
Self-Adaptive Manufacturing with Digital Twins

Tim Bolender∗, Gereon Bürvenich∗, Manuela Dalibor∗, Bernhard Rumpe∗, Andreas Wortmann∗†

∗ Software Engineering, RWTH Aachen University, Aachen, Germany, www.se-rwth.de
† Institute for Control Engineering of Machine Tools and Manufacturing Units

University of Stuttgart, Stuttgart, Germany, www.isw.uni-stuttgart.de

Abstract—Digital Twins are part of the vision of Industry
4.0 to represent, control, predict, and optimize the behavior
of Cyber-Physical Production Systems (CPPSs). These CPPSs
are long-living complex systems deployed to and configured for
diverse environments. Due to specific deployment, configuration,
wear and tear, or other environmental effects, their behavior
might diverge from the intended behavior over time. Properly
adapting the configuration of CPPSs then relies on the expertise
of human operators. Digital Twins (DTs) that reify this expertise
and learn from it to address unforeseen challenges can signif-
icantly facilitate self-adaptive manufacturing where experience
is very specific and, hence, insufficient to employ deep learning
techniques. We leverage the explicit modeling of domain expertise
through case-based reasoning to improve the capabilities of
Digital Twins for adapting to such situations. To this effect, we
present a modeling framework for self-adaptive manufacturing
that supports modeling domain-specific cases, describing rules for
case similarity and case-based reasoning within a modular Digital
Twin. Automatically configuring Digital Twins based on explicitly
modeled domain expertise can improve manufacturing times,
reduce wastage, and, ultimately, contribute to better sustainable
manufacturing.

Index Terms—Self-Adaptive Manufacturing, Digital Twins,
Case-Based Reasoning, Domain-Specific Languages

I. INTRODUCTION

Industry 4.0, the fourth industrial revolution, focuses on

integrating Cyber-Physical Production Systems (CPPSs), their

processes, and stakeholders to optimize the complete value-

added chain to ultimately save time, cost, and reduce resource

consumption [1]. These CPPSs are long-living complex sys-

tems deployed to and configured for diverse environments.

Due to specific deployment, configuration, wear and tear, or

other environmental effects their behavior as-operated can

diverge from its behavior as-designed over time. Successfully

using the CPPSs demands the expertise of human operators to

mitigate these effects. In such cases, experienced operators

employ significant manual efforts to configure the CPPSs

before starting production. Making their expertise machine-

processable can facilitate their self-adaptive operations.

One vision for implementing Industry 4.0 are so-called Dig-

ital Twins (DTs) [2], which are digital duplicates of CPPS that

represent, control, and predict the behavior of their physical

counterparts. Where DTs control CPPSs, they need to have

knowledge about the CPPS and its operations. Consequently,

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - EXC 2023 Internet of
Production - 390621612.

they are connected to the CPPS and lend themselves for

automatically adapting it to changing challenges. For their

adaptation of the overall manufacturing system consisting of

DT and CPPS, the DTs need to be enabled to sense changes

in the CPPS’s behavior, reason over reified domain expertise,

and make changes to the CPPS accordingly.

Case-Based Reasoning (CBR) [3], [4] is an AI planning

technique in which highly specific, and hence, sparse domain

expertise is reified in cases. These describe undesired situa-

tions a system should react to together with suitable reactions

to capture the expertise of CPPS operators. Based on this

domain expertise, the DT of a CPPS can detect undesired

situations, find matching or similar cases, and adjust the CPPS

according to their reactions to produce a desired system state

again.

This enables integrating highly domain-specific expertise

(that can hardly be foreseen by the CPPSs’ developers) in

brownfield settings where the long-living CPPSs are already

in place as well as in greenfield settings, where the CPPS and

its DT are developed together.

To leverage CBR over domain expertise into self-adaptive

manufacturing, we devised a modeling framework comprising

multiple interrelated modeling languages and integrate it into

our model-driven architecture for DTs [5], [6], [7]. The

contributions of this paper are

• extensible modeling languages to capture domain exper-

tise in the form of cases and to describe the similarity

between them, and

• a modular architecture for integrating CBR into DTs and

supporting all activities related to identifying, applying,

and learning cases.

In the following, Sec. II illustrates the challenges of incor-

porating domain expertise into manufacturing on the example

of injection molding. Sec. III then introduces preliminaries.

Afterwards, Sec. IV presents our CBR modeling languages and

Sec. V presents our realization of CBR within DTs. Sec. VI

illustrates our method’s application to the configuration of an

injection molding process. Sec. VII discusses observations and

Sec. VIII highlights related research. Sec. IX concludes.

II. CONTEXT

Injection molding is a popular form of batch processing

for the mass production of 3D plastic parts that is performed

daily billionfold around the world to manufacture identical

parts repeatedly in high quality. Injection molding itself is

156

2021 International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

2157-2321/21/$31.00 ©2021 IEEE
DOI 10.1109/SEAMS51251.2021.00029

[BBD+21] T. Bolender, G. Bürvenich, M. Dalibor, B. Rumpe, A. Wortmann:
Self-Adaptive Manufacturing with Digital Twins.
In: 2021 International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 156-166, IEEE Computer Society, 2021
www.se-rwth.de/publications/

��������	�
����
�

���

�����������
� �����

��

��������������������

���������
�
��������

�������
��������

Figure 1. Detailed view of the plasticizing unit of an injection molding
machine.

highly automated but requires a configuration that often has to

be determined and adjusted manually due to changing CPPS

properties, materials, or environmental characteristics.

Figure 1 illustrates the typical components of an injection

molding machine. It consists of a hopper to insert the material

into the plasticizing unit. The plasticizing unit heats the

material until it melts and carries it to the front through a

screw. Heating bands support the melting. Next, the material

is injected into the mold, which is the 3D negative of the part

to be produced. The material solidifies inside the mold and

forms the desired shape.

Overall, the production process consists of four phases:

(1) Dosing: The material is fed into the cylinder. Rotation of

the plasticizing unit screw conveys the material to the nozzle.

Through the heating and the movement friction, the material

plasticizes. (2) Injecting: The screw moves towards the nozzle

and injects the material into the mold. The movement speed

and the viscosity of the material determine the speed of the

injection. Parameters of this phase are temperature, volume,

time, speed, and mold characteristics. (3) Holding: The screw

slows down, and the clamping unit applies pressure to the

mold. Thereby, the material fills the last parts of the mold.

The characterizing parameters during the holding phase are

the time and pressure. (4) Cooling: Before ejecting the finished

part, the material has to solidify by cooling off. The correct

time and temperature of the mold prevent defects such as

warpage.

The great variety of environmental and CPPS influences,

as well as of process parameters and their impact on the

process and part quality complicates finding optimal CPPS

configurations. Deviations from the predictions of simulations

are common, especially due to wear and tear. Consequently,

only experienced operators can configure the CPPS properly

by applying domain expertise learned during their career. DTs

can help to overcome these difficulties by reifying the opera-

tors’ domain expertise and automatically controlling the CPPS.

