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Abstract—In automotive and robotics, simulation is an indis-
pensable tool for testing and validation. A simulator is able to test
a system under varying conditions at low cost in a non-safety-
critical environment. Furthermore, in the development process
of a new vehicle, the first prototype is mostly produced after a
long design phase, which can take up to several years. Before
the prototype is available, tests can only be performed in a
simulation. To make the simulation results reliable, both the
system and its environment need to be modeled as realistic as
possible. As modern vehicles include a large amount of software,
the execution of vehicle software needs to be simulated with
respect to the underlying E/E infrastructure. In this paper, we
present a simulation framework for the execution of vehicle
control models deployed in a vehicle network. Furthermore, the
execution simulator is embedded into a vehicle simulator, making
it possible to validate the vehicle software functionality under the
given hardware conditions.

Index Terms—simulation, automotive, E/E infrastructure,
model execution,

I. INTRODUCTION

Software for embedded systems, especially for automotive

applications and Cyber-Physical System (CPS), is getting

increasingly more complex. This is, partly, due to the increas-

ingly challenging tasks these systems have to solve. Future

cars are expected to include complex functionalities such as

autonomous and cooperative driving. As software gets more

complex, it also gets harder to develop and test it. Models

can be used to abstract from this complexity and, thus, make

the automotive development process, e.g. BMW’s SMArDT

[1]–[3], both easier to grasp and more reliable. However, the

changing environmental influences still require the software

to be tested in a large number of different scenarios to ensure

its reliable execution. Due to time and resource constraints,

the software cannot be tested solely on prototypical hardware.

Moreover, the hardware may not even be available before the

software.

Simulators allow to effortlessly test software in a large

number of scenarios and under a multitude of environmental

influences. As simulators only simulate the real world, they

make abstractions from the real world. Consequently, the

results calculated by simulators are expected to deviate to a

certain extent from the results that would be observed on a

similar setup in the real world. Small deviations are expected

and can be tolerated. However, strong abstractions from the
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real world can lead to imprecise results [4]. This is especially

important in autonomous and cooperative driving applications

as an error of the system might not only cause large monetary

damages but also threaten human lives. Thus, an accurate

prediction of the system’s behavior is crucial for a simulation.

An important aspect of accurately simulating the behavior

of a system is the simulation of its time behavior. Embedded

systems, such as Electronic Control Units (ECUs), are often

resource-limited, especially compared to the computers used

to develop the software they execute. If the system is not

capable of executing the desired functionality within certain

time limits, results may often be worthless. For instance, if a

system used to trigger the brakes in an autonomous car is too

slow, the vehicle might crash.

Existing solutions either offer a precise prediction of the

embedded system’s time behavior at the cost of a time-

consuming simulation or require developers to model the

system-under-test within the simulation environment, hence

inducing a new error source. In this paper, we present a

method for integrating a hardware emulator of the target

platform into a general-purpose driving simulator responsible

for simulating the environmental influences of and interactions

between vehicles. This allows us to combine the efficient

simulation of the MontiSim simulator with the accurately

predicted time-behavior of a hardware emulator. The control

units within the MontiSim simulator are defined using the

EmbeddedMontiArc (EMA) language. Thereby, we leverage

the benefits of a model-driven development process. At the

same time, using the binaries compiled from the source code

generated from the EMA models as input for the emulation

allows us to both circumvent the time-consuming creation of

a second model solely meant for simulation and eliminate the

source of potential errors induces by this task.

The remainder of this paper is structured as follows. Sec. II

introduces EMA, MontiSim, as well as the terminology used.

Sec. III lists the requirements for our simulator. Sec. IV

describes our hardware emulator and its integration into Mon-

tiSim in detail. Our solution is then evaluated in Sec. V.

Sec. VI presents related work and Sec. VII concludes the

paper.

