replication
expression iy
| name over ports \condition
target type S { Expression

Fig. 1. Metamodel of a C&C ADL with extensions for R1 and R2.



56 A. Butting et al.

new well-formedness rule. For R2, the syntax of subcomponents is extended by
a replication expression. The company’s engineers reuse a variant of OCL [11] as
Expression language to enable reasoning over object structures. In conditions,
they interpret names as references to ports (e.g., a valid replication condition
for a port users receiving lists of user data could be “users.size() > 17).

To ensure well-formedness of extended models, the engineers add new rules
to extend the ADL’s static semantics. These include

— service levels are positive numbers;

— the service level of a composed component is at least as high as the sum of
service level of its subcomponents;

— the replication conditions respect the types of ports (i.e., it ensures that its
equations are type-compatible with the referenced ports); and

— the replication conditions evaluate to Boolean.

Realizing the intended replication behavior requires adding subcomponents at
runtime when the conditions are fulfilled. However, in the base ADL’s realiza-
tion of its dynamic semantics, each component type is represented by a Java
class yielding a single, fixed attribute for each subcomponent. To achieve flexi-
ble replication, the Java classes realizing component types should yield a set of
subcomponents for each component type among their subcomponents instead.
Moreover, they should feature a new method that checks the replication condi-
tions whenever a message arrives and passes messages to new subcomponents
as required. Hence, the company’s software engineers extend the ADL’s code
generator accordingly. This small extension — a few properties, rules, and code
generator adjustments — enables the company’s engineers to customize the base
ADL to their requirements and prevents creating a new ADL from scratch.

3 Preliminaries

MontiArc [17] is a component and connector ADL built on top of the Mon-
tiCore language workbench [20]. This enables leveraging MontiCore’s powerful
software language engineering capabilities, such as language composition and
extension [13].

MontiCore employs context-free grammars (CFGs) for the integrated def-
inition of concrete syntax and abstract syntax [20] of modeling languages.
These CFGs describe which models are principally possible. Validating static
semantics constraints not expressible with CFGs requires additional mecha-
nisms. For such checks, MontiCore features a compositional context condition
(CoCo) framework [32], where CoCos are well-formedness rules formulated in
Java. Code generators implement the modeling languages’ dynamic semantics.
From a language’s CFG, MontiCore generates the corresponding abstract syn-
tax tree (AST) classes and infrastructure to parse textual models [10] into AST
instances. The AST instances store the content of models, such as their ele-
ments and their relations to each other free from concrete syntax keywords.
From each grammar, MontiCore automatically produces a model processing



Systematic Language Extension Mechanisms for the MontiArc ADL 57

infrastructure that enables to parse models to operate on AST instances, for
example, to apply model transformations or CoCo checks. For realization of
dynamic semantics, MontiCore further features a template-based model-to-text
code generation framework [29], which supports translating AST instances into
arbitrary target representations. Moreover, MontiCore supports compositional
language integration [1] via inheritance, embedding, and aggregation [13]. Lan-
guage inheritance allows sublanguages to extend and override productions of its
superlanguage. From this, MontiCore produces refined AST classes that inherit
from the AST classes of the overridden production. Language embedding is real-
ized by declaring external productions in a host grammar, which are abstract
in the sense that they cannot be instantiated. To this effect, MontiCore’s lan-
guage configuration models define how productions from other languages are
mapped to the external productions of the host grammar. Using this, Monti-
Core combines the individual parsers accordingly and produces integrated ASTs.
Language aggregation enables to relate artifacts of different languages that are
specified in separate artifacts.

MontiArc [12,17] is a C&C ADL and modeling infrastructure for the devel-
opment of distributed systems. It is designed to provide the benefits of a com-
prehensible core architectural style that can be extended as necessary using
the powerful language composition features of MontiCore [14]. Consequently,
MontiArc provides a small core of language features that are easy to learn
yet powerful enough to model complex software architectures. The language’s
infrastructure comprises code generators translating models into arbitrary GPL
realizations. MontiArc is intentionally designed to be light-weight to keep the
language easy to learn and flexibly adaptable. Thus it aims at providing only
the most important modeling elements of C&C ADLs and focuses on language
and tool chain extensibility. The provided elements are exactly the fundamental
elements of architectural descriptions [23]: components, connectors, and configu-
rations. Components are the units of computation in an architectural model and
yield well-defined interfaces. Connectors connect the interfaces of components
to realize component communication. A configuration is a graph of components
and connectors that describes component composition. Following this principle,
MontiArc facilitates modeling C&C software architectures with hierarchically
structured, interconnected components. The interface of a component is defined

composed companenf/z subcomponent of type Arbiter and name arbiter<
LightCtrl

Arbiter arbiter

SwitchStatus _ onnector-) onoffemd, L
m
OnOffR t
DoorEval n cques
DoorStatus
AlarmStatus L. AlarmCheck ac BlinkRequest outgoing port of type
- - OnOffcmd and name cmd

incoming port

Fig. 2. MontiArc architecture for a light control system with three subcomponents.



