
Structurally Evolving Component-Port-Connector
Architectures of Centrally Controlled Systems

Jörg Christian Kirchhof, Bernhard Rumpe, David Schmalzing, Andreas Wortmann
Software Engineering, RWTH Aachen University

Aachen, Germany www.se-rwth.de

ABSTRACT
The increasing complexity of software variants demands for vari-
ation management techniques suitable for industrial practice. As
“clone-and-own” with subsequent manual evolution still is a popu-
lar method to create software variants, this leads to product lines
that are difficult to maintain and evolve and can produce conflicts
when changes occur in both, product line and variant. Where general
approaches to differencing and merging handcrafted changes to prod-
ucts perform suboptimally, respecting assumptions on the structure
of the architecture can reduce the differencing search space and yield
better results. We present a novel method for differencing and merg-
ing hierarchical component-port-connector architectures based on
the FOCUS calculus. It leverages assumptions on the distribution of
components to facilitate calculating differences between architecture
versions and deriving delta bundles to update software products to
changes in the underlying product line. Through a (preliminary) sur-
vey with 27 participants, we compared the results of our method with
the results of manually differencing. The survey showed that this
method yields deltas and merge results that are considered correct by
the participants. Overall, we found that including assumptions about
the architectural style and that grouping related deltas into compact
bundles can greatly facilitate merging manually created and evolved
products back into their underlying product lines.

1 INTRODUCTION
Software is devouring the world: most of the systems we use on a
daily basis, the systems society relies upon, and industrial innovation
are driven by software. This growing complexity of software drives
industrializing software development. In particular, model-driven
engineering (MDE) [15] aims to reduce the gap between the problem
domain of discourse and the solution domain of software engineering.
To this effect, it leverages more abstract and possibly domain-specific
models as primary development artifacts. To support the modeling
of software architectures, research and industry have developed over
120 [23] architecture description languages [25]. These languages
have been successfully deployed to and used in various domains,

This research has partly received funding from the German Federal Ministry for Educa-
tion and Research under grant no. 01IS16043P. The responsibility for the content of this
publication is with the authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
VaMoS ’20, February 5–7, 2020, Magdeburg, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7501-6/20/02. . . $15.00
https://doi.org/10.1145/3377024.3377035

such as automotive [18], avionics [13], or robotics [30]. However, in
many of these domains, reuse of software (documentation, models,
source code, etc.) among different products is a major challenge.
Research investigates methods and concepts to harness variability
modeling techniques [16], such as feature diagrams [5] or deltas [34],
to arrange the different constituents of software products in Software
Product Lines (SPLs) in such a way that their systematic reuse across
different products is supported.

While these contributions enable systematic reuse of software
development artifacts, the reality of software reuse often still relies
on manually copying and adjusting artifacts (so-called “clone-and-
own” [14]) methods. This severely complicates the evolution of prod-
ucts or product lines, as changes to individually evolved products
may need to be re-integrated into the originating product line. Per-
forming the necessary differencing and merging activities manually
is costly and error-prone. Hence, there has been active research [24]
in automating both activities for various kinds of software devel-
opment artifacts, such as architecture views [1], component and
connector architecture models [9], UML-based architectures [37],
Simulink models [20], and many more.

Many general approaches to differencing and merging perform
suboptimally due to solving overly generic challenges, whereas in-
cluding assumptions about the used architectural style can reduce the
differencing search space and, hence, produce useful results more
efficiently. We present a novel method for the efficient differencing
and merging of hierarchical component-port-connector (CPC) archi-
tectures [25] that are based on the FOCUS calculus [6]. This method
rests on the assumption that the node degrees of CPC architecture
graphs often follow a power-law distribution [4]. Based on this, it
calculates related components and their differences between two ver-
sions of a CPC architecture and produces bundles of related deltas
(i.e., small architecture model transformations) that can be applied
to update manual changes from a predecessor product architecture
to a successor semi-automatically. Bundling related deltas relieves
architecture modelers from comprehending large sets of minuscule
deltas and it reduces errors as bundled deltas are applied en bloc,
hence omitting necessary deltas is impossible.

In the following, Section 2 introduces preliminaries and Section 3
presents a motivating example. Section 4 presents our method for
computing differences in CPC architectures and Section 5 explains
how the resulting deltas are used to merge architectures. Then, Sec-
tion 6 presents a user study on the reception of our method’s results
regarding their use. Section 7 discusses our results. Section 8 high-
lights related work. Section 9 concludes.

2 PRELIMINARIES
We leverage delta modeling [10] to describe differences between
architecture models that are based on the FOCUS calculus [6, 31]

[KRSW20] J. C. Kirchhof, B. Rumpe, D. Schmalzing, A. Wortmann :
Structurally Evolving Component-Port-Connector Architectures of Centrally Controlled Systems.
In: International Working Conference on Variability Modelling of Software-Intensive Systems (VAMOS'20), ACM, Feb. 2020.

www.se-rwth.de
https://doi.org/10.1145/3377024.3377035

BumperBot (base) CPC

Bump

Control

Ultra

sonic

Motor

m1

Motor

m2

(a) Base variant of the bumperbot
architecture.

BumperBot (v1)

Laser

Conv

CPC

Bump

Control

Motor

m1

Motor

m2

Motor

m3 Added new
instance of
type motor

Changed
type of
sensor

(b) First version (v1) evolved from the base architecture.

BumperBot (v2) CPC

Bump

Control

Ultra

sonic

Motor

m1

Motor

m2

Dash-

board

Added instance
of type dash-
board

Changed interface
of type motor

(c) Another version (v2) evolved from the base architecture.

Figure 1: Three versions of an architecture. Two versions evolved out of the same base.

for discrete software systems. Therefore, this section briefly reca-
pitulates FOCUS, the definition of deltas following existing def-
initions [10, 21], and contains assumptions about the used CPC
architectures.

