
Synchronous Execution Semantics for Component
& Connector Models

Malte Heithoff, Evgeny Kusmenko, Bernhard Rumpe
Chair of Software Engineering, RWTH Aachen University, Aachen, Germany, {heithoff,kusmenko,rumpe}@se-rwth.de

Abstract—Component-and-connector languages such as
Simulink and LabView are widely used in research and industry
to model complex technical systems from a dataflow-based
perspective. In safety-critical domains such as automotive and
avionics, where human lives depend on the correctness of
the software, a clear modeling language semantics leaving no
room for ambiguities is crucial. In this paper, we present a
synchronous component execution model enabling us to model
embedded systems in a precise way guaranteeing that the
system is executable within a limited amount of time and has a
bounded discretization error for all possible inputs.

Index Terms—MDSE, CBSE, CPS, execution semantics, code
generation

I. INTRODUCTION

In engineering disciplines such as automotive, avionics, and

control, systems are often designed using the component-

and-connector (C&C) paradigm, where functional blocks en-

capsulate side effect-free behavior and connectors make the

dataflows between the interfaces of these blocks explicit. The

hierarchical (de)composition principle of C&C models facili-

tates the organization of complex systems, allowing dedicated

teams to work on specialized subcomponents and to integrate

their results into a large architecture. Examples of architecture

description languages (ADLs) implementing this paradigm are

Simulink, LabView, and Architecture Analysis & Design Lan-

guage (AADL), to name a few. Although the basic principles

of C&C ADLs often seem straightforward at first sight, the

concrete meaning of a C&C model depends on the language

used. Often C&C languages provide only a vague idea of their

semantics and leave room for interpretations, which can be

fatal in safety-critical domains, where human lives depend

on the correctness of the software. During the design of a

semantics for a C&C-based language there is a multitude of

nuances and interpretation variants to consider. What is more,

the desired behavior may differ from to domain to domain.

For instance, in distributed systems, an asynchronous, strongly

causal semantics with delays and, possibly, message losses

is often the way to go. On the other hand, for the design

of algorithms which are meant to be executed on a single

CPU, a synchronous, weakly causal modeling language such

as Simulink is preferable.

The main contribution of this work is the definition of a

FOCUS-based [1] and Simulink-inspired weakly synchronous

This work was supported by the Grant SPP1835 from DFG, the German
Research Foundation.

component ExampleStructure {
ports in Q A, Q B, out Q C;
instance Add myAdder;
instance Mul myMultiplier;
A -> myAdder.firstSummand;
B -> myAdder.secondSummand;
myAdder.sum -> myMultiplier.firstFactor;
B -> myMultiplier.secondFactor;
myMultiplier.product -> C;}

1
2
3
4
5
6
7
8
9

Fig. 1. An example C&C component structure and the corresponding textual
EMA component definition computing the formula C = (A + B) × B in
each execution cycle by interconnecting two atomic subcomponents.

execution semantics for a cyclic execution of C&C models

covering algebraic and differential loops. The execution model

is implemented for and evaluated based on the C&C-based

EmbeddedMontiArc (EMA) ADL.

II. BACKGROUND

EMA is a textual C&C ADL designed with the needs of

engineering domains such as automotive in mind [2], [3]. Due

to its open-source availability and extensibility we are going

to use EMA as the basis for the implementation and evaluation

of the concepts presented in this paper. For this reason, we are

going to present the foundations of EMA in this section.

Consider a simple application receiving the two numbers A
and B as input and computing the output as C := (A+B)×B
in each execution step. We can specify this behavior according

to the C&C paradigm by using an adder and a multiplier com-

ponent and interconnecting them accordingly. The graphical

structure and the corresponding textual EMA representation

are given in Figure 1.

The component header in L.1 starts with the keyword

component and is followed by the component type name,

which can be used to instantiate a component instance in

other components, similarly to class names in object-oriented

languages. If needed the component name can be followed by

a list of component parameters which are used at component

instantiation, similar to constructor parameters in Java or C++.

The interface of an EMA component is defined by input and

output ports, cf. L.2 in Figure 1. The port kind is set using the

264

2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C)

978-1-6654-2484-4/21/$31.00 ©2021 IEEE
DOI 10.1109/MODELS-C53483.2021.00047

[HKR21a] M. Heithoff, E. Kusmenko, B. Rumpe:
Synchronous Execution Semantics for Component & Connector Models.
In: Int. Conf. on Model Driven Engineering Languages and Systems Companion (MODELS-C), pp. 264-273, ACM/IEEE, Oktober 2021.
www.se-rwth.de/publications/

Fig. 2. The sketch shows two autonomous vehicle at their respective positions
s1 and s2, driving at velocities v1 and v2. The autopilot of each vehicle needs
to estimate whether and when there will be a collision under the assumption
that the current velocities remain constant.

Fig. 3. A C&C architecture representing the algebraic equation system of the
collision example as formulated in Equations (3) and (4).

keyword in or out. This is followed by the port’s type and a

unique port name. EMA uses an abstract type system, which is

based on frequently used mathematical sets N, Z, Q, and C.

The corresponding EMA types are N, Z, Q, C, representing

natural numbers, integers, rationals, and Gaussian rationals

(complex numbers with rational components), respectively.

Additionally, the type B represents Booleans. These types

are obviously for specification only. The concrete realization

is delegated to the compiler and can vary, e.g. with respect

to accuracy, depending on the application domain. A basic

type can be combined with a unit of the physical quantity

it represents and constrained by a range and step size, e.g.

Z(-3kg:2kg:3kg) represents weights of -3,-1,1, and 3

kg. Furthermore, a basic type can be extended to a vector

or a matrix by appending the dimensionality, e.g. Qˆ{2,3}
represents a 2× 3 matrix of rationals.

The two subcomponent instances of type Add and Mul
are instantiated in L.3 and L.4 of Figure 1, respectively.