58 A. Butting et al.

by a set of unidirectional, named, and typed ports. Components receive messages
via their incoming ports and emit messages via their outgoing ports. Unidirec-
tional connectors connect exactly one source port to one or more target ports.
To facilitate component reuse, MontiArc distinguishes between component types
and component instances. A component type (denoted “component” in the fol-
lowing) defines the interface of its instances by a set of ports and may comprise
component instances (“subcomponents”) and connectors defining a configura-
tion. If a component contains subcomponents, it is called composed. Otherwise
it is called atomic. Atomic components perform the actual computations of a
system. The behavior of a composed component is completely derived from the
composition of the behaviors of its subcomponents according to its configura-
tion. The behavior of atomic component has to be implemented by hand, i.e.,
by providing GPL code implementations. MontiArc provides further language
features, such as generic type parameters, configuration parameters, and syntac-
tic sugar for automatically connecting all ports of the same type. A complete
description of the MontiArc ADL is available in [12]. Figure2, for instance,
depicts the graphical representation of the component type LightCtrl. List-
ing 1.1 shows its corresponding textual definition. The component consists of
four ports (1. 2), three subcomponents (1l. 4-6), and seven connectors (1. 8-13).
Connectors are unidirectional and connect one sending port with one or more
receiving ports of compatible data types. The incoming port switchStatus of
component LightCtrl, for instance, is connected to the same-named and same-
typed incoming ports of the subcomponents arbiter and doorEval (1. 9).

1 component LightCtrl {

2 port in SwitchStatus, in AlarmStatus, in DoorStatus, out OnOffCmd cmd;
3

4 component AlarmCheck ac;

5 component DoorEval;

6 component Arbiter arbiter;

7

8 connect arbiter.onOffCmd -> cmd;

9 connect switchStatus -> arbiter.switchStatus, doorEval.switchStatus;
10 connect doorStatus —-> doorEval.doorStatus;

11 connect alarmStatus —-> alarmCheck.alarmStatus;

12 connect alarmCheck.blinkRequest -> arbiter.blinkRequest;

13 connect doorEval.onOffRequest —-> arbiter.onOffRequest;

14}

Listing 1.1. Component type LightControl with one configuration parameter. It consists of
three incoming ports, one outgoing port, three subcomponents among which one is of an inner
component type, and seven connectors (cf- [12]).

As MontiArc is realized as a MontiCore language, it employs the parsers and
AST classes generated by MontiCore from its grammar to translate textual archi-
tecture models into AST instances. Using the AST, it applies the handcrafted
workflows and model transformations as registered. Based on the transformed
ASTs, it creates a symbol table infrastructure, which enables to resolve model
(parts) across different models. Ultimately, MontiArc invokes its code generator
to translate the (possibly transformed) ASTs into GPL artifacts that depend on
classes of a runtime environment (RTE). A RTE consists of GPL artifacts of the
same target language as the generated code and supports execution of generated



Systematic Language Extension Mechanisms for the MontiArc ADL 59

artifacts (for instance, by realizing scheduling or message passing). The RTE’s
artifacts are independent of the generator’s input models and are thus the same
for any generated output. We treat the RTE as part of the generated code that
remains static, independent of the generator’s input models. MontiArc does not
provide to define models in graphical syntax, but creating this can be achieved
via translation to, e.g., EMF [28].

4 MontiArc Extension Method

Reuse is one of the prime enablers for efficient engineering. The language work-
bench MontiCore supports defining reusable languages that can be extended or
combined to new languages [14]. We combine its language composition mech-
anisms with well-defined MontiArc extension points to extend the MontiArc
ADL and its infrastructure. This enables customizing the ADL to requirements
of specific domains and adding further language processing steps, while most
infrastructure parts can be reused with the adjusted language directly. This
section presents an integrated method to extend MontiArc that comprises struc-
tured activities to extend the ADL, model processing, and code generation.
Extending the derived languages follows the same pattern. The method does
not support creating a completely different ADL and infrastructure, as the
result might not be applicable to the extension method anymore. For exam-
ple, eliminating the component production by overriding might prevent further
customization.

4.1 Extending the Syntax of MontiArc

The first step towards extending MontiArc’s syntax is to analyze the intended
extension’s purpose: If the extension should change structural language elements
(e.g., components, ports, connectors), it requires inheriting from MontiArc to
enable adding or refining language elements. To add a new component behavior
modeling language, it requires embedding that language only. If the changes to
MontiArc’s syntax should enable adjusted model processing only, MontiArc’s
many places for stereotypes require even less extension effort. The related activ-
ities are illustrated in Fig. 3.