II. BACKGROUND

The models for which the proposed solution provides a

simulation environment are created using the EmbeddedMon-

tiArc (EMA) language [5], [6]. This is a modelling language
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used for describing the architecture of components and their

communication. A component has a set of input and output

ports (typed variables) and can have a set of sub-components.

Components use these ports to exchange values with other

components. Therefore, ports can be connected to other ports

using connectors. A component “cycle” (an update) uses the

current state of the input ports to update the output ports.

This happens through computations or the use of its sub-

components. The port system supports generic, array and

vector types, all of which are strongly typed. EMA models

are used to generate C++ code, which is then compiled using

standard compilers. Furthermore, the EMA language family

contains extensions allowing the integration of, e.g., equation

solvers or neural networks [7].

The simulation environment MontiSim is an autonomous

vehicle simulator [8], [9]. Its goal is testing autopilots and

other vehicle software developed using the EMA language and

its extensions. It is capable of loading a simulation described

using a simulation language. This language describes the

environment of the simulation, i.e., the map, the weather

conditions, time of day, etc., as well as the set of vehicles

that are to be simulated. The map on which the vehicles drive

is imported from OpenStreetMap [10] data.

The vehicles are configured with start and destination coor-

dinates, a physical vehicle model and an E/E setup. This E/E

setup contains the different ECUs and their software alongside

sensors, actuators, and communication buses.

Prior to the presented simulation integration, the MontiSim

simulator had no means of representing the execution time of

vehicle software within the simulation. This is problematic as

soon as the execution time of the software surpasses the tick

duration of the simulator, in which case the software gains an

unrealistic computation power in regards to the simulated time.

This is a critical missing aspect of the software simulation,

especially for automotive applications. Therefore, the proposed

simulator fills this gap by representing the computation time

of software inside the MontiSim simulator.

The proposed simulator is mainly used as co-simulator

inside the MontiSim simulator. To differentiate between the

simulation levels, the following terminology will be used:

Emulator The proposed simulator that emulates the behavior

of computer hardware.

Emulation The virtual environment in which the emulated

software lives.

Simulator The overarching simulator using the computer

hardware simulator inside its simulation.

The difference between emulation and simulation is that

an emulation computes the underlying behavior of a system,

while the simulation only provides the visible effects of such

a system. The proposed co-simulator is nearer to the emulator

concept than the MontiSim simulator, which motivates this

denomination.

III. REQUIREMENTS

Following the goals of the MontiSim simulator as well as

those of EMA models, the emulator aims at fulfilling the

following requirements:

R1 Correct software behavior: the emulator must reproduce

the real logic behavior of the emulated software. The code

emulation must yield the same outputs as if executed on

real hardware.

R2 Time evaluation: the emulator must evaluate the execution

time of the emulated software so that this critical aspect

can be represented in the overarching simulation.

R3 Reproducibility of the simulations: given a simulation

description and EMA models (the emulated software),

the simulation must yield the same output independently

of the platform and hardware used.

R4 Platform-independence: it must be multi-platform in the

first place and allow the emulation of software compiled

for other platforms.

R5 Variability of the hardware models: the properties of

the emulated hardware running the EMA models must

be configurable. This includes, e.g., the CPU model, its

frequency, the memory properties, etc.

R6 Generic emulator: the hardware emulator can be used to

emulate any program and evaluate their execution time.

IV. HARDWARE EMULATOR

The proposed simulator will be referred to as the Hardware
Emulator. This emulator contains a program emulating com-

ponent as well as models for the evaluation of the execution

time of the program. The Hardware Emulator does not run an

operating system in the virtual computer but rather emulates

its functionalities from outside the emulation.

The following sections will describe the components of the

Hardware Emulator and their functionalities.

A. Unicorn Emulator

The program emulation capabilities of the Hardware Em-

ulator come from the existing Unicorn emulator [11]. This

emulator manages registers and virtual memory around a

QEMU core [12]. The engine is capable of emulating the

behavior of programs under multiple architectures and in

different modes. In this case, the 64-bit mode of the x86

architecture is used. The Unicorn emulator is open-source and

multi-platform. Since the emulated architecture is independent

of the system running the emulator, it is also cross-platform

(R4).

