
Semantic Evolution Analysis of Feature Models
Imke Drave

Software Engineering, RWTH Aachen University

Aachen, Germany

Oliver Kautz

Software Engineering, RWTH Aachen University

Aachen, Germany

Judith Michael

Software Engineering, RWTH Aachen University

Aachen, Germany

Bernhard Rumpe

Software Engineering, RWTH Aachen University

Aachen, Germany

ABSTRACT
During the development process, feature models change contin-

uously. Analyzing the semantic differences between consecutive

feature model versions is important throughout the entire develop-

ment process to detect unintended changes of the modeled product

line. Previous work introduced a semantic differencing technique

for feature models based on a closed-world assumption, which re-

veals the differences between two feature models when allowing

products to only contain features used in the models. However, this

does not reflect the stepwise refinement of feature models in early

development stages. Therefore, we introduce an open-world se-

mantics, an automatic method for semantic differencing of feature

models with respect to the novel semantics, and formally relate

the open- and closed-world semantics. We formally proof our re-

sults, including the relation between the different semantics as well

as the soundness and completeness of the semantic differencing

procedure. In conjunction with previous work, the results enable

effective semantic feature model evolution analyses throughout the

entire development process.

CCS CONCEPTS
• Software and its engineering → Software system models;
Formalmethods; Semantics;Dynamic analysis;Design languages;
Software product lines.

KEYWORDS
feature modeling, model evolution analysis, semantic differences,

open-world semantics

ACM Reference Format:
Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe. 2019. Se-

mantic Evolution Analysis of Feature Models. In Proceedings of 23rd Interna-
tional Systems and Software Product Line Conference (SPLC’19). ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPLC’19, 9–13 September, 2019, Paris, France
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Highly differentiated customer requirements challenge product se-

lection, production, and delivery not only in software engineering,

but also in, e.g., production and logistics companies. Thus, con-

figuring product families is nowadays standard in many business

sectors, as it improves customer satisfaction and helps to achieve

cost reduction. These configurations are not restricted to a certain

domain or application and are applicable to any product with a high

demand for variability, such as cars, bikes, laptops, and cameras.

For these products, customers demand the ability to choose product

features in a selection process provided by an online shop or an

order process. In industry, software product line (SPL) engineering

[14, 40] became a meaningful way to handle the development of a

diversity of similar software applications [13, 17, 27, 44]. Feature

modeling integrates the feature-oriented paradigm [4] for SPL de-

velopment with model-driven engineering [20] by means of feature

models (FMs) that represent all possible product configurations [22],

similar to the 150% modeling approach [22].

In model-driven software engineering (MDSE), models are the

primary development artifacts [20] and, thus, evolve over time.

Refinement is an essential concept in MDSE. A model is a refine-
ment of another model, if the semantics of the latter subsumes

the semantics of the former [23]. Refinement steps in MDSE, i.e.,
changing a model such that the new version is a refinement of the

former version, are naturally performed in reaction to changing

requirements and availability of additional information [26]. The

idea is to start with an underspecified model encoding the avail-

able information and to iteratively refine the model once additional

information becomes available, until ultimately obtaining a correct

system implementation. Effective model evolution management

is essential to detect bugs and explore design alternatives. Syntac-

tic model evolution management is fairly established in modern

MDSE development (e.g., [3, 28–31, 45, 46]). Detecting semantic

differences between two models enables to verify refinement with

respect to the model’s meaning and is subject to ongoing research

(e.g., [2, 12, 18, 19, 32, 33, 36–38]). Recent approaches combine syn-

tactic with semantic differencing to identify the impact of syntactic

changes on a model’s semantics [21, 26, 34].

FMs describe features and the relations (mandatory, optional,

alternative, exclusive, implies, excludes) between them. Proposi-

tional constraints restrict the sets of features of configurations

possible in the FM [51, 52]. Existing approaches for semantic differ-

encing of FMs [2] provide meaningful results under a closed-world
assumption [41]. In the context of FMs, the closed-world assump-

tion considers features not used in a FM to not exist. However, this

[DKMR19] I. Drave, O. Kautz, J. Michael, B. Rumpe: 
Semantic Evolution Analysis of Feature Models. 
In: International Systems and Software Product Line Conference (SPLC'19), pp. 245--255, ACM, Paris, Sep. 2019. 
www.se-rwth.de/publications/ 

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


SPLC’19, 9–13 September, 2019, Paris, France Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe

assumption yields a quite restrictive semantics, especially in the

context of model evolution analysis. To illustrate this, consider a

restaurant offering several fixed dishes on amenu. In a closed-world,

individual customer wishes, such as exchanging a supplement of a

dish by a supplement of another one, would not be considered as

an allowed configuration of the menu.

The open-world assumption considers FM semantics in a less

restrictiveway: Features that are not used in a FM are not considered

to be non-existent, rather, it is assumed that their instantiation is

not restricted. In the context of the restaurant example, in the open-

world, exchanging one supplement by any other one, be it part of

another dish or made up by the customer, would be considered a

valid dish. In this case, it is more appropriate to stick to the open-

world semantics, as it is less restrictive and thereby reflects the

customer’s intuition when choosing the dish. The fact that a dish

is not explicitly mentioned on the menu does not mean that the

restaurant’s chef is not able to cook it. The open-world semantics

as proposed in this paper should not replace the usual closed-world

FM semantics but is to be seen as a complement to it, especially for

performing analyses in early development stages.

In the following, Section 2 shows practical examples to moti-

vate our idea and to illustrate the difference between closed- and

open-world semantics. Section 3 introduces an abstract syntax of

FMs, defines closed- and open-world semantics of FMs and analy-

ses their relation. Section 4 introduces semantic FM differencing.

Section 5 discusses our approach and its use in early development

stages. Section 6 relates our approach to previous work concerning

automated reasoning, semantic property analyses as well as model

composition and synthesis. The last section concludes this paper

and offers ideas for future research.

2 EXAMPLES
This section presents examples that illustrate potential use cases

where open-world semantics are useful and that illustrate the dif-

ference between the closed- and open-world semantics.

A software developer was asked to create an online ordering

service for a pizzeria. Therein, customers should be able to choose

ingredients individually. During requirements engineering, the

pizzeria owner and the web developer discuss all possible pizza

configurations. The developer creates a FM that represents all avail-

able pizza configurations (cf. Figure 1, FM p1): A pizza needs at

least a base. The base can be either wheat or gluten-free. Optionally,

customers can choose a sauce (tomato, hollandaise or nutella) and

several toppings (banana, mozzarella, salami, broccoli). The imple-

mentation of all possible configurations in the online shop is based

on the FM. Nevertheless, customers know the pizzeria quite well:

They know, if other toppings are available at the restaurant, like

ham, mushrooms, pineapple or rocket salad, it is possible to order

them as well, via an additional phone call. In the real world, the

FM modeling the pizzas available at the online store has an open-

world semantics: Ingredient combinations, which are not explicitly

forbidden by the FM, make up a pizza that can be ordered at the

online shop.

The owner would like to make ham an “official” topping by

offering it online as well, so the developer adds it as an optional

feature of topping. Also, lately the pizzeria had been approached

by several customers asking for sausage crust pizza, which is also

added as an optional feature to the FM. Moreover, the cook refuses

to put banana on any other sauce than nutella, which the developer

implements by a requires-relation between banana and nutella. The

FM p1.2 in Figure 1 displays the adapted model.