2.1 FOCUS
FOCUS is a mathematical framework for describing software-inten-
sive systems as networks of stream-processing functions (SPFs). To
this end, the behavior of each component is defined by a function
from its input channels (i.e., a set of streams) to its output channels
(also a set of streams). Channels transport messages of their respec-
tive types in order of their transmission only—they do not have be-
havior on their own. The stream-processing functions of FOCUS are
mathematical objects that can be composed and refined [6]. Through
this, stepwise refinement, the process of starting with a set of under-
specified functions (requirements) and decomposing and refining
these over time into fully specified functions (implementations) be-
comes possible and verifiable. For communication, FOCUS provides
three different timing paradigms (time-synchronous, untimed, and
timed). Out of these, we consider time-synchronous communication,
which is typical for embedded systems, only. In time-synchronous
systems, a global clock determines the progress of time and in each
time slice, a single message is passed on every channel.

2.2 MontiArc
While FOCUS is a pure mathematical framework, we use its realiza-
tion in the MontiArc ADL [8, 17, 33] to evaluate our method. In Mon-
tiArc, component types are either atomic or composed and contain
subcomponents. The behavior of atomic components corresponds
to a single SPF, whereas the behavior of composed components
corresponds to the composition of functions. The subcomponents of
composed components communicate via the interfaces of directed
and typed ports defined in their respective component types. Fol-
lowing FOCUS, only components have behavior themselves, while
connectors between components transmit messages according to the
underlying timing paradigm only. More complex communication,
e.g., communication busses, would be modeled using components.
MontiArc can be easily tailored to different domains [7] and we have
used it in automotive [12], robotics [2], and education [32].

Figure 1 illustrates three MontiArc architectures that represent
different versions of the decomposed BumperBot component type.
Each of these yields subcomponents providing the functionality of
sensors (such as Ultrasonic), of actuators (e.g., Motor), or of

system control (e.g., BumpControl). Whether these are composed
themselves is not visible from the outside and, hence, fosters reuse
of components in different contexts.

2.3 Deltas
Instead of using deltas to derive products of a delta-oriented SPL,
we use deltas to express the change operations needed to transform
one model version into another. Explicitly, a change operation op
is an atomic addition or removal of a model element, and a delta
δ = {op1, . . . ,opn } is a set of change operations [21] that can be
applied to a model mi to transform it into a model mj . The set of all
possible deltas is denoted as D.

Following [10], we define −(−) : D ×M → M, whereM is
the universal set of all models, to be the application function that
applies a delta to a model. Given δ ∈ D and m ∈ M, δ (m) ∈ M
is the model resulting from applying delta δ to model m. Deltas
can be chained by using the composition function · : D × D →
D [10]. Hence, (δy · δx) (m) = δy (δx (m)) denotes first applying
δx to model m and then applying δy . We derive deltas δ1, . . . ,δn ,
such that δm1,m2 = δ1 · . . . · δn is a regression delta [22] explicitly
capturing the differences between arbitrary CPC architecture models.
The deltas chained by a regression delta do not necessarily lead to
valid models if applied individually.

3 EXAMPLE
A major challenge in the evolution of software is managing changes
across different artifacts or versions of the same artifact. Changes
in an artifact must be accompanied by corresponding changes to
dependent artifacts to ensure consistency. When several developers
are tasked with evolving software, their changes must be brought
together and conflicting changes need to be resolved. We compare
and merge versions of an architecture that evolved out of the same
base version.

Consider the example in Figure 1 that shows three versions of
the BumperBot CPC architecture. The example consists of the base
version, as well as two versions (v1, v2) that were developed inde-
pendently by two different teams and evolved from the base version.
The base version consists of four components. The controller compo-
nent of type BumpControl is connected via outgoing ports to two
components of type Motor that control locomotion. The environ-
ment of the BumperBot is captured by an ultrasonic sensor and the
corresponding component of type Ultrasonic that is connected
to the controller via an incoming port. In the first version, the de-

velopers replaced the Ultrasonic component by a component
of type Laser. To ensure consistency to the existing port of the
controller component, the developers also added a component of
type Conv that translates the signal of the laser component to a sig-
nal compatible with the controller’s interface. The developers also
added a third motor component to enhance mobility. In v2, the devel-
opers instead added a second port to the Motor type and connected
the two motor components to a component of type Dashboard to
provide a view onto the performance of the motor components.

When merging the two evolved versions v1 and v2, a decision
must be made whether to keep the ultrasonic component or replace
it with the laser component. The latter implies that the converter
component also needs to be selected, as the interface of the laser
component is incompatible with the controller component. Vice
versa, taking the converter component without the laser component
results in an ill-formed architecture, given that all ports need to be
connected. In addition, extending the type Motor with the outgoing
port from v2 also implies including the dashboard component in
the merge result. However, the change to the Motor type in v2 is
in conflict with the addition of a motor component in v1, as there
is no viable option to connect the component to. A method for
differencing and merging should entail both, identifying dependent
changes and successively abstracting from minuscule changes, as
well as identifying conflicting changes.

4 STRUCTURAL DIFFERENCING
In this section, we present an algorithm for finding deltas between
two CPC architectures, e.g., the base version and v1 from the exam-
ple in Section 3. Combined, the identified deltas form a regression
delta between the architectures. This algorithm is based on a set of
assumptions that allow the algorithm to group the found deltas into
more compact delta bundles.