The interface of the Unicorn engine allows allocating and

managing virtual memory sections. The interface also allows

reading and changing the registers related to the used archi-

tecture. Finally, it allows starting a single-threaded program

execution at an arbitrary memory address. By taking advantage

of this fact and by knowing the address of a specific function,

functions of a program can be executed from outside the em-

ulator. The emulator then reproduces the behavior of program

instructions depending on the contents of the registers and the

memory (R1).
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Fig. 1. High-level overview of the main component of the Hardware Emulator.

Finally, the Unicorn engine allows monitoring every instruc-

tion execution and memory access. This enables the evaluation

of the different execution time models of the Hardware Emu-

lator (R2).

B. Computer Model

The Hardware Emulator is built in a component and sub-

component style for logical separation of the different virtual

computer parts. The main component is a Computer compo-

nent. Its final goal is to be able to set up a software execution

environment, load a program and present an interface to call

the functions of this program.

Fig. 1 shows the Computer component and the types of

sub-components it contains. The memory abstractions include

a simplified interface to the registers, an object-oriented rep-

resentation of the virtual-memory sections, and components

representing the program stack and dynamic heap. The OS

emulation component is an instance of a program loader, a

set of emulated operating system functions and a specification

of the function calling standard used under a specific oper-

ating system. There are currently implementations of the OS

emulation for Linux and Windows.

The emulator is currently built to load only one program.

Therefore, the executed programs must be compiled with static

libraries (or archives under Linux). Furthermore, the emulator

does not implement program unloading. When the lifetime

of a specific program ends, the entire Computer component

is destroyed, including its Unicorn engine instance. Once the

program is loaded, there can be an infinite number of calls to

its functions and the state will be saved.

However, only the encountered operating system functions,

operating system objects, and function argument types are

implemented. Thus, new models might require some updates

of the emulator.

C. Memory and Register Abstractions

To ease the interaction with the Unicorn engine and memory

management, a set of components present an object-oriented

interface for the original C functions of the Unicorn interface.

1) Registers: The Registers component allows direct access

and type casting to the registers. It also prevents a bug when

reading the registers inside any of the Unicorn monitoring
callback. When trying to read the contents of a register into

a buffer that lived on the stack inside a Unicorn callback,

the entire program would crash. By using a buffer allocated

before running the engine, we can access the registers inside

callback, which is critical to emulating the operating system

functionalities.

2) Memory and memory sections: The Memory component

encapsulates Unicorn engine functionalities related to its in-

ternal memory system. It is responsible for allocating and

managing MemorySection objects.

These objects contain meta-information about the allocated

virtual memory sections of the Unicorn engine. This includes

the start address and size of sections as well as their reading,

writing, and execution permissions. A MemorySection also

holds debug information such as a section and module name,

an optional mapping to the program file if the content of the

section originates from the program file, and an annotation

system. This annotation system allows adding “Notes” on

any memory range. This is used to mark and name symbols,

operating system structures, and system handles. The Memory
component also contains a lookup map to efficiently access the

MemorySection objects corresponding to virtual addresses.

The start addresses and sizes of the virtual memory sec-

tions of the Unicorn engine must be multiples of an inter-

nal page size. Using the page size, the desired addresses

and sizes of memory sections can be padded to multiples

of the page size using the following integer arithmetic:

start padded = (start address/page size) ∗ page size,

size = end address − start padded and size padded =
(((size−1)/page size)+1)∗page size. For a desired mem-

ory range with start address start address (inclusive), end

address end address (exclusive) and page size the internal

page size of the engine, this will give a padded memory section

with start address start padded and size size padded.

To simplify the memory layout of the computer, the dif-

ferent memory sections have predefined ranges in the virtual

memory space that are defined inside a namespace for easy

arrangement.