The instance names can then be used to interconnect their

ports using the connect operator -> in L.5-9. For instance,

in L.5 we connect the main component’s input port A
to the firstSummand port of the myAdder component.

Consequently, inputs at A are automatically forwarded to

myAdder.firstSummand.

The behavior of atomic components, i.e. components, which

cannot be decomposed into subcomponents such as our adder

and multiplier, can be specified in the implementation block of

the respective component definition using the MATLAB-like

matrix-oriented but strongly typed language MontiMath or as a

deep neural network [4]–[6]. Furthermore, EMA provides a set

of frequently used arithmetic and logical atomic components

out of the box.

III. RUNNING EXAMPLE & REQUIREMENTS

We are now going to introduce two running examples, which

will serve as a basis for the requirements as well as the

presentation of the main concepts. First, consider the example

in Figure 2, where two vehicles drive on the same lane, i.e.

there is only one spatial dimension. In cooperative automated

driving, the autopilot software of a vehicle might need to

compute the time until collision with another traffic participant

and the collision position under the highly simplified but

illustrative assumption that both vehicles maintain their current

velocity and direction. We can formulate the problem as a lin-

ear algebraic equation system with the independent variables

s1, v1, s2, v2 representing the current position and velocity of

vehicle 1 and vehicle 2, respectively, and the variables of

interest sc and tc representing the estimated collision position

and time to be computed by the autopilot model:

sc = s1 + v1 · tc (1)

sc = s2 + v2 · tc. (2)

To be able to model the input/output behavior of this

equation system, we need to solve it for sc and tc, respectively,

which results in the following formulas:

sc = s1 + v1 · tc (3)

tc =
sc − s2

v2
. (4)

Now, using the basic blocks for addition, multiplication, and

division we can model the equation system as a C&C model,

cf. Figure 3. Note that the interdependency of the two output

ports from each other results in a structural loop in the

C&C model. An ordered execution of the subcomponents

in a procedural manner to compute the desired output as

is done by Simulink is not feasible any more. The given

model is more of a specification defining the input/output

relationships, but abstaining from giving an explicit instruction

how to realize these relationships. For code generation and

execution the algebraic equation system spanned by this model

needs to be solved. Since our target domains include safety-

critical systems, a closed solution of the equation system

needs to be found at compile-time (solving an equation system

at runtime has the advantage that problems can be solved

numerically if there is no closed form solution for the problem

class; however, the amount of time needed to find a solution

numerically can vary drastically and there is no guarantee

that a solution exists for a given input at all, which can

lead to undefined behavior). The input domain for which a

solution exists needs to be derived at compile-time. In our one-

dimensional example, a collision only takes place if v1 �= v2.

If v1 − v2 = 0, there is no collision and the ordinary equation

does not have a solution. For this case we need to be able

to define an alternative behavior. When using runtime solvers,

an alternative behavior can also be used if the solver does not

come up with a solution within a specified amount of time.

While algebraic systems are an important means to describe

static relationships, differential equation systems are inevitable

265

Fig. 4. A C&C architecture representing the ordinary differential equation
system of a mass-spring-damper model, as formulated in Equations (5) to (8).

in dynamic systems and process modeling (in discrete systems:

difference equation systems) and are, therefore, widely used in

engineering. A prominent example is the mass-spring-damper

model, which is used in various applications [7], [8] including

automotive actuation mechanisms such as fuel injectors [9] as

a basis for simulation and model predictive control (MPC).

The formulation as an ordinary differential equation (ODE) is

given as follows:

FE − FM − FD − FC = 0 (5)

⇔ FE − a ·m−D · v − c · x = 0 (6)

⇔ FE − x′′ ·m−D · x′ − c · x = 0 (7)

with

a = v′ = x′′ = (D · v + c · x− FE)/(−m). (8)

The corresponding C&C model is given in Figure 4. Again,

there is no linear dependency between the input and the

output of the system. The interdependency between x and

its derivatives requires a circular component structure. Note

that the system has an inherently continuous formulation, as

derivatives and integrals only exist in continuous domains (in

our case the domain is time). Due to the discrete nature of

software systems, this model does not have an exact software

implementation. To realize this model in software it obviously

needs to be discretized first. The way continuous models like

this one are mapped to discrete approximations becomes part

of the language semantics.

The above considerations result in the following set of

requirements, which we are going to tackle in our concept

presentation: (R1) Unambiguity: The meaning of a model

must be unambiguous. The semantics must define exactly,

how a valid model will map streams of inputs to output ports.

The compiler must be able to implement the semantics of a

given model up to some tolerances, e.g. emerging from time

and value discretization. (R2) Robustness: It must be ensured

at compile-time that a model can map given input values to

output ports at any time. If a mapping is undefined for parts

of the domain of an input variable, e.g. if a specific input

value leads to a division by zero, this must be identified at

compile-time and an alternative behavior must be specified by

the developer. The language must ensure this. (R3) Structural
loops: The modeling methodology must enable the developer

to define circular component structures representing algebraic,

differential, or difference equations. Such structures need to be

identified and solved at compile-time. Optionally, it should be

possible to postpone the solution of such equation systems to

runtime. In this case it must be ensured that a) the solution

remains within guaranteed tolerance bounds; b) the solution

is available within a predefined amount of time or c) an

alternative behavior is provided.

IV. RELATED WORK

In this section, we are going to discuss the semantics of

different C&C languages and frameworks and the ways the

models are executed.

a) FOCUS: FOCUS is a formal specification methodol-

ogy developed based on the stream theory [1]. It is particularly

suited for modeling distributed safety-critical systems and

uses the stream theory to describe the communication of

components. Components are defined on infinite streams of

messages M,I,O with Mω = M∗ ∪ M∞. Each component is

defined through a function

f : Iω → Oω. (9)

We can also have several channels on a component (input ports

and output ports)

g : Iω1 × Iω2 × Iω3 → Oω
1 × Oω

2 . (10)

For (in1, in2, in3) ∈ I1 × I2 × I3 the output of a component is

then defined as (out1, out2) = g(in1, in2, in3).

