Modal Object Diagrams

t**

Shahar Maoz*, Jan Oliver Ringert**, and Bernhard Rumpe

Software Engineering
RWTH Aachen University, Germany
http://www.se-rwth.de/

Abstract. While object diagrams (ODs) are widely used as a means to
document object-oriented systems, they are expressively weak, as they
are limited to describe specific possible snapshots of the system at hand.
In this paper we introduce modal object diagrams (MODs), which extend
the classical OD language with positive/negative and example/invariant
modalities. The extended language allows the designer to specify not only
positive example models but also negative examples, ones that the sys-
tem should not allow, positive invariants, ones that all system’s snapshots
should include, and negative invariants, ones that no system snapshot is
allowed to include. Moreover, as a primary application of the extended
language we provide a formal verification technique that decides whether
a given class diagram satisfies (i.e., models) a multi-modal object dia-
grams specification. In case of a negative answer, the technique outputs
relevant counterexample object models, as applicable. The verification is
based on a reduction to Alloy. The ideas are implemented in a prototype
Eclipse plug-in. Examples show the usefulness of the extended language
in specifying structural requirements of object-oriented systems in an
intuitive yet expressive way.

“ ..1in the real world there are only objects.
Classes exist only in our minds.”, Nierstrasz [24]

1 Introduction

The language of object diagrams (ODs) is part of the UML standard and is sup-
ported by many academic and commercial software modeling tools (see, e.g., [7,
14, 23,26, 32]). The semantics of an object diagram is simple: an object diagram
describes a possible instantiation of the system under development — a single
object model — a snapshot of the system’s structure made of concrete object
instances and the relations between them. However, while ODs are useful and
intuitive means to present example instances of object-oriented systems in for-
mal and semi-formal contexts, their expressive power is rather weak, and they
have no additional usages beyond these simple presentations.

* S. Maoz acknowledges support from a postdoctoral Minerva Fellowship, funded by
the German Federal Ministry for Education and Research.
** J.0. Ringert is supported by the DFG GK/1298 AlgoSyn.

[MRR11c] S. Maoz, J. O. Ringert, B. Rumpe

Modal Object Diagrams

In: Proc. 25th Euro. Conf. on Object Oriented Programming (ECOOP'11),
LNCS 6813, pp. 281-305, Springer, 2011.

www.se-rwth.de/publications

Epssa

In this paper we introduce modal object diagrams (MODs), which extend the
classical object diagram language with positive/negative and example/invariant
modalities. The extended language allows to mark an object model not only as a
positive example, describing a snapshot that the system should allow, but also as
a negative example, which the system should not allow, as a positive invariant,
which must be part of every snapshot of the system, or as a negative invariant,
which must not be part of any snapshot of the system. Thus, the language
supports the definition of very simple and intuitive yet expressively powerful
specifications for the structure of the system to be; multi-modal specifications
made of positive and negative examples and invariants. The syntax and semantics
of modal object diagrams is formally defined in Sect. 3.

Moreover, as a primary application of the extended language, we consider a
setup where a set of modal object diagrams is used as a specification that the
system’s class diagram (CD) should meet. The syntax of CDs is made of classes
and the relationships between them, including inheritance and various associa-
tions. The semantics of CDs is given in terms of sets of objects and the relations
between them. Thus, to support this application, we provide a formal verification
technique that checks whether a CD — as a model of a system’s structure de-
fined by engineers — indeed satisfies (i.e., models) a multi-modal object diagrams
specification. Given a CD and a multi-modal object diagram specification, the
technique checks whether all positive examples in the specification are included
in the CD’s semantics, whether all negative examples are not included in the
CD’s semantics, whether all positive invariants are part of every object model
in the CD’s semantics, and whether all negative invariants are not part of any
object model in the CD’s semantics. In case of a negative answer, the technique
outputs relevant counterexample object models, as applicable.

The verification technique is based on a transformation to Alloy [15]. Unlike
previous works that consider the use of Alloy for the analysis of CDs (e.g., [1,
30]), the input for our transformation consists not only of a CD but also of an OD
(or a set of ODs). Moreover, the transformation itself is different, as it follows
a pragmatic approach: we are not suggesting a meta-model level framework for
general transformations but instead focus on solving the concrete engineering
problem we have at hand. The verification technique is described in Sect. 4.

In order to test and evaluate our work we have implemented and integrated it
into a prototype Eclipse plug-in. The plug-in allows the engineer to edit MODs
and CDs, and to verify a selected multi-modal MOD specification against a
selected CD. Indeed, all examples shown in this paper have been verified by our
plug-in. We describe the plug-in and the results of our experiments in Sect. 5.

The introduction of MODs and the associated verification technique suggest
a stepwise design methodology. In early stages in the design process, MODs will
most often be used by domain experts or system analysts, to describe possible
snapshots of a system; in doing so, designers stipulate that the system should
at least be able to exhibit the positive examples shown in the MODs. As the
process matures, knowledge will become available about structures that should
not be possible, so the initial set of positive example MODs could be refined with

negative examples. Finally, in later stages, the analysts will be confident enough
to define positive and negative invariant MODs. The verification technique we
provide would aid the engineers in checking that their design indeed meets the
concrete requirements defined by the MODs. We discuss this design process
further in Sect. 7.4.

Object-oriented design constraints, similar to MOD specifications, can also
be defined using the Object Constraint Language (OCL) [25]. Thus, one may
consider using OCL instead of MOD or defining some combination of the two.
We discuss the relation between OCL and MOD in Sect. 7.3.

The paper is organized as follows. The next section presents motivating ex-
amples for the use of multi-modal object diagram specifications. Sect. 3 formally
defines the MOD language. Sect. 4 describes the verification problem and the
technique to solve it. Sect. 5 presents our prototype implementation. Two exten-
sions to the MOD language are discussed in Sect. 6. A discussion of limitations
and advantages, a comparison with OCL, the use of MOD in the design process,
and future work directions are presented in Sect. 7. Sect. 8 discusses related work
and Sect. 9 concludes.

2 Examples

We start off with simple examples for multi-modal object diagram specifications,
as they may be used during the design phase of a system. The examples are
described semi-formally. The required formal definitions are given in Sect. 3.

