
Systematic Composition of Independent Language Features

Arvid Buttinga,∗, Robert Eikermanna, Oliver Kautza, Bernhard Rumpea, Andreas Wortmanna

aSoftware Engineering, RWTH Aachen University, Aachen, Germany

Abstract

Systematic reuse is crucial to efficiently engineer and deploy software languages to software experts and domain experts alike.
But “software languages are software too”, and hence their engineering, customization, and reuse are subject to similar challenges.
To this effect, we propose an approach for composing independent, grammar-based language syntax modules in a structured way
that realizes a separation of concerns among the participants in the life cycle of the languages. We present a refined concept of sys-
tematic and controlled syntactic variability of extensible software language product lines through identification of syntax variation
points and derivation of variants from independently developed features. This facilitates reuse of software languages and reduces
the efforts of engineering and customizing languages for specific domains. We realized our concept with the MontiCore language
workbench and assessed it through a case study on architecture description languages. Ultimately, systematic and controlled soft-
ware language reuse reduces the effort of software language engineering and fosters the applicability of software languages.

1. Introduction

Model-driven development (MDD) [2, 88] leverages
(domain-specific) software languages to reduce the concep-
tual gap between problem domain challenges and the soft-
ware engineering solutions [26, 80]. Thus, efficient engineer-
ing, customization, and reuse of software languages has be-
come a prime concern in MDD and gave rise to the field of
software language engineering (SLE) [46, 35]. SLE develops
methods and techniques to engineer domain-specific modeling
languages (DSMLs) within language workbenches. But “soft-
ware languages are software too” [23] and as such are subject
to the same challenges regarding engineering, customization,
and reuse as other software. Consequently, research in SLE
has produced a variety of solutions to engineer languages based
on metamodels or grammars, interpreters or generators, well-
formedness rules in metalanguages or programming languages.
Metamodels [7, 41, 58, 72, 90, 94] describe the abstract syn-
tax (i.e., structure) of languages as graphs of associated classes
without providing a concrete syntax enabling instantiation of
models. Grammars also describe the structure of a language,
but can support an integrated definition of concrete syntax as
well [22, 47, 50, 67]. From these grammars, model processing
infrastructure (e.g., a parser that translates textual models into
abstract syntax instances) can be derived automatically, which
greatly facilitates the efficient usage of DSMLs.

IThis research has partly received funding from the German Federal Min-
istry for Education and Research under grant no. 01IS16043P. The responsibil-
ity for the content of this publication is with the authors.
∗Corresponding author
Email addresses: butting@se-rwth.de (Arvid Butting),

eikermann@se-rwth.de (Robert Eikermann), kautz@se-rwth.de (Oliver
Kautz), rumpe@se-rwth.de (Bernhard Rumpe), wortmann@se-rwth.de
(Andreas Wortmann)

Efficient reuse is crucial to the success of software engineer-
ing [34] and software languages [13]: language users and lan-
guage engineers can greatly benefit from reusing common, es-
tablished, and mature language concepts. For software lan-
guage engineers, reuse reduces the effort in engineering new
languages from scratch. For language users, reusing concepts
reduces the effort required to comprehend a language. For in-
stance, Java reuses many concepts of C++, which lowers the
barrier of using Java for C++ developers. With the digitaliza-
tion of all aspects of our lives, more and more domain experts
(mechanical engineers, physicist, lawyers, etc.) become soft-
ware developers to some degree. They must be able to reify
their domain expertise in software, which can be integrated with
other systems. For some domains and challenges, such as soft-
ware architectures in general [54] or Industry 4.0 in particu-
lar [91], many specific languages have been developed already
and even more are under development.

Software product line engineering has produced methods and
means to capture variability and commonalities for increasing
software reuse, e.g., within feature models [14]. A software
product line describes several variants of software in an in-
tegrated fashion to mitigate cloning and owning of the com-
monalities in independent software projects. Software product
line engineering techniques have been applied to software lan-
guage engineering to form language product lines in several ap-
proaches [56].

We present a refined concept of controlled language vari-
ability based on reusable definitions of language syntaxes as
modules within language components that can be composed to
produce new languages from established building blocks. This
facilitates a posteriori extensibility with additional language
concepts, supports concrete syntax, and enables (re-)using lan-
guages (parts) without explicitly foreseeing this usage at the re-
spective languages’ design time. To enable a systematic reuse

Preprint submitted to Elsevier January 18, 2019

[BEK+19] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, A. Wortmann:
Systematic Composition of Independent Language Features.
In: Journal of Systems and Software, 152, pp. 50-69, 2019.
www.se-rwth.de/publications/

grammar Automation {
Script = "script" Name? "{" Rule* "}";
Rule = "if" "(" Condition ")" "then" (Action ";")+ ;
interface Condition = ServiceQuery;
interface ServiceQuery = user:Name;

DateCondition implements Condition
= ServiceQuery "is" Date;

Date = Integer "." Integer "." Integer;
DateService implements ServiceQuery
= ntp:["ntp"] | ptp:["ptp"];

interface Action;
EMailAction implements Action
= "email" "from" EMAddress "to" EMAddress

"subject" subject:String ;
EMAddress = Name "@" domain:Name "." tld:Name;

}

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

MCG

grammar AutoTwitter extends Automation {
start Script;
TwitterCondition implements Condition =
ServiceQuery;

TwitterKeywordQuery implements ServiceQuery =
"@" user:Name "tweeted" key:String ";";

TwitterFollowersQuery implements ServiceQuery =
"@" user:Name "has" Integer "new" "followers" ";";

interface TwitterAction extends Action = msg:String;
TweetAction implements TwitterAction

= "tweet" msg:String;
DirectMsgAction implements Twitter Action =

"@" Name ":" msg:String;
}

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

MCG

base language list of rules

language extension

implementation of
interface production

extension of interface production

script IceCream {
if (ntp is 1.7.2018)
then

email

from me@se-rwth.de
to staff@se-rwth.de
subject "ice cream at 3pm!"

;
}

01
02
03
04
05
06
07
08
09

Automation

script NewYear {
if (ntp is 1.1.2019)
then

tweet

"A happy new year to you all!"
;
email

from sek@se-rwth.de
to staff@se-rwth.de
subject "A happy new year!"

;
}

01
02
03
04
05
06
07
08
09
10
11
12

AutoTwitter

inherited DateCondition instance

language keywords

c
o
n
fo
r
m
s

c
o
n
fo
r
m
s

grammars defining concrete and abstract syntax of languages models conforming to the grammars

instance of the
new TweetAction

interface productions
prescribe required

abstract syntax
properties of possible

implementations

model of the Automation language

model of the extended AutoTwitter
language featuring a rule with two actions

Figure 1: The AutoTwitter grammar (bottom left) extends the Automation grammar (top left) and implements its extension points (e.g., interface Condition)
to enable interacting with Twitter. Conforming models are depicted on the right.

that can ensure syntactically valid language variants, we pro-
pose explicating this variability in form of language product
lines. Concrete language variants of the product line are de-
rived from composing the incorporated language components
and language-processing tooling for these can be derived on
push-button basis. The key ideas of our approach are:

• to enable compositional language development by decom-
posing languages into composable language components,

• to enable automated language derivation via composing
language components,

• to increase reuse of concrete and abstract syntax as well as
tooling (e.g., well-formedness check implementations) via
the composable language components, and

• to decouple language development from language compo-
sition and language variant derivation.

Our concept is realized using the MontiCore [67] language
workbench and leverages its composition mechanisms based

on well-defined language extension points. This enables a con-
trolled language composition supporting validation on product
line level. The individual languages can be independent of each
other, which enables these to be developed by different lan-
guage engineers.

This paper is an extended version of [8], in which the ba-
sic principles of composable language components have been
introduced, including a concept for systematic language reuse,
its MontiCore realization, and a case study on architecture de-
scription languages. The contributions of the extended version
include:

• An example product line for an imperative language.

• A concept for controlled abstract syntax extension through
interface productions.

• Integration with FeatureIDE [74].

• Extended description of the involved stakeholders and
more detailed discussion of related work.

In the remainder, Section 2 presents an example of an exten-
sible base language for imperative event-based programming

and its configuration based on an explicit variability model. Af-
terwards, Section 3 introduces necessary preliminaries. Sec-
tion 4 details our concept for systematic and controlled lan-
guage reuse. Section 5 describes its realization, before Sec-
tion 6 presents a comprehensive case study on architecture de-
scription languages. Thereafter, Section 7 debates observations
and Section 8 discusses related work. Section 9 concludes.

2. Example

Consider engineering a modeling language for software au-
tomation that is supposed to be tailored to application-specific
requirements by other developers. This language should pro-
vide general concepts and a framework for specifying automa-
tion rules consisting of extensible trigger conditions and exten-
sible actions that are executed if the trigger condition holds.
With models of this language, users can describe system-level
rules (such as sending an email if a specific drive is full) as well
as service-crossing rules (e.g., whenever someone tweets about
the hashtag #SLE, attach it to a file and save it locally).

Engineering such a language raises two requirements:

1. The base language must be extensible to support easy in-
tegration of new conditions and actions (e.g., automati-
cally check a weather web service on your phone to show
whether you need an umbrella).

2. The extension must be restrictable to prevent interacting
with undesirable trigger conditions and rules (e.g., access-
ing a root drive of the server).

Regarding extensibility, we leverage controlled underspeci-
fication in the base language’s abstract syntax (i.e., the struc-
ture of a language) to enable a-posteriori integration of new
language elements in a restricted fashion. Consequently, in-
tegration of new language elements should be possible in pre-
defined places of the abstract syntax only and requires that the
new language elements fulfill specific properties. The Mon-
tiCore [30, 67] grammar Automation, depicted in Figure 1
(top), illustrates this. It defines both concrete syntax (i.e., the
appearance of models of the language) and abstract syntax of
conforming models and yields extension points that enable im-
plementation and extension by inheriting grammars. The tech-
nical necessities for this are explained in Section 3.

Models conforming to this grammar are named scripts con-
sisting of a list of rules. Hence, the grammar’s start produc-
tion Script (l. 2) begins with the concrete syntax keyword
script, followed by an optional (denoted by “?”) name and
a block comprising a list of Rule instances. Rules (l. 3) begin
with the keyword if, followed by a Condition, the keyword
then and at least one (denoted by “+”) Action. Both, Condi-
tion (l. 4) and Action (l. 13) are interface productions [67].
Other grammar productions can implement interface produc-
tions, which means that they can be applied in derivation wher-
ever the interface production is expected on a right-hand side
of another production. Technically, interface products are elim-
inated before handing the grammar to a parser generator. This

Twitter Timetables
Weather

Forecast

Automation

configuration Services:

Twitter

Exchange

FileIO

WeatherForecast

Automation

Base Language

AutoTwitter

Language

Language

Product Line

Engineer

Language

Product

Owner

Language

Engineers

FileIO

Groupware

Language

FileAccess

Language

Forecast

Language
languages

language
features

language
defines
product
line

selects develop

extension point of
parent feature

Figure 2: Example of a language product line using the Automation language
a basis for language products featuring rules on twitter interaction, calendar
services, file access, and weather forecasts.

is done by introducing an ordinary production with a left-hand
side that is equal to the left-hand side of the interface produc-
tion and a right-hand side that defines an alternative between
all productions implementing the interface production. For ex-
ample, before handing the Automation grammar (cf. Figure 1)
to a parser generator, the interface production Condition is
eliminated via adding a production Condition = DateCon-

dition. Here, the right-hand side solely uses the nontermi-
nal DateCondition, because the DateCondition production
is the only production that implements the Condition inter-
face production. Interface productions are translated into inter-
face classes of the abstract syntax. Interface productions can
prescribe (on their right-hand sides) abstract syntax properties
required by possible implementations. For instance, Condi-
tion requires that every implementation yields a Service-

Query (l. 5), which is another interface that requires implemen-
tations to yield a Name. The Automation base language en-
ables conditions over dates (ll. 7-11) and actions to send emails
(ll. 13-17). If additional language features are desired, Automa-
tion must be extended properly.

With MontiCore [30, 67], language extension can have the
form of grammar inheritance between a base grammar and an
inheriting grammar, i.e., the inheriting grammar inherits pro-
duction rules from the base grammar, such as the AutoTwit-

ter grammar depicted at bottom left of Figure 1. The inherit-
ing grammar imports all productions of the inheriting grammar
and can optionally override or extend these. The AutoTwitter
grammar reuses the start production of its parent grammar (l. 2)
and defines the production TwitterCondition (ll. 3-4) as an
implementation of Condition. To this end, the TwitterCon-
dition introduces the concrete syntax keyword @, which is
followed by a name and a ServiceQuery. The latter is nec-
essary as it is required by the interface Condition of Automa-
tion. Moreover, the grammar introduces the two implementa-
tions TwitterKeywordQuery and TwitterFollowersQuery

of Automation’s interface ServiceQuery. The grammar also
extends the interface production Action of the Automation

grammar with the interface production TwitterAction, which

prescribes that twitter actions always yield at least a String

message. Moreover, AutoTwitter introduces two implemen-
tations of TwitterAction (and, hence, Action) that enable
tweeting and sending direct messages.