To help interact with the emulation memory from the

outside, a SectionStack component can be attached to any

MemorySection. This is a minimalistic allocator that works

in a stack fashion on the section and does not implement de-

allocation. This allows for fast laying out of objects in the

computer memory. This is used by various other components

of the Computer.

The last elements of the Memory component are helper

functions to read certain data types from the engine’s memory.

Currently implemented are functions to read and write strings

of chars and wide chars as well as functions to read multi-byte

numbers. The string-reading functions read the memory one

by one from a starting address into a buffer until encountering

a null character or reading invalid memory. In the latter case,

it returns an empty string (where the first character is the null

character). If successful, it returns a char pointer to the buffer

it used to save the string. The number-reading functions read

the number of bytes making up the number from the emulator

and cast the result to the correct type.

333



3) Virtual stack and heap: Virtual stack and heap compo-

nents use the memory system to manage memory sections used

as stack and heap for the emulated program. The heap com-

ponent has a memory allocation emulation that can be used

by the operating system emulation to dynamically allocate and

free memory chunks from the heap. The stack component also

presents push and pop functions to interact with the virtual

stack from outside the emulation.

D. Operating System Emulation

The emulator does not load a complete operating system

image into the emulation. This allows a lighter emulation

environment and more control over the emulated program. It

also opens the possibility to model simpler processor chips that

do not run operating systems but interact with the program on

a lower level.

The emulated models are compiled for a standard x86 Linux

or Windows distributions (64-bit mode). This stems from the

necessity to also run the model programs in a non-emulator

environment for lighter usage in larger scale simulations where

the time aspect of the program execution is not important. In

this case, the models can be loaded as a Windows or Linux

library directly into the simulator.

In order to emulate such programs, the emulator must carry

out the roles of an operating system, i.e., loading the program

into the computer’s memory, linking it to system functionali-

ties, and providing a way to locate and call the functions of

the program. This is embodied in the OS component of the

Computer model, which is currently instantiated with a Linux

or Windows version of the operating system emulation.

1) Program loading: The first step in loading a program

into memory is parsing it. The format of the program files

is the Portable Executable (PE) format for Windows and the

Executable and Linkable Format (ELF) for Linux (and Unix-

based systems in general). Both formats are mainly used for

executables and libraries. They start with a header to identify

the format, the target system, and mode. These headers point

to the different structures contained in the file and identify

various tables. The structure of a Linux program is shown in

Fig. 2. The PE format has some differences, but in this context,

the functionality is similar to ELF files.

The parsing of Linux programs is performed manually using

the structures and values defined in the Linux source code

(elf.h, elfcode.h, elf-em.h, . . . ). The created ELF parser reads

a file following the format and fills the structures with the file’s

data. This is done by placing pointers of the structures’ types at

the right positions on the original file data. The pointers to the

start of tables can be used directly to access the table’s content

through indices. Parsing of Windows programs is performed

with the help of the pe-parse library.

The names of different elements in the program files such

as section names or symbol names are located in string tables.

This common mechanism puts all the strings of a program in a

block separated by the string termination character (’\0’). The

places referring to names or strings in the file then just give

ELF File:

Identification
header

magic number
class (32 - 64 bit mode)
. . .

ELF header

type
. . .
program header table description
section header table description
section name string table index

Program
Header
table

Program Header
Program Header
. . .

Sections

. . .

Symbol table
section:

Symbol
Symbol

. . .
. . .

Relocation
table section:

Relocation
Relocation

. . .
. . .

Section
Header
table

Section Header
Section Header
. . .

Fig. 2. Overview of the ELF file structure.

the start position of the string in the string table. The location

of the string tables is given in the headers of the files.

The formats specify a list of chunks in the program file

that have to be loaded into the memory of the computer at

correct virtual addresses. In ELF files, these are the Program
Header entries which specify a part of the file (that can contain

multiple sections). In PE files, there are just sections in the

file, but flags specify if it has to be loaded into memory at

runtime. These chunks contain, e.g., the program code, the

program data, and the jump tables for external functions. Using

the Memory component of the emulator, a MemorySection
is allocated for every section of the program. The correct

read, write and execution permissions are set depending on

the descriptors of the program file.