2.1 Example I

Fig. 1 shows a specification MS; made of five MODs, prepared by a business
analyst for a transportation services company. The specification includes three
positive examples and two negative examples. mod1.1 describes a car with a
driver. mod1.2 describes a car with two drivers. mod1.3 describes a bus with a
driver who has a manager. mod1.1, mod1.2, and mod1.3 are all positive examples.
mod1.4 describes a negative example: a driver and a bus, not connected. Finally,
mod1.5 describes another negative example: a lone driver.

Given the specification MS1, which was provided by the business analyst, the
system’s engineers have designed the class diagram cd; shown in Fig. 2. Note
that the engineers have suggested to generalize Car and Bus using an abstract
super class Vehicle. As this example is small, it is easy to see that cd; = MS;.
The engineers have used our plug-in to verify this.

2.2 Example II

Following further investigation of the company’s structure, the business analyst
prepared a revised MOD specification MSs, as shown in Fig. 3. The revised spec-
ification is made of four new MODs: a positive invariant, two negative invariants,
and a positive example.

<< positive, example >> mod1.1 ’ << negative, example >> mod1.5
drives . .
asec456:Car < » sandy:Driver :Driver
drivenBy
<< positive, example >> mod1.2 ’ << negative, example >> mod1.4
drives S ;
asec355:Car |*) » gail:Driver ‘Driver
drivenBy
drivesI
- » anna:Driver :Bus
drivenBy
<< positive, example >> mod1.3
drives . .
bus:Bus < - *> jacob:Driver nanages sara:Manager
drivenBy managedBy
Fig. 1. The multi-modal MOD specification MS;.
Car | cdl
managedB
> <<abstr_act>> _Managedby Manager
Vehicle 1..*|manages ©O..*
drives|1..2 drivenBy .
Bus — ———=| Driver
0..*

Fig. 2. cdy, a class diagram prepared for the specification MS;.

mod2.1 describes a positive invariant: every object model of the system must
include at least one driver. mod2.2 describes a negative invariant: no object
model of the system should include two managers. mod2.8 describes another
negative invariant: a driver driving a bus, a car, and a sports car. Finally, mod2.4
describes a positive example: a manager managing an employee and a driver.

Given the MSs specification, the system’s engineers have designed the CD
cdy shown in Fig. 4. In the new CD, the engineers added a class Employee,
and defined Driver and Manager to be its sub classes. They also set the class
Manager to be a singleton, to support the negative invariant defined in mod2.2.

Unfortunately though, using our plug-in the engineers have found that cds &
MSs. First, cds requires that every driver will drive at least one vehicle, but
the driver in the positive example mod2.4 does not drive a vehicle. Second, cds

<< positive, invariant >> mod2.1 << negative, invariant >> mod2.3
sandy:Driver ac7:Car |« » dana:Driver
drives
'y h
<< negative, invariant >> mod2.2
drives | drives |
sara:Manager rachel:Manager acs98:SportsCar ach10:Bus

<< positive, example >> mod2.4

manages

» sara:Manager Manages,| jacob:Driver

managedBy managedBy

adam:Employee

Fig. 3. The multi-modal MOD specification MS5.

1..% cd2

Car — Employee
> <<abstract>> I
Vehicle 0..* |[managedBy

drives ‘1. 2 drivenBy Driver <<singleton>>
ﬁ Manager

manages

SportsCar

Bus

Fig. 4. cda, a class diagram prepared for the specification MS2. Note, however, that
Cd2 |7& MSQ.

allows an object model consisting of a single manager that manages an employee
that is not a driver. This contradicts the positive invariant mod2.1 (the related
counterexample model was suggested by our plug-in). In addition, cds = MS;.
For example, modi.1 shows a driver without a manager as a positive example,
but according to cdy all object models should have exactly one manager (the
same holds for mod1.2). Hence, the engineers should fix their CD or consult
with the analyst on whether indeed a manager is required or not in every positive
object model, and whether drivers should indeed drive at least one vehicle.

As the analysis progresses, the business analyst continues to learn about
the system at hand and to provide the engineers with additional MODs. The
engineers continue to design CDs that should meet the requirements set by the
analyst and use our plug-in to check those CDs against the MODs that the
analyst provides.

The next section presents the required formal definitions for modal object
diagrams. We return to the above examples in the latter parts of the paper.

3 Modal Object Diagrams

We give an overview of the CD and OD languages used in our work, and continue
with formal definitions of MODs and the relation c¢d = MS between a class
diagram cd and a multi-modal object diagram specification MS.

3.1 Class diagrams and object diagrams

As a concrete CD language we use the class diagrams of UML/P [27], a con-
ceptually refined and simplified variant of UML designed for low-level design
and implementation. Our semantics of CDs is based on [3,4, 8] and is given in
terms of sets of objects and relationships between these objects. More formally,
the semantics is defined using three parts: a precise definition of the syntactic
domain, i.e., the syntax of the modeling language CD and its context conditions
(we use MontiCore [18,23] for this); a semantic domain - for us, a subset of
the System Model (see [3,4]) OM, consisting of all finite object models; and a
mapping sem : CD — P(OM), which relates each syntactically well-formed CD
to a set of constructs in the semantic domain OM. For a thorough and formal
account of the semantics see [4].

For example, the semantics of cd; shown in Fig. 2 includes all object models
where all drivers drive one or two vehicles, all vehicles are driven by zero or more
drivers, there are no vehicles that are not cars or buses but there may be cars
and buses, every driver has zero or more managers, and every manager manages
at least one driver. Note that the empty object model, which is an object model
with no objects at all, is in the semantics of cd;. In addition, note that the
semantics of cd; consists of an infinite number of object models.

As another example, the semantics of cds shown in Fig. 4 includes all object
models where all drivers drive one or two vehicles, all vehicles are driven by zero
or more drivers, there are no vehicles that are not cars, buses, or sports cars,
but there may be cars and buses and sports cars, every employee has zero or
more managers, every driver is an employee, every manager is an employee, every
manager manages at least one employee, and there is exactly one manager. The
empty object model is not in the semantics of cds because every object model in
the semantics of cdy must include exactly one manager. Also, as in the semantics
of cdy, the semantics of cdy consists of an infinite number of object models.