The node degrees of many networks, both man-made and natu-
rally created, follow a power-law distribution [4]. In other words,
these networks contain a large number of nodes with only a small
number of connections and a small number of nodes with a large
number of connections. If we consider components to be nodes and
connectors to be edges, this pattern can also be found in software
architectures if one or multiple central controller components co-
ordinate the data exchange between the other components. Many
architectural patterns incorporate some form of such a central com-
ponent, e.g., bus-based architectures (which would model the bus
as a component in MontiArc). Note that the central controller only
needs to be at a central position in the architecture and ideally be
well-connected to the other components. Despite its name, this com-
ponent does not actually have to control other components.

Assumption A1. The architectures to be analyzed follow a structure
in which one component acts as a central controller

This assumption allows us to derive contextual relationships be-
tween the components connected to the central controller. These
contextual relationships are leveraged to create more complex re-
placement operations that can replace components by components
with different names, types, or interfaces. We build those contextual
relationships based on the port of the central controller that a group
of components is connected to.

Assumption A2. If different groups of components are connected
to the same port of the controller in different versions of the archi-
tecture, these groups offer the controller a related functionality.

This is a reasonable assumption as ports with different functional-
ity often come with different names or types. In case the architects
refactor parts of the architecture and connect different groups of
components to the central component, they will likely also change
the name or type of the port of the central component that the com-
ponents are connected to. This assumption reduces the size of the
search space in which we have to compare components for similar-
ity. As we work on the ports of the central controller, this central
controller needs to be present in both versions of the architecture. Us-
ing two different components as starting points for our differencing
could lead to calculating incorrect deltas.

Assumption A3. The controllers found in the two compared ver-
sions of the architecture are different versions of the same component
instead of two completely different controllers.

As already mentioned in [1], differencing two completely differ-
ent architectures could be done by just deleting all nodes from the
first and adding all nodes of the second architecture. While these
deltas would be correct, we would not consider them useful. There-
fore, it is reasonable to assume a certain level of similarity between
the compared architectures. The assumption of comparing two sim-
ilar architectures is also made by related architecture differencing
algorithms such as [1].

Assumption A4. We compare two versions of the same architecture
instead of two completely different architectures.

The assumptions A1 - A4 allow our differencing algorithm to
produce deltas that do not only add or remove components but also
replace groups of components. Our algorithm does not produce
incorrect deltas when comparing architectures that do not follow our
assumptions about the architectural style (A1- A2). However, the
derived contextual relationships are less useful in this case, i.e., large
groups of components would be replaced by each other even though
they might not be contextually related.

4.1 Algorithm Description
In general, the differencing algorithm consists of six steps:

(1) Identify the controller components in both versions of the
architecture.

(2) Map the ports of the controller components to each other.
(3) Find the tree structure of components that is connected to

each port. If the graph of connected components contains a
circle, the spanning tree starting at the controller component
is chosen.

(4) Map the components of the trees identified in the previous
step to each other.

(5) Create deltas from component mappings.
(6) Bundle related deltas that should not be applied individually.

These steps are repeated for each hierarchy level, i.e., each subcom-
ponent of a composed component, if two subcomponents in different
versions of the architecture are recognized as unequal versions of
each other. This leads to creating high-level deltas, which do not
require the user to understand low-level change operations. For exam-

ple, a delta that deletes a composed component only captures which
component it deletes but does not include the individual change
operations to delete every element within the composed component.

Step 1: Identify the controller components. First, we reduce
the search space by limiting the search for controller components
to the common subgraph induced by the components that are part
of both architectures. Even if the real controller component was
only added in a later revision of the architecture as the architecture
got more complex, it makes more sense to use two versions of the
same component as a starting point for further analysis. Using differ-
ent components as controller components could lead to calculating
incorrect deltas.

Next, the component that has the largest number of connections
to other components is searched within the common subgraph. Since
the common subgraph only contains components that exist in both
versions of the architecture, connections to or from added or re-
moved components are not considered in the calculation. In the case
that the common subgraph does not contain any connections, all
connectors of the first version of the architecture are considered
in the calculation. In the case that multiple components have the
same number of connections in the common subgraph, the algorithm
sums up the distances between these components and every other
component of the common subgraph. The algorithm chooses the
component that has the smallest sum of distances as controller. This
is done to ensure the central component has a central position in the
architecture.

Step 2: Map the ports of the controller components to each
other. The mapping of ports relies on multiple confidence levels.
First, the algorithm tries to match ports by searching for ports with
matching names and directions. If there are ports left for which no
counterpart could be found, the algorithm next searches for ports
with matching data type and direction. All ports that still cannot be
matched to a counterpart are considered new.

Step 3: Find spanning trees starting at the ports of the con-
troller component. As mentioned above, we assume that groups
of components that are connected to the same port of the controller
in different versions of the architecture offer a related functionality.
Therefore, the algorithm builds spanning trees starting at each port
of the controller to find these groups of components. The main idea
of the spanning tree search is to start Breadth-First Searches (BFSs)
at the ports of the controller component. For each component con-
nected to a port of the controller component, the algorithm starts
a BFS at the component that is directly connected to the controller
component. Each BFS only considers connections pointing in the
same direction, i.e., either away from or towards the already found
components. The direction is determined by the direction of the con-
nection between the controller component and its direct neighbors.
As an exception to this rule, connections are also included in the BFS
if the components they add to the spanning tree would otherwise not
be found. Components can be part of multiple spanning trees. This
is resolved in step five by bundling deltas that should not be applied
individually.

Step 4: Map the components of the trees identified in the
previous step to each other. Spanning trees that are connected
to matching ports of the controller components are considered to

belong together. In this step, the algorithm matches the contents of
spanning trees that belong together.

Within each pair of trees, the algorithm first searches for compo-
nents that have the same name and neighbors with the same names.
Similar to UMLDiff [37], these components serve as “landmarks”
to later recognize other components by their structural relations to
these landmarks. However, unlike UMLDiff, our approach also con-
siders the names of the neighbors of each landmark. If the names
of the neighbors do not match, a component cannot be considered
to be a landmark. This prevents choosing moved components as
landmarks. Each landmark represents a group of currently one com-
ponent, which can be extended in the following to create bigger
landmarks.