Models conforming to both grammars are depicted in Fig-
ure 1 to their respective right. The script IceCream (top right)
uses a date condition and an email action to describe a rule in-
forming staff on the first of July about ice cream. To this end,
it uses elements of the Automation grammar only. The script
NewYear (bottom right) conforms to the AutoTwitter gram-
mar and hence can use its elements as well as the elements in-
herited from Automation. The model, hence, can use a date
condition of Automation (l. 2), a tweet action (ll. 4-6), and
an email action (ll. 7-11) to send out New Year’s greetings via
email and twitter. Leveraging this form of grammar inheritance
enables opportunistic reuse and extension, but lacks control re-
garding the languages that are combined, i.e., which services
are made available to the users. Thus, restricting the kinds of
services that rules can interact with is impossible. Also, it re-
quires comprehensive understanding of software language en-
gineering concepts (such as grammar inheritance and interface
productions) and that the inheriting languages are aware of in-
herited concepts (e.g., the interfaces of their parent grammars).
The latter also avoids reusing a language inheriting from a base
language in a context different from the base language,

To enable controlled reuse, liberate domain experts from be-
coming language experts, and facilitate language composition,
we leverage the concepts of software product lines: Available
trigger conditions and actions should be provided in form of
independent features arranged into a feature diagram by a lan-
guage product line engineer. After ensuring the validity of fea-
ture combinations, the responsible product line engineer can
use this to configure language products by selecting which fea-
tures to include. Based on this selection, for instance, a con-
crete Automation language product can be derived that con-
tains only the trigger conditions and actions desired by the ap-
plication context. The language modules in the features are in-
dependent of a concrete context and can be reused for different
language product lines. For the Automation language, a pos-
sible language product line is depicted in Figure 2. Here, the
product line engineer (e.g., the service provider) establishes the
language product line by relating the generally available lan-
guage modules in features in a meaningful way. To this end, she
ensures that the available feature combinations lead to mean-
ingful languages with respect to their syntax (e.g., prevent du-
plicate keywords). This requires language engineering exper-
tise and comprehending the available features, but liberates the
product line engineers and the modelers from this. Each of the
related features contains a complete language that can be inde-
pendent of other languages, e.g., of the base language. Through
establishing the language product line, the engineer also defines
which features implement which extension points of their par-
ent feature (or of the base language) in the language product
line. Through this, she ensures that, for instance, no actions im-
plement the Condition interface. Here, the feature Twitter

contributes conditions and actions, whereas the feature Weath-
erForecast contributes conditions only.

Based on a feature configuration, we derive a specific lan-
guage product comprising only the selected features. Through-
out the next sections, we describe how to decouple language
components of each other such that they can be developed in-
dependently, i.e., how to mitigate the inheritance relationship
between a base language and an extension. Furthermore, we
describe how to explicate extension points of language com-
ponents, how to compose independent language components
while being able to reuse tooling for a language component,
and how to separate the concerns involved in the process of de-
veloping and using language product lines.

3. Preliminaries

Languages, in general, are characterized as “the set of sen-
tences” [12, 46] that constitute the language, which also ap-
plies to software languages. As software languages – compared
to natural languages – typically have a simpler structure to be
processable by machines, this definition can be refined. This
also is necessary for these languages to be better accessible to
investigation. A common refinement [28, 31] is that DSMLs
comprise

• a concrete syntax, describing the sentences of the lan-
guage, which are build from words (textual languages),
diagram elements (graphical language), or other represen-
tations,

• a (minimal) abstract syntax, describing the (essential)
structure of sentences of the languages,

• a semantic domain (typically a well-defined mathematical
theory) that can express the meaning of sentences, and

• a semantic mapping, which gives each well-defined sen-
tence a meaning within the semantic domain.

The definition of the abstract syntax typically uses either
metamodels (such as with EMF Ecore [73] or MPS [87]) or
grammars (such as Neverlang [76] or Xtext [5]). The con-
crete syntax of textual models is usually also defined by gram-
mars [67], whereas the concrete syntax of graphical models is
usually defined via graphical or projectional editors, e.g., with
Sirius [82]. Textual models are usually parsed to translate the
concrete syntax into abstract syntax. Whereas some approaches
do not allow to create models that are not well-formed through
robust projectional editors [71], most approaches require ex-
plicit checks to ensure well-formedness.

The language workbench MontiCore [67, 48] leverages ex-
tended context-free grammars (CFGs) for the integrated defini-
tion of concrete and abstract syntax [30] of DSMLs. From a
CFG, MontiCore generates the corresponding (Java) abstract
syntax classes, a parser for models of the language based
on ANTLR [62], a model checking infrastructure that facil-
itates developing well-formedness rules realized in Java, and
a model-to-text code generation infrastructure based upon the
FreeMarker [25] template engine [1].

The generated parsers translate textual models into instances
of the abstract syntax classes, the abstract syntax trees (ASTs),
which are processed by handcrafted well-formedness rules reg-
istered with the generated model checking infrastructure that
is realized with the visitor pattern [27]. Well-formed models
are processed further and can, ultimately, be transformed into
arbitrary target language artifacts by employing code genera-
tors. To validate well-formedness constraints not expressible
with CFGs, MontiCore features compositional context condi-
tions (CoCos). The target language artifacts then can realize
the DSLs semantics and be subject to further analyses.

An exemplary MontiCore grammar ADLGrammar is depicted
in Figure 3 (top left). It describes the quintessential elements
of an ADL [55], i.e., components that yield interfaces of typed
ports and subcomponents that exchange messages through con-
nectors between their ports (ll. 2-4). Nonterminals in Monti-
Core grammars start with an upper case letter and terminals are
surrounded by quotation marks. The right-hand sides of gram-
mar productions contain references to other nonterminals and
terminals and use cardinalities (’?’,’*’,’+’) known from regu-
lar expressions. To distinguish references to (non)terminals on
the right-hand side of a grammar production, they can option-
ally be named. For instance, the reference to the nonterminal
Name in l. 5 is named id. Besides ‘usual’ grammar produc-
tions, MontiCore supports abstract productions and interface
productions. These do not directly influence the parser, i.e.,
they cannot be derived. Instead, they influence the abstract
syntax: interface productions translate to interfaces of the ab-
stract syntax data structure and abstract productions are trans-
lated into abstract classes. Interface productions can prescribe
required abstract syntax elements of possible implementations
on their right-hand side. The interface production Port (l. 5),
for instance, prescribes the presence of exactly one nontermi-
nal Name with the name id and the presence of a Type. This
mechanism enables underspecification of the ordering of pre-
scribed abstract syntax elements as well as potential further
(non)terminals in any rule that implements the interface pro-
duction. Interface productions and abstract productions can be
used on any right-hand side in the same way as normal gram-
mar productions. A grammar production implementing an in-
terface production, e.g., the EncryptedPort implementing the
Port, has to provide the required abstract syntax elements of
the interface productions in the prescribed cardinality. If this
is not the case, MontiCore detects it and aborts generation of
language-processing tooling. In the abstract syntax this is re-
flected by the abstract syntax class (e.g., the class Encrypted-
Port) implementing the abstract syntax interface (e.g., the in-
terface Port). During parsing, a production implementing an
interface production can be applied at any point where the inter-
face production is expected. For example, an EncryptedPort

can be part of a component, as it implements the Port. In-
terface productions and abstract productions are translated into
ordinary productions before handing the grammar to a parser
generator. The interface and abstract modifiers in Monti-
Core grammars, however, effect the modifiers of the generated
abstract syntax classes: Interface productions are translated to
(Java) interfaces and abstract productions are translated to ab-

stract (Java) classes. Detailed documentation about MontiCore
is available [67].

MontiCore also supports compositional language integration
via extension, embedding, and aggregation [30, 67]. Through
extension of one or more parent grammars, a grammar inher-
its the grammar rules and terminal of its parent grammar(s)
and can extend and override these. This, for instance, enables
to eliminate rules, introduce new alternatives for inherited in-
terfaces, or extend individual inherited rules. From inheriting
grammars, MontiCore produces refined AST classes that inherit
from the AST classes of the extended or overridden rules.

grammar ADLGrammar {
Component = "comp" Name " {"
Port* Subcomponent* Connector*

"}";
interface Port = id:Name Type;
// Subcomponent, Connector, etc.

}

01
02
03
04
05
06
07

grammar CloudADLGrammar
extends ADLGrammar {

EncryptedPort implements Port =
"secport" Type Protocol id:Name ";";

Protocol = ("DES"|"AES") ";";
}

01
02
03
04
05
06

Sub

component

«interface»

Port
Connector

Encrypted

Port

Protocol

MCG AST

Name getID()

Type getType()interface rule
prescribing
two attributes

derived from
interface rule

Component

Figure 3: Example of grammar inheritance in MontiCore.

Software product line engineering (SPLE) conceives meth-
ods to handle similar software products in an integrated fash-
ion within software product lines. Each software product, also
referred to as variant, of the product line has certain com-
monalities and differences with regard to other variants. De-
veloping commonalities independently is usually costly, time-
consuming, error-prone, and subject to co-evolution of the in-
dependent parts. The aim of SPLE, therefore, is a reduction
of developing commonalities independent of each other, but
rather to reuse commonalities across the variants. Feature di-
agrams [3, 14, 44] group common parts of software within fea-
tures. Features are arranged in feature trees. In our approach,
we employ feature diagrams with the usual relations (manda-
tory, optional) between parent features and sub features as well
as feature groups (alternative, exclusive). Besides this, the pos-
sible feature configurations can be restricted via cross-tree con-
straints (requires, excludes). Based on the restrictions in the
feature model, a selection of a set of features determines a cer-
tain variant. The selection can be validated according to the
constraints of the feature model.

4. Modeling Language Variability

In software engineering in general, and in component-
based software engineering in particular, bundling of software
into reusable components has proven to be helpful [39, 59].
Component-based software engineering pursues the idea of
“black-box” components that can be reused off-the-shelf. This
requires independent components with explicit interfaces for
their composition. As software languages are software too [23],
this also applies to software languages. Consequently, modu-
larization and variability of software languages are investigated
as well. Previous work [36, 67, 68, 86] conceived concepts
and methods to facilitate composition of software languages.

For instance, the MontiArc [10] architecture description lan-
guage [55] composes a host component & connector language
with an embedded automata language and embedded state-
ments of a Java DSL, and it is aggregated [30] with the UM-
L/P [66] class diagram (CD) language to enable architectures
with behavior models operating in the context of a CD. From
applying this language and its variants to various domains in-
cluding cloud systems [60], automotive [29], and robotics [33],
we identified the following research questions that a concept for
software language variability should solve:

RQ1: How can variability of the syntax within a language
(module) be realized?
Answering this question requires a dedicated notion of variabil-
ity that applies to the syntax of languages. One possibility to
realize variability in general is the usage of underspecification.
The question should answer how elements of a language syntax
that are expected at a certain place can be properly underspec-
ified. While underspecification inherently abstracts from ex-
pected elements, a certain typing of such elements is desirable
for composition of syntaxes.

RQ2: How to compose independent language modules?
Composition integrates the syntax of two language modules.
There needs to be additional information on which exact parts
of the syntaxes, i.e., which extension and which extension point,
should be composed. This is typically realized via “glue”. The
solution to this question, therefore, requires a notion for this
glue and dedicated composition operators for the constituents
of a language module. Furthermore, proper handling of ambi-
guities that can arise in the composition of two language syn-
taxes must be assured.

RQ3: How can language composition be guided to obtain
meaningful combinations of language modules?
To control, which language modules can be combined in a
meaningful way, we explicate certain combinations of language
components within families of similar languages. Modeling a
family of similar languages requires selecting suitable model-
ing techniques to reflect the constituents realizing a language
(solution space) as well as to represent the variability using ap-
propriate techniques (problem space). Apart from this, an ap-
proach for guided combinations requires a notion of validity of
the composition, i.e., a member of the family of languages.

RQ4: How can development of language modules and their
composition be decoupled?
In practice, revealing all technical details of language modules
for their composition complicates their reuse and requires the
language engineer composing the modules to have detailed
knowledge about these. Instead, it should be sufficient to com-
municate the underlying conceptual model of each individually
developed language module, so that the composition could
be maintained by another person. This person can arrange
language modules such that only meaningful compositions are
allowed. This alleviates a domain engineer who selects a subset
of these meaningful compositions of modules from requiring
software language engineering expertise.

In the remainder, Section 4.1 presents a concept to model
variability of a single language component. Subsequently, Sec-
tion 4.2 explains a concept for modeling variability of multi-
ple language components and for engineering language product
lines. Then, Section 4.3 presents the roles involved in develop-
ing and using a language product line.

4.1. Reusable Language Components
The basis for our proposed variability mechanism are lan-

guage components, which are language modules comprising
(1) a grammar providing an integrated description of abstract
syntax and concrete syntax; (2) a (possibly empty) set of ded-
icated grammar productions acting as extension points of the
abstract syntax; and (3) a set of well-formedness rules. A lan-
guage component is an independent, standalone model that is
not aware of being used with an underlying variability model.
To foster maturing in the sense of component-based software
engineering [59], language components should be developed
independent of each other, to be reusable in different contexts
whenever possible. The aim of this is to enable reusing lan-
guage components “off-the-shelf” by only requiring limited
knowledge on the intricacies of a language component. We use
grammars as foundational description mechanism for language
syntaxes and show how to describe extension points and ex-
tensions of language syntax through grammars. The notion of
extension points in the abstract syntax, however, can be trans-
ferred to metamodel-based syntax definitions as well.

We explicate the extension points within language compo-
nents to denote the reduced effort of understanding the intrica-
cies of a grammar when a language component is reused. For
instance, in the exemplary language product line in Figure 2,
the language component AutomationBaseLanguage can be
used mainly by communicating the extension points Condi-

tion and Action. The language product line engineer has to
understand implementation details on other grammar produc-
tions (e.g., EMAddress) only on a more abstract level, unless
the composition is invalid, e.g., due to ambiguities. A further
advantage of explicating the extension points is that language
engineers who develop language components can hide certain
parts of the language that must not be extended as, e.g., known
from private methods in Java. In general context-free gram-
mars, our notion of extension points within a language’s syn-
tax applies to arbitrary grammar productions. This means any
grammar production can serve as extension point. A grammar
production used as extension point can provide a default im-
plementation (that is its right-hand side). In context-free gram-
mars in general, all productions must provide a right-hand side
and with these, all extension points must provide a default im-
plementation. Variability is realized through underspecification
of alternatives to the default implementation. In other words,
extending an extension point is realized by adding the exten-
sion as alternative to the right-hand side of the extension point.
To foster only meaningful combinations of languages and en-
able reusing a language component based on knowing its exten-
sion points, language engineers have to decide carefully which
grammar productions should act as extension points.

We prescribe that the cardinality of an extension point is only
realized via the variability model, and not via the language com-
ponent itself. For example, the grammar should not restrict that
an extension point must be extended at all, once, or multiple
times. This increases the reusability of a language component
within different contexts. An extension is a grammar produc-
tion that provides syntactical elements to resolve the underspec-
ification of an extension point. To this effect, extensions pro-
vide the right-hand side that was underspecified in an extension
point. Typically, the extension is contained in a different gram-
mar than the extension point it implements. More precisely,
connecting two grammars via an extension point and an exten-
sion is realized within two steps: (1) Merge all productions of
both grammars to form a new grammar. The start production of
the grammar containing the extension point becomes the start
production of the new grammar. (2) Add the left-hand side of
the production of the extension as alternative to the right-hand
side of the extension point production.