For introducing new modeling elements or refining existing ones, extension by
inheritance starts with analyzing which MontiArc productions will be affected.
For instance, introducing service level properties to components would require
refining the production responsible for components. With MontiCore languages,
refinement is realized via grammar inheritance. To make the new language ele-
ments accessible for well-formedness checking, language composition, or other
processing, the relevant information must be added to the corresponding sym-
bols also. The activities required to extend the symbol table are depicted in
Fig. 4. For embedding of modeling languages to describe component behavior,
MontiArc relies on MontiCore’s language embedding capabilities. This includes
that MontiArc provides an external grammar production for the embedding of



60 A. Butting et al.

4 Extend Syntax

Analyze purpose
[annotate existing elements]

[add or refine elements] T[add behavior languages]

Extension by Inheritance Extension by Embedding Extension by Stereotypes
Refine Identify
and/or add productions Document
productions)| «artifact» to embed stereotype
MC
Extend [_grammar | Bind
symbol external _
table «artifact» productions) |~ «artifact» «artifact»
Symbol table Language Documen-
Adjust classes Lconfiguration] tation
tooling «artifact»
Symbol table
O adapters @

) ®
Fig. 3. Extending MontiArc’s syntax: new language elements are introduced via inher-
itance, embedding, or as stereotypes.

=

grammar productions of embedded languages. First, the productions of the lan-
guages to be embedded must be identified. Afterwards, the mapping between
the external production and the productions to be embedded is established.
The mapping is defined in MontiArc’s language configuration. During model
processing, MontiCore then combines the parsers generated from the individ-
ual languages’ grammars according to this mapping. This enables parsing com-
ponents with embedded behavior models. However, these embedded models
are usually unaware of their new operation context: for instance, embedded
automata might expect to read inputs from variables. To interpret inputs and
outputs of embedded models as references to ports, adapters between their sym-
bols realize proper interpretation. Extension with new stereotypes amounts to
providing proper documentation of the new stereotypes and their possible values.
Please note that we support stereotypes only for minor and ad-hoc extensions.
We advise to use metamodel extension, via inheritance or embedding, instead.

Extending MontiArc’s ADL is coupled to extending its symbol table and
introducing or refining productions as well as embedding behavior languages
might require symbol table extension. After analyzing the cause for symbol table
extension, one of the following activities is to be performed.

1. Type language adaptation: MontiArc supports using arbitrary type lan-
guages.

2. Reflect behavior language embedding: if the modeling elements of an embed-
ded behavior language are relevant to the symbol table, e.g., for checking
inter-language well-formedness, these must be integrated.



Systematic Language Extension Mechanisms for the MontiArc ADL 61

4 Extend Symbol Table

Analyze Cause

[new type definition language]

[refined model element]

symbol
classes

Implement

Implement
symbol classes

referenced

[new behavior [added model
definition] element],
Add Behavior Symbol Add Symbol Refine Symbol
Implement

Refine symbol
implementation

by other
symbols?

[yes]

Implement

symbol symbol factory

creator

referenced
by other
symbols?

]
Adjust
tooling

Fig. 4. Activities of extending MontiArc’s symbol table.

’l

Extend symbol
table visitor

Adapt type
language

3. New symbols: if language extension produced completely new modeling ele-
ments, such as the replication conditions described in Sect. 2, which require
symbols as well, these must be added also.

4. Entry refinement: where modeling elements of MontiArc have been refined,
for instance by adding a service level to components, this must be reflected
at the corresponding symbols also.

5. Tooling adjustment: depending on the symbol table extension performed,
MontiArc’s tooling has to be extended accordingly.

Integrating a new type language into MontiArc requires the aggregation of
both languages. This enables using the types defined in this language for Mon-
tiArc’s ports and configuration parameters. Language aggregation is detailed
in [32] and comprises the following activities: (1) Adapt symbols of the new
type language to MontiArc’s type symbol; (2) Create and register qualifiers [32]
via subclassing. Qualifiers enable relating unqualified names (e.g., String) to
qualified names (e.g., java.lang.String); and (3) Checking type properties
requires loading the referenced model. To this end, MontiArc employs Monti-
Core’s symbol resolving [32], which requires creating and registering resolvers
via subclassing. These resolvers load symbols for qualified names. MontiArc’s
symbol table yields a dedicated extension point for convenient integration of
embedded behavior languages’ symbols. This requires creating a proper sym-
bol kind for the behavior language. For example, when embedding automata,
such a symbol might comprise information about data sources and data sinks
the automaton models operate on. Additionally, qualifiers and resolvers must be
provided. Where extension raises the need for integrating completely new sym-
bols, these must be created and registered accordingly. After the entry classes