However, the sales figures for sausage crust do not develop as

expected. Thus, the owner instructs the developer to change it to

cheesy crust instead (cf. p1.3 in Figure 1). The tables in Figure 2 de-

pict pizza configurations illustrating the difference between closed-

and open-world semantics. The configuration c1 = {pizza, base,

wheat, topping, salami, ham} is contained in the open-world seman-

tics of p1 but not in its closed-world semantics. The configuration c1
is, however, an element of the closed-world semantics of p1.2 and,
therefore, a diff witness for the closed-world semantic difference

from p1.2 to p1. In the open-world, p1 does not restrict including
the ham-feature in valid configuration, therefore, ham-pizzas are

available. Using a closed-world semantics, no ham-topped pizza are

available in the p1 based web-shop. Since customers were able to

order ham pizza while p1 implemented the available configurations,

the closed-world semantics do not represent all available prod-

ucts. The Venn diagram depicted in Figure 3 illustrates that, indeed,

p1.2 and p1.3 are both open-world refinements of p1, while in the

closed-world, all three have pairwise incomparable semantics. The

former corresponds to the owner’s and the developer’s intuition

of how the product range changes after adding the ham-topping

and sausage crust-feature as well as the “requires” constraint be-

tween the nutella-sauce and the banana-topping. However, even

in the open-world semantics, p1.3 is no refinement of p1.2 and vice

versa. The configuration c2 = {pizza, base, wheat, sauce, tomato,

topping, banana} (cf. Figure 2) is a diff witness for both, the open-

world and the closed-world semantic difference from p1 to p1.2. It
is an element of the open- as well as the closed-world semantics

of p1, whereas it is no element of both, the open-world and the

closed-world semantics of p1.2. The “requires” constraint between
the banana topping and the nutella sauce causes the witness. Using

the closed-world semantics, the configuration c3 = {pizza, base,

wheat, cheesy crust}, is valid in FM p1.3 but not valid in FM p1.2.
Using the open-world semantics, it is a valid configuration of both

FMs. However, as Figure 3 shows, the two have incomparable open-

and closed-world semantics.

The following sections define an abstract syntax for FMs and

formalize both semantics and the difference between them.

3 FEATURE MODELS
This section introduces an abstract syntax for FMs and formally

defines an open-world FM semantics. Further, it recaps the well-

known closed-world FM semantics and relates the two semantics

with each other.

3.1 An Abstract Syntax for Feature Models
LetUF denote a countable (possibly infinite) universe of features.

The elements of the set UF represent feature names. The abstract

syntax of FMs is defined as follows (similar to [51, 52]):

Definition 1 (FeatureModel). A feature model is a tuple FM =
(F , E, r , child, I , EX ) where

• F ⊆ UF is a finite set of features,



Semantic Evolution Analysis of Feature Models SPLC’19, 9–13 September, 2019, Paris, France

FM p1

sauce

tomato hollandaise

base

pizza

wheat gluten-free

optional Or

excludes

requires

Xor xmandatory

topping

banana mozarellanutella salami broccoli

FM p1.2

sauce

tomato hollandaise

pizza

topping

banana mozarellanutella salami broccoli ham

base sausage crust

FM p1.3

sauce

tomato hollandaise

pizza

topping

banana mozarellanutella salami broccoli ham

base cheesy crust

wheat gluten-free

wheat gluten-free

Figure 1: Three consecutive versions of the FM modeling pizzas available at the pizza store.

Configuration ∈ 	 ��
�� ∈ 	 ��.�

	� ∈ 	 ��
	� ∖ ��.�

	� ∈ 	 ��.�
	� ∖ ��

	�

C�  �pizza,base,wheat, topping, salami, ham�

C  pizza, base,wheat, sauce, tomato, topping, banana	

Configuration ∈ 	 ��
#� ∈ 	 ��.�

$� ∈ 	 ��
$� ∖ ��.�

$� ∈ 	 ��.�
$� ∖ ��

$�

C�  �pizza,base,wheat, topping, ham�

C  pizza, base,wheat, sauce, tomato, topping, banana	

Open World Semantics:

Closed World Semantics:

Figure 2: Configurations in the closed- and open-world semantics of the FMs depicted in Figure 1.

• (F , E, r ) is a directed rooted tree with nodes F , root r ∈ F , and
edges E ⊆ F × F ,

• r is the root feature,
• child : F → ℘(℘(F )) maps each feature f ∈ F to its possible
sets of children child(f ) ⊆ ℘({c ∈ F | (f , c) ∈ E}).

• I ⊆ F × F is a set of implies constraints,
• EX ⊆ F × F is a set of excludes constraints.

For each f ∈ F \ {r }, we denote by pFM (f ) ∈ F the parent of f
in the feature model FM , i.e., for all features f ∈ F \ {r }, we define
pFM (f ) = p iff (p, f ) ∈ E. If FM is known from the context, we simply
write p(f ) instead of pFM (f ).

Usually, the feature trees modeled in graphical notation are called

feature diagrams and the combination of a feature diagram with a

propositional formula is called FM (e.g., [2]). The function child in

the abstract syntax definition is not required to map every feature

to sets of features resembling the usual groups used in graphical

notation. This enables to describe every feature diagram in the usual

graphical representation and additional constraints, for example,

modeled with propositional formulas. Figure 4 depicts an example

FM that can be formally defined as (F , E, A, child, I , Ex) with

• the set of features F = {A, B, C, D, E, F, G},
• the root feature A,



SPLC’19, 9–13 September, 2019, Paris, France Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe

�1

�1.2

1

�1.3

2
3

4

5

6

no

configuration

exists

No. Configuration

1 pizza, base, wheat, sauce, hollandaise, topping, banana

2 pizza, base, wheat, sauce, tomato, topping, banana

3 pizza, base, wheat, topping, ham

4 pizza, base, wheat, sausage crust

5 pizza, base, wheat, cheesy crust

6 pizza, base, wheat

7 cheesy crust

8 sausage crust

a) closed world semantics c) open world semanticsb) configuration examples

�1

�1.2

1

�1.3

2

3

4

5

6

7

88

7

Figure 3: Closed- and open-world semantics for the pizza examples in Fig. 1

• the set of edges E = {(A, B), (A, C), (B, D), (B, E), (C, F), (C, G)},
• the function child = {A 7→ {{B}, {B, C}}, B 7→ {{D}, {E}},
C 7→ {{F}, {G}, {F, G}}, D 7→ ∅, E 7→ ∅, F 7→ ∅, G 7→ ∅},

• the set of implies constraints I = {(F, E)}, and
• the set of excludes constraints Ex = {(D, G)}.

3.2 Feature Model Semantics
The semantics of FMs are defined in terms of sets of configurations.

Definition 2 (Feature Configuration). A (feature) configura-
tion is a finite set of features C ⊆ UF .

The following defines when a configuration is considered to

be possible in a FM with respect to the closed- and open-world

semantics. We distinguish between configurations that are products
of a FM and configurations that are valid in a FM. Intuitively, a

configuration is valid in a FM, if it does not violate any constraint

induced by the FM. A configuration is a product of a FM, if it does

not violate any constraints induced by the FM and contains only

features that are also contained in the FM. Consequently, every

product of a FM is also valid in the FM. The valid configurations of

a FM are the elements of its open-world semantics:

Definition 3 (Open-World Semantics). A configuration C ⊆

UF is said to be valid in a FM FM = (F , E, r , child, I , EX ) iff
(1) ∀f ∈ C ∩ F : f , r ⇒ p(f ) ∈ C ,
(2) ∀f ∈ C ∩ F : {д ∈ C | p(д) = f } ∈ child(f ),
(3) ∀(f ,д) ∈ I : f ∈ C ⇒ д ∈ C ,
(4) ∀(f ,д) ∈ EX : f ∈ C ⇒ д < C .
The open-world semantics JFMKow of FM is defined as the set of

all configurations that are valid in FM .

The first condition requires that if the configuration contains

a non-root feature of the FM, then the configuration must also

contain the feature’s parent feature. Valid configurations are not

required to contain the root feature. The second condition states

that all maximal sets of features with a common parent are possible

sets of child features of the parent features. The last two conditions

state that requires and excludes constraints must be respected.

The closed-world semantics for FMs (e.g., [2, 5, 8, 16, 55]) requires
that all features of all configurations in the semantics of a FM must

be contained in the feature set of the FM. Thus, the closed-world

semantics are more constraining than the open-world semantics.