In the realization of the concept, leveraging the powerful
language composition techniques of MontiCore, we represent
grammar extension points with interface productions (cf. Sec-
tion 3). These have the additional advantage, that a concrete
right-hand side can be underspecified (i.e., no default imple-
mentation is required), but assumptions on the abstract syn-
tax of possible productions implementing the interfaces can be
made. This enables controlled extension and reasoning over
possible implementations already on the interface level. In
this sense, interface productions resemble interfaces or abstract
classes in metamodels (depending on the formalism). Conse-
quently, for instance, abstract classes in a metamodel would
also enable to represent (controlled) extension points. The con-
cept of language components realizes RQ1.

In MontiCore, language components are not required to pro-
vide default implementations of their extension points. Monti-
Core enables a grammar to define an interface production with-
out providing a production implementing the interface produc-
tion. However, the components themselves are abstract in the
sense that it will not be possible to concretize all possible sen-
tences (models) of the language. Nevertheless, language com-
ponents may provide certain default implementations by pro-
viding grammar productions that implement the interface pro-
duction (or classes implementing the interfaces in metamodel-
based approaches). For example, a Statechart language com-
ponent with an extension point for guard conditions on transi-
tions can optionally include built-in default expressions but still
be extensible with additional kinds of expressions (e.g., OCL,
LTL, . . .) through different language components.

However, explicating extension points via special grammar
constructs requires that language engineers have to foresee each
extension point during development of a language component.
The realization of our concept in MontiCore, for instance, con-
siders all interface productions as extension points, which liber-
ates language engineers in maintaining explicit extension points
as separate artifact(s).

Besides the context-free grammar, a language component
contains a set of well-formedness rules. These may check the
well-formedness of any abstract syntax element of the grammar

of the enclosing language component. Where the abstract syn-
tax is arranged as a tree, well-formedness rules should check the
most specific syntax element that is possible. This increases the
reusability of the well-formedness rule if only parts of the lan-
guage’s syntax are reused. Additionally, it reduces side effects
of the well-formedness rule that arise if it is applied for post-
hoc added language constructs for which it was not designed
to apply for. For example, consider a rule checking the well-
formedness of dates (e.g., 30.02.2019 is not considered well-
formed) for the Automation grammar depicted in Figure 1.
The well-formedness rule should be implemented against the
abstract syntax element introduced by the nonterminal Date
as the most specific possible element. If it was implemented
against more general elements, such as the DateCondition

nonterminal, and only the Date nonterminal was reused in an-
other context, then the well-formedness rule would not apply
there. With MontiCore, well-formedness rules can be imple-
mented against interface productions to assert well-formedness
of their right-hand sides. It is possible to check all imple-
mented context conditions via a checking infrastructure. This
infrastructure is automatically generated by MontiCore using
the grammar [67].

The composition of language components requires different
composition operators for the different constituents of a lan-
guage component. A language component with a grammar
and well-formedness rules requires composition operators for
these. A language component based on metamodels would re-
quire a composition operator for metamodels [17, 19]. Two lan-
guage components are composed by composing all constituents
of these language components.

Multiple language components can be composed at a time,
but the composition operator for grammars is directed. Apply-
ing all required composition operators produces an integrated,
new language component. This integrated language component
contains all details necessary to synthesize language-processing
tooling for the contained language. Furthermore, it can serve as
a language component within different language product lines,
e.g., by engineering a new language product line with the gen-
erated language component at its base, describing the common-
alities of all possible variants.

Our notion of syntactic language components requires com-
position operators for grammars and for context conditions.
The composition operator for grammars takes an ordered list
of input grammars and a binding from extensions to extension
points (of other grammars). Using these, it embeds extend-
ing implementations into the extension points. For MontiCore
grammars, this is realized as implementing interface produc-
tions, for other context-free grammar by introducing additional
alternatives at the extension point. For metamodels, this can be
realized by introducing new interface implementations or sub-
classes of abstract metamodel classes. For grammars, the result
would be a composed grammar that includes all grammar pro-
ductions of the input grammars. For metamodels, this would
be a joined metamodel including all concepts and relations of
participating metamodels. The composition operator does not
resolve potential conflicts, such as, through grammar produc-
tions with identical nonterminal names. Instead, this has to be

resolved via additional transformations. All context-free gram-
mars have a single start production that defines the start of the
derivation process. The start production of the composed gram-
mar is the start production of the first input grammar1.

Independent of the abstract syntax realization mechanism,
the extension points of the composed language components are
the union of extension points of the input language components.
In other words, all extension points are preserved in the com-
posed language component.

Similarly, the sets of well-formedness rules are preserved.
The composition operator merges these such that the composed
language component contains the union of all participating
well-formedness rules. Again, the composition operator does
not check if well-formedness rules contradict. If this is the case,
the set of well-formed models may be empty. For instance, con-
sider a well-formedness rule assuming that automation models
(cf. Section 2) are well-formed if these contain exactly one ac-
tion and another rule considering well-formed models to have
more than one twitter action. Apart from that, composing sets
of well-formedness rules is straightforward. The concept for
composing language components (i.e., composing grammars,
their extension points, and well-formedness rules) realizes the
identified RQ2.

4.2. Language Product Lines

With language components and a notion of their composi-
tion, new languages can be built up from independent, reusable
modules. However, it is cumbersome and error-prone to iden-
tify, which language components can be reused for a certain
purpose and how their composition is arranged, i.e., which ex-
tension points and which extensions are connected.

To remedy this, our approach leverages a variability model to
organize language components and establish bindings between
these. For the realization, we identified feature models with
their usual relations [44] and constraints as a suitable mod-
eling technique. In the feature model of a language product
line, each feature of a feature model instantiates exactly one
language component. The concept, however, can be adapted
and applied to different variability modeling techniques as well.
As language components are unaware of being used with fea-
tures, they can be used with different feature models and even
with different features within a single feature model. For in-
stance, two features could instantiate the same language com-
ponent but embed it differently, which is useful when reusing
more generic language components – such as expression lan-
guages – with different extension points. Moreover, the loose
coupling between feature model and language components fa-
cilitates extending the language product line with new features
and language components to support their evolution.

Using a feature model, bindings, and language components,
a language product line can be constructed (cf. RQ3). Each pos-
sible variant (product) of the language product line is described

1This appears to be a limitation at this point, but in combination with a
feature model as described in Section 5, the first input grammar is always the
one used in the root feature.

by a valid feature configuration of the feature model. This pre-
vents uncontrolled composition of language components, i.e.,
a form of composition that is neither foreseen or nor intended
by the language product line engineer and leverages language
users from comprehending internals and composition of differ-
ent language components.

Moreover, properties of extension points, such as being
mandatory, optional, or exclusive with another extension point
are solely realized via the variability model. This yields the
advantage of the language components to be better reusable in
different contexts, with different applied extension points, and
to support staged configuration [15]. A requires relationship
between two features (denoting that one feature relies on the
presence of another feature), enables to indicate that a language
component of one feature must have knowledge about the lan-
guage component of the other feature. This reflects, e.g., inher-
itance between the respective grammars or dependencies be-
tween the metamodels. It enables modeling that, for instance, a
feature providing an expression language requires another fea-
ture providing a type system.

A binding between extension point and extension is specific
to two features of a concrete feature model and the language
components they instantiate. Therefore, we organize all bind-
ings of a language product line within a single dedicated bind-
ing model. The model describes for each feature of the fea-
ture model which language component it instantiates by stat-
ing a mapping from a feature name to a language component
name. Additionally, it defines binding rules that connect ex-
tension points and extension via their nonterminal names. To
this effect, it contains one name mapping per feature of the fea-
ture model and one binding rule per edge between two features
of the feature model. A binding model is specific to a language
product line and its related language components and is the only
connection between these, otherwise decoupled, parts as it indi-
cates that a language component is instantiated in each feature it
is bound to. Consequently, reusing the feature model of a lan-
guage product line, e.g., with language components based on
another language definition formalism, becomes feasible. Each
binding rule constitutes (1) the parent feature and the extension
point that the rule applies to and (2) the child feature and the
extension that is bound to the extension point.

Uncontrolled composition could occur if the connection be-
tween extension point and extension would be based upon, e.g.,
both grammar productions to have the same name or by “au-
toconnecting” an extension to all extension points. To miti-
gate this, we explicate bindings. As the root feature does not
have a parent feature, there is no binding rule that binds ex-
tensions of the root language feature to other extension points.
To this effect, our approach allows extensions to be extension
points (therefore in MontiCore, interface productions) as well.
Extending an extension point refines the extension point and
enables concretizing its required abstract syntax elements, as
well as to enable more sophisticated structuring of features of
the language product line. This is demonstrated by an example
in Section 6.

Extending a selected set of features with further features does
not invalidate the syntax of models that were valid before, as

adding new language components cannot eliminate syntax ele-
ments. This conservative extension [67] of the syntax, enables
reusing tooling for multiple language variants of the product
line. However, it cannot be used to guarantee semantical cor-
rectness of analyses. Through adding new language elements,
several analyses might produce different results. Consider, for
instance, an analysis counting actions defined in a model con-
forming to the Automation grammar (cf. Figure 1). If a lan-
guage extension would add nested actions, these would not be
taken into account individually unless the analysis is modified.

Deriving a language variant begins with selecting features to
compile a feature configuration. The feature configuration has
to be valid with regard to the feature model and its constraints.
Then, our language composition tool composes the language
components of all selected features at once. As the composi-
tion operator is ordered, the order of language components is
computed by a depth-first search starting from the root feature.
Here, the order of siblings is irrelevant.

Composition produces an integrated grammar, a joined set
of context conditions, and all extension points of the input lan-
guage component are retained. Furthermore, a new language
component containing these is generated that can be used, e.g.,
as root for a new language product line. A language component
should contain all information necessary to produce language-
processing tooling for the defined language. This activity can
be performed on the composed language component as last step
of language variant derivation.

Developing a language product line by organizing which lan-
guage components can be composed does not necessarily re-
quire to understand in-depth details of the language compo-
nents’ internals. This facilitates reusing language components
that the language product line engineer did not develop on
her own. Thus, she only has to consider all details of a lan-
guage component if side effects of composing the grammars
(such as ambiguities in abstract or concrete syntax) arise. To
avoid language compositions that cause invalid language vari-
ants, she can, for instance, establish cross-feature relations pre-
venting these (e.g., by mutual exclusion of features contributing
ambiguous grammars). This fosters a separation of concerns
between language engineers developing language components
and language product line engineers arranging these meaning-
fully (cf. RQ4).

4.3. Roles
Our method to enable modeling language reuse through vari-

ability rests on a separation on related concerns along different
roles:

• Language engineers develop language components that
encapsulate abstract syntax and concrete syntax.

• Language product line engineers are language engineers
that create language families as feature models that de-
scribe possible characteristics of the family’s language
products. To this end, they collect relevant language com-
ponents, assign these to features, and define how these
realize extension points of language components of their
parent features.

• Language product owners configure the language family
to obtain a language product for a specific domain, con-
text, or application. Based on this configuration, the tool
chain generates model-processing tooling for the selected
product.

• Modelers employ the generated modeling processing tool-
ing to analyze models and transform these into GPL arti-
facts.

The separation of concerns between the participating roles
frees the individual roles to be involved in all phases of con-
ceiving language product lines and language products. Figure 4
details the activities of the different stakeholders: Creating a
language product line begins with language engineers develop-
ing the modeling languages that the product line combines. We
assume the languages are defined using grammars defining the
concrete and abstract syntax and its possible extension points.
Extension points of the grammar become extension points of
the language component. After the grammar is defined, lan-
guage engineers define rules describing the well-formedness of
models of the language. Grammar and well-formedness rules
then are explicated within a language component model.

The language product line engineer collects the different lan-
guage components and arranges these into a feature model de-
scribing the product line. To this end, she first defines the
desired features within a feature model and models their con-
straints according to the domain’s needs. Then, within the bind-
ing model, she instantiates a language component for each fea-
ture or the feature model. Afterwards, she creates binding rules
for each connection between extension point and extension. In
the resulting product line, features denote selectable language
components and the language components of child features are
available for embedding into extension points of the language
components of their parent features. Optionally, language prod-
uct line engineers can create glue that is specific to the con-
nection between two instances of language components that are
connected via the feature model. This glue comprises e.g., well-
formedness rules and further analyses or tooling specific to the
composition of two languages. Apart from these, it is possi-
ble to perform handcrafted adaptations of, e.g., grammars that
cause ambiguities when they are composed through creating a
grammar that inherits from the original one and overrides con-
flicting productions.

Based on the language family, the language product owner
selects features of interest for a specific domain, context, or ap-
plication and uses the language variability infrastructure to au-
tomatically compose grammars and well-formedness rules into
new model processing tooling for the specific configuration.
With this, the modelers can process models using the selected
features transparently as if developed for a single monolithic
language.

To this end, the separation of concerns among the described
roles alleviates experts to have capabilities in all fields of exper-
tise among the process of developing language product lines as
depicted in Figure 5. This reflects in the different kinds of ar-
tifacts created and used throughout the process. The capability

AD

Create
grammar

Create well-
formedness

rules

Create
language

component

Create language
product line

Create
feature
model

Create
integration

glue

Instantiate
language

components

Collect
language

components

Configure
language

product line

Generate
language

component

Implement
binding

Create
models

Process
models

Language Engineer Language Product Line Engineer Product Owner Modeler

language
product line

language components

grammar

WF rules

grammar

WF rules

grammar

WF rules

grammar

WF rules

feature relations govern
language embedding

Generate
model proc.

tooling

Figure 4: Activities and associated roles participating in creating, configuring, and using language product lines.