Next, all components that are not selected as landmarks are
matched by their relationship to the already existing landmarks.
For this purpose, the algorithm first creates so-called “crossings”.
Each crossing connects a landmark to a component that has not yet
been matched to its counterpart. Afterward, the algorithm tries to
match these crossings to each other. This is done by considering the
following three cases:

(1) There is exactly one crossing found in each architecture.
Therefore, the components that are not already matched can
be matched and form a new landmark.

(2) There is one crossing found in the one architecture and no
crossing in the other architecture. The component that is not
already matched gets added to the already existing landmark
it is connected to.

(3) There are multiple crossings found in both architectures. Here,
the algorithm tries to match by the type of components. If the
crossings do not connect components of the same types, it
tries to match components for which at least one component
type matches.

Figure 2 illustrates this procedure using the architectures in Fig-
ure 2(a) and Figure 2(b). Initially, only component a is selected as a
landmark, because the neighbors of components b, c, and d do not
match. Next, b is chosen as a second landmark according to case 1.
Then, component x from Figure 2(b) is mapped to component c from
Figure 2(a) because they share the same type. After the crossing
b → x is resolved, there is only one crossing in each version of the
architecture left. Therefore, case 1 is applied and component d forms
a new landmark. Lastly, component e is merged into the landmark
of component x because there is no corresponding crossing found
in the first architecture. Accordingly, two replacements are created:
[C c]→ [C x ,E e] and [D d]→ [F d].

Step 5: Create deltas from component mappings. Now that we
have groups of matching components, the algorithm can create deltas
from these mappings. First, the algorithm creates replacements from
all component groups that could be matched in the previous steps.
Then the algorithm creates deletions for all components from the first
version of the architecture that could not be matched and additions
for all components from the second version of the architecture that
could not be matched.

Step 6: Bundle related deltas that should not be applied indi-
vidually. Some of the deltas created in the previous step may lead
to malformed configurations. For example, if the architectures from

CPC

B b

A a

C cD d

Controller
Component

(a) Excerpt of the first version of
an architecture.

Type
Change

B b

C xF d E e

Rename Addition

A a

Controller
Component

CPC

(b) Excerpt of the second version of an
architecture.

B b

C xF d E e

A a

Controller
Component

Landmark 1

Crossing

CPC

(c) Initial landmarks by matching name and
neighbors in version two of the architecture.

B b

C xF d E e

A a

Controller
Component

Landmark 1

CPC

Landmark 2

Landmark 3Landmark 4

(d) Final landmarks in version two of the
architecture.

Figure 2: Example for the structural mapping performed during step 4.

Figure 1(a) and Figure 1(c) are compared to each other, two replace-
ments are created. Each of them replaces one of the motors by the
motor and the dashboard. However, applying only one of the deltas
would result in an architecture that contains a dashboard with only
one port. Therefore, the algorithm bundles those two replacements
so that it is not possible to create an invalid dashboard, i.e., one
with only one port, by applying only a subset of the created deltas.
Note that this step is not technically necessary. Instead, it provides
an error-prevention mechanism for human developers that decide
which deltas to apply when merging architectures. We choose which
components to bundle by looking at the types of components that
are affected by them. Deltas that affect one or more components of
the same type are bundled.

Formally, a delta bundle is a composite delta (cf. [10]) δm =
δ1 · . . . · δk with respect to a modelm, such that applying the delta
bundle to m yields a valid model, i.e., for a delta bundle δm it holds
thatm ∈ ML =⇒ δm (m) ∈ ML , whereML ⊆ M is the set of all
models valid to the specification of modeling language L.

5 DELTA-BASED ARCHITECTURE
MERGING

SPLs enable developers to create a common product line architecture
that should be used among multiple variants of a product. Developers
derive architectures for concrete products by configuring which fea-
tures they want to include in the product. As all generated artifacts,
the derived concrete architecture ideally should not be modified
manually. However, in practice developers may make modifications
to the derived architectures [11, 35]. This may lead to situations
in which the product line architecture and the derived architecture
are modified simultaneously. Updating a variant to changes in the
product line while preserving local changes requires sophisticated
techniques. In [35], the authors propose a method for updating vari-
ants using a “Three-Way-Merge”.

Three-Way-Merges compare three different versions of an artifact.
In this case, the unmodified base version (b) of the product line
architecture is compared to the modified product line architecture
(v1) and the modified derived architecture (v2). In general, one

base version is compared to two different modifications of the base
version. Merging the changes from both modifications cannot be
done fully automated in many cases [35]. Therefore, we provide a
way of merging three architectures, i.e., one base version and two
modifications to the base version, with the assistance of a developer.

However, merging architectures is an error-prone process. As
mentioned above, not all deltas may be applied individually because
doing so could lead to a malformed architecture. Moreover, deltas
may be contradictory and, therefore, not all combinations of deltas
may be applied. Therefore, we assist the developer by bundling
deltas that should not be applied individually (cf. Step 6 in Section 4)
and by detecting merge conflicts between deltas. This process is
shown in Figure 3. We consider two deltas that replace or delete
the same component of the original architecture to be in conflict
with each other. If the developer decides to merge two deltas that
are in conflict, we inform the developer about the conflict and ask
the developer to choose between the conflicting deltas. To reduce
the extraneous cognitive load (cf. [28]), we provide deltas on a high
level of abstraction, i.e., the developer is only told which component
groups should be added, removed, or replaced. Ports and connections
are hidden from the developer.