The products of a FM are the configurations that are derived from

the features contained in the FM and the constraints imposed by the

FM. The closed-world semantics are formally defined as follows:

Definition 4 (Closed-World Semantics). A configurationC ⊆

UF is called a product of a FM FM = (F , E, r , child, I , EX ) iff
(1) C ⊆ F and
(2) C is valid in FM .
The closed-world semantics JFMKcw of FM is defined as the set of

all products of FM .

The first condition in Definition 4 requires that all features of a

FM’s product must be elements of the FM. Thus, if a feature does not

exist in a FM, then the feature is also assumed to be non-existent in

any configuration of the FM’s closed-world semantics. In contrast,

using the open-world semantics, the feature is considered to be

unconstrained. The difference between the closed-world semantics

and the open-world semantics seems to be small. However, the

choice of the semantics has strong implications in the context of

model evolution analysis as discussed in Section 4.

Each product of the FM depicted in Figure 4 may only contain

features of the set F = {A, B, C, D, E, F, G}. It must not contain other

features. Configurations containing the feature H, for instance, are
no valid products of the FM according to Definition 4. For example,

the configuration {A, B, D} is a product of the FM. It satisfies all

constraints induced by the FM and all features in the configuration

are also used in the FM. In contrast, the configuration {A, B, E, H}
is valid in the FM but no product of the FM: Although the con-

figuration satisfies all constraints induced by the FM, it does not

exclusively contain features that are used in the FM. The configu-

ration {A, B, C, D, G} is neither valid in the FM nor a product of the

FM, because it violates the FM’s excludes constraint.

Considering the open-world semantics, features not used in a

FM are unconstrained by the FM. Thus, removing features that are

not used in an FM from a valid configuration of the FM yields a

valid configuration of the FM.

Lemma 1. Let FM = (F , E, r , child, I , EX ) be a feature model. Fur-
ther, letC ⊆ UF andC ′ ⊆ C be two configurations withC∩F = C ′∩F .
If C ∈ JFMKow , then C ′ ∈ JFMKow .

Proof. LetC,C ′
and FM be given as above. AssumeC ∈ JFMKow .

Then, by Definition 3, the following is satisfied:

(1) ∀f ∈ C ∩ F : f , r ⇒ p(f ) ∈ C ,
(2) ∀f ∈ C ∩ F : {д ∈ C | p(д) = f } ∈ child(f ),



Semantic Evolution Analysis of Feature Models SPLC’19, 9–13 September, 2019, Paris, France

FM 

C

F G

B

A

optional Or

excludes

requires

Xor xmandatory

x

D E

F = {A, B, C, D,E, F, G} r = A I = {(F, E)} EX = {(G, D)}

Configuration ∈ 	 �� �� ∈ 	 �� �� ∈ 	 �� �� ∩	 �� ��

C
 � �,�,�

C� � �, �,�, C, G

C� � �, �,�, C,�

Figure 4: Feature model containing all quintessential modeling elements.

(3) ∀(f ,д) ∈ I : f ∈ C ⇒ д ∈ C ,
(4) ∀(f ,д) ∈ EX : f ∈ C ⇒ д < C .

(a) As C ∩ F = C ′ ∩ F and p(f ) ∈ F for all f ∈ F , (1) implies

∀f ∈ C ′ ∩ F : f , r ⇒ p(f ) ∈ C .
(b) As C ∩ F = C ′ ∩ F and p(f ) ∈ F for all f ∈ F , we have

{д ∈ C | p(д) = f } = {д ∈ C ′ | p(д) = f }. Using this and (2), we

obtain that ∀f ∈ C ′ ∩ F : {д ∈ C ′ | p(д) = f } ∈ child(f ).
(c) AsC ∩ F = C ′ ∩ F and I ⊆ F × F , (3) implies ∀(f ,д) ∈ I : f ∈

C ′ ⇒ д ∈ C ′
.

(d) AsC ∩ F = C ′ ∩ F and EX ⊆ F × F , (4) implies ∀(f ,д) ∈ EX :

f ∈ C ′ ⇒ д < C ′
.

From (a)-(d) and Definition 3, we can concludeC ′ ∈ JFMKow . �

Similarly, adding features that are not contained in a FM to a

valid configuration of the FM yields a valid configuration.

Lemma 2. Let FM = (F , E, r , child, I , EX ) be a feature model.
Further, let C ⊆ UF and N ⊆ UF \ F be two configurations. If
C ∈ JFMKow , then C ∪ N ∈ JFMKow .

Proof. Let FM , C , and N be given as above.

AssumeC ∈ JFMKow . As N ∩ F = ∅, we have that (C ∪N ) ∩ F =
C ∩ F . As ∀д ∈ F : p(д) ∈ F and since N ∩ F = ∅, it holds that

{д ∈ C | p(д) = f } = {д ∈ C ∪ N | p(д) = f } for all f ∈ F . With

C ∈ JFMKow and using the above, we obtain

(a) ∀f ∈ (C ∪ N ) ∩ F : f , r ⇒ p(f ) ∈ (C ∪ N ) and

(b) ∀f ∈ (C ∪ N ) ∩ F : {д ∈ (C ∪ N ) | p(д) = f } ∈ child(f ).
As N ∩ F = ∅, we have that f ∈ C ∪ N ⇔ f ∈ C for all f ∈ F .

As further C ∈ JFMKow , we obtain

(c) ∀(f ,д) ∈ I : f ∈ (C ∪ N ) ⇒ д ∈ (C ∪ N ) and

(d) ∀(f ,д) ∈ EX : f ∈ (C ∪ N ) ⇒ д < (C ∪ N ).

From (a)-(d) we can conclude that C ∪ N ∈ JFMKow . �

3.3 On the Relation between the Closed World
Semantics and the Open World Semantics

The open-world semantics is more liberal than the closed-world

semantics: Every product of a FM is also a valid configuration of

the FM. The other direction does not hold.

Lemma 3. JFMKcw ⊆ JFMKow for all feature models FM .

Proof. Let FM be a FM and letC ∈ JFMKcw . By definition,C is

valid in FM . Thus, C ∈ JFMKow . �

Independent of the feature universe UF , the closed-world se-

mantics of every FM is always finite. If the universe of features

UF is infinite, then the open-world semantics of a FM is always

infinite. Thus, enumerating all the products of a FM is always pos-

sible, whereas enumerating all of the FM’s valid configurations is

usually not possible. In contrast, if the universe of features UF is

finite, then the open-world semantics of every FM is also finite. In

the special case where the feature universeUF is finite and the FM

uses all features of the universe, the open-world semantics and the

closed-world semantics of the FM coincide.

Lemma 4. For every feature model FM = (F , E, r , child, I , EX ), the
following statements hold:

(1) JFMKcw is a finite set.
(2) If UF is infinite, then JFMKow is infinite.
(3) If UF is finite, then JFMKow is finite.
(4) If UF = F , then JFMKcw = JFMKow .

Proof. Let FM = (F , E, r , child, I , EX ) be a FM.

(1) By Definition 4, for every configurationC ∈ JFMKcw , it holds

thatC ⊆ F . Thus, JFMKcw ⊆ ℘(F ). As F is finite, ℘(F ) is finite, and
thus JFMKcw is finite.

(2) Assume UF is infinite. The set of features F is by definition

finite. Thus, the setUF \F of features that are not used in the feature

model FM is infinite. Using Definition 3, it is easy to verify that

∀f ∈ UF \ F : { f } ∈ JFMKow , i.e., each configuration containing

one feature not used in FM is valid in FM . AsUF \ F is infinite, this

implies JFMKow is infinite.

(3) Assume UF is finite. Then, ℘(UF ) is finite. As JFMKow ⊆

℘(UF ), we can conclude that JFMKow is finite.