Note that we use a complete interpretation for CDs (see [27] ch. 3.4), roughly
meaning that ‘whatever is not in the CD, should indeed not be present in the
object model’. In particular, we assume that the list of attributes of each class is
complete, e.g., a driver object with an address and a salary is not considered
as part of the semantics of a Driver class with an address only. Also, the list
of classes in the CD is considered complete, in the sense that its object models
cannot include objects of classes not explicitly mentioned in the CD.

Also note that object names may be used in the OD for convenience, but
they have no semantic meaning, i.e., the object name is not interpreted as an
attribute name. Thus, e.g., an object sara:Driver has the same semantics as an
object dan:Driver or an unnamed object :Driver.

The CD language constructs we support include generalization (inheritance),
interface implementation, abstract and singleton classes, class attributes, uni-
and bi-directional associations with multiplicities, enumerations, aggregation,
and composition.

A note about notation: object diagrams refer to concrete syntactical expres-
sions and object models refer to elements in the semantic domain. Still, the
mapping from the abstract syntax to the semantic domain is in this case one-to-
one, so we use OD and OM interchangeably. For example in the definition below
we write Vpe € MS.PE : pe € sem(cd), although MS.PE is a set of (modal)
object diagrams while sem(cd) is a set of object models. A more strict (yet
inconvenient) notation should use sem(pe) € sem(cd).

3.2 Defining modal object diagrams

We are now ready to present modal object diagrams, multi-modal object diagram
specifications, and their relation to class diagrams.

Definition 1 (modal object diagram (MOD)). A modal object diagram
is a structure mod = (od,p,q) where od € OD is an object diagram, p €
{positive, negative}, and q € {example,invariant}.

Syntactically, we use stereotypes to denote the positive/negative and exam-
ple/invariant modalities. Alternative syntactic means may be suggested, e.g.,
the use of dashed-line boxes in example MODs vs. solid-line boxes in invariant
MODs.

Definition 2 (multi-modal object diagram specification). A multi-modal
object diagram specification is a set of MODs. Given a specification MS, the set
of positive example MODs in MS is denoted MS.PE, the set of negative example
MODs in MS is denoted MS.NE, the set of positive invariant MODs in MS is
denoted MS.PI, and the set of negative invariant MODs in MS is denoted MS.NI.
Any of these sets may be empty.

We define the satisfaction relation between a CD and a multi-modal object
diagram specification. Below we use om; C oms to note that all objects and
links appearing in om; appear also in oms.

Definition 3 (cd = MS). A class diagram cd satisfies a multi-modal object
diagram specification MS, denoted c¢d = MS, iff

1. Ype € MS.PE : pe € sem(cd);
2. ¥ne € MS.NE : ne ¢ sem(cd);
3. Vpi € MS.PI.Nom € sem/(cd) : pi C om;

4. Vni € MS.NI,Yom € sem(cd) : ni € om.

Note that the definition above uses a complete, rather than a partial, inter-
pretation of positive example MODs. That is, it considers each OD to describe
a complete object model rather than a partial one. We discuss an alternative
partial semantics variant in Sect. 6.1.

Finally, since our verification technique, as described in the next section,
is based on a transformation to Alloy [15], we need a bounded variant of the
satisfaction relation. Below we use |om| to note the maximal number of objects
per class in om (objects of subclasses are counted also as objects of their super
classes). Note that a bound needs to be applied only to invariants, because for
example MODs, the MOD itself determines the size of the problem.

Definition 4 (cd =, MS). A class diagram cd satisfies a multi-modal object
diagram specification MS modulo a bound k > 0, denoted cd |=, MS, iff

1. Ype € MS.PE : pe € sem/(cd);
2. ¥ne € MS.NE : ne ¢ sem(cd);
3. Vpi € MS.PI,.Yom € sem(cd) s.t. lom| <k :pi C om;
4. Vni € MS.NI,Yom € sem(cd) s.t. lom| < k:ni < om.

4 Verifying a CD Against an MOD Specification

4.1 Problem definition

The verification problem definition is as follows: given a multi-modal object
diagram specification MS, a class diagram cd, and a bound k, check whether
cd |, MS. Moreover, in case of a negative answer, provide relevant counterex-
ample object models, as applicable for the negative and positive invariants at
hand: for each unsatisfied pi € MS.PI, provide om € sem(cd) s.t. pi € om; for
each unsatisfied ni € MS.NI, provide om € sem(cd) s.t. ni C om.

Our solution is based on a transformation to Alloy [15].

4.2 A brief overview of Alloy

Alloy is a textual modeling language based on relational first-order logic. An
Alloy module consists of a number of signature declarations, fields, facts and
predicates. The basic entities in Alloy are atoms. Each signature denotes a set of
atoms. Each field belongs to a signature and represents a relation between two or
more signatures. Such relations are interpreted as sets of tuples of atoms. Facts
are statements that define constraints on the elements of the module. Predicates
are parametrized constraints, which can be included in other predicates or facts.

Alloy Analyzer is a fully automated constraint solver for Alloy modules. The
analysis is achieved by an automated translation of the module into a Boolean
expression, which is analyzed by SAT solvers embedded within the Analyzer.
The analysis is based on an exhaustive search for instances of the module. The

search space is bounded by a user-specified scope, a positive integer that limits
the number of atoms for each signature in an instance of the system that the
solver analyzes.

The Analyzer checks for the validity of user-specified assertions. If an instance
that violates the assertion is found within the scope, the assertion is not valid.
If no instance is found, the assertion might be invalid in a larger scope. Used in
the opposite way, one can look for instances of user-specified predicates. If the
predicate is satisfiable within the given scope, the Analyzer finds an instance
that proves it. If not, the predicate may be satisfiable in a larger scope. Sect. 7
discusses the advantages and limitations of using Alloy for our problem.

4.3 Solution by transformation to Alloy

The transformation consists of three parts: handling the CD, handling each of
the MODs, and generating of Alloy run commands. The complete transformation
details are given in [19]. Here we give an overview of the transformation, using
generated Alloy code taken from some of the examples shown earlier in Sect. 2.

Handling the CD The input CD is transformed into a set of Alloy signatures,
functions, and facts. Each class is transformed into an Alloy signature of a corre-
sponding name, with fields defined according to the associations given in the CD.
Alloy functions are defined in order to specify sets of objects of specific concrete
classes, taking into account the information about inheritance hierarchy defined
in the CD. Finally, Alloy facts are defined to express the types and multiplicities
involved in the associations defined in the CD.