With the introduction of time, FOCUS defines timed

weakly causal and timed strongly causal components. In

timed strongly causal components there is always a delay

between the input and the output, while timed weakly causal

components can also provide an instant mapping.

An implementation of FOCUS is given by AutoFOCUS

3, which supports the whole development process from re-

quirement specification to deployment [10]. Although FOCUS

provides a very formal approach, it does not fully fulfill

our requirement for structural loops. FOCUS allows loops

only in strongly causal systems, which means those loops are

interrupted by some time delaying component.

b) MathWorks Simulink: Simulink [11] is a graphical

C&C modeling framework based on MATLAB. It is widely

used in industry and academia, particularly in engineering and

is therefore close to our target domain. Simulink maintains

an execution order for its subcomponents, which is computed

at compile-time by flattening the hierarchical structure. The

execution order of a C&C model manages the order in which

C&C components are executed. A component is said to be

direct-feedthrough if it computes outputs on the current input.

The semantic definition is mainly defined in the user manual

[11] and reference web pages. However, the information is

sometimes vague or even contradicting. For instance, the al-

gebraic loops manual1 states that nondirect-feedthrough blocks

maintain a state variable. This is contradictory to the defintion

1https://de.mathworks.com/help/simulink/ug/algebraic-loops.html

266

given in integration considerations2 stating that in nondirect-

feedthrough blocks the value of the output signal does not

depend on the value of the input signal in at least one function

during the simulation. The latter matches our definition. We

assume that this conflict was due to deprecated reference

manual pages.

Mathworks makes the claim [12] that nondirect-feedthough

blocks can appear anywhere at the start of the execution

order. We show in a simple example why this is not true.

Figure 5 shows an incorrect execution order which satisfies

this claim. The delay block on the left needs to wait for the

current output of the delay block on the bottom to update its

state properly. Instead it appears in an arbitrary position 1.

Hence, the semantics of Simulink is not always predictable

and violates our unambiguity requirement (R1).

Fig. 5. Loop of Delay components/blocks

In contrast to FOCUS Simulink handles algebraic loops and

interprets them as a form of equation systems expressible in a

semi-explicit form and solves them at runtime using numeric

solvers [13]. Simulink uses either Trust Region [14] or Line
Search [15] for solving nonlinear equation systems. If the

solver fails for one of the methods, a user can still try to use

the other. Differential algebraic equations (DAEs) are solved

with the method described by Shampine et al. [16]. It shows

that every equation system built from a direct-feedthrough

loop can be expressed in the semi-explicit form. It utilizes

the underlying MATLAB suite which provides numerous ODE

and DAE solvers adaptable to the current situation. If solving

a loop fails, the system breaks at runtime, which violates

our robustness and structural loops requirements (R2) and

(R3). Furthermore, Simulink does not offer dynamic block

reconfiguration to handle errors. If a runtime error such as

failing to solve algebraic loop occurs, it is not possible to

switch to an alternative execution model. Moreover, algebraic

loops are only supported at simulation time and are not

compiled to executable code.

c) Others: A feedback loop in LabVIEW using an Al-
gebraic Variable Function is interpreted as a DAE as well.

It uses a Backward Differential Formula (BDF) method to

solve the DAE which supports error control. In addition,

LabVIEW provides and calculates an execution order similar

to Simulink. Similarly to Simulink, LabVIEW has a range

of numerical ODE solvers that are able to control the error.

Again, LabVIEW lacks the ability to recover from failures.

Furthermore, Shampine et al. prove a method for finding

consistent initial conditions by applying a BDF step from t−
Δt [16]. This method is applicable to every DAE of order 1.

2https://de.mathworks.com/help/simulink/ug/integration-considerations-for-
matlab-function-blocks.html

Mosterman et al. analyse artificial algebraic loops and come

up with automated approaches to resolve those [17] . They

range from executing the nonvirtual components several times

to split up the execution function for each of the underlying

subcomponents.

Our semantics is inspired by both FOCUS and Simulink, but

focuses on fulfilling the three requirements defined earlier. The

prototype implementation compiles code that satisfies these

requirements.

V. EXECUTION SEMANTICS

C&C models for cyber-physical systems (CPSs) are built

with the intent to design a dataflow which is processed by

the components and directed by the connectors. This means

we have data which enters the system (e.g. via sensors) and

which is processed to produce an output (e.g. for actuators)

for each time step. In this section we introduce a synchronous

and weakly causal execution semantics for such models. The

presented semantics is used in the EMA language family, the

open source implementation is available on Github1.

EMA semantics is defined on atomic components and the

composition of such components for each time step. Here, the

domain of time t is the discrete set {0, 1 ·Δt, 2 ·Δt, . . . } with

Δt being the system’s sampling rate.