S
y
n

ta
x

W
e
ll
-F

o
rm

e
d

n
e
s
s

R
u

le
s

L
a
n

g
u

a
g

e

C
o

m
p

o
n

e
n

ts

F
e
a
tu

re
 T

re
e

B
in

d
in

g
 R

u
le

s

F
e
a
tu

re

C
o

n
fi

g
u

ra
ti

o
n

Language Engineer C C C - - -

Language Product Line Engineer U/C U/C U C C -

Language Product Owner - - U U - C

Modeler (U) (U) - - - -

C = Create

U = Understand

Figure 5: The roles involved in developing language product lines and their
required capabilities.

to create artifacts related to syntax and well-formedness of lan-
guages is solely required by language engineers, and partially
by language product line engineers. The latter only require to
create syntax or well-formedness artifacts if conflicts arising
in combinations of syntaxes or well-formedness rules result in
problems that are to be resolved manually. Language prod-
uct line engineers, however, have to understand the artifacts
realizing syntaxes and well-formedness rules of the involved
languages. Modelers are only required to understand these in
a more abstract way, e.g., through documentation. Language
product owners do not need to understand syntax and well-
formedness rules. Language components are created by lan-
guage engineers and have to be understood by language product
line engineers and product owners to create and configure lan-
guage product lines. Modelers do not have to be aware of the
existence of language components. The feature tree is created
by the language product line engineer and used by language
product owners for configuring language variants through fea-

ture configurations. The language product line engineer creates
a binding model for each feature tree, in which she connects
features to language components and binds extension points of
language components with extensions of other language com-
ponents. Language engineers and modelers do not have to be
aware of the presence of feature models, binding rules, and fea-
ture configurations.

5. Integrating Languages Syntaxes

This section describes the MontiCore realization of the con-
cept introduced in the previous chapter. The concrete and ab-
stract syntax of a MontiCore [30] language is defined within
an extended context-free grammar. Well-formedness checking
is realized via context conditions implemented as Java classes
(cf. Section 3). To define extension points of a grammar, our
approach leverages interface grammar productions (interface
nonterminals) that the grammar itself can provide default im-
plementations for by containing productions that implement the
interface production. As depicted in l. 13 of the top grammar in
Figure 1, interface production rules are not required to have a
right-hand side. If an interface production has a right-hand side,
it indicates nonterminal symbols required to be provided by
grammar productions that implement the interface production.
Similar to ordinary nonterminals, interfaces can be referenced
on the right-hand sides of other production rules (cf. Compo-
nent in ll. 2ff). Nonterminals can implement interfaces (ll. 6f),
resulting in an abstract syntax structure as depicted by example
on the right of Figure 3. Our approach supports composition of
independent language components. This mitigates the neces-
sity to use grammar composition via inheritance as explained in
Section 3 (cf. CloudADLGrammar in Figure 3), which requires

language ADLLangComp {

grammar com.ma.ADLGrammar;

cocos {

com.ma.cocos.CompNameLowerCase,

com.ma.cocos.PortNamesUnique

}

}

01

02

03

04

05

06

07

LC

Figure 6: The language component ADLLangComp.

binding for ADL {

feature BaseADL uses ADLLangCmp;

feature Behavior uses BehaviorLangComp;

feature Automaton uses AutomatonLangComp;

bind Behavior.BehModel to BaseADL.ADLElement;

bind Automaton.IOAutomaton to Behavior.BehModel;

}

01

02

03

04

05

06

07

Binding

Behavior

Automata

BaseADL FM

Figure 7: The binding model for the composition of exemplary language com-
ponents.

that the inheriting grammar cannot be used without the inher-
ited grammar and therefore reduces reusability.

Composition of language components realizes the variability
in the solution space of our approach. The composition of lan-
guage syntaxes is performed by composing their context-free
grammars and context conditions. MontiCore grammars used
in language components can, in general, use grammar inher-
itance as supported by MontiCore. Grammar inheritance be-
tween grammars contained in different language components
of a language product line should be performed carefully, as it
can yield unintended side effects. Therefore, we recommend
indicating such a relationship via a “requires” constraint in the
feature model.

Figure 6 depicts a language component definition. It holds
a reference to a MontiCore grammar and a set of correspond-
ing context conditions. The language component has the name
ADLLangCmp, references the ADLGrammar presented in Fig-
ure 3, and references two context conditions. All interface non-
terminals defined in the referenced grammar are automatically
exported as extension points of the language component.

Consider a small language product line for ADLs with a base
feature BaseADL, an optional behavior feature, and an optional
Automaton feature for the realization of the behavior. The cor-
responding feature model is depicted in the right of Figure 7.
The binding model depicted in the left of Figure 7 contains the
relation between features in the feature model (depicted right)
and language components (ll. 2-4) that these instantiate. Fur-
ther, it defines binding rules between extension points and ex-
tensions(ll. 5-6). Thess rules define which nonterminals of a
child feature are bound to which extension points of a parent
feature. For example, in every language variant comprising the
Automata feature, the IOAutomaton nonterminal of the gram-
mar contained in the feature’s language component is bound to
the extension point BehModel exported by the language com-
ponent of feature Behavior (l. 6). Extension points and ex-
tensions have to be identified via names comprising feature and
grammar production to be uniquely identifiable within a prod-
uct line. A single language component, for instance, could
be instantiated more than once in a product line. The top of
Figure 8 depicts two MontiCore grammars that are part of lan-

MCGMCG

Robot

ADL

grammar RobotADLGrammar extends BehaviorGrammar, IOAutGrammar {

start Component;

RobotADLBehModel extends IOAutomaton implements BehModel

= "ioautomaton" "{" AutElem* "}";

}

MCG

grammar BehaviorGrammar {

interface BehModel;

//...

}

grammar IOAutGrammar {

IOAutomaton

= "ioautomaton" "{" AutElem* "}";

//...

}
production
extension

interface
implementation

Figure 8: The composition (bottom) of two MontiCore grammars (top).

guage components to be composed. The grammar IOAutGram-
mar is part of the language component AutomatonLangComp
and, inter alia, contains the grammar production IOAutoma-

ton. The BehaviorGrammar is part of the language compo-
nent BehaviorLangComp and provides the interface produc-
tion BehModel. The grammar RobotADLGrammar depicted at
the bottom is the result of the composition of the upper two
grammars with the binding model as described above. The rel-
evant part of the binding for this composition is contained in
l. 6. The production IOAutomaton of IOAutGrammar uses the
extension point (= interface production) BehModel of the gram-
mar BehaviorGrammar. The name of the synthesized gram-
mar is derived from the name of the language variant as prefix
and Grammar as suffix. The grammar inheritance mechanism of
MontiCore is used to extend both grammars, which enables to
reuse all of their grammar productions. For technical reasons,
the generated grammar has to reference the start production of
the grammar of the root feature, to produce the same top-level
abstract syntax element for each generated parser of the product
line. For each applied binding rule (= implemented interface
production), a new nonterminal is generated in the synthesized
grammar. The new production extends the extension nonter-
minal with extends IOAutomaton and implements the exten-
sion point interface with implements BehModel. The effect
of implementation of an interface has been explained in Sec-
tion 3. Extending a production has a similar effect, it can be
used in every place of the grammar where the extended produc-
tion has been applied. With the abstract syntax tree data struc-
ture MontiCore generates from a grammar, the corresponding
abstract syntax tree classes reflect the same extension and im-
plementation on the level of Java classes and interfaces. Con-
sequently, the abstract syntax class of RobotADLBehModel ex-
tends from the abstract syntax class of the IOAutomaton and
implements the interface BehModel. This bears the advantage
that all algorithms and tooling applicable to the base element
can also be applied to the extension. For example, a well-
formedness rule checking that an IOAutomaton has a single
initial state can also be applied to the generated RobotADL-
BehModel. With our approach in general, the right-hand side
of the generated production equals the right-hand side of the
extended production. If the right-hand side contains a nonter-
minal that was extended during composition, it is replaced with
the newly generated nonterminal name. This transformation is
especially necessary for recursive productions and refining in-

MCGMCG

Robot

ADL

grammar RobotADLGrammar extends BaseADLGrammar, BehaviorGrammar {

start Component;

interface RobotADLBehModel extends ADLElement, BehModel;

}

MCG

component grammar

BehaviorGrammar {

interface BehModel;

//...

}

grammar BaseADLGrammar {

Component = /*…*/ ;

interface ADLElement;

//...

}

Figure 9: Composition with extension point refinement

terfaces to realize the expected behavior. Without this replace-
ment, parsers would create instances of the abstract syntax class
derived from the extension nonterminal instead of the abstract
syntax class of the newly generated one. Therefore, the con-
nection between extension point and extension would break,
because the extension nonterminal alone has no connection to
the extension point. With refinement of extension points, both
extension and (as always) extension point are interface produc-
tions. Here, a new name is derived in the same style as above
in the nonterminal case, but it extends both interfaces. This is
visualized in Figure 9.

The language component resulting from the compositions of
the two language components AutomatonLangComp and Be-

haviorLangComp is depicted in Figure 10. The referenced
grammar is the newly generated grammar depicted at the bot-
tom of Figure 8. It combines the abstract syntaxes and con-
crete syntaxes of the composed grammars. The set of con-
text conditions of the integrated language component is the set
union of all sets of context conditions of input language com-
ponents. Checking all context conditions of the composed lan-
guage component is possible, because of the compatibility of
the abstract syntax tree data structure – that MontiCore relies
on for checking context conditions – between the composed
grammar and the input grammar that the context condition has
been defined for. As no interface productions are removed in
the composed grammar, all extension points are joined and the
resulting language component comprises all extension points
of the input language components. The language component
synthesized for a certain language variant can optionally be ex-
tended with handwritten grammars and new context conditions
before MontiCore is executed to produce tooling for the lan-
guage variant.

6. Case Study

The following presents an extended case study of our ap-
proach in the context of architecture description languages
based on the extended example in [8]. Architecture description
languages (ADLs) [55] combine MDD with component-based
software engineering for the description of software architec-
tures. There are over 120 stand-alone ADLs [54], each tailored
towards a specific application domain, such as automotive [16],
avionics [24], consumer electronics [81], or robotics [69]. De-
veloping and maintaining domain-specific variants of an ADL

language RobotADLLangComp {

grammar com.ma.RobotADLGrammar;

cocos {

com.behavior.SingleBehaviorModel,

com.ioaut.SingleInitialState,

//...

}

}

01

02

03

04

05

06

07

08

LC

Figure 10: The resulting composed language component.

is challenging [10].

6.1. ADL Language Product Line Motivation and Overview
Our approach enables to prevent the efforts of creating, main-

taining, and evolving multiple stand-alone ADL variants tai-
lored to specific domains individually. Using feature-driven
language composition enables to start with a core ADL exhibit-
ing extension points and independently developing language
components that provide modeling elements required for archi-
tectures of the different domains. Modifying one language com-
ponent automatically updates all language variants that contain
the component if the variant derivation is executed again. In the
context of ADLs, our approach facilitates to produce tailored
ADL variants for new domains, e.g., architectures for machine
learning. Common ADL parts can be reused from the language
product line, and new features specific to the new domain can
easily be added.

Excerpts of a complete language product line for ADLs,
called MyADL, capable of describing software components for
modeling both cloud systems and embedded systems are de-
picted in Figure 11. Different language engineers contribute
language components (depicted right) with explicit extension
points defined via their interface productions in the grammar.
The language product line engineer defines the feature model
and therefore defines which features are available and how se-
lecting a feature may depend on the selection of other features
(depicted left). The product line comprises a common base
feature (BaseADL) and features that are typical to ADLs for
embedded systems (e.g., automated connection of ports based
on their types or names) as well as features related to scal-
able and secure cloud systems (e.g., replicating components
and encrypted communication). Each feature instantiates ex-
actly one language component that might define further exten-
sion points. The relation between two features in the feature
model describes how their language components are integrable
(parent-child relationship) or whether a feature’s language com-
ponent relies on or conflicts with another language component
(cross-tree constraints).

The decoupling between features of the language product
line and language components, as well as the decoupling among
different language components, enable to reuse the language
components in different feature models and to instantiate a lan-
guage component within different features of a single feature
model. Based on a feature configuration defined by the lan-
guage product owner (middle left), a software tool (implement-
ing the mechanisms described in the previous sections) estab-
lishes the connections between the selected features’ language

Robot

language
extension
points

Autoconnect Replication
Component

Behavior

StructuredText

Behavior

InputOutput

Automata

BaseADL

a
b c

d

e

f

selection RobotADL:
Replication no
Autoconnect no
Encryption no
ComponentBehavior yes
StrcturedTextBehavior no
InputOutputAutomata yes
JavaExpression yes

FD

FC

CoreADL

LngComponent

Behavior

LngComponent

Automata

LngComponent

a b c d

e

f

LC

Language

Product Line

Engineer

Language

Product

Owner

Language

Engineers

defines

selects

create

…

contains

RobotADLComponent

Behavior

LngComponent

Java

LngComponent

d

f

CoreADL

LngComponent

a

b

e Automata

LngComponent
f

Modeler

creates

X

MotorCtrl

Response

MotorCmd

Value

Movement

Sensor

Reader

conforms

behavior
automaton

Encryption

Java

Expression

e

Figure 11: A language product line defined as feature model over language
components. Given a feature configuration (top), the variant is transformed
into a new language component (bottom).

components. A feature’s language component is integrated into
the extension points of the language component of the respec-
tive parent feature. For instance, the language component of
feature InputOutputAutomata is integrated into the extension
point e (the label of the edge between the features Component-
Behavior and InputOutputAutomata in Figure 11) of the
language component contained in the feature ComponentBe-

havior. Integrating all language components of the selected
features yields a new language component, which can be used
by the respective domain experts to model corresponding soft-
ware architectures using exactly the modeling elements selected
through the feature configuration (in this case automata models
describing component behavior).

Being able to reuse language components without modifica-
tion enables reusing the associated tooling (analyses, transfor-
mations) with the generated language component as well. This
is possible because the generated AST classes of each individ-
ual language component are reused by the tooling of a gener-
ated language component. Reuse is possible because the re-
sult of the integration of each feature’s language component
with the language component of the feature’s parent stands in
a “conservative extension“ relationship (in the sense of [67])
with the parent feature’s grammar. With this, changes to a lan-
guage component and its tooling are immediately reflected in
all generated language components as well. Therefore, the ef-
fort of creating, maintaining, and evolving modeling languages
is minimized. The loose coupling between features and lan-
guage components also simplifies integration of new features
into the feature diagram. Integrating a new feature below Com-

ponentBehavior, for instance, does not influence other fea-
tures and language components. The language product line en-
gineer, however, has to ensure potential cross-tree constraints
(excludes, implies) of the new feature to existing features.