We, therefore, identify the following four requirements for

incorporating domain expertise via DTs in batch processing:

R1 Comprehensibility: Operator expertise must be reified

in means that are comprehensible by domain experts and

support non-clear cohesion as well as the integration of

empirical knowledge.

R2 Automatability: The DT has to monitor the situation of

the underlying CPPS permanently and, when encounter-

ing undesired states, has to automatically adapt the CPPS

without further interaction based on the reified domain

expertise.

R3 Adjustability: The DT and its domain knowledge have to

be adjustable to different contexts, deployments, config-

urations without in-depth software engineering expertise.

R4 Self-Explainability: Extracting knowledge is difficult in

a domain with unclear coherence, yet the CPPSs’ deci-

sions should be comprehensible by domain experts. To

support self-explainability, the DT needs to support the

creation of empirical-based analytical knowledge.

We conceived extensible modeling languages to fulfill R1

and R2, a modular DT architecture supporting R3, and a case

synthesis realizing R4. In the following, we present these

modeling languages, an implementation of our DT architecture

for CBR, and a system for reifying, applying, and producing

domain expertise through CBR.

III. PRELIMINARIES

In our approach to self-adaptive manufacturing, we employ

CBR, AI action planning, and software language engineering.

This section introduces these preliminaries.

Case-Based Reasoning and Planning
A DT that controls a CPPS encounters situations that are

not anticipated during specification and thus should adapt to

new conditions autonomously. CBR [3] is a problem-solving

paradigm that utilizes knowledge about previously encoun-

tered situations and reuses their solutions. Consequently, a case

consists of a situation description (a condition over available

data sources), its solution, and additional information about

how the solution was derived. The CBR cycle is divided

into four phases: (1) Retrieve the case most similar to the

current situation. (2) Reuse the solution of the most similar

case. (3) Revise that solution if the case differs too much

from the current situation. (4) Retain the revised case in the

knowledge base. Hence, an essential part of the CBR cycle is

the identification of similar cases. If the case’s condition can

reference multiple heterogeneous attributes, a generally useful

similarity cannot be specified; instead, this consideration is

highly domain-specific. To support engineers and domain ex-

perts in specifying similarity measures, these often are broken

down according to the local-global-principle: A distinct local

measure defines the similarity for each individual attribute

referenced in a case condition. A global similarity measure

then enables computing the similarity for the whole case by

using, e.g., the weighted average of all the local similarities.

CBR, hence, is limited to applying existing cases and

learning deviations of cases. It cannot, generally, produce

new solutions to completely unforeseen challenges. General

automated planning and scheduling supports creating new

solutions (plans) to unforeseen challenges, if the necessary

157

primitives (types, actions) are provided. In our architecture, we

leverage AI planning based on the Planning Domain Definition

Language (PDDL) [8] as a fallback mechanism when CBR

fails. PDDL is a language for representation and exchange of

planning domain models comprising types, constants, and ac-

tions with preconditions and postconditions. A PDDL problem

description is an instantiation of model elements and formu-

lates a goal that describes which situation the DT shall achieve.

A planning system, such as MetricFF [9] processes domain

models and problem descriptions and derives a sequence of

actions, a plan, that leads from the initial situation to the

goal [10]. Thus, PDDL can be employed as a fallback if CBR

cannot find a similar case to address undesired situations [11].

MontiCore Language Workbench

Our method presented in the following relies on modeling

languages [12] to describe cases, case similarities, DT archi-

tecture components, and its ties to CPPS, model transforma-

tions, and code generation. All of these exist in the techno-

logical space of the MontiCore [13] language workbench [14]

for the efficient engineering of modular, textual modeling

languages. These modeling languages comprise context-free

grammars, Java-based well-formedness rules, model-to-model

transformations, and FreeMarker-based code generators [13].

From grammars, MontiCore derives an extensible infrastruc-

ture to parse, check, and transform models of the languages

defined by the grammar. MontiCore comes with a multitude of

reusable modeling language modules ranging from expressions

and statements of various complexities, to UML fragments,

software architectures, and more.

A particular kind of languages available in the techno-

logical space of MontiCore are domain-specific tagging lan-

guages [15] that support extending models of a base language

with additional information without polluting these. To this

effect, their infrastructure (grammar, well-formedness rules)

is derived from a base language to enable enriching models of

that language with information, e.g., about platform-specific

details of their use, without polluting them. As the tag model

is separate from the base model, models of the base language

are unaware of being tagged and can thus be reused in different

contexts.

Digital Twin Architecture

MontiArc [16], [17] is an architecture description language

for specifying reusable components within a software archi-

tecture and their connections through typed, directed ports.

MontiArc comes with a Java code generator that generates

Java classes conforming to the specified components, methods

to access port values, and a mechanism to inject handwritten

behavior specifications. In previous work, we built a DT with

MontiArc, that enables automatic experiment execution on

injection molding machines [5] and also provides a cockpit

for visualizing the current state of the machine [18]. We

define a Digital Twin (DT) of a system as a set of models

of the system, a set of contextual data traces, and a set of

�������	
����
	������	

�

���
�

���	�

���	�

����

�����
����

��������	

�����
�����������

 �!�
���

 ������	

�

�
�����

"�

����#���

�

�
�����

���	�

�����
����

��������	
��

���

Figure 2. Reusable Digital Twin Architecture modeled with MontiArc.

services to use the data and models purposefully with respect

to the original system [5]. In our notion, a DT is a software

system representing a physical counterpart and encapsulating

domain knowledge in the form of models that characterizes

this physical counterpart. Further, it contains data about the

physical counterpart and services to collect more data or

interact with this counterpart. We built a DT (cf. Figure 2)

with MontiArc that provides the following components:

• Data Lake: Encapsulates multiple databases that store

data about the physical system, its context, and data

produced by the DT

• Data Processor: Accesses the Data Lake and collects

relevant data for the DT

• Evaluator: Supervises the physical system’s state and

triggers the reasoner if a malfunctioning is detected

• Reasoner: Based on data about the physical system and

models describing its intended behavior, finds a solution

to return to the intended state

• Executor: Accesses the physical system via OPC UA [19]

and ensures that the solution provided by the Reasoner

is executed on it.

While previous reasoner implementations offered a way to

organize experiments, we will exchange this Reasoner with

a new reasoner that performs CBR.

IV. MODELING LANGUAGES FOR CASE-BASED

REASONING

We present a modeling framework that supports the cycle

of CBR and supports the creation, storage, retrieval, and

comparison of cases via the case base. Since the DT archi-

tecture and connectivity to the CPPS are provided by the DT

framework, domain experts only need to provide the essential

domain knowledge, defining known experiences as cases and

specifying case similarity measures to create a new DT for a

CPPS. We utilize UML/P class diagrams (CDs) [20] and in-

troduce further modeling languages to support the description

of the domain knowledge. The integration of these models

158

supplements the framework configuration and incorporates

the domain knowledge into the workflow. Additionally, the

framework enables defining PDDL-based fallback strategies

for circumstances where CBR fails to produce a suitable case.

These fallback solutions are also modeled by domain experts

and thus explicitly tailored to the underlying CPPS.