A component maintains input and output ports defining its

interface and inner state variables. For an atomic component

c we denote the set of input ports as cin, the set of output

ports as cout and the set of state variables as cstate. For each

input port ik ∈ cin its value at a given time step t is ik(t)
while cin(t) denotes the values for all input ports at time t.
Same applies for the output ports oj ∈ cout and state variables

sl ∈ cstate, respectively. We denote the respective domains as

Ik = dom(ik), Oj = dom(oj) and Sl = dom(sl).
A component’s behavior is defined through its implemen-

tation which sets the output in relation with the current input

and current state. An implementation is a series of assignments

which computes the output on the current input and updates

the state variables. This defines a set of functions for both the

calculation of the output port values and the calculation of the

next state variable iteration. Both are computed on the inputs

and current inner state at time step t. We define an output

function λ
oj
c for each output port and an update function φsl

c

for each state variable sk on the interface

λoj
c : I1 . . . Im × S1 . . . Sn → Oj ∀oj ∈ cout (11)

φsl
c : I1 . . . Im × S1 . . . Sn → Sl ∀sl ∈ cstate. (12)

Consequently, the values of the output ports and state variables

at time t are

oj(t) = λoj
c (cin(t), cstate(t)) ∀oj ∈ cout (13)

sl(t+Δt) = φsl
c (cin(t), cstate(t)) ∀sl ∈ cstate. (14)

λ
oj
c and φsl

c are deterministic functions which calculate the

same output for the same set of inputs. Those can range from

the simple implementation of an addition operation to the

1https://github.com/MontiCore/EmbeddedMontiArc/

267

highly complex definition of an MPC optimization [18]. Note

that for the initial time step the inner state variables sl(t = 0)
have to be provided by the modeler. We can obtain these

separated functions from the component’s implementation

block simply by executing it, setting the according values

and then resetting the state variables. This way all functions

operate on the same set of inputs and state and compute the

corresponding result. That allows for more control over the

system execution as well as for a more detailed definition

of the mathematical semantics. For simplification, assuming

we are only interested in the current time step we now drop

the notation of time and interpret cout, cin and cstate as the

variables at this point in time. Later, we will drop the notation

of the corresponding port or state variable if there is only one

present, e.g. λcomp instead of λo
comp. We obtain the following

notation:

oj = λoj
c (cin, cstate) ∀oj ∈ cout (15)

sl ← φsl
c (cin, cstate) ∀sl ∈ cstate. (16)

For instance, the component in Figure 6 is defined by

o1 = λo1
comp(i1, i2, i3, s1, s2) (17)

o2 = λo2
comp(i1, i2, i3, s1, s2) (18)

s1 ← φs1
comp(i1, i2, i3, s1, s2) (19)

s2 ← φs2
comp(i1, i2, i3, s1, s2). (20)

The output and update functions could be the mathematical

implementations

λo1
comp : o1 = i1 · i2 + s1 (21)

λo2
comp : o2 = max(i3, s2) (22)

φs1
comp : s1 ← s1 + 1 (23)

φs2
comp : s2 ← s2 + 1. (24)

When executing the system, we realize this semantics for

atomic components by setting the current values to the input

ports and executing the code for its behavior implementation.

The new output values are set to the output ports and the

component’s inner state is updated. For the component comp
shown above and input values i1 = 3, i2 = 2, i3 = 4 and state

variable values s1 = 1 and s2 = 2, this would lead to the

execution shown in Figure 6.

Fig. 6. Executing the behavior implementation of an atomar component with
input ports i1, i2 and i3, the output ports o1 and o2, the inner state variables
s1 and s2 and their values.

We can refine the definition of the output and update

function by acknowledging the fact that not all functions are

dependent on all inputs. In fact, some output functions do not

depend on any inputs. Since λo1
comp directly depends on the

input values for i1 and i2, in order to be able to get valid

results, the values for the two input ports must be present

before computing. Such a function is called direct-feedthrough.

In contrast, an output function λ
oj
c which is only dependent

on its inner state values is called nondirect-feedthrough. Such

output behavior of a component c can then be defined through

a function on the interface

λoj
c : S1 . . . Sn → Oj (25)

oj = λoj
c (cstate). (26)

Normally, components which are defined by nondirect-
feedthrough functions compute their state update on the current

input values. Examples for nondirect-feedthrough components

are the Constant component or Delay component. The

Constant component does not have an input port at all and

always outputs the same value. The Delay component delays

the input by one time step and hence only the update function

is dependent on the current input. We will use this property

later when defining the order in which the components need

to be executed. The goal for our semantics of a component

Fig. 7. Component composition of the two components f with input port fi,
output port fo and state variable fs and g with input port gi, output port go
and state variable gs.

composition as seen in Figure 7 is an execution of the output

and update functions which results in the computation for

the current time step. In the mathematical sense, we can put

all output functions in one equation system which needs to

be solved at each time step. Every function introduces one

equation with exactly one new variable, the output port. State

variables are given at each time step and input port values can

be derived with the connector equations:

out = go (27)

go = λgo
g (gi, gs) (28)

gi = fo (29)

fo = λfo
f (fi, fs) (30)

fi = in. (31)

Equations (28) and (30) are introduced by the output functions

and Equations (27), (29) and (31) are the connector equations.

In general, for a component b the current value for an input

port bink
∈ bin can be derived by the equation built by an

incoming connector (aoutj , bink
) ∈ connectorsEMA for which

aoutj is the source of bink
. For component g the values for

the input port gi can be derived by replacing it with the

corresponding connected output port fo leading to a more

compact version of the equation system

out = go (32)

go = λgo
g (fo, gs) (33)

fo = λfo
f (in, fs). (34)

268

The actual execution of the semantics on a component com-

position is realized by computing the components’ output

functions sequentially and transporting the output values over

the connectors to the input ports of the target components.

For instance, Figure 8 shows a single execution iteration of

Fig. 8. Left to right, top to bottom: One execution iteration of the component
composition of the addition component a and the multiplication component
m with the input values in1 = 3, in2 = 2 and in3 = 3 leading the the
overall result out = 9.

a simple component composition of an addition component

a and a multiplication component m. First, the input values

(3, 2, 3) are transported along the connectors to the input ports

of a and m. Thereafter, all input values for m are present and

λm can be executed. The result is used in λa which produces

the value for output port out.
We can easily figure why the order of execution here is

highly important and must not be mixed up. If we executed

component a in step 2 instead of component m we run into

errors. The value for the second input port is not set yet and

we could only either assume a default value on that port or

take the value of a previous execution iteration. The value

for out would be independent of the result of m and the

overall result would be wrong according to the semantics

we defined earlier. To face this very problem we define an

execution order consisting of the operations for transporting

values along connectors, calculating a component’s output

with its output functions λ
oj
c , and calculating a component’s

next state variables with its update fuctions φsl
c . To implement

the semantics definition of atomic components and component

compositions and to compute the correct results, the execution
order has to satisfy the following conditions:

• Before executing the output function of a direct-
feedthrough component, all input values of the current

time step must be given.