62 A. Butting et al.

have been created, MontiArc’s symbol table visitor, which takes care of translat-
ing AST instances into symbols, must be extended via subclassing. In case the
new model element is referenced by another element, the symbol representing the
other element has to be refined accordingly. Refining a symbol entails refining its
implementation via subclassing. The subclasses store the new information (e.g.,
the service level) and must be accompanied by a registered qualifier, resolver,
and symbol creator as explained above. Moreover, the symbol table visitor must
be extended by subclassing to translate the refined AST properties into the cor-
responding symbol. Ultimately, the tooling has to be adjusted to use the refined
factories, the extended symbol table visitor, and the created support classes
(qualifier, resolver, etc. ). For this, MontiArc employs dependency injection via
the guice [31] framework. MontiArc contains a central registry module which can
be overridden to change which implementations are bound to which MontiArc
interface. This, for instance, enables to bind a subclass of MontiArc’s symbol
table visitor to the related interface.

4.2 Extend Model Processing

While extending MontiArc’s syntax and symbol table enables introducing new
model properties, refining existing ones, and adding stereotypes to models,
using these modified elements requires adjusting MontiArc’s model processing
infrastructure. This may include extension with new workflows, model analyses,
or model-to-model transformations as presented in Fig. 5. It does, however, not
cover code generator extension, which is described in Sect. 4.3.

[no] Extend Model Processin
lyes] Extend g
‘ language ‘ extension
requires objective?
I
eitr:egnus?ogﬁ? l [model analysis] [weII-formedness]Y [preprocessing]l

Add Execution Unit Add Context Condition Add Transformation
Implement
o Implement context Implemen_t
workflow condition Javar transformation
«Java» Context «Java» )
complef; Workflow inter- condition Transformation
task? ﬂ language? Configure
[no] ransformations
[no] «Java»
[yes] (Q}Jizi\g;) Transformation-
ConfigFactory
Register
Imp]e_{nent context
visitor condition

Adjust
tooling

Fig. 5. Activities involved in extending MontiArc’s model processing infrastructure.



Systematic Language Extension Mechanisms for the MontiArc ADL 63

Every extension of MontiArc’s model processing infrastructure may start
with extending its ADL as discussed in Sect. 4.1. If MontiArc should be extended
with a new model analysis, a new MontiCore execution unit has to be added
to its infrastructure. An execution unit is a wrapper for MontiCore workflows
and creating a new execution unit requires registering a subclass of MontiCore’s
DSLWorkflow [19]. These workflows are executable units that perform calcula-
tions on the abstract syntax of a model using a visitor pattern variant. The static
semantics of MontiArc are realized by a set of context conditions that ensure
model well-formedness. If extension requires adding additional conditions, these
can be implemented as subclasses of MontiCore’s ContextCondition [32]. If the
new condition relates models of different languages with another, it might be
necessary to add adapters to the symbol table as presented in Sect.4.1. Ulti-
mately, the new context conditions must be registered by creating and binding
a subclass of MontiArc’s ContextConditionCreator using guice. If MontiArc
is extended with a new model-to-model transformation, an artifact that exe-
cutes the transformation has to be created. This artifact must implement one of
the transformation interfaces for different abstract syntax elements of MontiArc.
Configuration requires subclassing TransformationConfigurationFactory and
binding it via guice.

4.3 Extend Code Generator

Syntactic extensions often aim at tailoring the language’s dynamic semantics,
i.e., modified should change the behavior of the model (or generated code).
Sometimes, the behavior aimed at can be reproduced by existing modeling ele-
ments. In this case, a transformation should be implemented as explained in
Sect. 4.2. This section covers the case where semantics preserving transforma-
tions are neither possible nor desirable. For MontiArc, this entails adjusting its
code generator to alter production of artifacts realizing the modified behavior.

Generally, MontiArc’s code generation framework comprises a component-
invariant run-time environment (RTE) and templates that produce component-
specific artifacts. The RTE specifies properties invariant to individual compo-
nent models, such as scheduling or message passing. The templates translate the
abstract syntax of components to GPL artifacts interfacing the RTE. Hence,
MontiArc provides templates for all abstract syntax concerns (e.g., ports, con-
nectors, subcomponents, etc. ), which are registered at its central generator con-
figuration. Creating a generator configuration consists of binding hook points
with FreeMarker templates [29], which should be included (executed) at the
hook point’s location. By default, a unique start template is used for setting
these configuration parameters for components. Figure 6 depicts an overview of
the necessary activities for extending the code generator infrastructure after the
syntactic extensions, if any, have been performed. If the existing RTE is insuf-
ficient for representing the new concepts (e.g., scheduling and message passing
remain unaffected), the generated API has to be adjusted, before the template
parts can be adjusted.



