
SPEC IAL ISSUE PAPER

Special issue on engineering collaborative embedded systems

Bernhard Rumpe1 · Ina Schaefer2 · Bernd-Holger Schlingloff3 · Andreas Vogelsang4

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

1 Collaborative embedded systems (CrESt):
the BMBF project

Welcome to the special issue on “Collaborative Embed-
ded Systems” (CrESt). While in the old days software
in embedded systems was isolated and mainly concentrat-
ing on predefined functionalities within the overall system
context, software has now become the connecting fac-
tor between cooperating systems of systems and, because
of its increasing functionality, also the driving complex-
ity factor. Cyber-physical systems are composed of several
autonomous individual systems, which have to collaborate
in order to achieve common objectives. Collaboration of
systems is necessarily based on collaboration of connected
software components that control and govern the overall
cyber-physical system behaviour.

In this context, the German ministry of research and
education (BMBF) launched a large research initiative on
development methods for collaborative embedded systems.
The CrESt project (2017–2020) assembles more than twenty
companies and research institutions, namely Bertrandt,
Expleo, FEV, fortiss, Fraunhofer IESE and FOKUS, HSU
Hamburg, HU Berlin, INCHRON, InSystems, itemis, Model
EngineeringSolutions, PikeTec,OFFIS, pure-systems,Robert
Bosch, RWTH Aachen, Siemens, TU Berlin, TU Braun-

B Bernhard Rumpe
rumpe@se-rwth.de
http://www.se-rwth.de

Ina Schaefer
schaefer@isf.cs.tu-bs.de

Bernd-Holger Schlingloff
hs@informatik.hu-berlin.de

Andreas Vogelsang
andreas.vogelsang@tu-berlin.de

1 RWTH Aachen University, Aachen, Germany

2 Technische Universität Braunschweig, Braunschweig,
Germany

3 Humboldt-University and Fraunhofer FOKUS, Berlin,
Germany

4 Technische Universität Berlin, Berlin, Germany

schweig,TUKaiserslautern,TUMünchen, andUniv.Duisburg-
Essen. Their goal is to deepen the knowledge on how to
develop collaborative embedded systems in the new chal-
lenging environments.

The CrESt project can be seen as a necessary exten-
sion of the projects SPES 2020 (2009–2012) and SPES_XT
(2012–2015). These projects successfully developed con-
cepts, methods and tools to master the challenges of today’s
complex embedded system development. The SPES 2020
methodology on model-based engineering of embedded sys-
tems, and its extension, the SPES_XT methodology, are
documented in two Springer volumes and are now widely
applied in industrial developments. The ambition of the
CrESt project is to gain a holistic view on the additional
challenges imposed by the fact that not only a single embed-
ded system, but a whole group of collaborating systems is
under development. On the one hand, it addresses founda-
tional problems, e.g., how to formalize common goals and
targets, what are appropriate modeling languages for collab-
orations, and which algorithmic solutions for monitoring the
quality of the systems can be designed, to give early feedback
to developers. On the other hand, it addresses practical chal-
lenges, such as open networks, system adaptation, open and
dynamic system context, and how to design systems that shall
be highly automated while still adaptive. These results are
applied in various domains and on a number of examples that
demonstrate the feasibility of the CrESt method, which sub-
stantially extends the previous SPES methods. This volume
presents some of the foundational material and application
examples which drive the development in CrESt.

2 Definitions

In order to demonstrate the CrESt concepts more precisely,
we start with some definitions, which are used throughout all
papers of the special issue.

An embedded system is a computational systemwhich is a
fixed part of a technical system. In this definition, a technical
system is an artefact, which transforms or transmits matter,
energy, and information, whereas a computational system is

123

[RSSV19] B. Rumpe, I. Schaefer, B. Schlingloff, A. Vogelsang: 
Special issue on engineering collaborative embedded systems. 
In: SICS Software-Intensive Cyber-Physical Systems, 2019. 
www.se-rwth.de/publications/ 

http://crossmark.crossref.org/dialog/?doi=10.1007/s00450-019-00421-w&domain=pdf


174 E. Feireisl et al.

built to transform, transmit, and store information only. As
an example for an embedded system, consider the control
unit of an electric welding robot. The robot as a technical
system uses energy to transform the filler wire into a welding
seam. However, it could not do this without an embedded
control system transforming information from the sensors
into commands for the actuators, directing its movement and
switching the welding power on and off.