A generated language component can yield extension points.
Thus, the creation of intermediate products that require further
refinement is also possible. Where multiple similar domains are
addressed, creating refined domain-specific language product
lines enables to restrict a large base product line accordingly.

«interface»

IFeatureProvider
FeatureIDEPlugin

XMLParser

Tree<String> getFeatureTree(String fmPath)

List <String> getSelectedFeatureList(String fcPath)

Tree<String> getSelectedFeatureTree(String fmPath, String fcPath)

CD

Figure 12: Integration of FeatureIDE [74] into the language composition tool.

Figure 13: The feature model and the feature configuration in the employed
FeatureIDE editors.

The tooling to process language product lines and derive vari-
ants is extensible into different directions: it enables to use dif-
ferent languages for the definitions of language components and
bindings, and it supports different feature modeling tools. For
example, the plug-in integration of FeatureIDE [74] for mod-
eling feature diagrams and feature configurations is depicted
in Figure 12. Our language composition tool provides an inter-
face IFeatureProvider that has to be implemented by plug-
ins for feature modeling tools. The plug-in for FeatureIDE em-
ploys the class FeatureIDEPlugin, which uses an XMLParser
to parse the XML artifacts of feature models and feature con-
figurations produced with FeatureIDE.

6.2. ADL Language Product Line Details
The following describes the language product line, its fea-

tures and language components depicted in Figure 11, and
presents a language component derived from a configuration
as well as valid and invalid models with regard to the de-
rived language component. The feature model and the se-
lected configuration in FeatureIDE are depicted in Figure 13.
The BaseADL feature must be domain-agnostic as it is part
of all possible product line configurations. It thus only con-
tains the basic elements of ADLs such as components, ports,
and connectors that are common to each language variant.
The feature Autoconnect adds syntax and transformations
to realize an automatic connection of ports with either iden-
tical names or types. The Encryption feature enables de-
scribing secure ports (SecurePort) and encrypted connections
(EncryptedConnector) between these. The Replication

feature provides syntax for modeling systems with components
that are capable of replicating themselves if a replication condi-
tion is satisfied. This is useful, for instance, in client-server
architectures where a client component replicates on a large

bindings for MyADL {

feature BaseADL uses ADLGrammar;

feature ComponentBehavior uses ComponentBehaviorGrammar;

feature InputOutputAutomata uses IOAutGrammar;

feature JavaExpression uses JavaInADLExprGrammar;

feature DynamicReconfiguration uses DynReconBehGrammar;

feature ModeAutomata uses ModeAutGrammar;

//…

bind BaseADL.CmpElem to ComponentBehavior.BehModel;

bind ComponentBehavior.BehModel to InputOutputAutomata.IOAutomaton;

bind InputOutputAutomata.Guard to JavaExpression.GuardExpr;

bind InputOutputAutomata.PortAss to JavaExpression.PortAssExpr;

bind BaseADL.CmpElem to DynamicReconfiguration.ReconBehModel;

bind DynamicReconfiguration.ReconBehModel to ModeAutomata.ModeAut;

//…

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Binding

Figure 14: The binding rules for the language product line.

grammar ADLGrammar {

Component = "component" Name "{" CmpElem* "}";

interface CmpElem;

interface Port extends CmpElem;

DefaultPort implements Port = "port" Type Name ";";

/* Subcomponent and Connector productions omitted */

}

01

02

03

04

05

06

07

MCG

language CoreADLLngComponent {

grammar ADLGrammar;

cocos {

com.adl.cocos.CompNameLowerCase,

com.adl.cocos.PortNamesUnique

}

}

01

02

03

04

05

06

07

LC

BaseADL

Figure 15: Parts of the BaseADL language component.

number of requests. The language product line engineer con-
siders component replication to be a threat for autoconnect-
ing ports. Choosing one of the two corresponding features
thus excludes the other. The ComponentBehavior feature
(cf. Figure 16) introduces behavior blocks to the ADL through
the interface BehModel. The language product line engineer
intends component behavior models to be modeled in such
blocks. The child features StructuredTextBehavior and
InputOutputAutomata contain different behavior languages.
It should not be possible to model empty behavior blocks and
thus, choosing the ComponentBehavior feature requires to
choose at least one feature that defines a component behav-
ior language. Automata use expressions on their transitions as
guard conditions. For this purpose, the language product line
currently only includes the JavaExpressions feature, which
is therefore marked mandatory.

The binding model depicted in Figure 14 describes the map-
ping from feature name to the name of the language component
instantiated by the feature (ll. 2-7) and the binding of extension
point of a feature to an extension of another feature (ll. 9-14).
The binding model belongs to the language product line MyADL
(l. 1). The layer of indirection between feature name and lan-
guage component name enables to use the same language com-
ponent within two different features (which must have a unique
name within a feature model) of a feature model. The explicit
binding between extension point and extension prevents uncon-
trolled composition (cf. Section 4).

component grammar ComponentBehaviorGrammar {

interface BehModel;

}

01

02

03

MCG

language BehaviorLngComponent {

grammar BehaviorGrammar;

cocos {

com.compbeh.cocos.BehaviorUnique,

com.compbeh.cocos.BehaviorNotInComposedComponents

}

}

01

02

03

04

05

06

07

LC

ComponentBehavior

Figure 16: The ComponentBehavior language feature.

Consider a language product owner who aims at developing
software architectures in which atomic components’ behavior
can be specified via input/output automata. She thus selects the
configuration containing the features BaseADL, Component-
Behavior, InputOutputAutomata, and JavaExpression.

component grammar IOAutGrammar {

IOAutomaton = "ioautomaton" "{" AutElem* "}";

interface AutElem;

State implements AutElem =

(["initial"])? "state" Name ";";

Transition implements AutElem = "transition" src:Name

"[" Guard "]" "{" PortAss* "}" trg:Name ";";

interface Guard;

interface PortAss;

01

02

03

04

05

06

07

08

09

MCG

language AutLngComponent {

grammar IOAutGrammar;

cocos {

com.ioaut.cocos.StateNamesUpperCase,

com.ioaut.cocos.UniqueInitialStates

}

}

01

02

03

04

05

06

07

LC

InputOutputAutomata

Figure 17: The InputOutputAutomata language feature.

Figures 15-18 depict parts of the configuration’s constituents.
The BaseADL language component (cf. Figure 15) is the product
line’s root feature. The feature’s grammar defines language el-
ements common to all ADL variants such as components, con-
nector, and ports. The language component further defines two
context conditions and the interface CmpElem. With this, it is
possible to extend component definitions with further top-level
elements through language component composition via bind-
ing productions to the interface CmpElem. The Subcomponent
and Connector productions of the BaseADL grammar are omit-
ted. The grammar of the ComponentBehavior feature (cf. Fig-
ure 16) defines a single interface BehModel. Behavior models
for atomic components are intended to be embedded into the
BehModel interface. The feature’s language component further
comprises two context conditions. The first ensures that each
component contains at most one behavior model. The second
requires that composed components must not contain behav-
ior models. The language component binds the BehModel in-
terface to the CmpElem interface of its parent feature’s gram-
mar. The language component defines the BehModel inter-
face as extension point. With this, the BehModel extension

grammar JavaInADLExprGrammar extends JavaDSL {

GuardExpr = Expression;

PortAssExpr = Expression;

}

01

02

03

04

MCG

language JavaExprInADLExprLC {

grammar JavaGuardExprGrammar;

cocos {

com.javaexprguard.cocos.PortAssSimpleNameOnLHS,

com.javaexprguard.cocos.PortAssCorrectlyTyped,

com.javaexprguard.cocos.GuardExprBoolean,

com.javaexprguard.cocos.ReferencedPortsExist

}

}

01

02

03

04

05

06

07

08

09

LC

imported from JavaDSL

JavaExpression

Figure 18: The JavaExpression language feature.

point refines the CmpElem extension point (cf. Section 4.2): Ev-
ery BehModel model can be embedded as a CmpElem, but the
opposite does not hold. Integrating the language components
of the BaseADL and ComponentBehavior features yields a
new feature that enables specifying component behavior mod-
els as top-level elements in component definitions. However,
the syntax of possible component behavior models is still un-
derspecified. For this reason, the ComponentBehavior lan-
guage component is connected to two further features via an
or-node (cf. Figure 11). Thus, each valid configuration contain-
ing the ComponentBehavior feature also contains at least one
of the two child features. The language product owner chooses
the InputOutputAutomata feature to obtain a valid config-
uration. The language component’s grammar (cf. Figure 17)
enables to model input/output automata for specifying compo-
nent behavior. Transitions (ll. 6-7) of such automata consist of
guards (l. 8) and port assignments (l. 9). The production’s im-
plementations remain underspecified (ll. 8-9). Thus, these are
modeled as interfaces by the feature’s language component and
must be bound by the InputOutputAutomata feature’s child
features. The language component further defines two context
conditions, which ensure each input/output automaton contains
exactly one initial state and that state names start with capi-
tal letters. The grammar’s IOAutomaton production is embed-
ded into the BehModel production of the language component’s
parent feature. The JavaExpression (cf. Figure 18) feature
is a mandatory child feature of InputOutputAutomata and
therefore has to be selected by the language product owner. Its
grammar inherits the productions from a Java grammar (l. 1)
and defines two new productions GuardExpr and PortAss-

Expr (ll. 2-3). These enable modeling guards and port assign-
ments with Java expressions. The Expression production is
part of the inherited Java grammar. The two productions are
bound to the Guard and PortAssExpr interfaces exported by
the InputOutputAutomata language component. Introducing
two new productions in contrast to directly binding the Java
Expression production to the Guard and PortAssignment

productions enables to separately handle guards and port as-
signments as they are distinguishable via their types. This is
necessary, for instance, if a context condition either only re-
stricts the syntax of port assignments or of guards. The first

language CompoundLC {

grammar CompoundGrammar;

cocos {

com.adl.cocos.CompNameLowerCase,

com.adl.cocos.PortNamesUnique,

com.compbeh.cocos.BehaviorUnique,

com.compbeh.cocos.BehaviorNotInComposedComponents,

/* CoCos of IOAutLC and JavaExprInADLExprLC omitted */

}

}

01

02

03

04

05

06

07

08

09

10

LC

grammar CompoundADLGrammar extends ADLGrammar,

BehaviorGrammar, IOAutGrammar,

JavaInADLExprGrammar {

start Component;

interface CompoundBehModel extends BehModel, CmpElem;

CompoundIOAutomaton extends IOAutomaton

implements CompoundBehModel =

"ioautomaton" "{" AutElem* "}";

CompoundGuardExpr extends GuardExpr

implements Guard = Expression;

CompoundPortAssExpr extends PortAssExpr

implements PortAss = Expression;

}

01

02

03

04

05

06

07

08

09

10

11

12

13

MCG

CompoundADL

Figure 19: Result of composing the configuration’s features.

two context conditions of the feature’s language component,
e.g., only restrict the well-formedness of expressions used in
port assignments (cf. Figure 18, ll. 4-5), whereas the third con-
text condition only restricts guard expressions (cf. Figure 18,
l. 6). The fourth context condition affects guards as well as
port assignments. Composing the four features as described
in Section 5 yields the language component depicted in Fig-
ure 19 that represents the composed language. The grammar is
composed of the grammars of the selected features’ language
components by applying the transformation described in Sec-
tion 5. The new language component’s context conditions are
all context conditions of all selected language components. The
new language component retains all extension points defined
by at least one selected language component. Figure 20 depicts
the three models valid (ll. 1-8), invalid1 (ll. 9-17) and in-

valid2 (ll. 18-24). The model valid is a well-formed model
of the new language. The productions for modeling component
and port declarations (ll. 1-3) originate from the ADLGrammar

(cf. Figure 15). The InputOutputAutomata language compo-
nent’s grammar (cf. Figure 17) adds the possibility to declare
automata, states, and transitions (ll. 5-7) through extending the
interface added by the ComponentBehavior language com-
ponent (cf. Figure 16). The expressions true and in = out

used in the transition’s guard and port assignment (l. 7) origi-
nate from the JavaExpression language component (cf. Fig-
ure 18). The models invalid1 and invalid2 are no well-
formed models of the new language. Model invalid1 is an
element of the language defined by the new grammar but not
well-formed because it violates the three context conditions
PortNamesUnique, StateNamesUpperCase, and GuardEx-

prBoolean, which are defined by the three language features
BaseADL, InputOutputAutomata, and JavaExpression, re-
spectively. The model invalid2 is not well-formed because
the embedded ioautomaton model is not possible in the In-

component MyComponent {

port Integer in;

port Integer out;

ioautomaton {

initial state S1; state S2;

transition S1 [true] {in = out} S1;

}

}

01

02

03

04

05

06

07

08

09 component MyComponent {

port Integer in;

port Integer in; // PortNamesUnique

ioautomaton {

initial state s1; // StateNamesUpperCase

transition S1 [1+1] // GuardExprBoolean

{in = out} S1;

}

}

09

10

11

12

13

14

15

16

17

CompoundADL invalid1

CompoundADL valid

component MyComponent {

port Integer in;

port Integer out;

ioautomaton {

init state S1; // parse error

}

}

18

19

20

21

22

23

24

CompoundADL invalid2

Figure 20: A valid model and two invalid models of the language component
depicted in Figure 19.

putOutputAutomaton feature’s grammar.
Based on the integrated language component, MontiCore

generates model-processing infrastructure to parse models and
perform well-formedness checks. Via handwritten extensions,
this infrastructure can be further customized.