After the user has selected a set of deltas that can be used to
create a well-formed architecture, the deltas are applied to the base
architecture. Formally this corresponds to applying (δ1 · . . . · δk) (b),
where δ1, . . . ,δk are the deltas selected by the user. The deltas
δ1, . . . ,δk are also part of the regression delta δb,v1 or δb,v2 . Next,
the result is exported to the original format. The deltas are applied
in hierarchical order, i.e., deltas modifying a composed component
are applied before deltas that modify its subcomponents.

Abstractly, the inner structure of each component is modeled as a
graph structure. Each instance of a subcomponent represents a node
in the graph and each connector represents an edge. This structure
allows us to apply deltas by modifying the graph. Additions and
deletion deltas can be realized by adding or removing nodes and
their attached edges. Note that if a component is between two other
components, e.g., component B in A→ B → C, the disappearance

Present a delta
to the developer

Ask the developer if
the delta should be merged

Check if the selected delta is in
conflict with another selected delta

[Delta should be merged]

Ask the developer to choose
between the conflicting deltas

[Conflict]

Add the selected delta to
the set of selected deltas

[No conflict]

Are there deltas which have never
been presented to the developer?

[Delta should not be merged]

[Yes]

Apply the set of
selected deltas to the model

[No]

AD

Figure 3: Process of requesting a set of deltas to apply from the
user.

of this component would not be modeled as a Deletion but instead
as a Replacement to avoid having unused ports.

Replacements are realized by first removing a (sub)tree structure
from the graph. Then, the tree that should replace the former tree
structure is added. Lastly, we need to connect the root component of
the tree to the rest of the graph. If only one component is replaced,
we further consider the ports of that component. We use the same
algorithm described in step two of Section 4 to decide which ports
to replace with which other ports. The component that replaces the
previous component may not have all ports that were used by the
previous component. To avoid creating dangling connectors that
connect components to non-existent ports, we add all unmatched
ports of the replaced component to the new component.

After all selected deltas are applied, we export the architecture by
using the pretty-printer provided by MontiArc but instead of printing
the actual subcomponents, inner components and connections of
components, the contents of the graph structure are printed. This
allows us to export the architecture in the same format that it was
provided in, while also allowing us to replace the inner structure of
each component.

In summary, the overall merging process consists of four steps:

(1) Compare the base architecture to two modifications of the
base architecture and create deltas (cf. Section 4).

(2) Assist the developer in selecting a valid set of deltas, i.e., a set
of deltas that will produce a well-formed result (cf. Figure 3).

(3) Apply the set of deltas selected by the developer to the internal
representation of the base architecture.

(4) Export the architecture.

6 USER STUDY
We conducted a preliminary user study to investigate whether our
method for differencing and merging of CPC architectures yields
results (1) that are considered correct; (2) that compare to manually
merging software architectures; and (3) that provide intuitive benefits.
This manifests in the following three research questions:

• RQ1: Do the kinds of deltas (add, delete, replace, etc.) intu-
itively created by entry-level software practitioners match the
kinds of deltas used in our approach?
• RQ2: Are the identified deltas expressing differences be-

tween two architecture variants considered correct?
• RQ3: Is the merging result of architecture variants considered

correct?
We focus our research questions on entry-level software prac-

titioners for multiple reasons: (1) They are the least likely to be
preoccupied with (types of) deltas produced by other tools and, thus,
can give appropriate “intuitive” deltas (RQ1) (2) Their lack of famil-
iarity with differencing and merging makes them a likely group of
software practitioners who likely do not understand our results and,
therefore, consider them incorrect (RQ2-RQ3) (3) They are easier
to recruit for a user study than highly experienced software prac-
titioners. Since our research questions aim at evaluating opinions,
we chose a survey as the evaluation type and handed out evaluation
tasks and questioners to willing participants to collect data.

6.1 Survey
The survey was executed through a handed out exercise sheet that
was designed for answering our research questions and consisted of
manual tasks for differencing and merging of architecture variants,
as well as a mix of open-ended and closed questions. The exercise
sheet consisted of four tasks:

(1) The participants were asked to reconstruct the differences be-
tween architecture variants developed by two different teams
and to express changes between these variants and a common
base as deltas. The architecture variants and the common base
were provided both as graphical and textual models. The ar-
chitectures were the same as those shown in Figure 1 with the
exception that no third motor was added in the first version.

(2) The participants were asked to use the deltas they identified
in the first part to merge the two variants and provide the
resulting architecture as a graphical model, as well as the list
of deltas used for merging.

(3) The participants were provided with the differencing and
merging result of our method. This result included one delta
bundle consisting of two deltas and a short explanation of
what a delta bundle is. Participants were asked to compare
the result of our method to their own results and to explain
their assessment. Part three offered a free text area to answer
the questions.

(4) The participants were asked closed questions through a ques-
tionnaire.

We provided all participants with printed exercise sheets and
asked them to complete the tasks and answer the questions by a
specific date. Of those who received an exercise sheet, 27 completed
all tasks and returned the completed exercise sheet.

6.2 Threats to Validity
Our study is subject to threats to construct validity and external
validity. To limit the effects of the threats evaluation apprehension
and hypothesis guessing on construct validity, we guaranteed the
participants complete anonymity, informed them about the goal and
procedure of the study, and asked for honest answers. However, these

threats cannot be completely dismissed. Also, it is not possible to
exclude that participants misunderstood questions. We, therefore,
face threats to conclusion validity. Furthermore, our study faces
threats to external validity as the participants in the study mostly
have, giving our working context, a university background. The study
population can be called a convenience sampling, as participants
were mostly recruited from students and fellow software engineering
researchers, who were encouraged to also recruit their students as
well. Through threats of selection bias and convenience sampling,
the final study population may not be representative of the global
population of software developers. As the study did not include any
experienced developers, our results must be considered preliminary.
Moreover, the participants’ self-assessment on their experience is
prone to the Dunning-Kruger effect.