A. CBR Modeling Languages

Modeling languages facilitate the specification of the CBR

framework and assist domain experts in making their expertise

machine-processable. Their models tailor the steps of the CBR

cycle and the case base to a specific application domain.

Figure 3 gives an overview of the integrated modeling lan-

guages employed in our approach: (1) Class diagram models

describe the elements and relations of the domain and specify

data structures available to the framework. (2) Case base

models describe acquainted cases of the physical system. The

framework interprets and synthesizes case models at runtime.

(3) Case similarity models specify how to compute the sim-

ilarity between cases based on their attributes. (4) Models

of the MontiArc architecture description language define the

components and architecture of the DT implementing the

CBR loop. These are predefined and provided with the DT

framework. (5) OPC UA tagging models [5] define how the

DT architecture connects to the API of the CPPS.

The case base language foresees extension with domain-

specific expressions and actions using the language extension

mechanisms of MontiCore [13]. The code generated from the

case similarity models supports integrating handcrafted code

to define more complex similarity analyses.

�����
������	����
#��$��$�

�����
%����

#��$��$�

������

��$	��� "�����	�&
��'�

(�$$��$

��)������
"�����$
�%#

������

����
%���

�	�*������	� ��������������

������
������

+�	��

������

Figure 3. Modeling languages, relations, and artifacts specifying the domain,
cases, and fallback option for an application of the CBR framework.

Class Diagrams
CDs describe the elements and relations of the application

domain. The case-based reasoner utilizes the corresponding

data structures to build and compare cases. Figure 4 presents

a textual UML/P CD that illustrates an excerpt of the domain

of injection molding. Class ProcessData symbolizes a data

record in the molding process. Besides metadata like the

cycleId and cycleTime (l. 3), it provides the values of

the nozzle temperature and the injection pressure (l. 4).

classdiagram InjectionMolding {
class ProcessData {
int cycleId, cycleTime;
double nozzleTemperature, injectionPressure;
boolean heating;

}
}

01
02
03
04
05
06
07

�

Figure 4. Class diagram for an excerpt from the domain of injection molding,
containing a small set of parameters of the injection process.

Case Base Language
The case base language supports domain experts in defining

cases. To this end, they distinguish between known and un-
known cases. Known cases describe undesired situations for

which the domain expert knows a solution with its expected

consequences. If a similar situation occurs, one or multiple

solution steps can be repeated to solve the problem. Unknown

cases describe undesired situations for which the expert does

know that the situation might occur and that the system

configuration has to adapt, but does not know how to adapt it.

Although domain experts might not be able to provide precise

instructions, they can provide helpful context knowledge to

sort out the problem through a fallback system. By combining

both types of cases, the domain expert can describe the whole

space of situations that can occur and should be handled by a

CBR system.

The Case-Base Language (CBL) is defined as textual Mon-

tiCore modeling language (cf. Figure 5). Every case definition

references the domain CD by importing models (l. 2) using

the non-terminal ImportStatement provided by inheriting

from MontiCore’s MCExpressions language for binary

expressions, statements, and types. Each case base can contain

multiple cases (l. 2) and each case consists of a head, a body,

and an optional fallback (l. 3). Its head denotes the state of

the case and specifies its name (l. 4). The body comprises a

condition and an optional solution (l. 5). If the body features

a Solution part, the case is known. Otherwise, it is treated

as an unknown case. The condition essentially is a Boolean

expression (l. 6) over any types and properties available

through the domain model. Well-formedness rules of the CBL

ensure that the expressions are valid Boolean expressions (i.e.,
referenced types exist and can be compared as specified by the

expression). The solution is a non-empty sequence of solution

parts with a consequence (l. 7). Each solution part (l. 8)

refers to the interface non-terminal SolutionExpression
(l. 12) that is an extension point of this grammar and can

be implemented in domain-specific sub-grammars. Per default,

arbitrary assignments are supported as solutions (ll. 15-16) and

corresponding well-formedness checks are provided. Further,

domain experts can also specify java code that performs a

solution and call this code in the solution part. Java calls

are realized by the imported MCExpressions. The CBL

also supports PDDL specifications (provided by importing

PDDL) for planning if the solution for a case is unknown.

The consequence describes a postcondition that should hold

after the case has been applied. The CBR system relies on

159

the specified yields consequence to check whether a case

was successfully applied. If the specified postcondition is not

fulfilled, the DT applies this case less likely in the future.

Similarly, the fallback (l. 10) is an extension point for fallback

actions to be used if the case fails. Per default, notifying

users (ll. 17-18) and falling back to PDDL planning (ll. 19-

20) are supported. Both solutions and fallbacks are meant

for extension through domain-specific or application-specific

sub-grammars in which, e.g., temporal expressions, fallback

automata, or other means can be integrated using MontiCore’s

language extension mechanisms [13].

������� �����������	
�	� ����	
� ���
�����������������
�������� �������������������������
����� ����� �!�!��� "�!#!�$�%%&�'()�
��� ��!'���!�*����
�� "� ����� ��������%
����)�
��� ����� ��!�+!��
���������
��%
���� ����%
���������������,
��'��
��%
�������� ��! �!���%
�����
���������
�����,
��'�� ��!"��% �!��
���������
$�%%&�'(���� ��!+�%%&�'(!�$�%%&�'(�
���������

�	���
��� ��%
�����
���������
�	���
��� $�%%&�'(�
���������

-���	�������%
���� �������	�� ��%
�����
��������
��-���	������
���������

*���+"$�%%&�'(�������	�� $�%%&�'(�
��������
��!����+"!������	�.�����	�

����$�%%&�'(�������	�� $�%%&�'(�
��������
��!	��%!�����/��%�

#

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21

"�

����������
��
��������
����
�������
�������
�	������������������

�����
���	
��������

������ �

Figure 5. Excerpt of the MontiCore grammar of the case base language.

Figure 6 illustrates a model of the CBL that refers to the

injection molding domain model ProcessData (l. 1) and

shows two cases that may occur in the injection molding

machine. The first case represents a known case (ll. 3-7)

that handles a problematic temperature of the injection nozzle

characterized by being higher than 500 degrees Celsius (l. 4).

The attributes in this expression reference the domain model

of Figure 4. As a solution, the case contains an assignment

expression that specifies setting the heating to level 1. The
second case is unknown (ll. 9-12) and addresses dangerous

pressure in the injection process (l. 10). When the condition

holds, a retrieval of similar known cases is triggered. In case

the search yields no cases, the DT uses the PDDL fallback

expression to start finding a plan over the CPPS actions and

properties that, when executed, will reduce the pressure.