• Before executing the update function of a component, all

input values of the current time step must be given.

• The update function is executed after the component’s

output function.

The first and third condition are responsible for the correct

execution of each atomic component output definition so

that it computes on the input and inner state values of the

current time step. The second condition is responsible for

the correct execution of the update function on the current

input values. Note that the output functions of a nondirect-
feedthrough component can be executed at any time before

the component’s update functions. An execution order that

satisfies those three conditions is correct with respect to the

semantics defined earlier. Such an execution order is called

valid. For the example above a valid execution order as seen

in Figure 8 would be:

1 Transport the input values along the connectors.

2 Execute λm and transport the output value along the

connector.

3 Execute λa and transport the output value along the

connector to out.

An invalid execution order would be:

1 Transport the input values along the connectors.

2 Execute λa and transport the output value along the

connector to out.
3 Execute λm and transport the output value along the

connector.

A valid execution order solves the output function equation

system. Whenever an output function is ready to be executed

according to the execution order, all input values are present

und thus the function computes the correct mathematical

result. So for Figure 8 λs computes the correct system output.

This is equivalent to substituting the equations into each other

until there is only one equation for each output port of the

overall system. For our system in Figure 8 this substitution

would lead to the function

out = λa(in1, λm(in2, in3)). (35)

We can always calculate an execution order for cycle-free

component systems by a simple tree traversal which computes

a topological order. This is more complicated when observ-

ing a cyclic system. In our CollisionWarning system

(Figure 3) we notice that there is a circular dependency

of direct-feedthrough components which we call a direct-

feedthrough loop. The components’ output calculations are

directly dependent on their own results for the same time step.

The mathematical interpretation of the direct-feedthrough loop

is the circular equation system

multo = λmult(v1, divo) = v1 · divo (36)

addo = λadd(s1,multo) = s1 +multo (37)

subo = λsub(addo, s2) = addo − s2 (38)

divo = λdiv(subo, v2) =
subo
v2

. (39)

If we tried to apply our substitution approach to this system,

we would run into an infinitely long expression calling itself

269

recursively:

sc = addo (40)

addo = λadd(s1,multo) (41)

addo = λadd(s1, λmult(v1, divo)) (42)

addo = λadd(s1, λmult(v1, λdiv(subo, v2))) (43)

addo = λadd(s1, λmult(v1, λdiv(λsub(addo, s2), v2))) (44)

. . .

By this example, we can easily see that in order to calculate

λadd, we first need to provide all input values, hence we first

need to compute λadd and thus we cannot calculate a valid

execution order. This means that we cannot provide a valid

execution semantics via the execution order for systems which

contain a direct-feedthrough loop. We will discuss this in more

detail in the next section.

In contrast, we actually can calculate a valid execution

order on nondirect-feedthrough loops. Figure 9 shows the

component system SumUp which successively sums up the

input values. An input stream of [1, 1, 1, . . .] leads to the

output stream of [1, 2, 3, . . .]. The component delay outputs

the current state and updates it afterwards with the current

input value. This component is defined by the two behavior

functions λd and φd:

λd : Sd → Od od = λd(sd) = sd (45)

φd : Id → Sd sd = φd(id) = id. (46)

This is a nondirect-feedthrough component, it does not directly

forward its input to its output. We can use this to break loops

and calculate an execution order as we are able to directly

solve the equation for sum by substituting

sum = λa(in, λd(sd)). (47)

and the corresponding execution order is

1 Transport the input values along the connectors.

2 Execute λd and transport the output value along the

connector.

3 Execute λa and transport the output value along the

connector to sum.

4 Execute φd.

Note that the overall execution of the delay component is

split into the two steps of output and update separated by the

output calculation of the add component. This independent

execution of the two functions allows for resolving loops

that contain nondirect-feedthrough components in contrast to

the stiff compound of a single component execution. The

execution order above fulfills the three rules and thus the value

of sum is assigned the correct value for the current time step

and the state values of all components are updated correctly

with the correct input values.

We defined the mathematical semantics as well as the

execution semantics for atomic components and component

compositions and stated that we cannot provide an execution

order for systems which contain a direct-feedthrough loop.

Fig. 9. The component system SumUp forms a nondirect-feedthrough loop
with components delay and add. z−1 denotes a delay of one time step.

VI. LOOP SOLVING

As discussed in the last section, we have no approach to

compute an execution order for loops of direct-feedthrough

components so that the execution produces an output which

solves the model’s spanned equation system. However, the

problem of direct-feedthrough loops arises in the domain

and to tackle RQ3 we need a methodology to handle it.

The equation systems defined by a direct-feedthrough loop

might have a solution and such a solution can be approached

numerically at runtime. But this raises the following problems:

First, if there is no solution to an equation system, what is the

semantics for our component system? This problem arises for

unsolvable equation systems like x = 1 + x and equation

systems that turn out to be unsolvable for some concrete

values like our collision warning system which does not have a

solution for crash location and time if both vehicles drive with

the same velocity. Second, the numeric solver might fail to

converge to a solution or the time to acquire an exact solution

might take too long for real-time safety-critical systems. And

third, the solution might not be exact but instead has an error

margin. We need to address all three problems in order to

define an execution semantics for component systems with

direct-feedthrough loops.