For example, the generated Alloy signatures, functions, and facts for the class
diagram cds of Fig. 4, are shown in Listings 1.1, 1.2, and 1.3.

Listings 1.1 shows the Alloy signatures for all the classes defined in the
CD, with fields defined according to their associations. For example, see the
managedBy field defined in line 2 for the signature Employee. The keyword
extends is used to model class inheritance (see, e.g., lines 13-15, where the three
sub classes of Vehicle are defined). Alloy’s one keyword is used to model the
singleton requirement specified by the singleton stereotype in the CD (see line
7). Finally, Alloy’s abstract keyword is used to model the abstract requirement
specified by the abstract keyword in the CD (see line 10).

Listings 1.2 shows the Alloy functions that specify sets of objects of concrete
classes. Each function specifies a single set consisting of all objects of its corre-
sponding class only, that is, without objects of its sub classes. For example, in
line 1, the function EmployeeOnly is defined as the set consisting of all employees
that are not drivers or managers.

Listings 1.3 shows the types and multiplicities of the associations defined in
cdy. The VehicleIsAbstract fact specifies that the set VehicleOnly includes
no elements. The symmetry of the bi-directional association between Driver
and Vehicle is specified by requiring that the restriction of Driver to the field
drives (as a relation) is the inverse of the restriction of Vehicle to the field

sig Employee {
managedBy: set Manager

}

sig Driver extends Employee {
drives: set Vehicle

}

one sig Manager extends Employee {
manages: set Employee

}

abstract sig Vehicle {

11 drivenBy: set Driver

12}

13| sig Car extends Vehicle { }

14| sig Bus extends Vehicle { }

15| sig SportsCar extends Vehicle { }

© W N O ;A W N e

=
o

Listing 1.1. Generated Alloy signatures for cds.

fun EmployeeOnly: set univ {Employee-(Driver + Manager)}
fun DriverOnly: set univ {Driver}

fun ManagerOnly: set univ {Manager}

fun VehicleOnly: set univ {Vehicle-(Car+Bus+SportsCar)}
fun CarOnly: set univ {Car}

fun BusOnly: set univ {Bus}

fun SportsCarOnly: set univ {SportsCar}

S - R N N

Listing 1.2. Generated Alloy functions for cds.

drivenBy. Note that by definition this applies to all the sub classes of Vehicle
too. The multiplicity constraints of the association between Driver and Vehicle
are specified by limiting the size of the relevant sets referenced by the corre-
sponding signatures’ fields. The last two facts specify the symmetry and the
multiplicities constraints for the association between Employee and Manager in
a similar way.

Handling each of the MODs Each input MOD is transformed into a pred-
icate. The predicate consists of a conjunction of a number of parts. First, all
objects in the diagram are listed (anonymous objects are given a random unique
name). Second, the concrete types and number of occurrences is specified, mak-
ing sure that super classes are not handled as sub classes. Finally, the links
between the objects are specified using field assignments.

Listing 1.4 shows the generated predicate for the positive example MOD
mod2.4 of Fig. 3. Lines 3-4 list the names of the objects and their types by
declaring corresponding variables. Lines 6-7 specify the concrete classes these
objects belong to. Line 8 defines the number of objects of each class (e.g., if
there were two or more managers, as in mod2. 2, this would include the statement
{sara, rachel} == 2, to make sure that each variable references a distinct

1| fact VehicleIsAbstract { # VehicleOnly == 0 }
2| fact Asso_Driver_drives_drivenBy_Vehicle_symmetry {

3 Driver <: drives = “((Vehicle <: drivenBy))

al }

5| fact Asso_Driver_drivenBy_drives_Vehicle_Mult {

6 all var: Driver | # var.drives >= 1 && # var.drives <= 2
7 all var: Vehicle | # var.drivenBy >= 0

s}

ol fact Asso_Employee_managedBy_manages_Manager_symmetry {

10 Employee <: managedBy = ~((Manager <: manages))

11 }

12| fact Asso_Employee_manages_managedBy_Manager_Mult {
13 all var: Employee | # var.managedBy >= 0
14 all var: Manager | # var.manages >= 1

Listing 1.3. Generated Alloy facts for cds.

1| pred checkFull {
2 // all objects in our 0D

3 some adam: Employee | some jacob: Driver |

4 some sara: Manager |

5 // make sure a superclass is mnot handled as a subclass
6 adam in EmployeeOnly and jacob in DriverOmnly

7 and sara in ManagerOnly

8 and # {adam} == 1 and # {jacob} == 1 and # {sara} == 1
9 // define universe

10 and univ = {adam + jacob + sara + Int}

12 // links between them

13 and sara.manages = {jacob + adam}
14 and jacob.managedBy = {sara}

15 and adam.managedBy = {sara}l

16 and jacob.drives = none

17| }

Listing 1.4. Generated predicate for the positive example mod2.4. If this was an
invariant (positive or negative), the predicate would have been named checkPart
and the conjunct defining the universe (line 10) would have been omitted.

object). Line 10 specifies that the universe of objects for Alloy is exactly the set
of objects listed in the MOD (this statement is omitted for invariant MODs, see
below). Finally, lines 13-16 specify the concrete associations between the objects.

The difference between example MODs and invariant MODs (whether pos-
itive or negative) is manifested in the transformation as follows. For example
MODs, the predicate includes an additional conjunct, which defines the universe
for Alloy as exactly the set of objects listed in the diagram. For invariant MODs,

run checkFull for 6 but exactly 1 Driver,
2 exactly 3 Employee, exactly 1 Manager

-

Listing 1.5. Generated Alloy run command for the positive example mod2.4.

in contrast, this conjunct is not added, as the universe for Alloy is allowed to
include more objects.

As described above, Listing 1.4 shows the generated predicate for the posi-
tive example MOD mod2.4 of Fig. 3. If the MOD was not an example but an
invariant MOD (positive or negative), the generated predicate would have been
named checkPart instead of checkFull and would not have included the con-
junct defining the universe. Lines 13-16 would also have changed, to reflect that
additional links may exist.

Generating run commands for Alloy Finally, we generate a set of run
commands for Alloy, each corresponding to one of the MODs in the specification.