Case Similarity Language
The second essential part of a case-based reasoning system is

its ability to assess similarity between a situation in the CPPS

and a case. Similarity as a metric is expressed as a positive

rational number with 0 being considered equal. The Case Sim-

ilarity Language (CSL) supports describing weighted global

and local similarity based on a the types of domain models

and promotes integration of further, handcrafted, similarity

analyses using the top mechanism [13] with its generated code

artifacts. We developed a Domain-Specific Language (DSL)

for specifying similarities between cases (Figure 7). Every case

������ ��:�'������% ��	;���'��������

���� <=��>�����	 �
�
 ���'�������;��??%�@�������
�� A�500

� ���'�������;>�����	 ��1
����
� ���'�������;��??%�@�������
�� B�500

#

���� ���	���
������
�� �
�
 ���'�������;��:�'���������
�� A�20

������� ���� C��:�'���������
�� 10D

#

01
02
03
04
05
06
07
08
09
10
11
12

�%#

� ���������!�������
��������������������

�������������
���������������������

����������������
����!����������

Figure 6. Excerpt of a case base for injection molding regarding dangerous
temperatures and pressures.

similarity definition is based on domain models and consists

of global and local similarity metrics (ll. 2-5). After an import

list establishing relation to the domain of discourse (l. 2),

a name case similarity specification follows (ll. 3-5), which

contains (l. 4) multiple local similarity metrics (l. 7) that relate

to individual attributes of the domain models and a single

global similarity metric (l. 8) describing how these individual

similarities are weighted. Both kinds of metrics reference to

interface non-terminals (ll. 10-11) that facilitate introducing

new metrics into the CSL. The CSL features two kinds of

metrics for local and global similarities (ll. 13-17) out of which

the manual metric specifies that a handcrafted similarity

analysis should be used. This demands implementing a specific

Java interface of the CSL’s runtime system, which is then

invoked if the manual is used. Well-formedness rules ensure

that the referenced domain types exist and are correctly used.

������� ��������%����"���	
�	� ����	
� ���
�������� �
�����������������������

!'���!�!����%����"!�*����!�!�
��'�%�����'��/%�&�%�����'

!#!�

��'�%�����' ��!%�'�%!��*������'�%��!�!�
/%�&�%�����' ��!	%�&�%! /%�&�%�!�!�

�	���
��� ��'�%�
�	���
��� /%�&�%�

���
�% �������	�� ��'�%��/%�&�%���!���
�%!�
-&��%
�� �������	�� ��'�%� ��!�&��%
��!�
E��	>�� ��������	�� /%�&�%���!F��	>�� !�!�!�E��	>���!#!�
E��	>������������������������C-����&
��E��	>� GG�!�!D��
-����&
��E��	>� ��*����!�!�F��	>�.��
&%��

#

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

"�

�	�������
����� ���
�

���������������

�
������� ��� �����
���
������
 ������

Figure 7. Excerpt of the MontiCore grammar of the CSL.

Figure 8 displays a model of the CSL. It refers to the

injection molding domain model ProcessData (l. 1) and

specifies two local similarities for this domain (ll. 4-5). The

model specifies the absolute distance local similarity metric

for the nozzleTemperature and a handcrafted metric for

the pressure attribute. Global similarity then is defined

through the weighted combination of nozzleTemperature
and pressure (ll. 7-10).

Similar to the CBL, the CSL also does not aim to be a catch-

all language but supports leveraging MontiCores language ex-

160

������ ��:�'������% ��	;���'��������

���� ���������� ��:�'������% ��	 �
����� ���'�������;��:�'���������
�� ��	����
����� ���'�������;��??%�@�������
�� ���������

������ �������
 �
���'�������;��:�'���������
�� ��0;7�
���'�������;��??%�@�������
�� ��0;3

#�
#

01
02
03
04
05
06
07
08
09
10
11

��#

���������������"�
�������
������
�
��������

�������
 ��� ��
����� ������������

Figure 8. Exemplary case similarity model.

tension mechanisms to define highly specific similarity metrics

(e.g., featuring uncertainty, SI units, or domain terminology).

PDDL Fallback Modeling
The selection of cases to resolve a situation bases on their

similarity. Depending on the size and scope of the case base,

no case might be available. As this is not unusual, the DT has

to be able to handle such situations. Therefore, we provide a

fallback possibility to full AI planning.

Due to the dependence on the domain, we do not pre-

scribe a specific modeling language for fallback activities but

provide extension points in both CBL and DT. The default

implementation of these extension points are notification of

human operators and invoking a PDDL planning. Depending

on the case defined by the domain expert, parameters for a

Fallback component or PDDL goals can be defined. For the

former, a DT component taking care of the fallback activities

has to be provided, for the latter, the corresponding goal must

be defined in the DT’s PDDL knowledge base.

B. Integrating Domain-Specific Models into CBR

In our approach, the CSL models are interpreted at DT

runtime, whereas the CSL models are used for code gener-

ation at design-time to enable the integration of handcrafted,

more complex, similarity analyses (cf. Figure 9). This section

explains their overall integration.

At Design-Time
The similarity measures do not change once the DT is

running. Hence, at design-time, CSL models are translated

into Java artifacts that are invoked when their computations

are necessary. As the models feature planned extension with

handcrafted Java computations (indicated by the manual
keyword), we exploit the code generation to support injection

of these handcrafted similarity analysis artifacts using the

TOP mechanism [13], a variant of the generation gap pattern,

and generate factories to inject implementations of known

similarity analysis interfaces into the similarity computations.

Leveraging Java for more complex analysis liberates domain

experts specifying similarities from the complexities of an

overly generic (possibly Turing-complete) modeling language

and supports engineers in using established tools, frameworks,

and libraries to develop the analyses. Where more complex

analyses are required within in the CBL, MontiCore’s language

extension enables creating sub-languages whose grammars

implement and extend the CBL’s extension points.
Each model for local similarity is translated to a class with

a name of the form <Name>LocalSimilarity. <Name>
is replaced with the name of the domain model attribute. The

class provides a single public method to calculate the local

similarity. As a parameter, the respective attribute and the

condition expression of the case to compare to are given. The

domain model determines the type of the attribute. Therefore,

type-safe artifacts can be produced, and their stable interfaces

hide whether these are generated or handcrafted from the

framework.
The model of global similarity results in a class with a

name of the form <Name>Similarity, where <Name> is

the name of the overall similarity model (Figure 8, l. 1). The

class provides a single public method to calculate the global

similarity. All domain attributes and all condition expressions

are passed as parameters. Based on the defined similarity

type, an implementation is generated. This holds for the

global weighted similarity. The CBR modeling framework

collects the artifacts for the local similarities based on the

models. Based on the weights, their calculated similarity is

summarized.
Ultimately, this enables domain experts to develop their

own DTs and enrich these with domain knowledge without

requiring any programming skills.

At Runtime
The case base comprises cases, which are interpreted at

runtime. To this end, they are parsed, and their abstract syntax

representation is stored in memory. During runtime, the DT

monitors the CPPS and checks for undesired situations using

the case models. If such a case is found, DT action is required,

and it tries to retrieve the most similar case.
During the retrieve phase of the CBR cycle, the DT receives

the undesired (current) situation and the list of known cases as

input. To determine similar cases, the similarity is calculated

for every case. The metric value is determined based on the

conditions and the situation. This step relies on the similarity

computation artifacts generated based on the CSL models and

the related handcrafted artifacts. Next, the results are filtered

by a predefined constant threshold. Similarities between cases

range between 0 and 1 in our implementation, and we consider

a value smaller than 0.2 as similar enough to try to apply the

solution of a case.
In the reuse phase, the DT then determines the actual

solution to execute. For this, the previously selected set of

similar cases is taken. By default, the DT tries to employ the

most similar case. How new cases should be constructed and

under which assumptions their solutions can be synthesized

again is highly domain-specific and depends on the context

our framework is employed in and the connected CPPS. For

instance, synthesizing multiple new cases to experiment with

finding CPPS behavior optima might be a valid approach in

an initial deployment setting but not during normal operations.