7. Discussion

The presented approach relies on grammars as descriptions
of concrete syntax and abstract syntax. This limits the pro-
cessable models to be textual. However, building a graphical
concrete syntax on top of a textual one is possible [65]. Also,
our approach currently only realizes language embedding for
composition of language components, i.e., a form of compo-
sition that produces abstract and concrete syntaxes integrated
into a single model. Supporting further forms of language com-
position, such as language aggregation [67], is subject to fur-
ther research. The realization of our concept with MontiCore
uses all interface productions of a grammar as extension points.
It is possible to reduce this to a subset of these by explicat-
ing the extension point that should be “exported” [8] within
a language component model. We introduced this concept to
mitigate accidental or unintended extension points when using
interface productions for technical reasons. However, our ex-
periences have shown that defining exported extension points
explicitly, in practice, was cumbersome and using all interface
productions as extension points did not produce problems. To
this effect, we omitted the explicit statement of extension points
but delegate the decision of when to use interface productions
over alternatives to the language (component) engineer. Us-
ing disjunctions instead of interface productions can be used
to avoid creating unintended extension points. The current re-
alization of our concept does, however, prescribe designers of
language components to foresee all extension points by expli-
cating these through interface productions in the grammar. For

example in Figure 1, Condition and Action are the only ex-
tension points of the grammar Automation. Therefore, exten-
sion of Automation is restricted to new trigger conditions and
actions in the two foreseen places. Technically, MontiCore en-
ables to override any grammar production in order to add new
alternatives to their right-hand side [67], which can be lever-
aged to realize extension points as well. However, we currently
do not make use of this to obtain a cleaner abstract syntax and to
distinguish which productions are extension points and which
are not to foster hiding of internal details of language compo-
nents. Our concept to syntactic language variability relies on
underspecification in the abstract syntax through qualified ex-
tension points. These can, for instance, be realized through ab-
stract classes or interfaces in metamodel-based languages [73],
through controlled merging of abstract syntax elements [17],
or underspecification in grammars, such as binding elements of
different languages by name [76].

Designing language components in an appropriate granular-
ity is challenging: If the components are too fine-grained, the
feature model becomes complex even for small language prod-
uct lines. Further, the constituents of languages are scattered
across many different language components, which also com-
plicates the understandability and maintainability of these indi-
vidually. Furthermore, it is unlikely that all language compo-
nents can be developed independently. However, fine-grained
components facilitate the reuse of components in different con-
texts. Coarse-grained language components, on the other hand,
produce feature models that are better readable and reduce scat-
tering of language components, but become more complex. The
appropriate granularity is subject to the language engineers. Us-
ing a grammar production that is not the start production of the
grammar as extension to an extension point cuts off all parts of
the language’s concrete and abstract syntax that are not reach-
able as child elements of the abstract syntax induced by the new
start production.

Ultimately, our approach flattens the tree structure of the fea-
ture model and produces a single composed grammar that di-
rectly inherits from the grammars of all selected features and,
thereby does not introduce new inheritance relationships be-
tween the grammars of the selected features. To this effect,
we can allow inheritance dependencies between the grammars
contained in different features of a selected variant. Such a
dependency should be indicated in the feature model as a re-
quires constraint between the feature of the extending grammar
and the feature of the extended grammar. As with the compo-
sition no additional inheritance relationships are introduced to
the grammars of the selected features, inheritance is acyclic if
the requires constraints in the feature model are acyclic.

Our approach synthesizes a new grammar that integrates the
individual grammars of the language components via inheri-
tance. This layer of indirection complicates the readability and
understandability of the language syntax. Therefore, the gen-
erated grammar is not useful as documentation of the syntax.
Through a model-to-model transformation of these grammars,
the inheritance relations can easily be flattened to produce a
single integrated grammar with improved readability.

The separation of concerns in our approach usually alleviates

MCG

grammar B {
IOAutomaton = //...

}

(b) nonterminal name clash

MCG

grammar A {
IOAutomaton = //...

}

MCG

grammar B {
ModelRef = "for" model:Name;

}

(c) ambiguous terminals

MCG

grammar A {
ForLoop = "for" Expression;

}

MCG

(a) ambiguous grammar

grammar A {
IOAutomaton = var:Name | State;
State = Name;

}

Figure 21: Grammars may be ambiguous (a). Composition of grammars can
yield (b) name clashes of nonterminals with the same name and (c) terminals
that make parsing ambiguous.

language product owners from being SLE experts and decou-
ples engineering of language components from their composi-
tion. In our current work, it is necessary that the language prod-
uct owner is an SLE expert only if she performs handcrafted,
variant-specific customizations. This can be the case, e.g., to
customize further tooling such as editors. It is, however, impos-
sible to completely alleviate the language product line engineer,
who maintains the composition of language components, from
being a software language engineer [78, 77].

MontiCore uses the mechanisms of ANTLR [62] to handle
ambiguous grammars, e.g., the grammar depicted in Figure 21
(a). Besides the automatic mechanisms, MontiCore grammars
can contain semantic predicates [62] of ANTLR to manually
control handling of ambiguities. Furthermore, the composition
of independent language components can raise several issues,
which are taken care of by the implementation of our approach.
As the grammars of different language components typically
are developed independent of each other, there might be con-
flicts in the nonterminals that share the same name unintention-
ally (cf. Figure 21 (b)). With grammar languages that have a
hierarchical name space of nonterminals, the qualified names
of the nonterminals would differ. For grammar languages with
a flat name space (such as the MontiCore grammar language), a
transformation of the grammars has to rename conflicting non-
terminals to resolve name clashes. As renaming a nonterminal
also influences tooling written against this nonterminal, the lan-
guage composition engineer has to adapt this manually. The re-
alization of our approach based on MontiCore checks whether
such name clashes of nonterminals exist and aborts derivation
of the language variant on name clashes. Furthermore, the gen-
erated parsers may be confronted with ambiguities caused by
terminals with the same name that both can occur at a certain
place in the model (cf. Figure 21 (c)). The parser has to be
aware of this, as otherwise two different valid abstract syntax
trees could be instantiated from the same model. Currently, our
realization with MontiCore aborts generation of a parser if such

terminal ambiguities occur. Cross-tree constraints in the feature
model restrict valid variants. In our approach, an excludes con-
straint can indicate that the composition causes ambiguities or
it indicates that the language product line engineer forbids the
composition due to other reasons. This is similar to requires
constraints, which can either have technical reasons or design
intentions. Future work should investigate how to derive such
constraints that are due to technical reasons or cause ambigui-
ties from the grammars.

Composition of context conditions can prevent other context
conditions to be applicable if the syntactical elements that these
operate on are forbidden by another context condition. Fur-
ther, through extension of the right-hand side of the grammar
production of a nonterminal N with a further alternative, a con-
text condition for N also applies to the new alternative. This
might be unintentional. For example, the language component
ComponentBehavior of the case study presented in Section 6
could include a context condition checking that each compo-
nent behavior declares a name starting with an upper case let-
ter. Later, the language product line is extended with a further
language component arranged as child feature of Component-
Behavior that enables a different way to specify component
behavior. The context condition then also applies to this new
language component, which might be unintended. This situa-
tion requires to either adapt the context condition to exclude the
newly added alternative or to replace it with a new one.

For language product lines with manageable size of involved
language components, the approach helps to structure these and
the feature model is understandable and well extensible. For
large feature models, and language product lines, respectively,
it is subject to further research how well the approach scales up.

Through conservative extension implemented by the gram-
mar composition operator, reusability of tooling is increased.
If this condition would not hold, tooling written for a certain
variant could only guarantee to operate on models of this single
language variant. With conservative extension, the set of mod-
els that are valid with regard to a language variant A are a subset
of the valid models with respect to a language variant B if the
set of selected features of A is a subset of the set of selected
features of B. As depicted in Figure 22, through conservative
extension, tooling of B can be used on models valid in A, be-
cause new language syntax can only be integrated by adding
further alternatives to existing syntax elements. This property
breaks when well-formedness rules are taken into account, for
instance, if a well-formedness rule considers those models that
do not use a new alternative as invalid. Considering only well-
formedness rules (and not the underlying syntax), the relation
between valid models A and B can be carried out into the other
direction: If through additional language components in the
language variants no existing rules can be eliminated, only new
rules can be added. As with each new rule, the set of valid
models can only decrease in size, valid models of B are a sub-
set of valid models in A. However, well-formedness rules are
checked after parsing and therefore, each activity realized be-
fore well-formedness checking benefits from the conservative
extension. With subsequent activities in the model-processing
pipeline, such as interpretation or code generation, the prop-

A,B

B A,B

A,B

B

A

B

valid models of
configuration B

feature selected in
configurations A and B

Figure 22: If the set of features contained in configuration A is a subset of the
features contained in configuration B, the valid models of the language variant
derived from A are a subset of valid models of the language variant B.

erty of conservative extension for language components does
not hold anymore. With parsers, well-formedness checks, and
further analyses and transformations that operate on the abstract
syntax of (potentially ill-formed) models, the conservative ex-
tension property ensures proper reusability.

The presented approach has no explicit types for different
kinds of language components. Besides that, it is question-
able in which dimension typing languages should be carried out
(e.g., imperative or declarative languages, expression language
or behavior language, language with code generators translat-
ing to the same language, . . .), it could limit reusability of a
language component for a different purpose. The advantage
of a type system of language components is obvious: if many
language components are available for similar purposes, typ-
ing these would limit the choice between finding a suitable one.
Further, typing could reduce the knowledge about a language
component’s content required by language product line engi-
neers. Instead of an explicit type system for language compo-
nents, the extension points defined in a language component
make assumptions about the language components that can be
employed to deliver possible extensions.

Many other approaches imply that either the feature model is
developed before the assets (top-down approach) or the assets
are available and the feature model is built or derived for exist-
ing assets (bottom-up approach) [49]. Due to the loose coupling
between the feature model and the language components of our
approach, both paradigms are supported. While in our current
work, we focus on a bottom-up approach, future work should
investigate developing a language product line top-down.

The realization of our approach leverages MontiCore gram-
mars as integrated descriptions of the concrete and abstract syn-
tax of language components. Due to the inherent coupling be-
tween these in being defined within the same grammar rules, the
realization does not support pure presentational variability [11],
i.e., variability within the concrete syntax only.

Another challenge arises from composing not only syntax but
also the languages’ behavior realizations (if available), which
usually have the form of code generators [5, 14] or inter-
preters [6, 80]. Composition of both has been achieved for spe-
cific languages [64, 66] or under various restrictions [4, 40]. We
presented a first approach for an integration of code generator
composition into our concept for language product lines in [9].

However, this concept has limitations that have to be mitigated
and a general approach towards code generator composition yet
remains to be conceived.

According to [43], a good language extension framework
must support independent language extensions and automated
composition of these. Our approach supports both, but is
even more powerful than a language extension framework, as
it leaves the choice of a base language open to the language
product line engineers, instead of being restricted to a fixed
base language. Further, [43] states that composition must not
produce a corrupted compiler. As with the transformations of
conflicting grammar productions described above, and the con-
servative extension property, our approach guarantees to pro-
duce either an uncorrupted parser or no parser. With context
conditions and the translation of a compiler (which would be
carried out to MontiCore code generators in the realization of
our approach), we cannot guarantee this anymore. Future work
should investigate extracting language product lines from exist-
ing handcrafted, cloned-and-owned language variants.

8. Related Work

Variability within software languages has been investigated
in a wealth of different approaches [56]. Modeling languages
are usually engineered by means of language workbenches, for
which different techniques of reusing and composing languages
exist [21]. Further, language workbenches differ in the lan-
guage constituents they process and the constituents of the lan-
guages they produce. Several language workbenches, including
Rascal [79], MontiCore [30], Neverlang [76], Spoofax [45], and
Xtext [5] define syntax via grammars. Other language work-
benches employ metamodels for syntax definitions, including
EMF [73], GEMOC Studio [17], or MetaEdit+ [75], or em-
ploy projectional editors, such as MPS [89]. Well-formedness
rules are usually either implemented with OCL [32] or as GPL
statements [30]. The following considers related work for each
research question (cf. Section 4) individually.

RQ1: Variability within language module
With language definitions that employ metamodels for syntax
definitions, concrete syntax often plays a minor role. To this
effect, metamodel-based approaches typically support variabil-
ity in abstract syntax only [38, 63, 90] while grammar-based
approaches often consider concrete syntax and abstract syn-
tax [53, 57, 76]. The language development framework Nev-
erlang [76] supports modular language definitions. A language
module comprises a grammar as syntax definition and a corre-
sponding ordered list of evaluation phases. These evaluation
phases realize the semantics of a language module and include
type checking, well-formedness checking, and code generation.
Extension points in Neverlang grammars are realized as place-
holders, which are unused nonterminal names on the right-hand
sides of grammar productions. Compared to our approach,
these cannot prescribe the presence of certain abstract syntac-
tical elements, enabling easier reusability, but bearing higher
complexity in finding a module providing a suitable extension.

Further, explicating extension point through, e.g., interface non-
terminals reduces the risk of defining extension points unin-
tendedly (e.g., by misspelling a nonterminal).

The revisitor approach [52, 51] uses Ecore metamodels for
describing the syntax of language modules. It enables to de-
scribe variability within a language’s metamodel and the real-
ization of its semantics by using the revisitor pattern. Extension
points in a metamodel are realized as required metamodel ele-
ments.

The set of languages mbeddr [84, 85] is built upon MPS [83]
and thereby, uses its projectional editors and further sophisti-
cated tooling. In MPS, abstract syntax elements can extend
other abstract syntax elements to perform language extension.
Therefore, every abstract syntax element is a potential exten-
sion point.

Action-semantics modules [18] leverage context-free gram-
mars to describe the syntax of such modules. To realize ex-
tension points, context-free grammars can define unused non-
terminals. LISA [57] uses attribute grammars to describe the
concrete syntax, abstract syntax, and semantics of language
modules. LISA uses inheritance as known from object-oriented
programming to realize language inheritance on attribute gram-
mars. In principle, every rule of the grammar can be extended
by new rules. The combination of SDF and FeatureHouse re-
alizes compositional language modules [53] containing gram-
mar rules, typing rules, and evaluation rules. Variability is car-
ried out into two dimensions: the dimension of extension with
new language concepts and the dimension of extension with
new tooling (e.g., new typing rules). For realizing the variabil-
ity in the grammar rules, the SDF modularization is used and
Spoofax [45] is employed to generate parsers. Silver [93] is an
extensible attribute grammar system. It uses attribute grammars
modules whose syntax and semantics can be extended.