For positive or negative example MODs, the run command simply runs the
corresponding generated predicate with exact per-class scopes taken from the
MOD itself (the computation of the per-class scope takes super classes into
consideration too). As an example, the run command for the positive example
MOD mod2.4 is given in Listing 1.5. The same run command is used to check for
a negative example; the only difference between negative and positive examples
is in the interpretation of the result that is provided by Alloy.

Checking for a positive invariant is done by asserting the generated checkPart
predicate. That is, the generated command checks an Alloy assertion named
checkInvariant, which includes the checkPart predicate. The scope for this
check cannot be taken from the input MOD and is defined by the user. As an
example, the check command for a positive invariant MOD, with a user-defined
scope of 6, is given in Listing 1.6. Checking for a negative invariant is done using
the checkPart predicate, with a user-defined scope.

5 Implementation and Evaluation

In order to test and evaluate the MOD language and the verification technique
we have implemented a prototype Eclipse plug-in that allows the engineer to
edit MODs and CDs and to verify a selected CD against an MOD specification.

1| assert checkInvariant {
2 checkPart

3|
4

5

check checkInvariant for 6

Listing 1.6. Generated Alloy assert statement and check command for a positive
invariant MOD, with a user defined scope of 6.

The prototype implementation, examples, and related materials are available
from [22].

The plug-in includes a textual editor for MODs and CDs. The editor was
generated using MontiCore [23] grammars (including a parser, syntax highlight-
ing, outline view etc.), and the addition of the modalities to the ODs is done
using stereotypes. When the user selects a number of MODs and a CD, she
can execute the verification. The transformation to Alloy is implemented using
templates written in FreeMarker [9] and the execution of the generated module
run commands is done using Alloy’s APIs (the analysis is fully automated so
the engineer does not need to see the generated Alloy code). Several parameters
may be selected, e.g., the SAT solver and the scope that Alloy will use in the
analysis.

The results of the verification process are shown in a hierarchical table (an
Eclipse view), displaying which MODs are modeled by the CD and which ones
are not. When the engineer clicks the name of an invariant MOD that is not
modeled by the selected CD, if any, the plug-in displays a relevant generated
counterexample OD in the main editor pane of the IDE.

5.1 Example results

We have used the plug-in to examine several MOD specifications and related
class diagrams, including the examples shown in Sect. 2. Fig. 5 shows a screen
capture of the eclipse IDE, displaying several CD and MOD files on the explorer
view on the left (files with extensions .cd and .od), the summary results of a
verification process at the bottom of the screen, and a generated counterexample
OD in the main view (an outline of the OD is shown on the right).

Specifically, the figure shows the results of verifying cds against the four
MODs of the multi-modal specification MSy (shown earlier in figures 4 and 3).
As expected, the results table shows two failures and two passes. Indeed, cdy =
{mod2.1} and cds [~ {mod2.4}. The counterexample shown in the main view
relates to the positive invariant mod2.1: it shows an object diagram that consists
of an employee, a manager, and two cars, where the manager manages herself
and the other employee. This object model is in the semantics of cds but it does
not include a driver. Thus, it proves that the positive invariant mod2.1 is not
satisfied by cda.

As the example shows, the counterexample found by Alloy is not necessar-
ily the smallest possible counterexample (within the user-specified scope). This
points to a limitation in our technique. In the future, it may be worthwhile to
develop a technique that produces minimal counterexamples according to some
minimality criteria (e.g., number of classes, total number of objects, etc.).

5.2 Performance results

Table 1 shows performance results from our experiments. Experiments were done
using Alloy version 4.1.10 with SAT4J [28], on a regular laptop computer, Intel

€ Java - MODExamples/Generated Countercxample mod2.1_Driver (pi) against CarCompanyV2.od - Eclipse Platform —[Ofx]

Fle Edt Mavigste Seach Project Run Window Help

Jti-els-0-Q%- [EHe-|E®me - |8 -Gl -t c- - £9| 8’ ava [Resource

|# Package Bxplore 32 2 Hmarmﬂ = B || oD Generated Counterexample mod2.1_Driver {pi) against CarCompanyV2.od 53 = B[5 outline 53 =58
= package gen.counterexamples; =] . B~

12 FutherBxamples
El§2 MODEamples
€0 CarCompanyV1 cd
€D CarCompanyV2 cd
© Generated Counterexample mod2.1_Driv
O mod1.1_CarWithDriver od
OB mod1.2_Cartith TwoDivers.od
OB mod1.3_BusDriverDiivingBusAndManag
OB mod1.4_DiiverfndBusNotConnected od
OB mod1.5_Diiverod
0D mod2.1_Diiverod
OB mod2.2_TwoManzgers.od
O mod2.3_DrverDivingC:

cbjectdiagram Counterexample mod2 1 Driver CarCompanyV {
emploveel : Emplovee:
managerl : Manager:
carl : Car:
car2 : Car:

-— (manag

link m
link m

gerl (managedBy)

gedBy)

) employeel:
) managerl:

gerl (m -- (manag

il

p

Q) Object employee1

~[0) Object manager1

~[0) Object carl

(@) Object car2

. Link manager1 - employee1
Link manager1 —manager1

" oD mod2.4_ManagerWithEmployesAndDrive

2. Problems | @ Javadoc (i Deciraton [Search [[£.. MOD Vefication Resuts 3

2failures and 2 passes (verfication of CarCompanyV2.cd executed with scope 8)

Name. [MOD Type [Path

= gl Failures (2)

& Driver

&) Manager¥ihEmployeeAndDriver
El ¢E Passes)

#] TwoManagers

£| DriverDiivingCarBusAndSportsCar

Fositive Invariant
Fositive Example

Negative Invariant
Negative Invariant

Cworkspaces'demo_mod\MODExamples'mod2.1_Driver.od
Cworkspaces\demo_mod\MODExamples'\mod2.4_ManagerWithE

C\workspaces\demo_mod\MODExamples'\mod2.2_TwoManagers
C\workspaces\demo_mod\MODExamples'\mod2.3_DriverDrivingC

q | 1]

J=<>

‘ Vitable | Inset | 716 |

Fig. 5. A screen capture from Eclipse, displaying several CD and MOD files on the
explorer view on the left (files with extensions .cd and .od), the summary results of
a verification process at the bottom of the screen, and a generated counterexample
OD in the main view (an outline of the OD is shown on the right). Specifically, the
figure shows the results of verifying cds against the four MODs of the multi-modal
specification MS2, with two failures and two passes. The counterexample relates to the
verification of the positive invariant mod2.1.