6.3 Observations
A total of 27 participants completed all tasks and questions in the
study. The participants were asked three closed questions about their
background experience. Answers to closed questions could be given
through a 5-point Likert scale, with answers ranging from 1 (no
experience or strongly disagree) to 5 (high experience or strongly
agree). Namely participants were asked about their experience with
software architectures (xMOD = 3, x = 3.22, s = 0.97), experience
with model differencing (xMOD = 2, x = 1.89, s = 0.70), and
experience with merging (xMOD = 3, x = 2.93, s = 1.00). 11 of the
participants (41%) stated that they have substantial experience (4 or
5) with software architectures. The respondents answered that they
have low experience with model differencing, as nobody stated that
they have above medium (3) experience.

To answer research question RQ1, the participants manually per-
formed their own differencing of the provided architecture variants
and compared their results to our solution. Of the respondents, 18
provided at least basic add and delete operations, 7 only provided
replacement operations, and two provided high-level descriptions.
Of those who provided basic add and delete operations, two also
provided replacement operations and three provided additional op-
erations such as modify, define component type, and create inner
component.

Regarding research question RQ2, the participants were tasked
to compare their differencing solutions to the solution we provided
and asked whether they consider the deltas identified in our solution
to be correct. The deltas provided by our method included one delta
bundle consisting of two deltas. In a closed question 20 (74%) of the
respondents agreed or fully agreed that the deltas identified by our
method are correct (xMOD = 5, x = 4.12, s = 1.03). The participants
also agreed with our differencing solutions in the open text questions,
but two respondents stated that the compactness of our solution made
some changes more difficult to identify and that they would prefer
more detailed solutions.

Research question RQ3 focused on merging architecture variants.
To answer the research question, the participants were asked to
compare their merging solutions with the solution we provided, and,
in closed questions, if they consider our solution to be correct.Of
the respondents, 25 (82%) agreed or fully agreed that the provided
solution is correct (xMOD = 5, x = 4.77, s = 0.51).

7 DISCUSSION
Our approach to differencing and merging hierarchical CPC architec-
tures incorporates assumptions about the architectural style (A1-A2)
to facilitate matching architectural elements and hence produces
meaningful results more efficiently. These assumptions restrict our
algorithm to comparing multiple versions of the same architecture as
it occurs when developing an SPL. If semantically different groups
of components are connected to the same ports of the central con-
troller in different versions of the architecture (A2 not met), the
algorithm will only produce trivial or counterintuitive deltas, e.g.,
very small add/delete operations or very large replacement opera-
tions that replace unrelated functionalities. If our algorithm operates
on two completely different input architectures not coming from the
same product line (A3 and A4 are not met) it will either produce
trivial or incorrect results. If two versions of the same component
are identified as controller component but the architecture overall is
very different (A4 not met), the algorithm will produce trivial results.
If two completely different components are assumed to be different
versions of the central controller (A1/A3 not met), the algorithm will
produce incorrect deltas, i.e., deltas where δm1,m2 (m1) , m2. We
consider this assumption of matching at least one pair of different
versions of the same controller component to serve as a starting
point for our further differencing to be reasonable as we still allow
the matched controller components to have different interfaces and
behaviors.

As with other approaches, our goal is to produce results compara-
ble to those of manual differencing and merging processes. Different
participants identified different kinds of deltas (RQ1). According to
their solutions, it should be considered whether providing not only
generic add and delete operations but also more complex change
operations could be useful. By leveraging delta modeling we are
able to express differences between two architecture versions as a
set of change operations needed to transform one architecture into
the other. Through grouping of related change operations we then
abstract from minuscule changes. Furthermore, we bundle deltas that
lead to invalid intermediate architecture models if applied one-by-
one. This grouping and bundling can simplify their use and reduce
errors, as deltas and their dependent deltas are applied en bloc during
the merging process. A majority of the study’s participants showed
acceptance for the deltas identified by our approach (RQ2). However,
as there is a greater deviation between the responses, the abstraction
from more fine-granular change operations has not been accepted
equally by all participants (RQ1/2). This is supported by partici-
pants explicitly having asked for more fine-granular deltas. Most
of the participants agree with our solution (RQ2). This implies that
grouping change operations and bundling deltas can be useful as it
reduces the number of change operations that have to be considered
while still providing correct results. In some cases, however, control
over more fine-grained change operations may be useful. To this end,
we support control over concrete change operations only on request.

Most of the participants also showed acceptance for our merging
solutions (RQ3). This insight is reinforced by the fact that a large
portion of the solutions of the manual merging is similar to the
solution of our approach. We conclude that our approach indeed pro-
duces results that are considered correct and comparable to manual
solutions (RQ2/3). However, the opinion of the study participants

does not necessarily represent the opinion of the global population of
software practitioners, as participants were recruited from students
and faculty members.

8 RELATED WORK
Software merging has been excessively studied in the past [26]. How-
ever, while there is a wealth of techniques and tools for merging
programs (i.e., source code), support for model evolution has been
identified as a more recent challenge [27]. Model differencing, not
only as a prerequisite for model merging, has become an indepen-
dent field of research and numerous model differencing approaches
have emerged [19], including identity matching [3], signature-based
matching [29], similarity-based matching [36], and semantic differ-
encing [24]. Besides more general approaches, there exist matching
algorithms tailored to particular modeling languages that incorporate
knowledge about the languages’ semantics [27].