RQ2: Composition of language modules
Our approach uses composition to derive a language variant,
and therefore the related work focuses on compositional ap-
proaches as well. However, there are approaches that define
150% metamodels and use negative variability to reduce these
it to obtain language variants [90].

Neverlang supports several forms of composition for the syn-
tax of language components [76]. Language extension relies on
composition of the grammars, where one component provides
all implementations that another component requires. Lan-
guage unification employs glue code to match required and
provided implementations that do not match originally. The
approach for development of languages with action semantics
modules [18] relies on composition of the grammar productions
for composing syntaxes. In this, the unused nonterminals serv-
ing as extension points can be implemented by importing lan-
guage modules that realize these unused nonterminals. To the
best of our knowledge, the approach does not have a mecha-
nism to compose independent language modules for building
language product lines with an explicit variability model.

SugarJ [20] enables to specify syntactic extensions to Java.
These extensions are contained in syntactic sugar libraries. By
“desugaring”, the extended syntax is transformed into the base

syntax. SugarJ uses parsers that are capable of detecting ambi-
guities, on which they report an error.

The language framework ableC [42] is an extensible C lan-
guage implemented in Silver [93] that uses Copper as parser
generator. ableC uses attribute grammars for describing the
syntax of independent language extensions and provides differ-
ent composition mechanisms for these extensions. The mecha-
nism satisfies several criteria that make it expressive enough to
provide a solution to the expression problem. Their reliable and
automatic composition mechanism guarantees correct composi-
tion of attribute grammars and, therefore, also related analyses
and transformations. The base language C, however, cannot be
exchanged. Silver [93] uses an “import with syntax” mecha-
nism to compose the syntax of attribute grammars. The seman-
tics of the import is that rules of imported grammars are as if
they were specified in the importing grammar.

Wyvern [61] is a further extensible language system that
guarantees reliable composition. It uses delimiters (e.g., braces,
whitespace) to coordinate parsing between base language frag-
ments and language extension fragments. Our approach inves-
tigates language composition on a more abstract level as the
above-mentioned approaches. It is based on MontiCore that it-
self generates parsers by employing ANTLR [62]. The detected
ambiguities are therefore limited to those directly accessible in
the grammar (cf. Section 7).

In the revisitor approach [52], extension points do not have
to be foreseen by language developers at design time and com-
position leverages the revisitor pattern. Further, the several ex-
tensions can be independent of each other. A binding [51] re-
alizes an adapter functionality by connecting two metamodel
elements of different metamodels. Mbeddr [84] includes an ex-
tensible set of language modules that have C as their base lan-
guage. Therefore, it does not support to use a different base
language than C, which limits its applicability for, e.g., pure
model-driven development. mbeddr supports three types of lan-
guage composition: language modules can be loosely coupled
by remaining in separate artifacts with language referencing. In
this form of composition, a language module references a part
of another language module only. Embedding realizes a syntac-
tic composition between independent language modules similar
to our approach. Language extension is realized by a language
module extending the syntax of a host language module, which
it must be aware of. mbeddr mostly relies on language exten-
sion to realize composition of language modules. LISA [53]
uses an inheritance mechanism to compose attribute grammars.
SDF+FeatureHouse [53] employs techniques of FeatureHouse
to compose language modules with superimposition, weaving,
or inheritance as composition operators.

RQ3: Meaningful combinations of language modules
Copper uses modular analyses [70] to verify that the compo-
sition of grammars will result in a valid grammar and a deter-
ministic parser. These analyses are carried out independently
on each extension to a base grammar and, if they are fulfilled,
guarantee several properties.

Several approaches propose to employ feature diagrams to
arrange language modules in a form that restricts possible com-

binations [37, 49, 50, 53, 78, 90]. There is an extension to Nev-
erlang [78] that uses the common variability language to orga-
nize language modules and their interrelations. Another exten-
sion, AiDE [50], builds upon Neverlang and derives variabil-
ity models from an existing landscape of interrelated Neverlang
modules. The addressed use case of this is to post-hoc derive a
language product line from an existing set of language modules
used for a specific purpose. To do so, AiDE first extracts all
dependencies between employed input language modules and
then synthesizes a feature model. AiDE can be leveraged to de-
scribe language product lines but is not capable of developing
language modules independently, and then build up a language
product line of these.

To the best of our knowledge, the organization of language
modules in mbeddr [84], LISA [57], action-semantics mod-
ules [18], the revisitor approach [51], and ableC [42] do not
support building dedicated language product lines with con-
trolled arrangement and interrelations between employed lan-
guage modules.

RQ4: Separation of concerns
A separation of concerns between different actors or roles that
are involved in developing a language product line, as described
in Section 4.3 is only described for some of the approaches.
Neverlang [78] distinguishes between language developers and
domain experts who are involved in the process of developing
language product lines. While language developers create lan-
guage.

Wyvern [61] and Copper [92] completely alleviate composi-
tion engineer from understanding the details of the components.
in mbeddr [84], any language engineer familiar with MPS can
create language extensions. The decision which language mod-
ules should be developed and when these are engineered should
be coordinated for rather central extensions used by many peo-
ple of, e.g., an organization. For small extensions, this is less
relevant. In Argyle [37], DSLs are constructed from language
assets. A feature model is created during domain analysis. The
DSL user is a programmer and selects necessary functions to
fulfill requirements of the target DSL.

9. Conclusion

We presented a concept to engineer and maintain syntactic
language features independent of another within language com-
ponents. The language components inherit the extension points
of the grammar they contain and enable controllable and sys-
tematic composition through these. This facilitates engineer-
ing new languages by reusing existing components instead of
recreating their concepts and related artifacts from scratch. To
guide composition of language components and liberate lan-
guage engineers and modelers from comprehending the inter-
nals of all participating components, we propose to relate the
language components through feature models. This enables
defining product lines of languages that can be arranged by ded-
icated language product line engineers, which ensure that only
valid (in a subjective sense) language products can be derived.
Based on a feature configuration, language product owners can

easily compose a new language from existing components with-
out language expertise. This, ultimately, facilitates the engi-
neering, maintenance, and evolution of software languages.

Vitae

Arvid Butting received his B. Sc.
and M. Sc. degrees in computer sci-
ence from the RWTH Aachen Uni-
versity, in 2014 and 2016. Cur-
rently, he is a research assistant and
Ph.D. candidate at the Department
of Software Engineering at RWTH
Aachen University. His research
interests cover software language
engineering, software architectures,
and model-driven development.

Robert Eikermann received his B.
Sc. and M. Sc. degrees in computer
science from the RWTH Aachen
University, in 2012 and 2014. Cur-
rently, he is a research assistant
and Ph.D. candidate at the Depart-
ment of Software Engineering at
RWTH Aachen University. His re-
search interests cover software lan-
guage engineering, behavior lan-
guages, and model-driven software
development.

Oliver Kautz received his B. Sc.
and M. Sc. degrees in computer sci-
ence from the RWTH Aachen Uni-
versity, in 2014 and 2016. Cur-
rently, he is a research assistant and
Ph.D. candidate at the Department
of Software Engineering at RWTH
Aachen University. His research
interests cover software engineer-
ing, software language engineer-
ing, software architectures, model-
driven software development, and
modeling language semantics.

Bernhard Rumpe is chair of the
Department for Software Engineer-
ing at the RWTH Aachen Uni-
versity, Germany. His main in-
terests are software development
methods and techniques that bene-
fit from both rigorous and practi-
cal approaches. This includes the
impact of new technologies such as
model-engineering based on UML-
like notations and domain-specific
languages and evolutionary, test-
based methods, software architec-
ture as well as the methodical and
technical implications of their use
in industry. He has furthermore
contributed to the communities of
formal methods and UML. Since
2009 he started combining model-
ing techniques and cloud comput-
ing. He is author and editor of
eight books and editor-in- chief of
the Springer International Journal
on Software and Systems Model-
ing. See http://www.se-rwth.

de/topics/ for more.

Andreas Wortmann received his
Ph.D. from RWTH Aachen Univer-
sity in 2016. Currently, he is a
tenured researcher at the Depart-
ment for Software Engineering at
RWTH Aachen University. His re-
search interests cover software en-
gineering, software language en-
gineering, model-driven develop-
ment, and robotics. He is a
member of IEEE and its Technical
Committee on Software Engineer-
ing for Robotics and Automation
and serves on the board of the Euro-
pean Association for Programming
Languages and Systems (EAPLS).

References

[1] Kai Adam, Arvid Butting, Oliver Kautz, Jerome Pfeiffer, Bernhard
Rumpe, and Andreas Wortmann. Retrofitting Type-safe Interfaces into
Template-based Code Generators. In Proceedings of the 6th Interna-
tional Conference on Model-Driven Engineering and Software Develop-
ment (MODELSWARD’18), pages 179 – 190. SciTePress, January 2018.

[2] Colin Atkinson and Thomas Kühne. Model-Driven Development: A
Metamodeling Foundation. IEEE Software, 20(5):36–41, sep 2003.

[3] Don Batory. Feature Models, Grammars, and Propositional Formulas.
In International Conference on Software Product Lines, pages 7–20.
Springer, 2005.

[4] Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci, and
Marty Sirkin. The GenVoca Model of Software-System Generators. IEEE
Software, 11(5):89–94, September 1994.

[5] Lorenzo Bettini. Implementing domain-specific languages with Xtext and
Xtend. Packt Publishing Ltd, 2016.

[6] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer,
Julien Deantoni, and Benoit Combemale. Execution framework of the
gemoc studio (tool demo). In Proceedings of the 2016 ACM SIGPLAN
International Conference on Software Language Engineering, pages 84–
89. ACM, 2016.

[7] Arvid Butting, Manuela Dalibor, Gerrit Leonhardt, Bernhard Rumpe, and
Andreas Wortmann. Deriving Fluent Internal Domain-specific Languages
from Grammars. In International Conference on Software Language En-
gineering (SLE’18), pages 187–199. ACM, 2018.

[8] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Controlled and Extensible Variability of Concrete
and Abstract Syntax with Independent Language Features. In Proceed-
ings of the 12th International Workshop on Variability Modelling of
Software-Intensive Systems (VAMOS’18), pages 75–82. ACM, January
2018.

[9] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Modeling Language Variability with Reusable Lan-
guage Components. In International Conference on Systems and Software
Product Line (SPLC’18). ACM, September 2018.

[10] Arvid Butting, Arne Haber, Lars Hermerschmidt, Oliver Kautz, Bernhard
Rumpe, and Andreas Wortmann. Systematic Language Extension Mecha-
nisms for the MontiArc Architecture Description Language. In Modelling
Foundations and Applications (ECMFA’17), Held as Part of STAF 2017,
pages 53–70. Springer International Publishing, 2017.

[11] Marı́a Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability
within modeling language definitions. Model Driven Engineering Lan-
guages and Systems, pages 670–684, 2009.

[12] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard
Rumpe. Conceptual Model of the Globalization for Domain-Specific Lan-
guages. In Globalizing Domain-Specific Languages, LNCS 9400, pages
7–20. Springer, 2015.

[13] Benoit Combemale, Jörg Kienzle, Gunter Mussbacher, Olivier Barais,
Erwan Bousse, Walter Cazzola, Philippe Collet, Thomas Degueule,
Robert Heinrich, Jean-Marc Jézéquel, Manuel Leduc, Tanja Mayerhofer,
Sébastien Mosser, Matthias Schöttle, Misha Strittmatter, and Andreas
Wortmann. Concern-Oriented Language Development (COLD): Foster-
ing Reuse in Language Engineering. Computer Languages, Systems &

Structures, 54:139 – 155, 2018.
[14] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Program-

ming: Methods, Tools, and Applications. Addison-Wesley, 2000.
[15] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged Con-

figuration Using Feature Models. In International Conference on Soft-
ware Product Lines, pages 266–283. Springer, 2004.

[16] Vincent Debruyne, Françoise Simonot-Lion, and Yvon Trinquet. An Ar-
chitecture Description Language. In Architecture Description Languages,
pages 181–195. Springer, 2005.

[17] Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais,
and Jean-Marc Jézéquel. Melange: A Meta-language for Modular and
Reusable Development of DSLs. In 8th International Conference on Soft-
ware Language Engineering (SLE), Pittsburgh, United States, 2015.

[18] Kyung-Goo Doh and Peter D Mosses. Composing programming lan-
guages by combining action-semantics modules. Science of Computer
Programming, 47(1):3–36, 2003.

[19] Matthew Emerson and Janos Sztipanovits. Techniques for Metamodel

Composition. In OOPSLA–6th Workshop on Domain Specific Modeling,
pages 123–139, 2006.

[20] Sebastian Erdweg, Lennart CL Kats, Tillmann Rendel, Christian Kästner,
Klaus Ostermann, and Eelco Visser. Library-based Model-driven Soft-
ware Development with SugarJ. In Proceedings of the ACM interna-
tional conference companion on Object oriented programming systems
languages and applications companion, pages 17–18. ACM, 2011.

[21] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël D.P. Konat, Pedro J. Molina, Martin
Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo
Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido H.
Wachsmuth, and Jimi van der Woning. The State of the Art in Language
Workbenches. In Software Language Engineering. Springer International
Publishing, 2013.

[22] Moritz Eysholdt and Heiko Behrens. Xtext - Implement your Language
Faster than the Quick and Dirty way. In Proceedings of the ACM inter-
national conference companion on Object oriented programming systems
languages and applications companion, SPLASH ’10, pages 307–309,
New York, NY, USA, 2010. ACM.

[23] Jean-Marie Favre, Dragan Gasevic, Ralf Lämmel, and Ekaterina Pek.
Empirical Language Analysis in Software Linguistics. In SLE, pages
316–326. Springer, 2010.

[24] Peter H. Feiler and David P. Gluch. Model-Based Engineering with
AADL: An Introduction to the SAE Architecture Analysis & Design Lan-
guage. Addison-Wesley, 2012.

[25] Charles Forsythe. Instant FreeMarker Starter. Packt Publishing Ltd,
2013.