Dual Core CPU, 2.8 GHz, with 4 GB RAM, running Windows Vista. The CDs
and MODs are the ones presented in Sect. 2.

For each CD and MOD, the table shows whether the verification passed or
failed (i.e., whether the CD satisfies the MOD or not), some details on the SAT
formula that Alloy generated (number of variables etc.), and the total time it
took to run the verification (constructing the formula + solving it), in millisec-
onds. The column titled Scope reports on the scope used in the verification:
as explained in Sect. 4.3, for invariants MODs we use a user-defined scope; for
example MODs, specific per-class scopes are taken from the MOD itself.

Interestingly, for some of the MODs, the generated Alloy formula was empty
(had zero variables). That is, for these MODs, Alloy was able to determine
the result without using the SAT solver. This happens when the generated Alloy
module is very simple, e.g., when the checkPart predicate includes an immediate
violation (contradiction) of one of the facts.

The verification of example MODs is, in general, simpler and faster, as it
takes per-class scopes from the MOD at hand and its solution space is relatively
small. The verification of invariant MODs, in contrast, is more complicated, and
its solution space and performance depends on the user defined scope.

CD| MOD | Modalities| Scope| Result| Vars/primary vars/clauses| Time (ms)
cdi| modl.1| PE by OD| pass 141 / 19 / 209 204+ 7
cdi| modl.2| PE by OD| pass 371 / 34 / 581 18 + 8
cdi| modl.3| PE by OD| pass 37/ 7/ 57 545
cdi| modl.4| NE by OD| pass 132 /19 / 192 6+0
cdi| modl.5| NE by OD| pass 276 / 36 / 449 6+ 1
cda| mod2.1| PI 8| fail 2107 / 166 / 4360 17 + 10
cda| mod2.2| NI 8| pass 0/0/0 7+ 0
cdz| mod2.3| NI 8| pass 2794 / 197 / 5867 17+ 7
eds| mod2.4| PE by OD| fail 263 / 36 / 466 440
cdz| modl.1| PE by OD| fail 0/0/0 540
cds| modl.2| PE by OD| fail 0/0/0 340
cdz2| modl.3| PE by OD| pass 49 /9/ 17 4+ 11
cdz| modl.f| NE by OD| pass 0/0/0 240
cda| modl.5| NE by OD| pass 0/0/0 440

Table 1. Results from experimenting with the verification of example MODs and CDs.

The performance results in Table 1 show that for relatively small models,
MOD/CD verification runs very fast. However, we do have other examples, not
shown here, where MOD verification uses many more variables and clauses and
takes much more time to compute. Given these results, in the future, we plan to
develop heuristics to improve the scalability of invariant MOD verification, using,
e.g., abstraction / refinement techniques, decomposition for early detection of
independent sub models, etc. See the short discussions in sections 7.1 and 7.2.

6 Extensions

We present and discuss two extensions to the basic MOD language, inspired
by [27]: partial vs. complete positive examples and parametrized ODs.

6.1 Partial vs. complete positive examples

We distinguish between partial and complete positive examples. Roughly, a par-
tial positive example object diagram specifies an object model that should be
extensible to a positive example object model.

Recall the examples discussed in Sect. 2. There, we saw that cds = MS)
because the positive examples mod1.1 and mod1.2 did not include a manager.
Using the distinction between partial and complete positive examples, the ana-
lyst can specify that these MODs are partial positive examples and not complete
ones. Doing so will make cds satisfy MS;.

Syntactically, we specify that an OD is partial using a stereotype partial.
The semantics for partial positive examples is formally defined as follows:

Definition 5 (cd = ppe). Given a class diagram cd and a partial positive exam-
ple object diagram ppe = {od, partial, positive, example), we say that cd satisfies
ppe, denoted cd |= ppe, iff Jod' € sem(cd) s.t. od C od'.

Updating Definitions 2, 3, and 4 from Sect. 3 to include partial positive
examples is straightforward. The combination of partial with modalities other
than positive examples is considered syntactically incorrect and its semantics is
undefined (since invariant MODs already have a partial interpretation).

Note that the verification technique we described in Sect. 4 already sup-
ports MOD specifications with partial positive examples. Specifically, recall the
checkPart predicate, which we use in the computation of invariants within an
assert statement. Running this predicate without an assert provides the required
verification for partial positive examples.

6.2 Parametrized object diagrams

We extend the classical object diagram language with parameters, which may be
used for attribute values or for object types. For example, instead of assigning a
specific value to an attribute, the designer may assign it a parameter, and then
define the set or range of values this parameter may take. Multiple parameters
may be used in a single object diagram and the same parameter may appear
more than once in a diagram. The semantics of parametric object diagrams is a
natural extension of the classical semantics: it consists of the set of object models
obtained by creating a set of non-parametric copies of the diagram, where in each
copy different (combination of) values are assigned to the parameters.

For example, to specify that a driver’s experience level can be either novice,
regular, or expert, only a single (positive example) object diagram needs to be
drawn, showing a driver whose experience attribute equals the OD parameter
level, and level € {novice,regular,expert}. Thus, the parametric extension
allows the designer to create succinct object diagram specifications.

The combination of parametric object diagrams and modal object diagrams
yields a powerful specification language. We give an example below.

Fig. 6 shows an MOD specification MS3, made of three parametric MODs.
mod3.1 is a negative invariant: it specifies that a driver cannot have an age lower
than 16 (more formally, that any object model of the system should not include a
driver whose age is between 1 and 15). mod3.2 is a positive example: it specifies
that a driver can drive a car, a sports car, or a bus (more formally, that a driver
driving a car, a driver driving a sports car, and a driver driving a bus, are all
positive examples of object models of the system). Finally, mod3.3 is a negative
example: it specifies that a driver who has novice or regular level of experience,
is not allowed to drive a sports car that has medium or high engine power.

The verification technique we presented can be extended to support the para-
metric extension. The corresponding CDs may need to be enhanced with OCL
constraints, which may get rather complicated, so the analysts and engineers
should agree on the level of detail they want the specification and CDs to use.