64 A. Butting et al.

~
Extend Code Generator \
Create generator
configuration RTE sufficient?
Extend
run-time
environment [no] [yes]
Adjust Generated API Adjust Templates
. Implement Refine
.9{ Adjust generated m%th od ’ existing
type names templates templates ®
Configure new Configure
method/element corresponding
hook hook points

Fig. 6. Code generator extension depends on reusability of the RTE.

Extending the RTE typically consists of (a) subtyping existing classes to
refine commonly used method implementations; (b) adding additional methods
to interfaces reflecting additional concepts captured by the new syntax; and (c)
introducing new interfaces and classes representing new elements that cannot be
captured by already existing classes and interfaces of the RTE. Extensions to
the RTE entail adjusting the generated API. First, generated type names have
to be adjusted with regard to referencing the newly created subclasses instead
of the superclasses referenced before. Afterwards, method templates for the new
methods added to the interfaces have to be implemented. This typically affects
— but is not limited to — the generated code for components.

Ultimately, the generator’s hook points have to be configured for new tem-
plates created for the new classes and interfaces added to the RTE in step (c) as
well as for the new method templates. After incorporating possible RTE exten-
sions, existing generated methods have to be adjusted to reflect the intended
meaning of the changes performed on the ADL. To this effect, extension templates
have to be implemented first. These templates are used for injecting code into
preexisting methods generated by the former templates. Afterwards, the created
templates are added to the method hooks in the generator configuration.

Where existing templates must be refined only, for instance to include trans-
lating new modeling elements, extension must provide new templates that are
registered for hook points of related abstract syntax concerns. The lack of tem-
plate inheritance in the underlying template engine causes this effort and ongoing
work on code generator reuse might alleviate this [9]. However, these new tem-
plates can reuse existing templates in a white-box fashion and, thus, contribute
new translation as appropriate.

5 Case Studies

MontiArc’s extension method has successfully been applied to extend it for dif-
ferent domains. This section presents selected case studies.



Systematic Language Extension Mechanisms for the MontiArc ADL 65

1 component CashDeskLine {

2 port out PaymentRequest; // to Bank MSA "
3 component CashDeskUI ui { port out Sale; }

4 component CardReader reader { port out CardHolderData; }

5 component CashDesk cashDesk {

6 port in CardHolderData, in Sale, port out PaymentRequest;

7 trustlevel +1;

8 accesscontrol on;

9

}

10 identity weak ui -> cashDesk;

11 connect ui.sale -> cashDesk.sale;

12 connect encrypted reader.cardHolderData —> cashDesk.cardHolderData;
13 connect encrypted cashDesk.paymentRequest —-> paymentRequest;

14 }

Listing 1.2. MontiSecArc architecture cash desk line found in supermarkets.

MontiSecAre (MSA) is an extension of MontiArc extended to the description of
security architectures that enable the analysis of security flaws [18]. As such, it
introduces modeling elements to specify security properties, such as trust lev-
els, encrypted connectors, and identity links. To integrate these elements, which
entail changes to abstract syntax, static semantics, and dynamic semantics, the
MSA grammar inherits from MontiArc’s grammar and introduces rules for the
new concepts. It does not introduce new symbols, but refines the symbols for
modified modeling elements to reflect the new properties and adds few context
conditions related to these properties only. To produce proper Java artifacts,
MSE also adjusts existing code generation by incorporating encryption into the
RTE’s message passing and overrides several templates where necessary. List-
ing 1.2 illustrates selected MSA features, such as the trustlevel (1. 7), which
describes that the component provides protection against adversaries. Moreover,
the component performs accesscontrol for all incoming ports (1. 8). The weak
identity link from ui to cashDesk (1. 10) ensures that requests to the sale
port are authenticated by a user logged in at the ui and cannot be spoofed
by an adversary. Finally, two connectors are encrypted (1l. 12-13) to prevent
adversaries from reading and modifying messages on these connections.

component BumpControl[int min = 1] {
port in Integer distance, in Timer signal, MAA
out TimerCmd timer, out Motor right, out Motor left;

state idle, drive, back, turn;
initial idle / {right=Motor.STOP, left=Motor.STOP};
idle -> drive [distance < min] / {right=FWD, left=FWD};
drive -> back [distance < 5+min] / {right=BWD, left=BWD, DOUBLE};
10 // additional transitions
11 }
12}

1

2

3

4

5 behavior automaton {
6

7

8

9

Listing 1.3. MontiArcAutomaton architecture with embedded behavior model.