Hence, our framework supports extension with more sophis-

161

ticated reuse mechanisms, such as constructing new cases

by deviating case conditions and solutions systematically or

interpolating between multiple similar cases.

After executing a solution, the DT uses the retain phase

to learn from the result, which requires the situation before

and after applying the solution. Based on the situation after

executing the solution, the expected outcome is compared to

the resulting of applying the solution. If the resulting outcome

matches the expectation, the existing case is either reinforced

as being useful or the new case is added to the case base. For

the latter, the situation’s properties are therefore converted into

equality equations. Next, the similarity of the new case to those

in the case base is assessed. If the smallest similarity is above a

domain-specific learning threshold, the DT considers the case

as new and adds it to the case base models. Independent of

whether a new case was learned, the situation triggering the

CBR, the selected cases, solutions, and outcomes are logged

for the operators to support explaining system behavior.

V. MODEL-BASED FRAMEWORK FOR CASE-BASED

REASONING

By providing DSLs and adequate code generators, we

enable domain experts to adapt the DT framework we built to

individual CPPS and specific requirements. Figure 9 presents

the realized framework for generating DTs. It contains the

general DT services for storing data, sending OPC UA com-

mands and evaluating data to identify the current system state.

Furthermore, it offers the general functionality to perform

CBR. The components for assessing the current CPPS state

and storing data are predefined in the framework and tailored

to the application scenario by generating, e.g., the actual

data base structure and OPC UA commands according to the

domain and OPC UA models. Since all parts of the DT can

be generated, explicitly no software developers are required to

create a DT. The generator creates a DT that is self-adaptive

based on the domain knowledge that is provided as cases. If the

DT detects an unintended behavior, it adapts the configuration

of the physical twin accordingly. If this does not improve the

CPPS’s behavior and results in the state described in the case’s

consequence part, the DT learns that the case is not successful

and tries to apply an alternative.

The DT is tailored to a specific CPPS through models,

describing this CPPS. A domain expert specifies the CPPS

in a domain model and adds information for data retrieval

via an OPC UA tag model. These models serve as input for

the generator that creates Java code for OPC UA access, data

objects, and storage. To enrich the generated DT with domain

knowledge for self-adaptation, the domain expert also creates

case models that characterize critical situations at runtime

and how the DT should handle these situations. Besides, the

domain expert specifies similarities to determine whether the

CPPS situation at hand resembles one of these cases. The case

and similarity models are interpreted while the DT is running.

Thus after generation, the domain expert can add further cases

to the case base if necessary. The DT calculates the similarity

of the situation in the CPPS and a case in the case base

�

���
�

,����	�-���
������	���
��������

����	���������.�
&
��'��������/�

�������	�$�/�

�����������

�% ��	���!�	�

�����/�
������	����
"�����

�$�����(!��

������

"����/�&
��
'��"����

�$�����(!��
����	���	�
(��+�����

�	����	�0���
����	���	

������
�	
���

���������
����������

�������������

�������

���
��
�����

Figure 9. Framework for generating a DT based on domain knowledge
provided in models.

by mapping the actual machine values with parameters in

the case. Since the case and the data access are consistent

with the domain model (cf. Figure 4), the DT can map sensor

values with parameters in the case. e.g., the current value of

the nozzleTemperature (l.4) is sensed by a sensor in the

machine and mapped to the parameter in the case (cf. Figure 6
(l.4)) when the DT calculates the similarity.

����� �����	

�% �����	��

�����%�����
 ������	

��������

����� ��	����	

���������
 �1����

�����%���

����� ������	

���������
 �1����

����
'+����

"�

�����

��������� �����
����

�����
����
 �1���� ����� ����� ����

'+����
'+����
��������

���� ��������

Figure 10. Internal composition of the Case-Based Reasoner. It con-
nects to the Case Base and comprises components for the steps of the CBR
cycle as well as a fallback.

Internally, the Case-Based Reasoner comprises six

sub-components that are responsible for the individual CBR

activities (cf. Figure 10). A control component manages the

process and interacts with the respective CBR components.

The Case Retriever obtains those cases from the Case
Base that are similar to the current problem situation. The

Case Reviser tailors the contained solutions to the prob-

lem at hand. Additionally, it reacts to feedback received from

the Executor and further adapts the solution if necessary. When

the Case Base does not contain known cases, the Case
Reviser employs the Fallback which is usually notify-

ing the machine operator or stopping the machine. Finally,

the Case Retainer stores the experience, including the

encountered the problem, applied solution, and its success,

162

in the Case Base.
We implement the CBR framework (i.e., the Case-Based

Reasoner and its sub-components) as an extension for the

base DT architecture (cf. Figure 2). For that purpose, we

provide a general implementation for the CBR components

and define the domain-specific details via CBR models. Mod-

els of the Case Base Language describe known cases in the

domain at hand and, thus, determine the Case Base contents

and guide a system’s management. The Evaluator monitors

the system by checking the occurrence of unknown cases.

The Case-Based Reasoner utilizes the known cases and

the Fallback to find a solution for the detected situations. To

that end, it relies on the Case Similarity Language models to

determine the similarity between a case and the given situation

to find an applicable case or adequately store new experiences.

Fallback models provide an alternative method of solution-

finding when CBR does not yield a suitable solution. The

generated DT relies on this framework when performing self-

adaption through CBR but is enriched with domain-specific

models that experts can provide.

VI. APPLICATION EXAMPLE

We created a DT with CBR for an injection molding

machine as a demonstrator. The CBR framework and the

DT architecture were specified by us while domain experts

from injection molding created models of the CBL and CSL.

We tested the generated DT on real data from a filling

experiment series in injection molding. After mounting a new

mold part for series production, the exact parameter settings

are unknown, and the operator usually runs a so-called filling

study to slowly approach an ideal configuration. Step by step,

the amount of injected plastic is increased until the mold is

filled. Then, fine-tuning finds a configuration that also ensures

a smooth surface of the part and reduces leakage. We aim to

speed up the process of finding the correct parameters while

focusing on one specific machine and one mold.

Our DT is tailored to a ALLROUNDER 520 A 1500 by

ARBURG. The adaption efforts can roughly be structured as

follows: 1) provide data binding to the machine, 2) identify

domain model, 3) devise a case base, and 4) establish a notion

of similarity. For data access, the manufacturer provides an

OPA UA interface through which the DT can access runtime

data.

In cooperation with domain experts from injection molding,

we identified representative parameters (cf. Figure 11) for

capturing the machine’s state. PhaseData comprises all

parameters of an injection process. DosingTime determines

for how long plastic is loaded into the plasticizing unit.