First of all, whenever a direct-feedthrough loop occurs we

cannot provide an execution semantics for which we know

with certainty that it solves the mathematical semantics, with

very few exceptions. What we might provide is an execution

that approximates this semantics with some error margin, at

best. Exceptions are equation systems which we can solve

analytically at compile-time by replacing them with a loop-free

component system. For example, the equations of the collision

warning system (Equations (3) and (4)) form the problem of

the intersection of two straight lines which has the analytical

solution that is only dependent on the system’s input ports:

tc =
s2 − s1
v1 − v2

(48)

sc = s1 + v1 · tc. (49)

Our compiler uses an analytical solver [19] which first at-

tempts to come up with a solution for the equation system.

If it is able to solve it, we can synthesize a component

system from this solution at compile-time and directly insert

it into the existing system as shown in Figure 10. This is

done fully automatically since we can map every atomic

operation from a solution term to a math component in EMA.

If there are multiple solutions to choose from, we accept a

random one and inform the modeler. An analytical solution

is always loop-free and we therefore obtain a new system

270

complying with the original model, but for which we can

provide an execution order. To perform an analytical solution

Fig. 10. Synthesized analytical solution for the collision warning system

approach the solver requires an explicit equation system but,

in general, the behavior of components is not covered by

a single assignment like c = a + b as it is the case for

components for simple arithmetic operations. In fact, most of

the components seen in this field of research have a highly

complex behavior implementation like an MPC controller.

Accordingly, we cannot always resolve the output function

λoi
c to a single term which makes analytical solving infeasible

for such component systems. Only simple assignment chains

are automatically resolved to a single term.

Nonetheless, a modeler, who builds a system with direct-

feedthrough loops our solver cannot solve at compile-time and

decides that the semantics can be approximated at runtime,

should be provided with a solution. First, we need to analyze

the kind of equation system defined by C&C models in

more detail. As we stated earlier, each single output function

computes the output port value as a variable dependent on

current input port and inner state variable values. There is one

exception to that: the integrator component sets the derivative

of the output in relation with its input as output′ = input.
This is also the only component for which we provide a

definition of integration, all other components are just custom

numerical integration approximations. To bring this in a more

readable form, we collect all differential variables in the

variable vector y and all algebraic variables in the variable

vector z. We replace all input ports for which the source port

is in y or z by the corresponding variable via the connector

equations. We can assume that all other input values are given

at this time of the execution, thus we do not need to solve for

them. This way the input values together with the current state

variables form the configuration for the equation system for a

given point in time. We replace each of the output functions

by one that is dependent on y, z and the current time t. The

dependency of t is mainly for the current configuration, but is

also important for differential equations. With some reordering

we obtain an equation system in the semi-explicit form [16]:

y′ = f(t, y, z) (50)

0 = g(t, y, z). (51)

The semi-explicit form is the base representation for most

numerical solvers and we can use it to decide what kind of

solver is required depending on the kind we observe.

We display the equation system for the output behav-

ior of the loop in the CollisionWarning system (Fig-

ure 3) in this form with z = (oa om os od)
T and g =

(goa gom gos god)
T as

0 = goa(t, y, z) = oa − λoa
add(s1(t), om) (52)

0 = gom(t, y, z) = om − λom
mult(v1(t), od) (53)

0 = gos(t, y, z) = os − λos
sub(oa, s2(t)) (54)

0 = god(t, y, z) = od − λod
div(os, v2(t)). (55)

The output equation system for the Mass-Spring-Damper
(Figure 4) can be displayed in this form with

y = (x v)T , z = (os oa a oD oc)
T , f = (fx fv)

T and

g = (gos goa ga goD goc)
T

x′ = fx(t, y, z) = v (56)

v′ = fv(t, y, z) = a (57)

0 = gos(t, y, z) = os − λos
sub(oa, FE(t)) (58)

0 = goa(t, y, z) = oa − λoa
add(oc, oD) (59)

0 = ga(t, y, z) = a− λa
gainm

(os) (60)

0 = goD (t, y, z) = oD − λoD
gainD

(v) (61)

0 = goc(t, y, z) = oc − λoc
gainc

(x). (62)

This way we transform each direct-feedthrough loop into an

equation system in semi-explicit form. Based on this form we

differentiate between the four categories

• Linear equation systems without differential equations,

• Nonlinear equation systems without differential equa-

tions,

• Ordinary differential equation systems (ODE),

• Differential algebraic equation systems (DAE).

A linear equation system emerges when y (and f) is empty

and g resolves to a completely linear function. If g does not

resolve to a linear function or is too complex to resolve to

a linear function, the equation system falls into the nonlinear

equation system category. We obtain an ODE when x (and g)

is empty, and a DAE if both x and y are not empty.

The equation system shown in Equation (52) is linear and

we already saw that we can solve it analytically. We know

for sure that linear equation systems can always be solved

by various methods like the Gaussian Elimination and our

compiler is capable of doing so. Therefore we do not consider

such systems in the further analysis. The analytical solver we

use is capable of solving some problems of the other categories

as well. For nonlinear equation systems there are solving

techniques for certain problem classes as for example lower

grade polynomials and known solutions to common problems.