UMLDiff [37] is a structural-differencing algorithm for class di-
agrams that takes into account the UML semantics. Similar to our
approach, input models are converted to directed graphs and nodes
of the same conceptual entity are compared. The identification of
conceptually same entities is based on a name similarity and the
relationship to other entities. Concepts comparable to UMLDiff are
implemented in DSMDiff [20], which also uses graphs as underlying
data structure on which the differencing algorithm operates. This
algorithm successively traverses the hierarchy of the input models
while using signature and structural similarity matching to identify
matches and differences. The approach, however, is applicable to
domain-specific models in general and meta-model independent. A
differencing approach specifically tailored to Component & Connec-
tor (C&C) architectures has been proposed in [1]. This approach is
also based on tree matching, but can only find one-to-one mappings
of components. [1] bases its delta finding algorithm on the cost of
transforming the names of the nodes in the compared trees into their
counterpart in the other tree. Like [1], we also use a name-based
search to find starting points, i.e., to create the initial landmarks
(cf. Section 4), but our algorithm also takes the connections of com-
ponents to their neighbors into account to find groups of related
components. This allows our algorithm to find more complex re-
placement operations such as replacing one component by multiple
components instead of the one-by-one replacements of [1]. However,
[1] can also detect hierarchical move operations that are not con-
sidered by our algorithm. As future work, the two algorithms could
be combined by using [1] to find the differences in the hierarchy of
components while using our algorithm to compare components on
the same hierarchy level.

Developed for message-driven C&C architectures, a method for
semantic differencing [9] enables comparing the behaviors of com-
ponents. The method transforms architectures into Büchi automata
before proving refinement for component versions which yields
counter-examples (witnesses) for non-refining component pairs.

In contrast to the presented approaches, our algorithm assumes
an identifiable controller component from which we can span sub-
trees in order to reliably detect matches and content-related changes.
This allows us to abstract from fine-grained change operations and
thus increase the ease of use while avoiding errors by bundling
interdependent deltas.

9 CONCLUSION
We have presented a novel method to calculate differences between
different model versions of hierarchical component-port-connector
architectures that assumes a power-law distribution to identify sets
of related changes. These sets of related changes are represented
as abstract deltas that support understanding and application of dif-
ferences. Further bundling of deltas prevents the creation of invalid
models. To investigate the perceived correctness of the differences,
we conducted a survey with 27 participants. The results show that
abstracted deltas are considered correct to compare architecture
models and our three-way merge based on deltas produces results
as expected by the participants. Overall, we found that leveraging
the domain-specific consideration of the power-law distribution as a
basis for calculating model differences as delta bundles can improve
differencing and merging of architecture variants.

REFERENCES
[1] M. Abi-Antoun, J. Aldrich, N. Nahas, B. Schmerl, and D. Garlan. 2006. Dif-

ferencing and Merging of Architectural Views. In 21st IEEE/ACM International
Conference on Automated Software Engineering. 47–58.

[2] Kai Adam, Arvid Butting, Robert Heim, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. 2016. Model-driven separation of concerns for service robot-
ics. In Proceedings of the International Workshop on Domain-Specific Modeling.
ACM, 22–27.

[3] Marcus Alanen and Ivan Porres. 2003. Difference and Union of Models. In UML
2003 - The Unified Modeling Language. Modeling Languages and Applications.
Lecture Notes in Computer Science, Vol. 2863. Springer, Berlin and Heidelberg,
2–17.

[4] Réka Albert and Albert-László Barabási. 2002. Statistical Mechanics of Complex
Networks. Reviews of Modern Physics 74 (Jan 2002), 47–97. Issue 1.

[5] Don Batory. 2005. Feature models, Grammars, and Propositional Formulas. In
International Conference on Software Product Lines. Springer, 7–20.

[6] Manfred Broy and Ketil Stølen. 2001. Specification and Development of Inter-
active Systems. Focus on Streams, Interfaces and Refinement. Springer Verlag
Heidelberg.

[7] Arvid Butting, Arne Haber, Lars Hermerschmidt, Oliver Kautz, Bernhard Rumpe,
and Andreas Wortmann. 2017. Systematic Language Extension Mechanisms for
the MontiArc Architecture Description Language. In Modelling Foundations and
Applications (ECMFA’17), Held as Part of STAF 2017. Springer International
Publishing, 53–70.

[8] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. 2017.
Architectural Programming with MontiArcAutomaton. In In 12th International
Conference on Software Engineering Advances (ICSEA 2017). Athens, Greece,
213–218.

[9] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. 2017. Se-
mantic Differencing for Message-Driven Component & Connector Architectures.
In International Conference on Software Architecture. IEEE, 145–154.

[10] Dave Clarke, Michiel Helvensteijn, and Ina Schaefer. 2010. Abstract Delta Mod-
eling. In Proceedings of the Ninth International Conference on Generative Pro-
gramming and Component Engineering (GPCE ’10). ACM, New York, NY, USA,
13–22.

[11] P. Clements and L. Northrop. 2002. Software Product Lines: Practices and
Patterns. Addison-Wesley. 159 pages.

[12] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel, Evgeny
Kusmenko, Matthias Markthaler, Philipp Orth, Karin Samira Salman, Johannes
Richenhagen, Bernhard Rumpe, Christoph Schulze, Michael Wenckstern, and
Andreas Wortmann. 2019. SMArDT modeling for automotive software testing.
Software: Practice and Experience 49, 2 (February 2019), 301–328.

[13] Peter H. Feiler and David P. Gluch. 2012. Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language. Addison-
Wesley.

[14] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Developing
Software Variants. In 2014 IEEE International Conference on Software Mainte-
nance and Evolution. IEEE, 391–400.

[15] Robert France and Bernhard Rumpe. 2007. Model-Driven Development of Com-
plex Software: A Research Roadmap. In Future of Software Engineering 2007 at
ICSE.