The attributes cylinderHeating, injectionFlow,
and switchOverVolume (ll. 7-9) describe the injec-

tion parameters. cylinderHeating sets the tempera-

ture inside the plasticizing unit, injectionFlow and

switchOverVolume influence how fast and long plastic is

injected. The meltCushion (l. 12) is the surplus of material

left in the plasticizing unit after the injection.

�����
������ ��:�'������% ��	 �
����� �>������� �
�	� '"'%�� �

����� ����	@����

����� '"%�� ��������	�

����� ��:�'����$%�F�

����� �F��'><=��H�%
���

����� &�'(�����
���

����� ��%��
�>����
II�+
��>��������&
���

#
#

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

�

Figure 11. Injection molding domain model. PhaseData comprises
parameters of the production of a single part. Only the most critical parameters
are depicted.

������ ��:�'������% ��	;�>��������

���� ����
'>�������% �
�
 �>�������;��%��
�>��� A�20

������� ����+"C!�������%������� ���>�	>!D

#

���� ��'�������'(�����
�� �
�
 �>�������;�F��'><=��H�%
�� ���70�JJ

�>�������;��%��
�>��� ���20�JJ
�>�������;&�'(�����
�� ���10

� �>�������;&�'(�����
�� ��15
����
� �>�������;��%��
�>��� ���12�JJ
II�+
��>����++�'��

#

���� ��:�'����� �
�
 �>�������;�F��'><=��H�%
�� B�70�JJ

�>�������;��%��
�>��� B�10

� �>�������;�F��'><=��H�%
�� ��70
����
� II�+
��>����++�'��

#

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

�%#

Figure 12. Example cases from the case study in injection molding. The
first case defines the problematic parameter space. The others are solutions
to handle more specific situations. Repeating imports are omitted.

Figure 12 exemplarily shows cases identified for the case

study. The first case is unknown (ll. 3-6). It describes the prob-

lematic parameter state of having too much residual material.

The other two cases (ll. 8-21) feature possible solutions. The

first handles a situation where too little material is injected.

The specified backPressure is too low, leading to missing

material in the mold. The second covers the situation where

more material can be injected.

For similarity, we employ a weighted similarity calculation,

as specified in Figure 13. The local similarities define the

critical parameters with influence on the metric (ll. 4-8).

The values of backPressure and dosingTime are more

sensitive to changes. Therefore, we use a squared local sim-

ilarity for them. It is offered by the CSL where the difference is

squared. The global similarity characterizes the weights (ll. 10-

16). The similarity of switchOverVolume has the most

influence with a weight of 0.4. A minor influence has the

similarity of cylinderHeating with a weight of 0.05.
Using models and the customized DT components, one

163

������ ��:�'������% ��	;�>��������

���� ���������� ��:�'������% ��	 �
����� �>�������;��%��
�>��� ���������
����� �>�������;�F��'><=��H�%
�� ���������
����� �>�������;&�'(�����
�� ������
�
����� �>�������; ����	@��� ������
�
����� �>�������;'"%�� ��������	 ���������

������ �������
 K
�>�������;��%��
�>��� ��0;2�
�>�������;�F��'><=��H�%
�� ��0;4�
�>�������;&�'(�����
�� ��0;2�
�>�������; ����	@��� ��0;15�
�>�������;'"%�� ��������	 ��0;05

L�
#

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

��#

Figure 13. Model for similarity calculation in injection molding.

receives a fully functional DT generated based on domain

models, case models, and similarity models to provide a CBR

for an injection molding machine.

For evaluating the generated DT, we captured the cycle-

times for CBR cycle execution in the DT while it was running

on a local computer with Intel(R) Core(TM) i7-7600U CPU.

The DT operated on real historical data of the injection

molding machine but, due to safety issues, could not change

settings on the machine.

Initially, the DT started with a case base of 20 cases that we

identified in cooperation with the injection molding experts.

The measured results are displayed in Table I. The DT’s

Table I
CYCLE TIMES OF THE DT’S CBR CYCLE.

Minimum Maximum Average
ms ms ms

First Cycle 16, 9181 110, 2881 42, 2136
No Case 2, 6234 50, 6226 16, 16197
Case Detected 1, 7137 75, 6592 13, 01902

CBR cycle was triggered every time that the machinecycle

counter in the machine changed. This parameter simply counts

the number of performed production cycles on the ARBURG.

During the first cycle, the DT loads the initial cases from the

file system. Consequently, this cycle’s duration had a longer

execution time (42, 2136ms in average) than other cycles. The

DT monitors the injection molding machine and compares

the current state to identified cases. When no case matched

the current machine’s state, this comparison took 16, 16197ms
on average. If a case was present, the DT detected it within

13, 01902ms on average and tried to adapt its behavior based

on the solution stated in the case model. If the machine

data confirmed the case’s success, the DT marked the applied

case as successful or unsuccessful, respectively. We expect

an increase in cycle time due to communication latency if

the DT connects to the CPPS and autonomously changes

process parameters. Given that injection molding is a cycle-

based process where the process settings can only be updated

for the next cycle, and that production cycles take between 50

seconds and 2 minutes, the computing times of the DT are

sufficient to adapt the process settings in time.

VII. DISCUSSION

We applied the presented framework and modeling lan-

guages to create a DT of an injection molding machine. The

realized DT establishes a connection to the injection molding

machine and reads its sensor values. Based on these, the

DT autonomously detects unintended system behavior and

produces solutions based on similar cases provided by the case

base.

While cases consisting of conditions and effects are very

intuitive, the modeling languages of our framework rely on

some experience with data types and structures (int, float,

Boolean, objects), an understanding of model relations (im-

ports), and might even relate to PDDL knowledge bases.

The first challenge can be mitigated by providing even more

domain-specific extensions of the CBL that rely only on data

types and data structures well known by the domain experts

and by intelligently translating these to the data structures

communicated via OPC UA to the CPPS. The notion of

model imports could be omitted by fixing a CBR DT to a

single domain model class diagram and adjusting the CBL

again. Similarly, PDDL fallbacks can be prohibited in domain-

specific sublanguages of the CBL. Hence, the languages

employed within our framework can be tailored precisely to

the complexity suitable for the domain experts operating the

systems. These, of course, limit the usefulness of the overall

framework. Nonetheless, due to MontiCore’s language exten-

sion mechanisms, making the language as comprehensibly as

necessary is possible (R1). In general, CBL and CSL were

regarded as easy to understand and use. However, injection

molding experts had difficulty in explicitly expressing simi-

larities between cases because they often also work by gut

feeling and could not pinpoint the exact point that triggers

their adaptation of the machine configuration.

The generated DT works autonomously (R2) and evaluates

the current CPPS state every time that a new production cycle

starts. If the CPPS state matches the condition of a case,

the DT adapts the CPPS configuration based on the solution

specified in the case. If this adaptation does not lead to the

expected behavior of the CPPS the DT learns to prioritize this

case lower in the future.