<< negative, invariant >> mod3.1 (a)] << positive, example >> mod3.2 (vType)]

. drives)
sandy:Driver asec456:vType > sam:Driver
drivenBy
age=a
vType: Set{Car, SportsCar, Bus}

a: range(1,15)

<< negative, example >> mod3.3 (level, power)]

drives -
as6:SportsCar . e abraham:Driver
drivenBy
enginePower = power experience = level

level : Set{”novice”, “regular”}

power : Set{“medium”, “high”}

Fig. 6. The multi-modal parametrized MOD specification MSs.

cd3
Car —
<<abstract>> . Driver
SportsCar > Vehicle 1..2 drivenBy
. *
Bus | enginePower: String | 4r1ves 0.7 |experience: String

Fig. 7. A class diagram for the parametrized MOD specification MSs.

7 Discussion and Future Work

We discuss advanced topics related to our work, its advantages and limitations,
and related future work directions. These include a discussion of complexity and
performance, the bounded scope limitation, the relationship between MOD and
OCL, the use of MOD in the design process, and the problem of synthesizing a
CD from an MOD specification.

7.1 Complexity and performance

The transformation of the CD and MODs to Alloy is linear in the size of the input
diagrams. It requires only a constant number of iterations over the diagrams’
syntax and the construction of constant number of linear size ‘symbol tables’.

The computation by Alloy using a SAT solver, may be exponential in the size
of the input diagrams. For example MODs, the solution space is relatively small
and depends on the number of objects defined in the OD. In the case of invariant
MODs, the solution space depends on the user-defined scope k. Although the
two problems are rather different, we use a unified approach that solves both.

As discussed in Sect. 5, experience shows that our technique works very fast
for relatively small models. Indeed, most works dealing with reasoning about
CDs use rather small CDs in their experiments (see, e.g., [31, 33]). Still, as future
work, to make MOD verification practical for real-world projects, it would be
necessary to develop heuristics that may accelerate the performance of Alloy in
verifying larger MODs, experiment with the different SAT solvers supported by
Alloy, or define a direct translation into SAT (as was suggested in [31]).

7.2 The bounded scope limitation

The verification of positive and negative example object diagrams is sound and
complete. The required scopes are taken from the example object diagrams them-
selves and so the answer is not only sound but complete.

The verification of positive and negative invariant object diagrams is however
bounded by the user-defined scope. Specifically, it may be the case that for some
cd and MS, ed = MSbut cd = MS for some given k. A simple concrete example
is as follows. Consider a CD cd, consisting of two classes, C; and Cs, and an
association of multiplicity of exactly 1 to 5 between C; and Cs. Assume a a
negative invariant object diagram ni consisting of two instances of C; and no
instances of Cy. Clearly, cd, [~ {ni} but cd, = {ni} for any & < 10.

The bounded version cd = MS is thus indeed strictly weaker than the
general version c¢d = MS. Our use of Alloy is sound and complete for the bounded
version but is neither sound nor complete for the general version.

To conclude, the use of Alloy, and consequently the encoding of our verifi-
cation problem as an instance of SAT, carries the significant price of bounded
analysis. Nevertheless, we adapt the small scope hypothesis of [15] to our do-
main, and suggest that in many cases, although the models involved may be
large, counterexamples for their unsatisfaction could be rather small.

As future work, heuristics may be developed to make automatic or semi-
automatic informed guesses about suitable scopes that could reduce given prob-
lems into equivalent smaller ones where lower scopes are ‘good enough’, or to
identify cases where one could automatically prove that a higher scope will not
change the analysis results.

7.3 MOD and OCL

The Object Constraint Language (OCL) [25] is a declarative language for de-
scribing rules that apply to Unified Modeling Language (UML) models (and,
more generally, to any Meta-Object Facility (MOF) meta-model). OCL is based
on first-order predicate logic. As MODs specify constraints on object-oriented
models too, discussing the relationship between MOD and OCL is worthwhile.

package cdO1
context Manager
inv inv01: not
(Manager.allInstances()—>
exists(sara:Manager | Manager.allInstances()->
exists(rachel:Manager |
-- the two objects are distinct
not (sara=rachel) and
-- objects are of the specified types
-- and not of any of their sub types
sara.oclIsTypeOf (Manager) and
rachel.oclIsTypeOf (Manager) and
-- sara and rachel do not manage anyone
sara.manages.asSet ()->size()=0 and
rachel .manages.asSet()->size()=0 and
-- sara and rachel not managed by anyone
sara.managedBy.asSet ()->size()=0 and
rachel.managedBy.asSet () ->size()=0

)
endpackage

Fig. 8. An OCL representation of MOD mod2.2 from Fig. 3.

OCL is interpreted in the context of a UML diagram and is limited to speci-
fying invariants, i.e., constraints that hold for all its instantiations. Thus, given
that a CD context is provided, invariant MODs, positive and negative, can be
specified using OCL. Moreover, negative example MODs can also be specified
in OCL, by specifying a negative invariant that constrain also the set of all in-
stances (the universe) to the set of existing instances listed in the MOD. Positive
example MODs cannot be specified in OCL.

As a small example, recall mod2.2, which shows a negative invariant MOD.
This MOD is semantically equivalent to the OCL code shown in Fig. 8 (to edit the
OCL code that we show we used the Dresden OCL Eclipse plug-in [6]). If mod2.2
was a negative example, the OCL code in Fig. 8 should have been extended, to
specify, inside the outermost negative clause, that the total number of managers
is two. Furthermore, every other class from the CD should be listed, to specify
that the size of its instances set is zero. For comparison purposes, Fig. 9 shows
the textual representation of MOD mod2.2 in our object diagram language (the
language grammar is defined in MontiCore [18, 23]).

These examples demonstrate that although it is impossible to specify pos-
itive example MODs in OCL, it is formally possible to specify invariant and
negative example MODs using OCL. Yet, it is clearly very inconvenient, be-
cause manual writing of such OCL statements is obviously technically difficult
and error prone. Thus, we chose to introduce MODs due to their readable and

package test.examples;

<<negative, invariant>> objectdiagram TwoManagers {
sara : Manager;
rachel : Manager;

Fig. 9. The textual representation of MOD mod2.2 from Fig. 3, as used in our work.

succinct representation, which makes them usable and attractive, using either
textual or visual concrete syntax, not only for software engineers but also for
non-SE specialists such as business analysts or other domain experts. On top
of classical ODs, MODs make the notion of modality explicit; they integrate
the intuitive concrete representation of the OD language with a limited set of
predefined natural modalities.