The next step is reading the symbol tables and registering

the symbols contained in the file. The symbols representing

public objects and functions are called Exports in the PE

format and are in a special table. The symbols in the ELF

file are not sorted in this way but have additional descriptors

giving information about linkage (from which the functions

of the program can be deduced). These are registered in the

symbol table of the emulator (hashmap with the name as the

key and the virtual address as value) and later used to discover

the interface of the EMA model.

2) System functionalities: The program also has to be able

to make calls to the operating system. These function symbols

are not resolved at compile time so they have to be set by the

operating system or in the present case by the emulation of

the operating system. The places where the program needs

those symbols are listed as Relocations in ELF files. In PE

files these are in a list of Imports.

An ELF Relocation or a PE Import specifies a location

where the address of a system call has to be written in the
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virtual memory. This location is an entry in a “jump table”

(or branch table). Programs use the call instruction to make

function calls. It is responsible for pushing the return address

to the stack, but it can not jump to a variable location. This

is accomplished by a special jmp instruction placed at the

target location of the call instruction. This variant of the

jump instruction is set to jump to the location stored at a

given address. This address is the address of the jump table

entry and is coded into the instruction. The combination of

these two instructions is a standard way of making calls to

functions not resolved at compile time.

Those system functions are not inside the emulator. For

this, an escape system is implemented where the address

given to the program points to a special section in the virtual

space. Using the monitoring hook of the Unicorn engine,

the emulator checks if the next instruction happens in this

section. If so, it catches the call and looks up the registered

external system functions, which are implemented outside

the emulation. These external functions can use the different

components of the Computer to emulate the actions of the

called function.

To return to the program execution, the effects of the ret
instruction have to be emulated. This is performed by setting

the instruction pointer register to the last value on the stack.

This value is popped from the stack using the VirtualStack.

When the program tries to call a function that has not been

implemented in the emulator, it is still safely caught and the

emulator tries to return 0 to the program. It also notifies the

user, so that critical missing functions can be identified and

implemented. The OS component implementations are respon-

sible for registering the available system functions so that

they can be linked when loading the program. Implemented

functions include malloc, sqrt, sin, cos, acos, exp, memcpy,

strlen, strncmp, etc. The address of a special exit system

function is always placed at the top of the program stack

before calling program functions so that the function return

can be caught and the emulation exited.

Since the programs used here are compiled as libraries, the

last step to load the program is to call the initialization function

of the library. This is the init function in Linux and the entry

point defined in the PE header for Windows.

3) Function calling: The last role of the OS implementa-

tion is defining the function calling standard used under the

specific system. This is done through the implementation of a

FunctionCalling interface. This interface allows the calling of

functions without knowing how the arguments are passed to

the emulation or how the return value is read.

Both Linux and Windows operating systems and compilers

use a variant of the FastCall standard. It works by passing the

arguments using different registers depending on their type and

order. Under Windows, the arguments of a function call are

passed left to right in the RCX, RDX, R8, R9, R. . . registers

for all integer or pointer types. Under Linux, they are passed

inside the RDI, RSI, RDX and RCX registers. The return value

is passed through the RAX register.

For floating-point values, the arguments and the return value

are passed in the XMMn registers. The number n goes from

0 to 15 for modern processors, and they are used in this order

for arguments from left to right. In the case of a floating-point

return value, it is always placed in the XMM0 register.