Some ODEs can be solved, e.g. the class of linear ODEs

has well-studied solution approaches via the characteristic

polynomial. DAEs are even harder to solve, but some can be

reduced to ODEs. But in general, we cannot assume that we

can provide an analytical solution to the last three categories

and we need to be able to solve them with numerical solvers

at runtime. Such solvers differ in their methods and accuracy

depending on the problem class. Nonlinear solvers as [20]

tackle nonlinear equation systems by iterative approaches like

the Newton root-finding algorithm or minimization procedures

271

like Line-Search or Trust-Region [14]. To help the numeric

solver a modeler can provide a good initial guess as a starting

point. In EMA we model that along with the component

initialization as seen in L.3 of Figure 11. Finding a numerical

solution for an ODE (e.g. [21]) is the inital value problem

x′ = f(x, t), x(t = 0) = x0 (63)

which can be approached for example with Explicit Euler or

Runge-Kutta. The modeler needs to provide the initial values

and can do so similarly to defining the initial guesses as

shown in L.4. Approaches to solve a DAE (e.g. [22]) contain

a Backward Differential Formula (BDF) [23] which forms a

nonlinear equation system that needs to be solved. Again, a

good initial guess is key, and also the initial values for the

differential variables need to be provided. All those procedures

…
instance Addition add{sum ~= 2};
instance Integrator x{out = 4};
…

1
2
3
4

Fig. 11. A modeler can provide an initial guess for algebraic variables and
initial values for differential variables

are well studied and the error margin can be estimated at

each iteration step which allows for control over the error

acceptance or accepted time overhead for the solving process.

We use this to adress the third problem by forwarding the error

margin to numerical solvers giving the control over it to the

modeler while compiling.

The iterative procedures all have in common that the output

functions are called repeatedly without updating the configu-

ration or in our case the state variables. With our separation of

output and update calculation we had the tools to implement

the interface without much complexity.

Our compiler replaces all components in the loop with com-

ponents whose behavior consists of the attempt to solve the

equation system using numerical solvers. These components

are now only dependent on the external inputs which makes

some components obsolete since they are not relevant for the

model’s output. Figure 12 shows this process: components

mult and sub are deleted and all input ports are forwarded

to the two components add and div. Their behavior imple-

mentation is now to solve the equation system defined by the

direct-feedthrough loop.

Fig. 12. The semantics of a direct-feedthrough loop is to solve the circular
equation system representing this loop

As discussed above, a component might not be able to de-

liver an output due to different reasons. First, there might be no

solution for the given inputs. Second, the computation might

exceed the user’s given time tolerance. Third, the iterative

numerical approaches for solving nonlinear equation systems

as well as DAEs require the search for roots (f(x) = 0) and

for non-continuous functions and some other cases this might

fail to converge. Along with the analytical solver, we provide

a suite to automatically check whether an equation system is

unsolvable or unsolvable for certain inputs with the Microsoft

z3 SAT solver [24]. If these cases cannot be fully ruled out

at compile-time, an error handling mechanism is required.

Therefore, we introduce the notion of fallback components.

A fallback component must have the same interface as the

primary component it backs up. In case the execution of

the primary component fails, the fallback component is used

instead. To avoid delays, a fallback component can be executed

in parallel to the actual component and discard the result if

the primary component was executed successfully. We can

define a chain of fallback components, i.e. if a component

fails for a given input, the fallback successor of the chain

is executed instead and so on, until an execution succeeds.

Assume that X is the set of all possible inputs for a primary

component’s interface. Xi ⊆ X is the set of all inputs which

can be handled by the i-th fallback component in the fallback

chain, where i = 1 refers to the primary component and i+1
is the component which is executed if i fails. In general,

we must prove at compile-time that
⋃

i Xi = X . Often, we

can only determine a subset of Xi analytically at compile-

time. Therefore, the last fallback component often needs to

be chosen such that Xlast = X , which can be accomplished

easily by outputting a constant or only using basic arithmetic

operations.

An example showing how fallback components are im-

plemented in EMA is given in Figure 13. The compo-

nent CollisionSystem has two subcomponents, one

of type CollisionWarning and the other of type

CollisionAvoidance. The former is the algebraic loop

component of Figure 3. The rationale of the system is that the

CollisionWarning component detects potential collisions

and the CollisionAvoidance consumes the computed

collision information to come up with an appropriate reaction.

However, as we have seen, the algebraic loop has no solu-

tion if the velocities of the two vehicles are equal. Hence,

the compiler requires the developer to provide a fallback

component. This is specified in L.5 of Figure 13. For the

component instance named cw, we declare the main type to

be CollisionWarning. This type declaration is followed

by a slash and the fallback component type, in this specific

case: NoCollision. An arbitrarily long fallback chain can

be defined using this syntax.

The fallback component approach is similar to the try-catch

mechanism in languages like Java. To be able to ensure at

compile-time that the last fallback component is executable

if the primary components fail, its behavior implementation is

restricted in EMA to constants, delays (to reuse the last output

of the primary component), and arithmetic operations. In our

concrete example, the NoCollision component outputs two

272

component CollisionSystem {
ports in Q s1, Q s2, Q v1, Q v2,

out Q brake, Q throttle, Q steering;
instance CollisionWarning / NoCollision cw;
instance CollisionAvoidance ca;
s1 -> cw.s1;
s2 -> cw.s2;
t1 -> cw.s1;
t2 -> cw.s2;
cw.sc -> ca.sc;
cw.tc -> ca.tc;
ca.brake -> brake;
ca.throttle -> throttle;
ca.steering -> steering;}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Fig. 13. The collision avoidance component has a collision warning subcom-
ponent which contains a structural loop. A loop-free backup component is
used if there is no solution of the algebraic equation for the given inputs or
if the components takes too much time to compute the result at runtime. The
alternative component type needs to exhibit the same interface as the original.
The instance cw is polymorphic as we don’t know what concrete component
type is being executed.

large negative constants for the collision time t_c and the,

for the sake of simplicity, one-dimensional collision position,

indicating that there is no collision in the future and that the

vehicles are driving at similar velocities.

VII. CONCLUSION

The C&C paradigm is widely used in various fields in re-

search and academia through tools like Simulink or LabView.

Unfortunately, these tools lack a clear and precise semantics

definition. In this work, we developed a synchronous and

weakly causal execution semantics for component models

and demonstrated its feasibility by the example of the EMA

ADL. The semantics is realized by a compile-time scheduling

algorithm for linear component structures, but also supports

algebraic loops and differential equation systems, which are

indispensable in many engineering applications. This is real-

ized by mapping component loops to loop-free equivalents.