MontiArcAutomaton (MAA) is a framework for architecture modeling that
extends the MontiArc infrastructure focusing on flexible embedding of com-
ponent behavior languages and compositional code generation [27]. It extends
MontiArc via grammar inheritance and embedding of various component behav-
ior modeling languages. Consequently, it refines symbols of modified modeling



66 A. Butting et al.

elements and adds behavior symbols for the embedded languages. It also reuses
all but one context condition of MontiArc and adds several context conditions
for the new modeling elements. Moreover, it adds transformations to support
various modeling shortcuts. MAA severely extends MontiArc’s code generation
framework to greatly facilitate behavior language embedding and features code
generators producing Java and Python artifacts. As it does not extend Mon-
tiArc’s scheduling and message passing, its Java generator reuses MontiArc’s
RTE without modification. For the Python generator, a new, compatible, RTE
was devised. For the former, it provides extension templates only, for the lat-
ter it replaces all templates. The component BumpControl depicted in Listing
1.3 illustrates two of MAA’s features: it introduces default parameters to com-
ponent types (1. 1) and embeds a stand-alone language for I/O“ automata to
describe component behavior (1. 5-10). To this effect, it binds the external pro-
ductions inherited from MontiArc to automata productions for states (1. 6-7)
and transitions (1l. 8-10). To interpret names on transitions as component ports,
which the automata are unaware of, MAA adds adapters between MontiArc’s
port symbols and automaton variable symbols as well as new context conditions
(e.g., to respect the direction of ports when reading). MontiArcAutomaton
furthermore extends MontiArc’s template for atomic components to delegate
translation of embedded behavior language models to registered responsible code
generators [27].

clArc is an infrastructure focusing on modeling cloud architectures. Its cloud
ADL extends MontiArc with replication of ports and subcomponents to support
load-balancing, port groups to enable message traceability, and service ports
that describe requirements on the environment of the architecture. To introduce
these elements clArc also extends MontiArc’s grammar via inheritance, refines
its symbols, and provides new context conditions on top of MontiArc’s context
conditions. Code generation produces event-driven Java implementations, hence
clArc only refines MontiArc’s templates for component hulls, ports, and subcom-
ponent instantiation. Listing 1.4 illustrates clArc’s new modeling elements: The
port group UserData (1. 2), denotes that the following ports belong to a seman-
tic unit for which calculations are performed only if all its ports have received
at least one message. Replication, denoted by [*] (1. 3), enables instantiating
a variable number of component instances at system runtime. The component
UserManagement also requires a service (l. 5) to function properly, which is
translated to a dependency to the eponymous Java interface.

I component UserManagement ({

2 port group UserData in User usr, in UpdateRequest req;
3 component UpdateStore store [*];

4 connect usr -> store.user;

5 connect req —-> store.request;

6 service required clarc.db.NoSQL;

7}

Listing 1.4. A clArc user management system with replicating subcomponents and port groups.



Systematic Language Extension Mechanisms for the MontiArc ADL 67

6 Discussion and Related Work

The systematic extension mechanism of MontiArc enables extending it to cover
a great variety of architecture modeling concerns: Besides the variants presented
above, it has been extended to support component behavior modeling with a
variant of Java/P [16], architecture alignment checking [24], and delta model-
ing [15]. Following this method enables to reuse great parts of existing tooling,
such as transformations, generators, and well-formedness rules. While the present
extension mechanism is powerful, it requires MontiCore expertise to understand
its language constituents and their interaction. As long as there is no general con-
sensus on the shape of language components with interfaces for specific purposes,
this remains necessary. Although many language workbenches [5] support exten-
sion mechanisms comparable to the mechanism presented here, none provides
similar structural guidance to achieve such comprehensive tool chain integration.

Overall, science and industry have produced more than 120 ADLs [21]. These
emerged from different domains and consequently focus on different challenges
of architecture modeling. Although extensibility is “a key property of modeling
notations” [22] most of these ADLs are so-called “first-generation ADLs” [22]
that solely focus on technological challenges instead of domain-specific aspects or
extensibility. Notable exceptions are the Architecture Analysis and Design Lan-
guage (AADL) [6], m-ADL [26], and xADL [2]: AADL [6] features various mod-
eling elements to describe hardware and software components of embedded sys-
tems. Similar to MontiArcAutomaton, AADL can also be extended with behav-
ior modeling languages via sublanguages according to the behavior annex [7].
It does not support structured extension of its syntax or semantics aside from
this. The xADL [25] also focuses on architecture extensibility and shares many
features with MontiArc (e.g., composed and atomic component types, instanti-
ation, component behavior models). Moreover, it features modeling elements for
product lines and variability not supported by MontiArc. Extension in xADL
is syntactic and it neither supports non-invasive language aggregation, nor cus-
tomization of its model processing infrastructure. The 7-ADL [26] enables mod-
eling structure and behavior of software architectures based on the w-calculus.
It generally also supports to add behavior modeling capabilities as layers on top
of its ADL. This ultimately produces a monolithic language composite whose
individual languages are difficult to exchange. Moreover, it does not support
structured extension of semantics composition of code generators for the indi-
vidual behavior DSLs.