[16] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. 2001. On the Notion of
Variability in Software Product Lines. In Proceedings of the Working IEEE/IFIP
Conference on Software Architecture. IEEE Computer Society, Washington, DC,

USA, 45.
[17] Arne Haber, Jan Oliver Ringert, and Bernard Rumpe. 2012. MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems. Technical
Report AIB-2012-03. RWTH Aachen. http://aib.informatik.rwth-aachen.de/
2012/2012-03.pdf

[18] Ramin Tavakoli Kolagari, DeJiu Chen, Agnes Lanusse, Renato Librino, Henrik
Lönn, Nidhal Mahmud, Chokri Mraidha, Mark-Oliver Reiser, Sandra Torchiaro,
Sara Tucci-Piergiovanni, Tobias Wägemann, and Nataliya Yakymets. 2015. Model-
Based Analysis and Engineering of Automotive Architectures with EAST-ADL:
Revisited. International Journal of Conceptual Structures and Smart Applications
3, 2 (July 2015), 25–70. https://doi.org/10.4018/IJCSSA.2015070103

[19] Dimitrios S. Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and Richard F.
Paige. 2009. Different Models for Model Matching: An Analysis of Approaches
to Support Model Differencing. In Proceedings of the 2009 ICSE Workshop on
Comparison and Versioning of Software Models (CVSM ’09). IEEE Computer
Society, Washington, DC, USA, 1–6.

[20] Yuehua Lin, Jeff Gray, and Frédéric Jouault. 2007. DSMDiff: A Differentiation
Tool for Domain-Specific Models. European Journal of Information Systems 16,
4 (Aug 2007), 349–361.

[21] Sascha Lity, Mustafa Al-Hajjaji, Thomas Thüm, and Ina Schaefer. 2017. Op-
timizing Product Orders Using Graph Algorithms for Improving Incremental
Product-line Analysis. In Proceedings of the Eleventh International Workshop on
Variability Modelling of Software-intensive Systems (VAMOS ’17). ACM, New
York, NY, USA, 60–67.

[22] Malte Lochau, Sascha Lity, Remo Lachmann, Ina Schaefer, and Ursula Goltz.
2014. Delta-oriented Model-based Integration Testing of Large-scale Systems.
Journal of Systems and Software 91 (2014), 63–84.

[23] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and Antony
Tang. 2013. What Industry Needs from Architectural Languages: A Survey. IEEE
Trans. on Software Engineering (2013).

[24] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2010. A Manifesto for
Semantic Model Differencing. In Proceedings International Workshop on Models
and Evolution (LNCS 6627). Springer, 194–203.

[25] Nenad Medvidovic and Richard N Taylor. 2000. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE Transactions
on Software Engineering (2000).

[26] T. Mens. 2002. A State-of-the-Art Survey on Software Merging. IEEE Transac-
tions on Software Engineering 28, 5 (May 2002), 449–462.

[27] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and M. Jazayeri.
2005. Challenges in Software Evolution. In Eighth International Workshop on

Principles of Software Evolution. 13–22.
[28] Sharon Oviatt. 2006. Human-centered Design Meets Cognitive Load Theory:

Designing Interfaces That Help People Think. In Proceedings of the 14th ACM
International Conference on Multimedia (MM ’06). ACM, New York, NY, USA,
871–880.

[29] Raghu Reddy, Robert France, Sudipto Ghosh, Franck Fleurey, and Benoit Baudry.
2005. Model Composition - A Signature-Based Approach. In Aspect Oriented
Modeling (AOM) Workshop.

[30] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wortmann.
2015. Language and Code Generator Composition for Model-Driven Engineering
of Robotics Component & Connector Systems. Journal of Software Engineering
for Robotics 6, 1 (2015), 33–57.

[31] Jan Oliver Ringert and Bernhard Rumpe. 2011. A Little Synopsis on Streams,
Stream Processing Functions, and State-Based Stream Processing. International
Journal of Software and Informatics 5, 1-2 (July 2011), 29–53.

[32] Jan Oliver Ringert, Bernhard Rumpe, Christoph Schulze, and Andreas Wortmann.
2017. Teaching Agile Model-Driven Engineering for Cyber-Physical Systems. In
International Conference on Software Engineering: Software Engineering and
Education Track (ICSE’17). IEEE, 127–136.

[33] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. 2013. A Case
Study on Model-Based Development of Robotic Systems using MontiArc with
Embedded Automata. In Dagstuhl-Workshop MBEES: Modellbasierte Entwick-
lung eingebetteter Systeme, Holger Giese, Michaela Huhn, Jan Philipps, and
Bernhard Schätz (Eds.). 30–43.

[34] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tan-
zarella. 2010. Delta-oriented Programming of Software Product Lines. In Software
Product Lines: Going Beyond.

[35] Sandro Schulze, Michael Schulze, Uwe Ryssel, and Christoph Seidl. 2016. Align-
ing Coevolving Artifacts Between Software Product Lines and Products. In Pro-
ceedings of the 10th International Workshop on Variability Modelling of Software-
intensive Systems. ACM, 9–16.

[36] Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter. 2007. Difference
Computation of Large Models. In Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering (ESEC-FSE ’07). ACM, New York,
NY, USA, 295–304.

[37] Zhenchang Xing and Eleni Stroulia. 2005. UMLDiff: An Algorithm for Object-
Oriented Design Differencing. In Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering. ACM, 54–65.

http://aib.informatik.rwth-aachen.de/2012/2012-03.pdf
http://aib.informatik.rwth-aachen.de/2012/2012-03.pdf
https://doi.org/10.4018/IJCSSA.2015070103

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Focus
	2.2 MontiArc
	2.3 Deltas

	3 Example
	4 Structural Differencing
	4.1 Algorithm Description

	5 Delta-based Architecture Merging
	6 User Study
	6.1 Survey
	6.2 Threats to Validity
	6.3 Observations

	7 Discussion
	8 Related Work
	9 Conclusion
	References