Based on network availability as well as the need for
automatic and efficient collaboration, technical systems are
becoming more and more connected, forming complex
systems-of-systems. In our example, the robotmight not work
on its own, but as a part of a production line, which is inter-
connected via a conveyor belt. Hence, also the embedded
systems inside the production units have to be connected
with one another. For instance, the robot has to communicate
with the conveyor belt when the next item arrives. A cyber-
physical system (CPS) is a set of technical systems in which
their embedded computational subsystems are (intensively)
interconnected. An embedded system is called collaborative,
if it is part of a cyber-physical system where all components
strive to accomplish a common task. In the example, all pro-
duction units and conveyor belts in the factory collaborate
to produce some goods. Hence, a collaborative embedded
system (CES) is always part of a collaborative system group
(CSG), which is a cyber-physical system with a common
goal.

In order to cope with the complexity in the development
of embedded systems, model-based development or model-
based systems engineering (MBSysE) has been suggested.
While stand-alone software can in principle be developed
without explicit modelling, all other engineering disciplines
participating in a systems development need to analyse the
system properties on models of the system under develop-
ment. Model-based development is therefore a natural and
necessary approach to manage the complexity arising from
CES. MBSysE is an engineering method, taking many ideas
from model-based software engineering (MBSE), where a
model of the system under design is used as a central repre-
sentation, from which all other artefacts are derived. Here, a
model is an abstract description of an existing or intended
system, which serves a specific purpose. In MBSysE, the
purpose of the model is to facilitate the design and imple-
mentation of the system to be built. Abstract models describe
only those aspects and only with the necessary degree of
detail which are essential for the design and understand-
ing that the final system will meet the requirements, but the
models still leave room for implementation choices. During
the design and implementation process, these choices are
gradually resolved, and the abstract design model is step-
wise refined to a more concrete implementation model. If
the implementationmodel is sufficiently concrete, executable
code can be generated from it automatically.

Models are made explicit using dedicated modelling
languages. Explicit models are necessary to communicate
between developers, but also between developers and com-
puters.Only then smart algorithms are able to identify deficits
in the models early, by analyzing various properties or sim-
ulating the behavior of the intended cyber-physical system
including communication delays, network errors, functional
failures, etc. This way the ability of a cyber-physical system
to collaborate actively in achieving common goals can be
analysed far before any physical part of the system is built.

In computing science, many different modelling for-
malisms for software and systems have been designed and
several of them have materialized as general purpose mod-
elling languages, such as UML or SysML. Other formalisms
have led to domain specific languages (DSLs) dedicated only
for small and focused purpose. Some of these are referenced
in this special issue. For the modelling of CES, it is impor-
tant to be able to describe goals and intentions. Although
there have been several attempts in goal modelling, so far
none of them have been integrated into an overall continu-
ous design methodology for CES. Furthermore, to manage
adaptation and flexible reaction on changing contexts that
collaborative embedded systems typically face, it is not only
necessary to model goals and intentions during design, but
also to transfer parts of these into runtime, while at the same
time ensuring safety without compromises. The purpose of
this special issue is to present some results towards such an
integrated methodology.

3 Use cases in the CrESt project

For the derivation and presentation of results, throughout
this special issue four different industrial use cases from the
industrial CrESt partners are used. These are vehicle platoon-
ing, changeable factories, distributed energy production, and
autonomous transport robots.

In the platooning use case, we consider a group of vehicles
which share the goal to travel to a common destination. By
driving in a low distance formation, the overall air resistance
is decreased, and fuel consumption is significantly reduced.
Furthermore, more vehicles fit onto the street and traffic may
be more efficient. However, in order not to crash into one
another, the vehicles constantly have to communicate. Sce-
narios within this use case are forming and dissolving the
platoon, as well as joining and leaving the platoon by single
vehicles.

The use case on changeable factories deals with flexi-
ble production cells, which collaborate to build products on
demand. Each cell is able to build various components in
different configurations, which are assembled according to
changing customer needs. The common goal is to optimize

123



Special issue on engineering collaborative embedded systems 175

the use of production resources and machines for different
usage scenarios.

In distributed energy production, various renewable power
plants collaborate to guarantee a continuous supplyof electric
power to the customers. A challenge is to balance the overall
energy production such that several side conditions are met.
Collaboration here must be extremely quick.