(4) Assume UF = F . In particular, this implies that UF is finite

since F is finite by definition. By Lemma 3 we have that JFMKcw ⊆

JFMKow . It remains to show that JFMKow ⊆ JFMKcw . Let C ∈

JFMKow be a valid configuration of FM . As UF = F and C ⊆ UF ,
we have thatC ⊆ F . AsC is valid in FM andC ⊆ F , we can conclude
with Definition 4 that C ∈ JFMKcw . �



SPLC’19, 9–13 September, 2019, Paris, France Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe

FM carV1

car

optional Or

excludes

requires

Xor xmandatory transmission

car

FM carV2
Configuration ∈ 	 ����� �� ∈ 	 	
��� � ∈ 	 	
��� 	� ∈ 	 	
��� �

���

���, ������������

Figure 5: Simple feature models possible in early development stages.

Further, the open-world semantics is antitone (order-reversing)

with respect to the elements modeled in the FMs: The addition of

information to a FM further restricts its set of valid configurations.

If one FM contains at least all of the modeling elements that an-

other FM contains, then the former FM’s open-world semantics

is a subset of the latter FM’s open-world semantics. Especially in

early development stages, this is a highly desired property as the

addition of information (requirements) should only restrict the set

of possible realizations, i.e., valid configurations. This property does
not necessarily hold for the closed-world semantics as illustrated in

Figure 5. Every modeling element of the FM carV1 is also present

in the FM carV2, but the closed-world semantics of carV2 is no

subset of the closed-world semantics of carV1. On the other hand,

the open-world semantics of carV2 is a subset of the open-world
semantics of carV1. Hence, carV2 is an open-world but no closed-

world refinement of carV1.

4 SEMANTIC DIFFERENCING OF FEATURE
MODELS FOR EVOLUTION ANALYSES

Model evolution analysis is an important task to detect bugs and

explore design alternatives. Syntactic differencing approaches [3]

are not concerned with the semantics of modeling languages. They

reveal the syntactic elements that have changed between two suc-

cessor model versions. The syntactic difference from one FM to

another FM reveals syntactic changes that yield the latter FM when

they are applied to the former FM [3]. Thus, the result of a syntac-

tic differencing approach for FMs is independent of the semantics

under consideration. In contrast, semantic differencing [2, 26, 35]

abstracts from the syntax of models. The semantic difference from

one model to another model contains the elements in the seman-

tics of the former model that are not elements in the semantics of

the latter model. Thus, semantic differencing reveals the models’

differences by elements of their meanings. The semantic difference

from one FM to another FM is the set of elements of the one FM’s

semantics that are no members of the other FM’s semantics:

Definition 5 (Semantic Difference). Let FM1 and FM2 be two
feature models.

The closed-world semantic difference from FM1 to FM2 is defined
as δcw (FM1, FM2)

def

= JFM1Kcw \ JFM2Kcw .
The open-world semantic difference from FM1 to FM2 is defined

as δow (FM1, FM2)
def

= JFM1Kow \ JFM2Kow .

Depending on the semantics under consideration, semantic dif-

ferencing may yield different results. Previous work produced a

semantic differencing operator for FMs using the closed-world se-

mantics [2, 11] to decide whether δcw (FM1, FM2) = ∅ for two FMs

FM1 and FM2. This operator is especially useful when analyzing the

semantic differences between two FMs in late development stages.

By then, it is assumed that all possible features of the domain of in-

terest are identified and contained in the FM modeling the product

line. However, in early development stages, such as a specification

phase in classical development processes, or when applying agile

methods, requirements are subject to change. This also affects the

set of possible features available in a product line during product

line engineering, i.e., the set of all features of the domain of interest

is usually not known a priori. In this case, product line developers

have an "open-world" view on the semantics of the product line

under development - all features that are not explicitly constrained,

are possible. In contrast, when using the closed-world semantics, all

features that are not explicitly constrained, are not possible. For this

reason, the existing operator for semantic differencing of FMs [2]

using the closed-world semantics does not always yield intuitive

results when used in early development stages.

For example, consider a car manufacturer starting with the very

underspecified FM carV1 as depicted on the left hand side of Fig-

ure 5. This FM contains the single root feature car. Later in the

development process, the manufacturer identifies that different car

configurations support different types of transmission systems.

The manufacturer thus changes the FM to carV2 as depicted

on the right hand side of Figure 5. The manufacturer is still in

the specification phase as the set of all possible car features is

still to be identified. Therefore, as information is added to the

model and no information is removed, the manufacturer would

consider the FM carV2 to be a refinement of the FM carV1, i.e.,
the manufacturer would expect that the semantics of carV2 is

a subset of the semantics of carV1. This is the case when us-

ing the open-world semantics, i.e., δow (carV2, carV1) = ∅. In

contrast, the FM carV2 is no refinement of its predecessor ver-

sion carV1 when using the closed-world semantics, because {car,

transmission} ∈ δcw (carV2, carV1). On the other hand, in late

development stages, when all possible features are known, the

closed-world semantics is useful for detecting whether new prod-

ucts have been explicitly added or removed - which might be a

circumstance that remains undetected when using the open-world

semantics. Thus, depending on the development stage, both seman-

tics provide meaningful results for semantic differencing.

In general, it is not possible to conclude properties of the open-

world semantic difference between two FMs based on the closed-

world semantic difference between the same FMs, and vice versa:

If one FM is a refinement of another FM using the closed-world

semantics, then the latter FM is not necessarily a refinement of the

former FM using the open-world semantics, and vice versa. Figure 6



Semantic Evolution Analysis of Feature Models SPLC’19, 9–13 September, 2019, Paris, France

illustrates this: The FMs FM1 and FM2 have the same open-world

semantics. However, neither of the two FMs is a refinement of the

other FM using the closed-world semantics. Vice versa, the FM FM2

is a refinement of the FM FM3 using the closed-world semantics.

However, under the open-world semantics the situation is reversed,

i.e., FM3 is a refinement of FM2 under the open-world semantics.

However, if the two FMs under analysis share exactly the same

features, then the two semantics are equivalent up to semantic

differences, i.e., the closed-world semantic difference from the one

FM to the other FM is empty if, and only if, the open-world semantic

difference from the FM to the other FM is empty.

Lemma 5. Let FM1 = (F1, E1, r1, child1, I1, EX1) and FM2 = (F2,
E2, r2, child2, I2, EX2) be two feature models with F1 = F2. Then,
δcw (FM1, FM2) = ∅ iff δow (FM1, FM2) = ∅.

Proof. Let FM1 and FM2 be given as above.

"⇒": Assume δcw (FM1, FM2) = ∅. Let c ∈ JFM1Kow be a config-

uration that is valid in FM1. Using Lemma 1, we obtain that c ∩ F1
is also valid in FM1. As c ∩ F1 is valid in FM1 and c ∩ F1 ⊆ F1, it
follows that c ∩ F1 ∈ JFM1Kcw is a product of FM1. As by assump-

tion δcw (FM1, FM2) = ∅, we obtain that c∩F1 ∈ JFM2Kcw is also a

product of FM2. Therefore, as F1 = F2, c∩F2 = c∩F1 ∈ JFM2Kow is

valid in FM2. Using Lemma 2, we obtain that c = (c∩F2)∪(c \F2) ∈
JFM2Kow is also valid in FM2. From the above, we can conclude

that every valid configuration of FM1 is also a valid configuration

of FM2 and, thus, δ
ow (FM1, FM2) = ∅.

"⇐": Assume δow (FM1, FM2) = ∅. Let c ∈ JFM1Kcw be a prod-

uct of FM1. Then, by definition c ∈ JFM1Kow is also valid in FM1.