Model correctness and the valid input domain are verified

at compile-time. Input sets without a solution are identified

by the compiler and require fallback substitution components.

The high-degree of compiler verification makes a modeling

language using the presented semantics applicable to safety-

critical systems, where runtime errors need to be avoided at all

cost. A toolchain implementing the concepts presented in this

work has been evaluated on examples featuring different kinds

of algebraic and differential loops shown throughout the paper

and hence constitutes a versatile C&C modeling methodology

applicable to the design of complex systems.

REFERENCES

[1] Manfred Broy and Ketil Stølen. Specification and development of inter-
active systems: focus on streams, interfaces, and refinement. Springer
Science & Business Media, 2012.

[2] Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael
von Wenckstern. Modeling Architectures of Cyber-Physical Systems.
In European Conference on Modelling Foundations and Applications
(ECMFA’17), LNCS 10376, pages 34–50. Springer, July 2017.

[3] Evgeny Kusmenko, Bernhard Rumpe, Sascha Schneiders, and Michael
von Wenckstern. Highly-Optimizing and Multi-Target Compiler for
Embedded System Models: C++ Compiler Toolchain for the Component
and Connector Language EmbeddedMontiArc. In Conference on Model
Driven Engineering Languages and Systems (MODELS’18), pages 447
– 457. ACM, October 2018.

[4] Evgeny Kusmenko, Sebastian Nickels, Svetlana Pavlitskaya, Bernhard
Rumpe, and Thomas Timmermanns. Modeling and Training of Neural
Processing Systems. In Conference on Model Driven Engineering Lan-
guages and Systems (MODELS’19), pages 283–293. IEEE, September
2019.

[5] Nicola Gatto, Evgeny Kusmenko, and Bernhard Rumpe. Modeling Deep
Reinforcement Learning Based Architectures for Cyber-Physical Sys-
tems. In Proceedings of MODELS 2019. Workshop MDE Intelligence,
pages 196–202, September 2019.

[6] Evgeny Kusmenko, Svetlana Pavlitskaya, Bernhard Rumpe, and Sebas-
tian Stüber. On the Engineering of AI-Powered Systems. In Lisa
OConner, editor, ASE19. Software Engineering Intelligence Workshop
(SEI19), pages 126–133. IEEE, November 2019.

[7] Mark Nagurka and Shuguang Huang. A mass-spring-damper model of a
bouncing ball. In Proceedings of the 2004 American control conference,
volume 1, pages 499–504. IEEE, 2004.

[8] Ali Asadi Nikooyan and Amir Abbas Zadpoor. Mass–spring–damper
modelling of the human body to study running and hopping–an overview.
Proceedings of the institution of mechanical engineers, Part H: Journal
of engineering in medicine, 225(12):1121–1135, 2011.

[9] D. Dyntar and L. Guzzella. Optimal control for bouncing suppression
of cng injectors. J. Dyn. Sys., Meas., Control, 126(1):47–53, 2004.

[10] Vincent Aravantinos, Sebastian Voss, Sabine Teufl, Florian Hölzl, and
Bernhard Schätz. AutoFOCUS 3: Tooling concepts for seamless, model-
based development of embedded systems. Joint proceedings of ACES-
MB 2015–Model-based Architecting of Cyber-physical and Embedded
Systems, pages 19–26, 2015.

[11] Mathworks Inc. Simulink User’s Guide. Technical Report R2016b,
MATLAB & SIMULINK, 2016.

[12] Control and Display Execution Order
https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-
the-sorted-order.html, 2020.

[13] Philip Rabinowitz. Numerical methods for nonlinear algebraic equa-
tions. Gordon & Breach Science Pub, 1970.

[14] David M Rosen, Michael Kaess, and John J Leonard. An incremental
trust-region method for robust online sparse least-squares estimation. In
2012 IEEE International Conference on Robotics and Automation, pages
1262–1269. IEEE, 2012.

[15] Jorge J Moré and David J Thuente. Line search algorithms with
guaranteed sufficient decrease. ACM Transactions on Mathematical
Software (TOMS), 20(3):286–307, 1994.

[16] Lawrence F Shampine, Mark W Reichelt, and Jacek A Kierzenka.
Solving index-1 DAEs in MATLAB and Simulink. SIAM review,
41(3):538–552, 1999.

[17] Pieter J. Mosterman and John Edward Ciolfi. Automated approach
to resolving artificial algebraic loops, January 23 2007. US Patent
7,167,817.

[18] Ting Qu, Shuyou Yu, Zhuqing Shi, and Hong Chen. Modeling driver’s
car-following behavior based on hidden markov model and model
predictive control: A cyber-physical system approach. In 2017 11th
Asian Control Conference (ASCC), pages 114–119, 2017.

[19] A. Meurer, C. P. Smith, M. Paprocki, O. Čertı́k, S. B. Kirpichev,
M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake,
S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats,
F. Johansson, F. Pedregosa, M.J. Curry, A. R. Terrel, Š. Roučka,
A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz. Sympy:
symbolic computing in python. PeerJ Computer Science, 3, January
2017.

[20] Andreas Wächter and Lorenz T Biegler. On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical programming, 106(1):25–57, 2006.

[21] Karsten Ahnert and Mario Mulansky. Odeint–solving ordinary differ-
ential equations in c++. In AIP Conference Proceedings, volume 1389,
pages 1586–1589. American Institute of Physics, 2011.

[22] Ivan Korotkin. A simple but powerful c++ solver for differential
algebraic equation (dae) systems, 06 2019.

[23] Simulink Solve Differential Algebraic Equations (DAEs)
https://de.mathworks.com/help/matlab/math/solve-differential-algebraic-
equations-daes.html, 2020.

[24] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, page 337340, Berlin, Heidelberg,
2008. Springer-Verlag.

273