Autonomous transport robots are driverless vehicles for
loading and unloading production units in a factory. In a
decentralized control scenario, each robot can decide which
transport job to accept and accomplish. The common goal
is to keep the production going, i.e., no machine may ever
stop due to lack of supplymaterial or abundance of processed
material.

4 Results presented in this special issue

This special issue contains five articles describing research
conducted as part of the CrESt project. They cover the broad
spectrum of topics that is addressed in the project includ-
ing uncertainty handling, runtime verification, self-adaption,
system simulation, and strategic collaboration.

Constantin Hildebrandt, Torsten Bandyszak, Ana Petro-
vska, Nishanth Laxman, Emilia Cioroaica, and Sebastian
Törsleff present an uncertainty classification
scheme for information exchanged at runtime in their article
“EURECA: Epistemic Uncertainty Classification Scheme
for Runtime Information Exchange in Collaborative System
Groups”. The authors focus on epistemic uncertainty, which
refers to the knowledge that is available to the system, for
example, in the form of an ontology. They present a clas-
sification scheme that can be used to identify the relevant
epistemic sources of uncertainties for a CES during require-
ments engineering.

In the second article “(Self)-Adaptiveness for Manufac-
turing Systems - Challenges and Approaches”, Birte Böhm,
Florian Grigoleit, and Stephan Unverdorben identify and
elaborate challenges and approaches for self-adaptiveness in
manufacturing systems. The main challenges are designing
flexible production sites, representing manufacturing knowl-
edge, as well as organization and implementation of (self-
)adaptive manufacturing systems. Promising techniques to
implement (self-) adaptiveness are system modularization,
architectural patterns for flexible systems, and automatic
reconfiguration of manufacturing systems.

Damian Kurpiewski and DiegoMarmsoler investigate the
use of strategic logics for the analysis of CESs in their arti-

cle “Strategic Logics for Collaborative Embedded Systems
- Specification and Verification of Collaborative Embedded
Systems using Strategic Logics”. They show that strategic
model checking is useful to investigate certain aspects of
CESs, such as the impact of environmental changes. They
also show limitations of the approach, when it comes to
the analysis of implementation-level aspects, such as per-
formance.

Such low-level properties may be more interesting to
study in simulations. Emilia Cioroaica, Florian Pudlitz, Ilias
Gerostathopoulos, and Thomas Kuhn provide an overview
of simulation methods and tools for design and runtime
evaluation of groups formed by CES in their article “Sim-
ulation Methods for Collaborative Embedded Systems”.
They present solutions and challenges brought by evaluating
vehicle collaboration using simulation, and suggest further
directions of research and development in order to address
gaps and to extend the applicability of simulation methods
for collaborative embedded systems.

Finally, Samira Akili and Felix Lorenz address the chal-
lenge of runtime verification in CES in their article “Towards
runtime verification of collaborative embedded systems”.
They present a case study based on industrial transport
robots and model the main operating procedure, a distributed
bidding protocol. The key properties that must hold for func-
tional correctness turn out to comprise a large number of
different semantic concepts that can not be jointly expressed
with any single formalism. To address this issue, they iden-
tify three specification languages that are particularly suitable
for monitoring of collaborative embedded systems: Certify-
ing distributed algorithms, trace expressions, and real-valued
temporal logic.

Acknowledgements First of all, the editors would like to thank the
authors of the articles in this special issue as well as the reviewers
who helped improving the quality of the articles. CrEST as well as its
predecessor projects would not have been possible without a large num-
ber of people helping making it such a success. Foremost, we would
like to thank Manfred Broy for the continuous steering of the projects
towards a well integrated and successful methodology accompanied
with appropriate tooling and applied in various industrial domains.
Wolfgang Böhm has constantly ensured that progress is made both indi-
vidually and towards the large overall goals. We thank Michael Weber
(BMBF) and Dirk Günther (DLR Projektträger) for their support, the
industrial partners for their participation both in applying SPES and
CrESt methods in their industrial contexts, and all the scientific mem-
bers of the academic partners for carrying out this research.

123


	Special issue on engineering collaborative embedded systems
	1 Collaborative embedded systems (CrESt): the BMBF project
	2 Definitions
	3 Use cases in the CrESt project
	4 Results presented in this special issue
	Acknowledgements