As by assumption δow (FM1, FM2) = ∅, this implies c ∈ JFM2Kow .
Therefore, c is valid in FM2. As further, c ∈ JFM1Kcw , it holds that

c ⊆ F1 = F2. As c ⊆ F2 and c is valid in FM2, we can conclude that

c ∈ JFM2Kcw . From the above, we can conclude that every product

of FM1 is also a product of FM2 and, thus, δ
cw (FM1, FM2) = ∅. �

The following introduces a semantic differencing operator for

FMs using the open-world semantics. The operator is an automatic

method for checking whether δow (FM1, FM2) = ∅ for any two FMs

FM1 and FM2. It further yields a witness w ∈ δow (FM1, FM2), if

δow (FM1, FM2) = ∅ does not hold. The enabler for the open-world

semantic differencing method is that it suffices to search a finite

set of configurations for a configuration that is valid in the one FM

and not valid in the other FM. More specifically, it suffices to search

all possible configurations that solely contain features that exist in

the input FMs:

Theorem 1. Let FM1 = (F1, E1, r1, child1, I1, EX1) and FM2 =

(F2, E,r2, child2, I2, EX2) be two feature models. Then, JFM1Kow ⊆

JFM2Kow iff (JFM1Kow ∩ ℘(F1 ∪ F2)) ⊆ (JFM2Kow ∩ ℘(F1 ∪ F2)).

Proof. Let FM1 and FM2 be given as above.

"⇒": Assume JFM1Kow ⊆ JFM2Kow holds. This directly implies

(JFM1Kow ∩ ℘(F1 ∪ F2)) ⊆ (JFM2Kow ∩ ℘(F1 ∪ F2)).
"⇐": Assume (JFM1Kow ∩℘(F1∪F2)) ⊆ (JFM2Kow ∩℘(F1∪F2))

holds. Let C ∈ JFM1Kow be an arbitrary configuration that is valid

in FM1. We define C ′ def

= C ∩ (F1 ∪ F2). As C ∈ JFM1Kow and

C ′∩F1 = (C∩(F1∪F2))∩F1 = C∩F1, using Lemma 1, it is guaranteed

that C ′ ∈ JFM1Kow . Therefore, as C ′ ⊆ F1 ∪ F2, we have that C
′ ∈

JFM1Kow ∩℘(F1∪F2). As by assumption (JFM1Kow ∩℘(F1∪F2)) ⊆

(JFM2Kow ∩℘(F1∪F2)), we obtain thatC ′ ∈ JFM2Kow ∩℘(F1∪F2).
We observe thatC \C ′ = C \ (C ∩ (F1 ∪ F2)) = C \ (F1 ∪ F2) ⊆ UF \

(F1∪F2) ⊆ UF \F2. As alsoC
′ ∈ JFM2Kow ∩℘(F1∪F2) ⊆ JFM2Kow ,

Lemma 2 guarantees thatC ′ ∪ (C \C ′) ∈ JFM2Kow . Observing that

C ′∪(C\C ′) = C ′∪C andC ′∪C = C becauseC ′ ⊆ C by construction

of C ′
, we can conclude C ∈ JFM2Kwc

. �

The above enables the definition of a simple algorithm for check-

ing whether the open-world semantics of a FM FM1 is included

in the open-world semantics of a FM FM2 based iteratively enu-

merating all configurations of features that are used in FM1 or

FM2, which are finitely many. Theorem 1 guarantees that there

exist semantic differences from FM1 to FM2 under the open-world

semantics if, and only if, one of these configurations is valid in FM1

and not valid in FM2. More efficient implementations that exploit

the optimizations implemented in modern SAT-solvers are also

possible: Similar to the method for semantic FM differencing under

the closed-world semantics [2], for two FMs FM1 and FM2, we can

construct two formulas Φ1 and Φ2 with the following properties:

The formula Φ1 contains a variable for each feature in FM1. The

formula Φ2 contains a variable for each feature in FM2. Each model

of Φ1 encodes a valid configuration of FM1 and each model of Φ2

encodes a valid configuration of FM2. If each feature that is used

in both FMs is encoded by the same variable in both formulas, then

each model of the formula Φ1 ∧ ¬Φ2 encodes a valid configuration

of FM1 that is no valid configuration of FM2. Theorem 1 guaran-

tees that there are semantic differences from FM1 to FM2 under

the open-world semantics if, and only if, Φ1 ∧ ¬Φ2 is satisfiable.

Similarly, semantic differencing of the FMs under the closed-world

semantics is possible via checking whether the following formula

is satisfiable [2]: (Φ1 ∧ (
∧
f ∈F2\F1 ¬xf )) ∧ ¬(Φ2 ∧ (

∧
f ∈F1\F2 ¬xf ))

where F1 is the set of features of FM1, F2 is the set of features of
FM2, and xf is the variable for feature f .

5 DISCUSSION: SEMANTICS IN DIFFERENT
DEVELOPMENT PHASES

Feature oriented development processes [9, 25] divide into two

phases, i.e., domain engineering in which “commonality and vari-

ability of the product line are defined and realised” [9], and applica-
tion engineering “in which the applications of the product line are

built by reusing domain artefacts and exploiting the product line

variability” [9]. Semantic differencing of FMs facilitates to analyze

how the range of products in the product line evolves. Independent

of the semantics, incomparable semantics of two consecutive ver-

sions of a FM indicate that the new version excludes configurations

from the original version and also adds configurations that were

not possible in the original version.

During the domain engineering phase, features and their rela-

tionships are identified and added to FMs for obtaining a complete

model of the product line. Open-world semantic differencing facili-

tates to compare consecutive versions of the FMs during domain

engineering following the intuition that adding features actually

refines the set of configurations described by the FM (cf. Section 4).

During the domain engineering phase, product line specifications are
created, i.e., features and their relationships are identified and added
to a FM. Therefore, this phase usually underlies the assumption that

the FM under development does not already contain all relevant



SPLC’19, 9–13 September, 2019, Paris, France Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe

FM FM1

B

optional Or

excludes

requires

Xor xmandatory

FM1 FM2 FM3

��

��

FM FM2

A

{∅, � }{∅, 	 }

all	configurations all	configurations

⊈
⊉

FM FM3

A

B
⊆
⊇ �	 		 ∈ � ⇒ � ∈ �}⊇

{∅, � , {�, 	}}⊆

Figure 6: Refinement using one of the semantics does not imply refinement using the other semantics.

features. Therefore, in this phase, the addition of information is

usually considered to be a refinement in the sense that the addition

of information excludes elements from the model’s semantics. Thus,

using the open-world semantics usually yields the expected results

for semantic differencing in the domain engineering phase.

During the application engineering phase, developers exploit (use)
the FM created during the domain engineering phase. The individ-

ual features are realized and choosing a product of the FM composes

the realizations of the product’s features to obtain a realization of

the product. In this phase, changing a FM such that it permits new

products, e.g., by adding features, effectively changes the realiza-

tions of the product line’s products and might even cause already

implemented products to become invalid. Each newly added prod-

uct should be detected and reviewed by product line engineers to

ensure that the product line only permits meaningful realizations.

Thus, in the application engineering phase, semantic differencing

should report every newly added product when the set of products

of a FM changes, e.g., when features are added. Therefore, semantic

differencing using the closed-world semantics [2] yields the appro-

priate results in this development phase. Refinement of FMs in the

application engineering phase corresponds to further restricting the

already existing product range by excluding redundant products or

products that are technically impossible to implement. Therefore,

for ensuring that products are not removed unintentionally during

the application engineering phase, the semantic difference from an

original FM version to a successor version should detect all prod-

ucts that have been removed during the evolution to the successor

version. This is also achievable with the closed-world semantics.

Semantic differencing is a valuable operation in software product

line development, where the expected result depends on the seman-

tics definition. Using the open-world semantics in early and the

closed-world semantics in late development phases usually meets

the purposes of the different development phases and the intuition

of developers. Therefore, semantic FM evolution analysis by means

of semantic differencing usually requires to adapt the semantics

definition according to the development phase.

6 RELATED AND AFFECTEDWORK
Existing approaches for semantic FM differencing [2, 11] are based

on the closed-world semantics. As discussed in Section 4 and Sec-

tion 3, using the open-world semantics may change the result when

conducting semantic differencing significantly. The appropriate

semantics used for semantic differencing depends on the analyst’s

intuition, which usually differs in early and late development phases

(cf. Section 5). Semantic differencing is only one out of many au-

tomated analyses for FMs (e.g., [6, 42, 47, 53]). To the best of our

knowledge, all semantic analyses of FMs are based on the closed-

world semantics. In general, all of these analyses are also applicable

using the open-world semantics. However, using the open-world

semantics might change the perspective of the analyses in the

sense that they provide other information as the analyses using the

closed-world semantics.