[26] Robert France and Bernhard Rumpe. Model-Driven Development of
Complex Software: A Research Roadmap. In Future of Software En-
gineering 2007 at ICSE., 2007.

[27] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1995.

[28] Hans Grönniger, Jan Oliver Ringert, and Bernhard Rumpe. System
model-based definition of modeling language semantics. In FMOOD-
S/FORTE, pages 152–166, 2009.

[29] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus
Müller, Bernhard Rumpe, and Ina Schaefer. Engineering Delta Modeling
Languages. In Software Product Line Conference (SPLC’13), pages 22–
31. ACM, 2013.

[30] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio
Navarro Perez, Bernhard Rumpe, Steven Voelkel, and Andreas Wort-
mann. Integration of Heterogeneous Modeling Languages via Extensible
and Composable Language Components. In Proceedings of the 3rd Inter-
national Conference on Model-Driven Engineering and Software Devel-
opment, Angers, France, 2015. Scitepress.

[31] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the
Semantics of “Semantics“? Computer, 37(10):64–72, 2004.

[32] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert,
Michael Thiele, Christian Wende, and Claas Wilke. Integrating ocl
and textual modelling languages. In International Conference on Model
Driven Engineering Languages and Systems, pages 349–363. Springer,
2010.

[33] Robert Heim, Pedram Mir Seyed Nazari, Jan Oliver Ringert, Bernhard
Rumpe, and Andreas Wortmann. Modeling Robot and World Interfaces
for Reusable Tasks. In 2015 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 1793–1798, 2015.

[34] C. A. R. Hoare. Hints on Programming Language Design. Technical
report, Stanford University, Stanford, CA, USA, 1973.

[35] Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. Software
Language Engineering in the Large: Towards Composing and Deriving
Languages. Computer Languages, Systems & Structures, 54:386 – 405,
2018.

[36] Andreas Horst and Bernhard Rumpe. Towards Compositional Domain
Specific Languages. In Proceedings of the 7th Workshop on Multi-
Paradigm Modeling (MPM’13), pages 1–5. Citeseer, 2013.

[37] C. Huang, A. Osaka, Y. Kamei, and N. Ubayashi. Automated dsl con-
struction based on software product lines. In 2015 3rd International Con-
ference on Model-Driven Engineering and Software Development (MOD-
ELSWARD), pages 1–8, 2015.

[38] Jean-Marc Jézéquel, Benoit Combemale, Olivier Barais, Martin Monper-
rus, and François Fouquet. Mashup of metalanguages and its implemen-
tation in the kermeta language workbench. Software & Systems Modeling,
14(2):905–920, 2015.

[39] He Jifeng, Xiaoshan Li, and Zhiming Liu. Component-Based Software
Engineering. In International Colloquium on Theoretical Aspects of Com-
puting, pages 70–95. Springer, 2005.

[40] Sven Jörges. Construction and evolution of code generators: A model-
driven and service-oriented approach, volume 7747. Springer, 2013.

[41] Frédéric Jouault and Jean Bézivin. Km3: a dsl for metamodel specifica-
tion. In International Conference on Formal Methods for Open Object-
Based Distributed Systems, pages 171–185. Springer, 2006.

[42] Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. Re-
liable and Automatic Composition of Language Extensions to C: The
ableC Extensible Language Framework. Proc. ACM Program. Lang.,
1(OOPSLA):98:1–98:29, October 2017.

[43] Ted Kaminski and Eric Van Wyk. Creating and using domain-specific
language features. In Proceedings of the First Workshop on the Global-
ization of Domain Specific Languages, pages 18–21. ACM, 2013.

[44] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and
A Spencer Peterson. Feature-oriented domain analysis (FODA) feasibility
study. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software
Engineering Inst, 1990.

[45] Lennart CL Kats and Eelco Visser. The Spoofax Language Workbench:
Rules for Declarative Specification of Languages and IDEs. In ACM sig-
plan notices, volume 45, pages 444–463. ACM, 2010.

[46] Anneke Kleppe. Software Language Engineering: Creating Domain-
Specific Languages using Metamodels. Pearson Education, 2008.

[47] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineering dis-
cipline for grammarware. ACM Transactions on Softwware Engineering
Methodology, 14(3):331–380, July 2005.

[48] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: a frame-
work for compositional development of domain specific languages. In
International Journal on Software Tools for Technology Transfer (STTT),
2010.

[49] Thomas Kühn and Walter Cazzola. Apples and oranges: comparing top-
down and bottom-up language product lines. In Proceedings of the 20th
International Systems and Software Product Line Conference, pages 50–
59. ACM, 2016.

[50] Thomas Kühn, Walter Cazzola, and Diego Mathias Olivares. Choosy
and Picky: Configuration of Language Product Lines. In Proceedings of
the 19th International Software Product Line Conference, pages 71–80.
ACM, 2015.

[51] Manuel Leduc, Thomas Degueule, and Benoit Combemale. Modular Lan-
guage Composition for the Masses. In Proceedings of the 11th ACM
SIGPLAN International Conference on Software Language Engineering,
pages 47–59. ACM, 2018.

[52] Manuel Leduc, Thomas Degueule, Benoı̂t Combemale, Tijs Van
Der Storm, and Olivier Barais. Revisiting Visitors for Modular Exten-
sion of Executable DSMLs. In ACM/IEEE 20th International Conference
on Model Driven Engineering Languages and Systems, Austin, United
States, September 2017.

[53] Jörg Liebig, Rolf Daniel, and Sven Apel. Feature-oriented Language
Families: A Case Study. In Proceedings of the Seventh International
Workshop on Variability Modelling of Software-intensive Systems, Va-
MoS ’13, pages 11:1–11:8, New York, NY, USA, 2013. ACM.

[54] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and
Antony Tang. What Industry Needs from Architectural Languages: A
Survey. IEEE Transactions on Software Engineering, 2013.

[55] Nenad Medvidovic and Richard N Taylor. A Classification and Compar-
ison Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering, 2000.

[56] David Méndez-Acuña, José A Galindo, Thomas Degueule, Benoı̂t
Combemale, and Benoit Baudry. Leveraging software product lines en-
gineering in the development of external dsls: A systematic literature re-
view. Computer Languages, Systems & Structures, 46:206–235, 2016.

[57] Marjan Mernik. An object-oriented approach to language compositions
for software language engineering. Journal of Systems and Software,
86(9), 2013.

[58] Brice Morin, Gilles Perrouin, Philippe Lahire, Olivier Barais, Gilles Van-
wormhoudt, and Jean-Marc Jézéquel. Weaving variability into domain

metamodels. Model driven engineering languages and systems, pages
690–705, 2009.

[59] Peter Naur and Brian Randell, editors. Software Engineering: Report
of a conference sponsored by the NATO Science Committee, Garmisch,
Germany, 7-11 Oct. 1968, Brussels, Scientific Affairs Division, NATO,
1969.

[60] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architec-
tures as Interactive Systems. In I. Ober, A. S. Gokhale, J. H. Hill, J.-M.
Bruel, M. Felderer, D. Lugato, and A. Dabholka, editors, Proceedings of
the 2nd International Workshop on Model-Driven Engineering for High
Performance and Cloud Computing, volume 1118 of CEUR, pages 15–
24, Miami, Florida, USA, 2013. CEUR-WS.org.

[61] Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex
Potanin, and Jonathan Aldrich. Safely Composable Type-Specific Lan-
guages. In European Conference on Object-Oriented Programming,
pages 105–130. Springer, 2014.

[62] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf,
2013.

[63] Luis Pedro, Matteo Risoldi, Didier Buchs, Bruno Barroca, and Vasco
Amaral. Composing visual syntax for domain specific languages. Human-
Computer Interaction. Novel Interaction Methods and Techniques, pages
889–898, 2009.

[64] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wort-
mann. Code Generator Composition for Model-Driven Engineering of
Robotics Component & Connector Systems. In 1st International Work-
shop on Model-Driven Robot Software Engineering (MORSE 2014), vol-
ume 1319 of CEUR Workshop Proceedings, pages 66 – 77, York, Great
Britain, July 2014.

[65] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Soft-
ware Architecture Structure and Behavior Modeling to Implementations
of Cyber-Physical Systems. In Stefan Wagner and Horst Lichter, editor,
Software Engineering 2013 Workshopband, volume 215 of LNI, pages
155–170. GI, Köllen Druck+Verlag GmbH, Bonn, 2013.

[66] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods.
Springer International, 2016.

[67] Bernhard Rumpe and Katrin Hölldobler. MontiCore 5 Language Work-
bench. Edition 2017. Aachener Informatik-Berichte, Software Engineer-
ing Band 32. Shaker Verlag, 2017.

[68] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P. Aachener Informatik-Berichte, Software Engineering, Band
11. Shaker Verlag, 2012.

[69] Christian Schlegel, Andreas Steck, and Alex Lotz. Model-Driven Soft-
ware Development in Robotics: Communication Patterns as Key for a
Robotics Component Model. In Introduction to Modern Robotics. iCon-
cept Press, 2011.

[70] August C Schwerdfeger and Eric R Van Wyk. Verifiable Composition of
Deterministic Grammars. ACM Sigplan Notices, 44(6):199–210, 2009.

[71] Friedrich Steimann, Marcus Frenkel, and Markus Völter. Robust Pro-
jectional Editing. In Proceedings of the 10th ACM SIGPLAN Inter-
national Conference on Software Language Engineering, pages 79–90.
ACM, 2017.

[72] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework (2nd Edition). Addison-Wesley Pro-
fessional, 2008.

[73] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework. Addison-Wesley, Boston, MA, 2.
edition, 2009.

[74] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke,
Gunter Saake, and Thomas Leich. FeatureIDE: An Extensible Frame-
work for Feature-Oriented Software Development. Science of Computer
Programming, 79:70–85, 2014.

[75] Juha-Pekka Tolvanen and Steven Kelly. MetaEdit+: Defining and Using
Integrated Domain-Specific Modeling Languages. In Proceedings of the
24th ACM SIGPLAN conference companion on Object oriented program-
ming systems languages and applications, pages 819–820. ACM, 2009.

[76] Edoardo Vacchi and Walter Cazzola. Neverlang: A framework for
feature-oriented language development. Computer Languages, Systems
& Structures, 43:1–40, 2015.

[77] Edoardo Vacchi, Walter Cazzola, Benoı̂t Combemale, and Mathieu Acher.
Automating Variability Model Inference for Component-Based Language
Implementations. In Proceedings of the 18th International Software Prod-

uct Line Conference, pages 167–176. ACM, 2014.
[78] Edoardo Vacchi, Walter Cazzola, Suresh Pillay, and Benoı̂t Combemale.

Variability support in domain-specific language development. In Inter-
national Conference on Software Language Engineering, pages 76–95.
Springer, 2013.

[79] Tijs van der Storm. The Rascal Language Workbench. CWI. Software
Engineering [SEN], 2011.

[80] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific lan-
guages: An annotated bibliography. ACM Sigplan Notices, 35(6):26–36,
2000.

[81] Rob Van Ommering, Frank Van Der Linden, Jeff Kramer, and Jeff Magee.
The Koala Component Model for Consumer Electronics Software. Com-
puter, 33(3):78–85, 2000.

[82] Vladimir Viyović, Mirjam Maksimović, and Branko Perisić. Sirius: A
rapid development of DSM graphical editor. In Intelligent Engineering
Systems (INES), 2014 18th International Conference on, pages 233–238.
IEEE, 2014.

[83] Markus Voelter and Vaclav Pech. Language modularity with the mps
language workbench. In Software Engineering (ICSE), 2012 34th Inter-
national Conference on, pages 1449–1450. IEEE, 2012.

[84] Markus Voelter, Daniel Ratiu, Bernhard Schaetz, and Bernd Kolb.
mbeddr: an extensible c-based programming language and ide for em-
bedded systems. In Proceedings of the 3rd annual conference on Systems,
programming, and applications: software for humanity, pages 121–140.
ACM, 2012.

[85] Markus Voelter, Jos Warmer, and Bernd Kolb. Projecting a Modular Fu-
ture. IEEE Software, 32(5):46–52, 2015.

[86] Steven Völkel. Kompositionale Entwicklung domänenspezifischer
Sprachen. Aachener Informatik-Berichte, Software Engineering Band 9.
2011. Shaker Verlag, 2011.

[87] Markus Völter, Sebastian Benz, Christian Dietrich, Birgit Engelmann,
Mats Helander, Lennart C L Kats, Eelco Visser, and Guido Wachsmuth.
{DSL} Engineering - Designing, Implementing and Using Domain-
Specific Languages. dslbook.org, 2013.

[88] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, Simon Helsen,
and Krzysztof Czarnecki. Model-Driven Software Development: Tech-
nology, Engineering, Management. Wiley Software Patterns Series. Wi-
ley, 2013.

[89] Markus Völter and Eelco Visser. Language extension and composi-
tion with language workbenches. In Proceedings of the ACM interna-
tional conference companion on Object oriented programming systems
languages and applications companion, pages 301–304. ACM, 2010.

[90] Jules White, James H Hill, Jeff Gray, Sumant Tambe, Aniruddha S
Gokhale, and Douglas C Schmidt. Improving domain-specific language
reuse with software product line techniques. IEEE software, 26(4), 2009.

[91] Andreas Wortmann, Benoit Combemale, and Olivier Barais. A System-
atic Mapping Study on Modeling for Industry 4.0. In Conference on
Model Driven Engineering Languages and Systems (MODELS’17), pages
281–291. IEEE, September 2017.

[92] Eric R. Van Wyk and August C. Schwerdfeger. Context-aware scanning
for parsing extensible languages. In GPCE ’07: Proceedings of the 6th
international conference on Generative programming and component en-
gineering, pages 63–72, New York, NY, USA, 2007. ACM.

[93] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: an
Extensible Attribute Grammar System. Electronic Notes in Theoretical
Computer Science, 2008.

[94] Steffen Zschaler, Dimitrios S Kolovos, Nikolaos Drivalos, Richard F
Paige, and Awais Rashid. Domain-specific metamodelling languages for
software language engineering. In International Conference on Software
Language Engineering, pages 334–353. Springer, 2009.