7 Conclusion

We have presented the MontiArc architecture modeling infrastructure, which
leverages the results from software language engineering as realized with the
MontiCore language workbench to enable extension of syntax and semantics. At
its core, this infrastructure contains a light-weight ADL with extension points for
behavior language embedding and integration of type languages. Its infrastruc-
ture comprises frameworks to integrate new well-formedness checks, workflows,



68

A. Butting et al.

model-to-model transformations, and code generation capabilities. We have pre-
sented an extension method that covers each of these aspects and enables cus-
tomizing MontiArc to domain-specific requirements. This method alleviates the
need for developing a specific ADLs from scratch, which we have illustrated
with examples of MontiArc variants for three different domains, and greatly
facilitates employing ADLs in different domains. This ultimately fosters their
successful application in real-world scenarios.

References

10.

11.

. Clark, T., Brand, M., Combemale, B., Rumpe, B.: Conceptual model of the

globalization for domain-specific languages. In: Cheng, B.H.C., Combemale, B.,
France, R.B., Jézéquel, J.-M., Rumpe, B. (eds.) Globalizing Domain-Specific
Languages. LNCS, vol. 9400, pp. 7-20. Springer, Cham (2015). doi:10.1007/
978-3-319-26172-0_2

Dashofy, E.M., der Hoek, A.V., Taylor, R.N.: A highly-extensible, xml-based
architecture description language. In: WICSA 2001. Proceedings of the Working
IEEE/IFIP Conference on Software Architecture, p. 103. IEEE Computer Society,
Washington, DC (2001)

Debruyne, V., Simonot-Lion, F., Trinquet, Y.: EAST-ADL — an architecture
description language. In: Dissaux, P., Filali-Amine, M., Michel, P., Vernadat, F.
(eds.) Architecture Description Languages. ITIFIP, vol. 176, pp. 181-195. Springer,
Boston, MA (2005). doi:10.1007/0-387-24590-1_12

Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In: Pro-
ceedings of the T'welfth Workshop on Language Descriptions, Tools, and Applica-
tions, LDTA 2012, NY, USA. ACM, New York (2012)

Erdweg, S., et al.: The state of the art in language workbenches. In: Erwig, M.,
Paige, R.F., Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 197-217. Springer,
Cham (2013). doi:10.1007,/978-3-319-02654-1_11

Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley, Boston
(2012)

Franca, R.B., Bodeveix, J.P., Filali, M., Rolland, J.F., Chemouil, D., Thomas,
D.: The AADL behaviour annex-experiments and roadmap. In: Proceedings of the
12th TEEE International Conference on Engineering Complex Computer Systems,
pp. 377-382. IEEE Computer Society, Washington, DC (2007)

France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: Future of Software Engineering, FOSE 2007, pp. 37-54 (2007)
Greifenberg, T., Miiller, K., Roth, A., Rumpe, B., Schulze, C., Wortmann, A.:
Modeling variability in template-based code generators for product line engineer-
ing. In: Modellierung (2016)

Gronniger, H., Krahn, H., Rumpe, B., Schindler, M., Volkel, S.: Textbased
modeling. In: 4th International Workshop on Software Language Engineer-
ing, Informatik-Bericht, Nashville, vol. 4. Johannes-Gutenberg-Universitat Mainz
(2007)

Group, O.M: OMG Unified Modeling Language (OMG UML), Infrastructure Ver-
sion 2.3 (10-05-03) (2010)


http://dx.doi.org/10.1007/978-3-319-26172-0_2
http://dx.doi.org/10.1007/978-3-319-26172-0_2
http://dx.doi.org/10.1007/0-387-24590-1_12
http://dx.doi.org/10.1007/978-3-319-02654-1_11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Systematic Language Extension Mechanisms for the MontiArc ADL 69

Haber, A.: MontiArc - Architectural Modeling and Simulation of Interactive Dis-
tributed Systems. No. 24 in Aachener Informatik-Berichte, Software Engineering,
Shaker Verlag (2016)

Haber, A., Look, M., Mir Seyed Nazari, P., Navarro Perez, A., Rumpe, B., Voelkel,
S., Wortmann, A.: Integration of heterogeneous modeling languages via extensible
and composable language components. In: Proceedings of the 3rd International
Conference on Model-Driven Engineering and Software Development. Scitepress,
Angers, France (2015)