This section presents related work on automated FM analyses,

composition, and synthesis. For each of the approaches, we discuss

the differences from the existing method’s results under the closed-

world semantics to the results under the open-world semantics.

6.1 Translations for Automated Reasoning
There are well-known translations from FMs to propositional for-

mulas such that the interpretations satisfying the formula obtained

from translating a FM represent exactly the products of the FM [2,

6, 8, 16, 55]. As presented in Section 4, these translations are eas-

ily adaptable for semantic FM differencing using the open-world

semantics. Similarly, all reasoning approaches on FMs based on

propositional logic using, e.g., binary decision diagrams [10] as

proposed in [7], can be applied for open-world semantic analyses

by adapting the translation to propositional logic. Description logic

is another formalism used for automated reasoning on FMs [6, 54].

The approach [54] assumes closed-world semantics and can be

similarly adapted as the approaches using propositional formulas

to base the analyses on the open-world semantics. Furthermore,

automatic reasoning on FMs has been conducted using constraint

programming [50]. The rules for mapping a FM to a constraint

satisfaction problem [8] can equally be adapted by excluding the

constraints, which state that features have to be contained in the

FM’s set of features.

6.2 Semantic Property Analyses
There are automatic analyses for the plausibility of FMs in terms

of properties of their semantics. As these analyses are based on

the semantics of FMs, the analysis results change when using the

open-world semantics instead of the closed-world semantics.

Dead Feature Detection. A feature is dead in a FM, if it is not part

of any of the FM’s modeled configurations [6]. With the closed-

world semantics, a feature is dead if it is not modeled in the FM or

if it is constrained by a cross-tree constraints such that it cannot

be part of any modeled configuration [6]. Under the open-world

semantics, a feature not modeled in a FM is not dead. In case the

feature is modeled in the FM, it is dead under the closed-world

semantics, if it is dead under the open-world semantics.



Semantic Evolution Analysis of Feature Models SPLC’19, 9–13 September, 2019, Paris, France

Verifying Products or Partial Configurations. Operators for ver-
ifying products check whether a product is valid in the modeled

product line [6]. As defined in Section 3, every product of a FM

(element of the closed-world semantics) is also valid in the FM

(element of the open-world semantics). Choosing the appropriate

semantics depends on the intuition of the product line engineer

when using the operator (cf. Section 5). A similar operation is the

verification of partial configurations [6]. Valid partial configura-

tions must not contain contradictions with respect to the cross-tree

constraints modeled in the FM. Again, the result of applying the

operator depends on the chosen semantics and the appropriate se-

mantics depends on the developer’s intuition as well as the current

development phase.

Feature Model Satisfiability. A FM is satisfiable, if it permits at

least one configuration, i.e., its semantics contains at least one ele-

ment that is different from the empty configuration [6]. If a FM is not

satisfiable, then it contains contradicting cross-tree constraints [6].

There are well-known automated methods for checking whether

a FM is satisfiable under the closed-world semantics [5, 6, 24, 48],

which are, e.g., based on checking the satisfiability of the formula

resulting from translating the FM to propositional logic. The ap-

proaches are reusable for consistency checking using the open-

world semantics, if the universe of features is finite and the propo-

sitional formula resulting from the translation is interpreted over

the variables encoded by the elements of the finite universe. If the

universe of features is infinite, then every FM is satisfiable under

the open-world semantics (cf. Lemma 4). This reflects the suitabil-

ity of the open-world semantics in the domain engineering phase,

where feature constraints are yet to be identified.

Corrective Explanations. A corrective explanation provides infor-

mation that explain why an operator yields its result. This facilitates

developers in finding deficiencies that should be corrected. Exam-

ples for corrective explanations have been proposed, e.g., by [49]

introducing abductive reasoning or by [11, 26, 34] for analyzing the

syntactic changes, which lead to some semantic relation (such as re-

finement) between two FMs. For instance, [26] presents a language

independent theory to obtain a sequence of change operations to

repair a failed model refinement. The formal approach is exem-

plary applied to FMs using the closed-world semantics. Each of the

approaches [11, 26, 34, 49] bases its semantic FM analyses on the

propositional formulas obtained from translating FMs. The analyses

of the approaches are adaptable to the open-world semantics by

interchanging the translation from FMs to propositional formulas

as discussed above.

Product enumeration methods. Operators to determine the num-

ber of specified products [8, 15] or even the entire range of possible

products aim at revealing the level of variability within the product

line and to identify possible extensions of the initially intended

product scope [6]. Feature dependency analyses [39] are used to

identify undesirable dependencies between features within a FM.

Using the open-world semantics, the results of these analyzes are

usually (assuming an infinite universe of features) infinite sets that

do not provide valuable information. Furthermore, these operators

analyze the variability or deficiencies within a modeled product line

that is assumed to be almost complete. Therefore, applying these

analyses is not meaningful in early development phases, where

many features of the domain of interest may be missing in the FM.

6.3 Semantics-aware Feature Model
Composition and Synthesis

Composition and synthesis of FMs are valuable operations that

target FM reuse in software product line development.

Feature Model Composition. There are various composition oper-

ators for FMs [1, 2, 43, 51, 52]. Each composition operator combines

two FMs to obtain another FM that satisfies certain properties with

respect to the original FMs’ semantics. For instance, an intersection

composition operator takes two FMs as input and returns another

FM with a semantics that is the intersection or a superset of the

intersection of the semantics of the input FMs [1, 2, 43, 51]. Analo-

gously, a FM union composition operator takes two FMs as input

and returns a new FM with a semantics that is the union or a su-

perset of the union of the input FMs’ semantics [1, 2, 43, 52]. The

existing composition operators consider the closed-world semantics.

The relationship between the existing composition operators and

the open-world semantics reveals reuse potential: Assume reusing

an intersection composition operator that composes two FMs that

share the same features such that the resulting FM has the same

features as the input FMs and the resulting FM’s closed-world se-

mantics is equal to the intersection of the input FMs’ closed-world

semantics. Then, the resulting FM’s open-world semantics is equal

to the intersection of the input FMs’ open-world semantics.

Lemma 6. Let FM1, FM2, FM3 be feature models that all share
the same set of features. If JFM3Kcw = JFM1Kcw ∩ JFM2Kcw , then
JFM3Kow = JFM1Kow ∩ JFM2Kow .

Proof. Let FM1, FM2, FM3 be three feature models sharing the

same features such that JFM3Kcw = JFM1Kcw ∩ JFM2Kcw . Let F
denote the set of features of the three FMs.

"⊆": Let c ∈ JFM3Kow be a valid configuration of FM3. By

Lemma 1, we have that c ∩ F ∈ JFM3Kow is also valid in FM3.

As c ∩ F is valid in FM3 and (c ∩ F ) ⊆ F , we obtain with Def-

inition 4 that c ∩ F ∈ JFM3Kcw . From this, as by assumption it

holds that JFM3Kcw = JFM1Kcw ∩ JFM2Kcw , we can infer that

c ∩ F ∈ JFM1Kcw and c ∩ F ∈ JFM2Kcw . Therefore, with Lemma 3,

we obtain c ∩ F ∈ JFM1Kow and c ∩ F ∈ JFM2Kow . With this

and as c \ F ⊆ UF \ F , we can conclude with Lemma 2 that

c = (c ∩F )∪ (c \F ) ∈ JFM1Kow and c = (c ∩F )∪ (c \F ) ∈ JFM2Kow .

Therefore, c ∈ JFM1Kow ∩ JFM2Kow .