The presented DT can connect to any CPPS that provides

a communication interface; thus, it receives the data for eval-

uating if any unintended situations occurred. Active writing

of parameters to the machine while it is running remains

critical and, due to liability issues, might be prohibited in other

domains. Nonetheless, the DT provides solutions for detected

cases and attempts to implement these autonomously. If the

connected CPPS prohibits manipulation of settings without

human interaction, the DT can at least provide a recommen-

dation for adapting the machine configuration. Moreover, the

presented framework is reusable for other CPPS (requirement

R3) as essential parts of the DT are modeled independent of

the underlying CPPS. Transferring the DT to another CPPS

164

requires implementation of adapters to communicate with the

machine, manipulating the domain model, and specifying an

application-specific case base and similarity measurements.

The model-driven development of the DT based on a generator

that derives the concrete implementation from domain models

further speeds up the development process. Overall, the various

configuration means support tailoring our approach to a variety

of self-adaptive manufacturing scenarios (R3).
When the DT that we realized encounters new cases, it first

searches through the case base to find the most similar case and

tries to adapt its solution to the case at hand. If this adaptation

is successful, it creates a new case and adds it to the case base.

Thus, when running over a more extended period of time the

DT learns more cases and becomes more effective. Thus, the

realized DT improves over time by persisting experiences that

domain experts can review as explanations of self-adaptive

behavior (R4). Interesting challenges arise due to the indeter-

ministic nature of CPPS, the actions taken in the past may not

be relevant for similar cases in the future. Nonetheless, since

the DT is able to adapt cases in terms of their success, it at

least does not try to apply solutions that verifiably do not lead

to desired situations.

VIII. RELATED WORK

An approach similar to ours utilizes an IIoT Gateway with

an OPC UA interface as a mediator between a DT and

the physical system [21]. We suggest exchangeable adapter

components for both, data retrieval and control, supporting a

range of different communication technologies and protocols.

A different idea investigates model-based DTs that support and

guide product development in all phases of the life cycle [22].

During design and engineering, DTs comprise collections of

digital artifacts (data and models) to provide simulations of

the expected system behavior.

A similar concept utilizes DTs to merge different kinds

of system data to model its behavior [23]. Thus, the DT

shows the effect of design changes on the physical system and

supports virtual verification of its behavior. Further research

demonstrates the extent of technologies and application do-

mains for DTs in manufacturing. In a framework for smart

workshops, DTs control CPPS, providing local optimizations

and communicating to achieve a global optimization [24].

Another approach employs edge, fog, and cloud computing

to implement DTs [25]. The DTs control physical entities

via virtual models and are connected on a network level

or through the cloud to perform optimizations of increasing

degree. However, these proposed DTs are tailored to the given

tasks or application domain while we present a customizable

approach that is applicable to a wide variety of purposes.

Autonomic system must be able to handle unexpected and

novel situations. Thus, CBR is well suited for application

in autonomic systems and especially in DTs. This includes

employing CBR for self-configuration in autonomic systems

[26] or utilizing CBR to detect and repair system failures at

runtime (self-healing) [27]. These approaches face the cold-

start problem, though. As a solution is derived from existing

cases, considerable effort and knowledge about the domain is

required to set up an extensive case base. A solution to the

cold-start problem is a combination of CBR and goal reasoning

[28], [29]. A case-based reasoner tries to solve problems based

on the experiences in the case base. If the cases do not yield

a solution, the system applies goal reasoning as a fallback

to create new cases and adds these to the case base. An

alternative is building the case base in an offline learning

phase [30]. The approach utilizes reinforcement learning for

creating new cases. In the online learning phase, the system

finds appropriate cases via CBR and applies reinforcement

learning to adapt the solution to the situation at hand.

Multiple contributions deal with CBR in the domain of

injection molding. A prototype recommendation system for

parameter determination provides an interface for manual

parameter input and suggests corrections using CBR [31].

Another interactive user system for the shop floor determines

parameters first by CBR and improves these through a rule-

based system [32].

Further research reviews different methods for parameter

determination injection molding [33]. The authors identify

CBR as one of three main approaches. They report no commer-

cial or systematic solution since feedback on quality remains

challenging. Instead of requiring manual reading and writing

of parameters, a more integrated approach incorporates the

injection machine into the system [34]. However, it employs

a very rudimental read/write approach without the goal of

creating a digital machine representative. A concept of DTs

in injection molding identifies all different phases of the

process and their linking [35]. However, it provides no defined

method for the individual steps. Our system focuses on the

manufacturing procedure on the machine itself and employs

CBR for this.

IX. CONCLUSION

To leverage CBR over domain expertise into self-adaptive

manufacturing, we devised a modeling framework comprising

multiple interrelated modeling languages and integrate it into

our architecture for DTs [5], [6], [7]. We have presented a

collection of modeling languages to support domain experts

in encoding their knowledge into DTs that perform self-

adaptation at runtime. This enables the DTs to react to

unforeseen situations quickly and learn from past situations.

Models of these languages describe domain-specific cases and

their similarity and are processed by a modular DT architecture

that manages the CBR cycle of retrieving cases similar to

the current situation, reusing these to handle the situation,

revising these if necessary, and retaining these if the revisions

were successful. The realized framework is not tailored to one

specific CPPS but can be customized to any other CPPS. The

model-driven development simplifies developing DTs and can

lead to more efficient manufacturing, less misproduced goods,

and, ultimately, reduced production cost.

165

REFERENCES

[1] A. Wortmann, O. Barais, B. Combemale, and M. Wimmer, “Modeling
Languages in Industry 4.0: an Extended Systematic Mapping Study,”
Software and Systems Modeling, vol. 19, no. 1, pp. 67–94, January 2020.

[2] F. Tao, H. Zhang, A. Liu, and A. Y. Nee, “Digital twin in industry:
State-of-the-art,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 4, pp. 2405–2415, 2018.

[3] A. Aamodt and E. Plaza, “Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches,” AI Communica-
tions, no. 1, pp. 39–59, 1994.

[4] C. K. Riesbeck and R. C. Schank, Inside Case-Based Reasoning.
Psychology Press, 2013.

[5] P. Bibow, M. Dalibor, C. Hopmann, B. Mainz, B. Rumpe, D. Schmalz-
ing, M. Schmitz, and A. Wortmann, “Model-driven development of
a digital twin for injection molding,” Advanced Information Systems
Engineering: 32nd International Conference on Advanced Information
Systems Engineering, CAiSE 2020, France, June 8-12, 2020, Proceed-
ings, 2020.

[6] J. C. Kirchhof, J. Michael, B. Rumpe, S. Varga, and A. Wortmann,
“Model-driven Digital Twin Construction: Synthesizing the Integration
of Cyber-Physical Systems with Their Information Systems,” in Pro-
ceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems. ACM, October 2020, pp.
90–101.

[7] M. Dalibor, J. Michael, B. Rumpe, S. Varga, and A. Wortmann, “To-
wards a Model-Driven Architecture for Interactive Digital Twin Cock-
pits,” in International Conference on Conceptual Modeling. Springer,
2020, pp. 377–387.

[8] M. Fox and D. Long, “PDDL2. 1: An extension to PDDL for expressing
temporal planning domains,” Journal of artificial intelligence research,
vol. 20, pp. 61–124, 2003.