E. Execution time models

The main goal of the emulator is to have a time model

for programs running inside the simulated world. A Com-
puterTime component is responsible for collecting the timing

evaluations from the different emulation components. It is

configured with the CPU and memory clock frequencies (in

Hertz) and provides conversion function from CPU or memory

cycle counts to time. This component manages two time-

precisions: picoseconds and milliseconds. The picosecond

precision is needed because the duration of CPU cycles are

in the nanosecond range (ex: 1s / 1 GHz = 1ns). To keep

this cycle-time precise when using integers, it is computed

in picoseconds. The component proposes three methods to

add time to its internal clock: add cpu cycles(cycle count),
add memory cycles(cycle count) and add pico time(time).
The first two use the defined CPU and memory frequency

to convert the cycle count to time. In all cases, it converts the

picosecond time to microseconds, which is relevant for the

simulation and keeps the modulo for precision.

The time evaluation is possible through the registering of

monitoring hooks in the Unicorn engine. The engine will then

call these hooks while emulating the program. There are hooks

for instructions, memory, and errors. The instruction hooks

get called before every single instruction execution and the

memory hooks get called for every memory read or write

operation caused by an instruction. The error hooks can be

used to gather information on what caused an error inside the

emulation.

1) Processor time: The evaluation of the time used by

instructions directly (not counting the memory access time)

is performed by the CodeDecoder component. It is called

by the monitoring hook for every instruction and reads the

bytes of the instruction from the engine’s memory. It then

uses the ZyDis library, which can decode x86 (and AMD64)

instructions, to get an enumeration value for every type of

instruction. This value is used directly to look up a CPU cycle

count in a time table. This cycle count is cycle added to the

ComputerTime component.

The time table currently contains values from a benchmark

of an Intel Skylake processor. This table can be changed to

represent other CPUs. This model does not currently take

into account the instruction context. Some of the tables found

specify different tick counts depending on the size or type of

data the instruction works on. It can be different if the data is

constant and coded into the instruction, or if the register used

is bigger or a floating point register.

2) Memory time: Another big factor for code execution

time is the interaction time with the computer’s Random-

Access Memory (RAM). This happens when instructions

themselves are read by the control unit of the CPU and when
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Fig. 3. Example of a cache configuration with multiple layers.

instructions read or write data from or to memory. These cases

are managed by the MemoryModel component. It is called by

the monitoring hook for every memory access and for every

instruction execution (because the Unicorn engine does not

call the memory hooks for the reading of instructions).

The time it takes to write and read the main memory is

encapsulated in a MemoryTime component. This component is

configured with the number of memory cycles necessary for

reading and writing 8 bytes of memory (a memory “block”).

For current CPU technology, memory latencies are an order

of magnitude larger than CPU latencies. This is why caching

is an important concept in most computer architectures. It

allows data to be stored in a smaller but faster memory

so that the CPU does not have to wait for data to arrive

from main memory. Since caching has a large influence on

computing times, the MemoryModel contains a configurable

way of setting up cache layers.

Instead of directly asking the MemoryTime component for

the necessary time, the MemoryModel uses two MemoryAc-
cessInterfaces. One for data memory access (data memory)

and one for instruction reading (instruction memory). The

MemoryAccessInterface is implemented by the MemoryTime
component and also by any optional cache model. The two

interfaces to data and instruction memory can then represent

a stack of cache layers with the MemoryTime layer at the top.

This is shown for an example configuration in Fig. 3.

Each layer is queried for the time it takes to read or write

a certain address. The cache layers can then evaluate if the

address represents a cache hit or miss. In the latter case, it can

add the time from the next layer and so on, until eventually

hitting the MemoryTime layer.

The current cache implementation has a configurable size

and its reading and writing times are expressed in CPU

cycle counts. It implements the FIFO Replacement Policy. A

Replacement Policy is the algorithm used to choose which

entries are replaced in the cache when it is full and a new

entry has to be added. Other policies such as the Least Recently
Used policy or more complex heuristic based policies could be

implemented and placed in the MemoryAccessInterface stack.