"⊇": Let c ∈ JFM1Kow ∩ JFM2Kow be a configuration that is valid

in FM1 and in FM2. By Lemma 1, we have that c ∩ F ∈ JFM1Kow ∩

JFM2Kow is also valid in FM1 and in FM2. As c ∩ F is valid in FM1

and in FM2 and as c∩F ⊆ F , we obtain with Definition 4 that c∩F ∈

JFM1Kcw∩JFM2Kcw . Using the assumption JFM3Kcw = JFM1Kcw∩

JFM2Kcw , we obtain that c ∩ F ∈ JFM3Kcw . With Lemma 3, this

implies c ∩ F ∈ JFM3Kow . With this and as c \ F ⊆ UF \ F , we can
conclude with Lemma 2 that c = (c ∩ F ) ∪ (c \ F ) ∈ JFM3Kow . �

Reusing union composition operators yields similar results, i.e.,
the resulting FM’s open-world semantics is equal to the union of

the input FMs’ open-world semantics.



SPLC’19, 9–13 September, 2019, Paris, France Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe

Lemma 7. Let FM1, FM2, FM3 be feature models that all share
the same set of features. If JFM3Kcw = JFM1Kcw ∪ JFM2Kcw , then
JFM3Kow = JFM1Kow ∪ JFM2Kow .

Proof. Let FM1, FM2, FM3 be three feature models sharing the

same features such that JFM3Kcw = JFM1Kcw ∪ JFM2Kcw . Let F
denote the set of features of the three FMs.

"⊆": Let c ∈ JFM3Kow be a valid configuration of FM3. By

Lemma 1, we have that c ∩ F ∈ JFM3Kow is also valid in FM3.

As c ∩ F is valid in FM3 and (c ∩ F ) ⊆ F , we obtain with Def-

inition 4 that c ∩ F ∈ JFM3Kcw . From this, as by assumption it

holds that JFM3Kcw = JFM1Kcw ∪ JFM2Kcw , we can infer that

c ∩ F ∈ JFM1Kcw or c ∩ F ∈ JFM2Kcw . Therefore, with Lemma 3,

we obtain c ∩ F ∈ JFM1Kow or c ∩ F ∈ JFM2Kow . With this

and as c \ F ⊆ UF \ F , we can conclude with Lemma 2 that

c = (c ∩ F ) ∪ (c \ F ) ∈ JFM1Kow or c = (c ∩ F ) ∪ (c \ F ) ∈ JFM2Kow .

Therefore, c ∈ JFM1Kow ∪ JFM2Kow .

"⊇": Let c ∈ JFM1Kow ∪ JFM2Kow be a configuration that is valid

in FM1 or in FM2. By Lemma 1, we have that c ∩ F ∈ JFM1Kow ∪

JFM2Kow is also valid in FM1 or in FM2. As c ∩ F is valid in FM1 or

in FM2 and as c ∩ F ⊆ F , we obtain with Definition 4 that c ∩ F ∈

JFM1Kcw∪JFM2Kcw . Using the assumption JFM3Kcw = JFM1Kcw∪

JFM2Kcw , we obtain that c ∩ F ∈ JFM3Kcw . With Lemma 3, this

implies c ∩ F ∈ JFM3Kow . With this and as c \ F ⊆ UF \ F , we can
conclude with Lemma 2 that c = (c ∩ F ) ∪ (c \ F ) ∈ JFM3Kow . �

Feature Model Synthesis. The FM synthesis problem [16] takes a

propositional formula over features as input. The idea is to compute

a FM such that its closed-world semantics is equal to the satisfying

interpretations of the formula. Concerning the open-world seman-

tics, the translation constructs a FM such that all the constraints

induced by the formula must be respected by the FM’s valid config-

urations. This also implies that every configuration over the FM’s

features that is no product of the resulting FM is also no valid con-

figuration of the resulting FM. Existing FM synthesis methods are

thus well reusable when using the open-world semantics.

7 CONCLUSION AND FUTURE PROSPECTS
Semantic differencing of FMs facilitates to analyze how the range of

products in the product line evolves. Using approaches for semantic

differencing based on the open-world semantics, additionally to

those based on the closed-world semantics, supports model evolu-

tion analysis of product refinement, especially in the design phase.

Our semantic differencing operator for FMs using the open-world

semantics facilitates the comparison of FMs for product line man-

agers during early development stages. The proposed open-world

semantics is especially useful in early development stages or when

using agile development, where requirements are permanently sub-

ject to change. Automatic semantic differencing of FMs using the

open-world semantics is possible as it suffices to search all possible

configurations that solely contain features that exist in the input

FMs. As argued in Section 5, using both, open-world semantics in

early development stages, and closed-world semantics in late devel-

opment stages, provides developers the best of both worlds. For the

early development stages, it is important that the addition of infor-

mation to a model causes that the resulting model is a refinement

of its predecessor version.

The integration of the semantics in various tools is subject to

future work. For developers, a graphical representation of valid

configurations in the compared FMs could be useful to facilitate the

understanding of the differences. Moreover, it will be interesting

to provide a tool, which integrates the different approaches for

syntactic and semantic differencing of FMs and provides developers

a comfortable way to make their analyses.

REFERENCES
[1] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France. 2010. Com-

posing Feature Models. In Software Language Engineering.
[2] Mathieu Acher, Patrick Heymans, Philippe Lahire, Clément Quinton, Philippe

Collet, and Philippe Merle. 2012. Feature Model Differences. In Advanced Infor-
mation Systems Engineering - 24th International Conference.

[3] Marcus Alanen and Ivan Porres. 2003. Difference and Union of Models. In «UML»
2003 - The Unified Modeling Language. Modeling Languages and Applications.

[4] Sven Apel and Christian Kästner. 2009. An Overview of Feature-Oriented Soft-

ware Development. Journal of Object Technology 8, 5 (2009), 49–84.

[5] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In

Software Product Lines.
[6] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated

Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (2010), 615–636.

[7] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés. 2007.

FAMA: Tooling a Framework for the Automated Analysis of Feature Models. In

Proceeding of the First International Workshop on Variability Modelling of Soft-
wareintensive Systems (VAMOS).

[8] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. 2005. Automated

Reasoning on Feature Models. In Proceedings of the 17th International Conference
on Advanced Information Systems Engineering.

[9] Böckle, Günter and Pohl, Klaus and van der Linden, Frank. 2005. A Framework

for Software Product Line Engineering. In Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer Berlin Heidelberg, 19–38.

[10] Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipu-

lation. IEEE Trans. Comput. 35, 8 (1986), 677–691.
[11] Johannes Bürdek, Timo Kehrer, Malte Lochau, Dennis Reuling, Udo Kelter, and

Andy Schürr. 2016. Reasoning About Product-line Evolution Using Complex

Feature Model Differences. Automated Software Engineering 23, 4 (2016), 687–733.
[12] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. 2017. Se-

mantic Differencing for Message-Driven Component & Connector Architectures.

In International Conference on Software Architecture.
[13] Rafael Capilla, Jan Bosch, Pablo Trinidad, Antonio Ruiz-Cortés, andMike Hinchey.

2014. An overview of Dynamic Software Product Line architectures and tech-

niques: Observations from research and industry. Journal of Systems and Software
91 (2014).

[14] Paul Clements and Linda Northrop. 2007. Software Product Lines: Practices and
Patterns. Addison-Wesley.

[15] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Formalizing

Cardinality-based Feature Models and their Specialization. In Software Process:
Improvement and Practice, Vol. 10. 7–29.

[16] Krzysztof Czarnecki and Andrzej Wasowski. 2007. Feature Diagrams and Logics:

There and Back Again. In Software Product Line Conference (SPLC 2007).
[17] Ferruccio Damiani, Luca Padovani, and Ina Schaefer. 2012. A Formal Foundation

for Dynamic Delta-oriented Software Product Lines. In Proceedings of the 11th
International Conference on Generative Programming and Component Engineering.

[18] Uli Fahrenberg, Mathieu Acher, Axel Legay, and Andrzej Wąsowski. 2014. Sound

Merging and Differencing for Class Diagrams. In Fundamental Approaches to
Software Engineering.