Haber, A., Look, M., Mir Seyed Nazari, P., Navarro Perez, A., Rumpe, B., Volkel,
S., Wortmann, A.: Composition of heterogeneous modeling languages. In: Desfray,
P., Filipe, J., Hammoudi, S., Pires, L.F. (eds.) MODELSWARD 2015. CCIS, vol.
580, pp. 45—66. Springer, Cham (2015). doi:10.1007/978-3-319-27869-8_3

Haber, A., Rendel, H., Rumpe, B., Schaefer, I.: Delta modeling for software
architectures. In: Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte
Entwicklung eingebetteterSysteme VII, pp. 1-10. fortiss GmbH (2011)

Haber, A., Ringert, J.O., Rumpe, B.: Towards architectural programming of
embedded systems. In: Tagungsband des Dagstuhl-Workshop MBEES: Modell-
basierte Entwicklung eingebetteterSysteme VI. Informatik-Bericht, vol. 2010-01,
pp. 13-22. fortiss GmbH, Germany (2010)

Haber, A., Ringert, J.O., Rumpe, B.: MontiArc - architectural modeling of interac-
tive distributed and cyber-physical systems. Technical report AIB-2012-03, RWTH
Aachen University (2012)

Hermerschmidt, L., Holldobler, K., Rumpe, B., Wortmann, A.: Generating
domain-specific transformation languages for component & connector architec-
ture descriptions. In: 2nd International Workshop on Model-Driven Engineering
for Component-Based Software Systems (ModComp) (2015)

Krahn, H.: MontiCore: Agile Entwicklung von domé&nenspezifischen Sprachen im
Software-Engineering. No. 1 in Aachener Informatik-Berichte, Software Engineer-
ing, Shaker Verlag (2010)

Krahn, H., Rumpe, B., Vélkel, S.: MontiCore: a framework for compositional devel-
opment of domain specific languages. Int. J. Softw. Tools Technol. Transf. (STTT)
12(5), 353-372 (2010)

Malavolta, 1., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs
from architectural languages: a survey. IEEE Trans. Softw. Eng. 39(6), 869-891
(2013)

Medvidovic, N., Dashofy, E.M., Taylor, R.N.: Moving architectural description
from under the technology lamppost. Inf. Softw. Technol. 49(1), 12-31 (2007)
Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26, 70-93 (2000)
Mir Seyed Nazari, P.: Architektur Alignment von Java Systemen. Master’s thesis,
RWTH Aachen University (2011)

Naslavsky, L., Dias, H.Z., Ziv, H., Richardson, D.: Extending xADL with statechart
behavioral specification. In: Third Workshop on Architecting Dependable Systems
(WADS), Edinburgh, Scotland, pp. 22-26. IET (2004)

Oquendo, F.: m-adl: an architecture description language based on the higher-order
typed m-calculus for specifying dynamic and mobile software architectures. ACM
SIGSOFT Softw. Eng. Notes 29(3), 1-14 (2004)

Ringert, J.O., Roth, A., Rumpe, B., Wortmann, A.: Language and code genera-
tor composition for model-driven engineering of robotics component & connector
systems. J. Softw. Eng. Rob. (JOSER) 6, 33-57 (2015)


http://dx.doi.org/10.1007/978-3-319-27869-8_3

70

28.

29.

30.

31.

32.

33.

A. Butting et al.

Ringert, J.O., Rumpe, B., Wortmann, A.: From software architecture structure
and behavior modeling to implementations of cyber-physical systems. In: Software
Engineering Workshopband (SE 2013). LNI, vol. 215, pp. 155-170 (2013)
Schindler, M.: Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P.
No. 11 in Aachener Informatik-Berichte, Software Engineering, Shaker Verlag
(2012)

Schlegel, C., Steck, A., Lotz, A.: Model-driven software development in robotics:
communication patterns as key for a robotics component model. In: Chugo, D.,
Yokota, S. (eds.) Introduction to Modern Robotics. iConcept Press (2011)
Vanbrabant, R.: Google Guice: Agile Lightweight Dependency Injection Frame-
work. Apress, New York (2008)

Volkel, S.: Kompositionale Entwicklung domé&nenspezifischer Sprachen. No. 9 in
Aachener Informatik-Berichte, Software Engineering, Shaker Verlag (2011)

Wile, D.S.: Supporting the DSL spectrum. Comput. Inf. Technol. 4, 263-287 (2001)



	Systematic Language Extension Mechanisms for the MontiArc Architecture Description Language
	1 Introduction
	2 Example
	3 Preliminaries
	4 MontiArc Extension Method
	4.1 Extending the Syntax of MontiArc
	4.2 Extend Model Processing
	4.3 Extend Code Generator

	5 Case Studies
	6 Discussion and Related Work
	7 Conclusion
	References