3) Operating system time: Currently, calls to system func-

tions are not covered by the time evaluation since they are

performed outside the emulation environment. Therefore an

approximation time is currently added by every external sys-

tem call. These time models provide an approximation for the

execution time of software that can be used in the overarching

simulation (R2). Alternatively, the operating system functions

would have to be integrated into the emulation through an

operating system image. This would require relocations, inter-

program linking and proper setup of such an image.

F. EmbeddedMontiArc and MontiSim Integration

The MontiSim simulator uses the presented emulator to

simulate the software of its autonomous vehicles. The emulator

is given an EMA model to load and the desired configuration

for the computer time models. The simulator can then set and

read the ports of the model depending on the internal vehicle

communications. The execution time can then be read from the

emulator in order to delay the emulated software accordingly.

The software components of a simulated vehicle are set up

in an E/E infrastructure simulation. This E/E simulation works

with the Discrete-Event paradigm, where processes are not

updated on a tick basis but their effects and durations are

saved in events. A Discrete-Event Simulator then processes

events ordered by their finish time.

Since the emulated EMA models work on a cycle basis,

their execution can be performed in one block. The evaluated

execution time is then used to create a discrete event that

will trigger the outputs of the model in the future of the

simulation. This discrete-event system allows the modeling of

different E/E components inside the vehicle, such as different

computers, different buses, the sensors and actuators of the

vehicle, etc. An example of the generation of a discrete event

by the Hardware Emulator is shown in Fig. 4. It also shows

the interaction between the tick-based part of the simulator

(physics simulation) and the discrete-event system. For a given

simulation tick, the simulator generates events that represent

new physical data (such as the sensor data). The discrete-event

simulator then processes events until the next tick time, on

which this cycle continues.

In order to dynamically integrate EMA models in the

simulator, an Adapter generator was created that can use the

EMA language parser and generator to generate its own set

of functions depending on the model. The generated Adapter
contains a set of predefined functions that list the number,

name, and type of input and output ports of the EMA model.

It is compiled as a layer over the generated model code. This

allows the simulator to dynamically discover the ports of the

model. From their name and type, the simulator can deduce

the name and signature of the generated function that is used

to interact with the ports of the model. This dynamic approach

allows the model to define the communication channels it uses

inside the simulation dynamically. All the required functions

(including the port discovery functions) of the model can be

looked up in the symbol hashmap of the emulator that is filled

by the program loaders.

V. EVALUATION

The following evaluation will show the simulation results

for a series of virtual computer hardware configurations. The

simulation setup is using a part of the Aachen city exported
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from OpenStreetMap. The simulated vehicle uses a mass point

physical simulation and is set up with a simple autopilot

(the emulated software). The different hardware configurations

tested are shown in Table I. The tuple of numbers for the cache

settings represent the cache’s size, read and write time (in this

order). The read and write times are expressed as CPU cycle

counts. The evaluation of a single instruction takes values from

a table of an Intel Skylake benchmark.

One of the metrics exported from the simulation is shown

in Fig. 5. It is the evaluated software execution time for one

cycle of the autopilot: reading the inputs, executing the logic

and writing the outputs. The other exported metric is the

deviation of the car from the planned trajectory (shown in

Fig. 6). This represents how well the autopilot can control the

Data and
Name CPU Memory instruction L2 cache

frequency frequency L1 cache
Basic 10MHz 1MHz 128,1,2 1024,10,15
Slow CPU 1.5MHz 150KHz 128,1,2 1024,10,15
No cache 10MHz 1MHz — —

TABLE I
HARDWARE CONFIGURATIONS.

0 20 40 60

−2

0

2

Simulated time [s]

D
ev

ia
ti

o
n

fr
o
m

p
la

n
n
ed

tr
aj

ec
to

ry
[m

]

Basic

Slow CPU

Fig. 6. Deviation from planned trajectory for different hardware speeds.
(Positive deviation is left of the trajectory.)

car and follow its target trajectory. The planned trajectory is a

set of line segments that go from the location of the car to its

target coordinates. The deviation is then computed by taking

the orthogonal distance to the closest trajectory segment. The

sign of the deviation represents the side of the trajectory on

which the vehicle is.