[19] Uli Fahrenberg, Axel Legay, and Andrzej Wąsowski. 2011. Vision Paper: Make a

Difference! (Semantically). In Model Driven Engineering Languages and Systems.
[20] Robert France and Bernhard Rumpe. 2007. Model-Driven Development of Com-

plex Software: A Research Roadmap. In Future of Software Engineering 2007 at
ICSE.

[21] Christian Gerth, Jochen M. Küster, Markus Luckey, and Gregor Engels. 2010.

Precise Detection of Conflicting Change Operations Using Process Model Terms.

In Model Driven Engineering Languages and Systems.
[22] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. 2008.

Modeling Variants of Automotive Systems using Views. In Proceedings of Work-
shop Modellbasierte Entwicklung von eingebetteten Fahrzeugfunktionen (MBEFF).

[23] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and

Steven Völkel. 2007. An Algebraic View on the Semantics of Model Composition.

In Model Driven Architecture- Foundations and Applications.
[24] Kyo Kang, Sholom Cohen, James Hess, William Nowak, and Spencer Peterson.

1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical



Semantic Evolution Analysis of Feature Models SPLC’19, 9–13 September, 2019, Paris, France

Report. Software Engineering Institute - Carnegie Mellon University.

[25] Kang, Kyo C. and Kim, Sajoong and Lee, Jaejoon and Kim, Kijoo and Shin, Euiseob

and Huh, Moonhang. 1998. FORM: A Feature-Oriented Reuse Method with

Domain-Specific Reference Architectures. Annals of Software Engineering 5, 1.

[26] Oliver Kautz and Bernhard Rumpe. 2018. On Computing Instructions to Repair

Failed Model Refinements. In Conference on Model Driven Engineering Languages
and Systems (MODELS’18).

[27] Philipp Kehrbusch, Johannes Richenhagen, Bernhard Rumpe, Axel Schloßer,

and Christoph Schulze. 2016. Interface-based Similarity Analysis of Software

Components for the Automotive Industry. In International Systems and Software
Product Line Conference (SPLC ’16).

[28] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. 2011. A Rule-Based Approach

to the Semantic Lifting of Model Differences in the Context of Model Versioning.

In International Conference on Automated Software Engineering (ASE’11).
[29] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. 2013. Consistency-Preserving

Edit Scripts in Model Versioning. In International Conference on Automated Soft-
ware Engineering (ASE).

[30] Jochen M. Küster, Christian Gerth, and Gregor Engels. 2009. Dependent and

Conflicting Change Operations of Process Models. In Model Driven Architecture -
Foundations and Applications.

[31] Jochen M. Küster, Christian Gerth, Alexander Förster, and Gregor Engels. 2008.

Detecting and Resolving Process Model Differences in the Absence of a Change

Log. In Business Process Management.
[32] Philip Langer, Tanja Mayerhofer, and Gerti Kappel. 2014. A Generic Framework

for Realizing Semantic Model Differencing Operators. In PSRC@MoDELs (CEUR
Workshop Proceedings), Vol. 1258. CEUR-WS.org.

[33] Philip Langer, Tanja Mayerhofer, and Gerti Kappel. 2014. Semantic Model Differ-

encing Utilizing Behavioral Semantics Specifications. InModel-Driven Engineering
Languages and Systems.

[34] Shahar Maoz and Jan Oliver Ringert. 2016. A framework for relating syntactic

and semantic model differences. Software & System Modeling 17, 3 (2016).

[35] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2010. A Manifesto

for Semantic Model Differencing. In Proceedings Int. Workshop on Models and
Evolution (ME’10) (LNCS 6627). Springer, 194–203.

[36] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2011. ADDiff: Semantic

Differencing for Activity Diagrams. In Conference on Foundations of Software
Engineering (ESEC/FSE ’11). ACM, 179–189.

[37] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2011. CDDiff: Semantic

Differencing for Class Diagrams. In ECOOP 2011 – Object-Oriented Programming.
[38] Tanja Mayerhofer, Philip Langer, and Gerti Kappel. 2015. Semantic Model Differ-

encing Based on Execution Traces. In Software Engineering & Management.
[39] Marcílio Mendonça, Donald Cowan, William Malyk, and Toacy Oliveira. 2008.

Collaborative Product Configuration: Formalization and Efficient Algorithms for

Dependency Analysis. Journal of Software 3, 2 (2008).
[40] Klaus Pohl, Günter Böckle, and Frank van der Linden. 2005. Software Product

Line Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg.

[41] Raymond Reiter. 1978. On Closed World Data Bases. In Logic and Data Bases.
Springer US.

[42] Camille Salinesi and Raúl Mazo. 2012. Defects in Product Line Models and how

to Identify them. In Software Product Line - Advanced Topic. InTech editions.

[43] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves

Bontemps. 2007. Generic Semantics of Feature Diagrams. Computer Networks 51,
2 (2007).

[44] Mirjam Steger, Christian Tischer, Birgit Boss, Andreas Müller, Oliver Pertler, Wolf-

gang Stolz, and Stefan Ferber. 2004. Introducing PLA at Bosch Gasoline Systems:

Experiences and Practices. In Software Product Line Conference (SPLC’04).
[45] Gabriele Taentzer, Claudia Ermel, Philip Langer, and Manuel Wimmer. 2014. A

fundamental approach to model versioning based on graph modifications: from

theory to implementation. Software & Systems Modeling 13, 1 (2014).

[46] Thomas Thüm, Don Batory, and Christian Kästner. 2009. Reasoning about Edits

to Feature Models. In Proceedings of the 31st International Conference on Software
Engineering.

[47] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,

and Thomas Leich. 2014. FeatureIDE: An extensible framework for feature-

oriented software development. Science of Computer Programming 79 (2014).

[48] Pablo Trinidad, David Benavides, Amador Durán, Antonio Ruiz-Cortés, and

Miguel Toro. 2008. Automated error analysis for the agilization of feature model-

ing. Journal of Systems and Software 81, 6 (2008).
[49] Pablo Trinidad and Antonio Ruiz Cortés. 2009. Abductive Reasoning and Auto-

mated Analysis of Feature Models: How are they connected?. In Third Interna-
tional Workshop on Variability Modelling of Software-Intensive Systems.

[50] Edward Tsang. 1993. Foundations of Constraint Satisfaction. Academic Press.

[51] Pim van den Broek. 2012. Intersection of Feature Models. In Software Product
Line Conference (SPLC’12).

[52] Pim van den Broek, Ismênia Galvão, and Joost Noppen. 2010. Merging Feature

Models. In Software Product Line Conference (SPLC’10).
[53] Thomas von der Maßen and Horst Lichter. 2004. Deficiencies in Feature Models.

In Workshop on Software Variability Management for Product Derication.

[54] Hai Wang, Yuan Fang Li, Jing Sun, Hongyu Zhang, and Jeff Pan. 2005. A Semantic

Web Approach to Feature Modeling and Verification. InWorkshop on Semantic
Web Enabled Software Engineering (SWESE’05).

[55] Wei Zhang, Haiyan Zhao, and Hong Mei. 2004. A Propositional Logic-Based

Method for Verification of Feature Models. In Formal Methods and Software
Engineering (FSE’04). Springer Berlin Heidelberg.


	Abstract
	1 Introduction
	2 Examples
	3 Feature Models
	3.1 An Abstract Syntax for Feature Models
	3.2 Feature Model Semantics
	3.3 On the Relation between the Closed World Semantics and the Open World Semantics

	4 Semantic Differencing of Feature Models for Evolution Analyses
	5 Discussion: Semantics in Different Development Phases
	6 Related and Affected Work
	6.1 Translations for Automated Reasoning
	6.2 Semantic Property Analyses
	6.3 Semantics-aware Feature Model Composition and Synthesis

	7 Conclusion and Future Prospects
	References
	Unbenannt