[9] J. Hoffmann, “The Metric-FF Planning System: Translating“Ignoring
Delete Lists”to Numeric State Variables,” Journal of artificial intelli-
gence research, vol. 20, pp. 291–341, 2003.

[10] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan gener-
ation through heuristic search,” jair, vol. 14, pp. 253–302, 2011.

[11] K. Adam, A. Butting, R. Heim, O. Kautz, J. Pfeiffer, B. Rumpe,
and A. Wortmann, Modeling Robotics Tasks for Better Separation of
Concerns, Platform-Independence, and Reuse, ser. Aachener Informatik-
Berichte, Software Engineering, Band 28. Shaker Verlag, December
2017.

[12] K. Hölldobler, B. Rumpe, and A. Wortmann, “Software Language En-
gineering in the Large: Towards Composing and Deriving Languages,”
Computer Languages, Systems & Structures, vol. 54, pp. 386–405, 2018.

[13] K. Hölldobler and B. Rumpe, MontiCore 5 Language Workbench Edition
2017, ser. Aachener Informatik-Berichte, Software Engineering, Band
32. Shaker Verlag, December 2017.

[14] S. Erdweg, T. Van Der Storm, M. Völter, M. Boersma, R. Bosman,
W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh et al., “The
state of the art in language workbenches,” in International Conference
on Software Language Engineering. Springer, 2013, pp. 197–217.

[15] T. Greifenberg, M. Look, S. Roidl, and B. Rumpe, “Engineering Tagging
Languages for DSLs,” in 2015 ACM/IEEE 18th International Conference
on Model Driven Engineering Languages and Systems (MODELS),
IEEE. Ottawa, ON, Canada: IEEE, 2015, pp. 34–43.

[16] A. Butting, A. Haber, L. Hermerschmidt, O. Kautz, B. Rumpe, and
A. Wortmann, “Systematic Language Extension Mechanisms for the
MontiArc Architecture Description Language,” in European Conference
on Modelling Foundations and Applications (ECMFA’17), ser. LNCS
10376. Springer, July 2017, pp. 53–70.

[17] A. Butting, O. Kautz, B. Rumpe, and A. Wortmann, “Architectural
Programming with MontiArcAutomaton,” in ICSEA 2017. IARIA XPS
Press, May 2017, pp. 213–218.

[19] S.-H. Leitner and W. Mahnke, “Opc ua–service-oriented architecture for
industrial applications,” ABB Corporate Research Center, vol. 48, pp.
61–66, 2006.

[18] M. Dalibor, J. Michael, B. Rumpe, S. Varga, and A. Wortmann,
“Towards a Model-Driven Architecture for Interactive Digital Twin
Cockpits,” in Conceptual Modeling, G. Dobbie, U. Frank, G. Kappel,
S. W. Liddle, and H. C. Mayr, Eds. Springer International Publishing,
October 2020, pp. 377–387.

[20] B. Rumpe, Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International, May 2017. [Online]. Available:
http://www.se-rwth.de/mbse/

[21] V. Souza, R. Cruz, W. Silva, S. Lins, and V. Lucena, “A Digital Twin
Architecture Based on the Industrial Internet of Things Technologies,” in
2019 IEEE International Conference on Consumer Electronics (ICCE).
Las Vegas, NV, USA: IEEE, Jan 2019, pp. 1–2.

[22] S. Boschert and R. Rosen, Digital Twin—The Simulation Aspect.
Cham: Springer International Publishing, 2016, pp. 59–74. [Online].
Available: https://doi.org/10.1007/978-3-319-32156-1_5

[23] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui, “Digital twin-
driven product design, manufacturing and service with big data,” The
International Journal of Advanced Manufacturing Technology, vol. 94,
no. 9-12, pp. 3563–3576, 2018.

[24] J. Leng, H. Zhang, D. Yan, Q. Liu, X. Chen, and D. Zhang, “Digital
twin-driven manufacturing cyber-physical system for parallel controlling
of smart workshop,” Journal of Ambient Intelligence and Humanized
Computing, vol. 10, no. 3, pp. 1155–1166, 2019.

[25] Q. Qi, D. Zhao, T. W. Liao, and F. Tao, “Modeling of Cyber-Physical
Systems and Digital Twin Based on Edge Computing, Fog Computing
and Cloud Computing Towards Smart Manufacturing,” in ASME 2018
13th International Manufacturing Science and Engineering Conference,
American Society of Mechanical Engineers. College Station, Texas,
USA: ASME, 2018, pp. V001T05A018–V001T05A018.

[26] M. J. Khan, M. M. Awais, and S. Shamail, “Improving Efficiency of
Self-Configurable Autonomic Systems Using Clustered CBR Approach,”
IEICE TRANSACTIONS on Information and Systems, vol. 93, no. 11,
pp. 3005–3016, 2010.

[27] S. Montani and C. Anglano, “Achieving self-healing in service delivery
software systems by means of case-based reasoning,” Applied Intelli-
gence, vol. 28, no. 2, pp. 139–152, 2008.

[28] W. Qian, X. Peng, B. Chen, J. Mylopoulos, H. Wang, and W. Zhao,
“Rationalism with a Dose of Empiricism: Case-Based Reasoning for
Requirements-Driven Self-Adaptation,” in 2014 IEEE 22nd Interna-
tional Requirements Engineering Conference (RE). Karlskrona, Swe-
den: IEEE, Aug 2014, pp. 113–122.

[29] ——, “Rationalism with a Dose of Empiricism: Combining Goal Rea-
soning and Case-Based Reasoning for Self-Adaptive Software Systems,”
Requirements Engineering, vol. 20, no. 3, pp. 233–252, 2015.

[30] T. Zhao, W. Zhang, H. Zhao, and Z. Jin, “A Reinforcement Learning-
Based Framework for the Generation and Evolution of Adaptation
Rules,” in 2017 IEEE International Conference on Autonomic Comput-
ing (ICAC), IEEE. Columbus, OH, USA: IEEE, 2017, pp. 103–112.

[31] C. K. Kwong, G. F. Smith, and W. S. Lau, “Application of case
based reasoning injection moulding,” Journal of Materials Processing
Technology, vol. 63, no. 1-3, pp. 463–467, Jan. 1997.

[32] K. Shelesh-Nezhad and E. Siores, “An intelligent system for plastic
injection molding process design,” Journal of Materials Processing
Technology, vol. 63, no. 1-3, pp. 458–462, Jan. 1997.

[33] H. Gao, Y. Zhang, X. Zhou, and D. Li, “Intelligent methods for the
process parameter determination of plastic injection molding,” Frontiers
of Mechanical Engineering, vol. 13, no. 1, pp. 85–95, Mar. 2018.

[34] H. Zhou, P. Zhao, and W. Feng, “An integrated intelligent system
for injection molding process determination,” Advances in Polymer
Technology, vol. 26, no. 3, pp. 191–205, 2007.

[35] Y. Liau, H. Lee, and K. Ryu, “Digital Twin concept for smart injection
molding,” in IOP Conference Series: Materials Science and Engineer-
ing, vol. 324, Mar. 2018, p. 012077.

166