Fig. 5 shows the influence of the hardware configuration

on the evaluated time. The difference between the Basic and

Slow CPU simulations is due to slower CPU and memory

frequencies. The difference between Basic and No cache is

only due to the presence or absence of a cache model for the

CPU. Fig. 6 shows the influence of hardware too slow for the

autopilot software. In the Slow CPU simulation, the autopilot

has bigger difficulties to follow the planned trajectory and

frequently falls into an oscillation pattern around the desired

trajectory.

VI. RELATED WORK

There are basically two different approaches to simulating

an embedded system: one can either extend an existing general

purpose simulator or create a new simulator from scratch. In

case of cooperating embedded systems, e.g., in Internet of

Things (IoT) or cooperative driving applications, extending

the discrete-event network simulator ns-3 [13] is a popular

option because of its large number of network and mobility

models. However, this advantage comes at the cost of needing

to provide a simulator-specific implementation.

iTETRIS [14] is an Intelligent Transportation System

(ITS) simulator that combines ns-3 with the traffic simulator

SUMO [15]. A disadvantage of this framework is, however,

that ITS applications have to be implemented using the ITS
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simulator of iTETRIS. Therefore, a second implementation

would be required if the application should be deployed on real

hardware. The Direct Code Execution (DCE) [16] extension

of ns-3 allows simulating the execution of binaries compiled

for Linux. Similar to our approach, DCE replaces function

calls that depend on the host machine by simulator-specific

code. CoWS [4] uses DCE to simulate code written for

the Wireless Open Access Research Platform (WARP) [17].

CoWS replaces hardware-specific function calls of WARP

devices, such as setting the transmission frequency, by ns-

3 compliant implementations using the mechanisms offered

by DCE. The fact that CoWS uses almost the same code

that would be executed on the target platform allows the

developer to analyze the code using standard debugging tools

like gdb that might not be available on the target platform.

Disadvantages of this method are that the executable has to be

linked specifically for ns-3 and that it requires a small number

of code modifications to return the control to the simulator

during endless loops. A major difference to our approach is

that our approach allows using unmodified libraries in the

simulator by using an emulator instead of simulating the

behavior of the hardware. Alternatively, it is also possible

to use an architecture description language to generate code

targeted at ns-3 [18]. However, as the generated code relies on

ns-3 specific interfaces, it is not executable on real hardware

without adapting the code generator.

Instruction Set Simulations (ISSs) allow simulating embed-

ded systems at the level of single CPU instructions. However,

this creates a considerable overhead [4]. In contrast, EMA

focuses on modeling the software architecture of embedded

systems. To nevertheless provide results close to the results

achieved on real hardware, we allow specifying certain param-

eters of the hardware that allow us to abstract from specific

hardware components while still achieving comparable results.

The Ptolemy approach [19] describes how to create soft-

ware architectures that combine models with different Models

of Computation (MoCs). This is achieved by keeping the

MoC consistent on each hierarchy level. Different hierarchy

levels, i.e., nested components, may, however, use different

MoCs. Similarly, we separate the autopilot emulation from

the discrete-event simulation and only exchange the results of

the computation with the simulation.

VII. CONCLUSION

In this paper we proposed a reproducible hardware em-

ulation approach making the simulation of model execution

more realistic. The approach analyzes a compiled model and

predicts its runtime for the desired architecture based on the

generated assembler code. It is based on the Unicorn emulation

engine and considers the execution duration of the instructions

as well as memory access and caching. We integrated the

emulator into a vehicle simulator to simulate the delays of

an autonomous driving controller. In a trajectory following

experiment, we showed how different hardware configura-

tions affect the trajectory driven by the simulated vehicle.

Obviously, a model execution simulation is indispensable for

the assessment of embedded system models. Future work

comprises experimentation and evaluation with more complex

E/E infrastructures and comparisons with real hardware.
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