Finally, as OCL is much richer than MOD in the kinds of invariants it can
specify in the context of a given diagram, it may be interesting to follow [27]
and define a combination of OD (MOD) and OCL. We discuss this combination
in the related work section.

7.4 Using MODs in the design process

Just like classical ODs, MODs are simple and intuitive to define, since the addi-
tion of modalities does not change the basic syntax and semantics of describing
a single concrete instance. In particular, ODs are much simpler than CDs, as
they do not show inheritance and interface implementation relations. Moreover,
CDs are made of abstract entities — classes — which do not ‘exist’ in the ‘real
world’. As Oscar Nierstrasz puts it, “Classes exist only in our minds” [24]. ODs,
in contrast, are made of concrete entities — objects — which indeed ‘exist’, both
in the real world and in the systems we build, when they run.

The introduction of the MOD language suggests a stepwise design method-
ology. In early stages in the design process, MODs will most often be used by
domain experts and analysts to describe possible snapshots of a system. In doing
so, they would stipulate that the system should at least be able to exhibit the
examples shown in the MODs. That is, only positive example MODs will be used
in the early stages of the design process. As the process matures, knowledge will
become available about structures that should not be possible, so the initial set
of positive example MODs could be refined with negative examples. Finally, in
later stages, analysts will be confident enough to define positive and negative
invariant MODs.

The MOD language and this design process are inspired by an analogous
design process for behavioral specifications. There, domain experts may pro-
vide positive example execution traces, which the system should allow, negative
example traces, which the system should not allow, invariant traces, which all
system executions should include, and negative invariant traces, which no ex-

ecution that allows them can be extended to an accepted one. Then, software
engineers are responsible for designing a state-machine that will satisfy these
multi-modal trace requirements, and model-checking techniques can be used to
verify them. Such concrete multi-modal traces can be specified, e.g., using live
sequence charts (LSC) [5,12] (see the related work section).

To conclude, we believe that the MOD language can be used not only by
software engineers but also by domain experts and analysts, in particular during
early requirements phases of object-oriented systems. Moreover, the language
supports a stepwise design methodology and can serve as a rich and formal
means of communication between the domain experts and the software engi-
neers responsible for the system’s design. The verification technique we provide
would aid the engineers in checking that their design indeed meets the concrete
requirements set by the MODs defined by the domain experts.

7.5 Synthesis and unsatisfiable cores

The most important future research we consider relates to a synthesis problem:
given an MOD specification MS, find ed such that cd | MS, if any. That is,
we aim to develop an algorithm that takes as input a set of multi-modal object
diagrams, made of positive and negative examples as well as positive and neg-
ative invariants, and outputs a CD that satisfies it (or reports that such a CD
does not exist!). Note that for a classical set of ODs without modalities, each
specifying a positive example, this problem is trivial, but for a multi-modal set
it is much harder (and interesting). Also note that in many cases, there will
be many possible solutions to the synthesis problem; we may be interested in
synthesizing a satisfying CD that is minimal with regard to some cost function
(e.g., depth or breadth of inheritance tree).

In the case where a satisfying CD cannot be synthesized, we will be interested
in the related problem of finding an unsatisfiable core: a minimal subset of the
MOD specification that has no satisfying CD (note that there may be more
than one unsatisfiable core). The computation of an unsatisfiable core is a well
known problem for SAT solvers. Unsatisfiable cores are essential means for the
debugging of MOD specifications.

We hope to present the results of this research on synthesis and unsatisfiable
cores for MOD specifications in a future paper.

8 Related Work

We discuss related work in adding modalities to existing modeling languages, in
specifying constraints on ODs and combining them and OCL, in using Alloy for
the analysis of class diagrams, and in other analysis problems related to class
diagrams.

The idea that system models should include not only positive examples but
also negative examples and positive and negative invariants is not new. This
idea has been presented and investigated before in the context of behavioral

models, in particular in scenario-based specifications. For example, the language
of live sequence charts (LSC) [5,12] extends classical message sequence charts
(MSC) with universal and existential modalities, allowing to specify scenarios
that must happen, scenarios that may happen, and scenarios that should never
happen. In other variants of MSC [34], negative scenarios are used as a means for
requirements elicitation and refinement. As in the case of MODs, the addition
of modalities to the modeling language at hand, in this case, message sequence
charts, results in a more expressive and useful language. It also comes with a
price, in the form of a computationally expensive analysis (see, e.g., synthesis
from LSC [11,13]). Scenario-based specifications notwithstanding, we are not
aware of any other study that investigates the addition of modalities in the
context of structural system models, as we do with the introduction of modal
object diagrams in the present paper.

Constraint diagrams [17] are a visual notation for specifying invariant con-
straints on object-oriented models, which can be viewed as a generalization of
instance (object) diagrams, partly inspired by Venn diagrams. One may con-
sider constraint diagrams to be similar to MODs, as both express constraints
on object-oriented models. However, the two languages are fundamentally dif-
ferent. Constraint diagrams have their own visual notation while MODs only
extend existing visual or textual notation with stereotypes. The invariants of
constraint diagrams can be compared to the invariants of OCL (see Sect. 7.3 for
a discussion on the relationship between OCL and MOD). To the best of our
knowledge, based on [17], constraint diagrams cannot specify examples and have
no explicit support for negation.

An integration of object diagrams and OCL for the specification of object-
oriented systems is part of the definition of UML/P (see [27] ch. 5.3). This
work proposes the embedding of object diagrams into OCL to, e.g., define the
context of invariants, describe pre- and post-conditions, or specify relations be-
tween object diagrams (e.g., implication). Furthermore, elements like attributes
and association links in object diagrams can be accessed from within the OCL/P
syntax, relating the ODs to a system state. The semantics of logical conjunctives
like &&, ||, implies, etc. between ODs are informally given in [27]. Thus, the
modalities of MOD can be expressed as an OCL/P predicate referencing UML/P
ODs. Moreover, the other direction, of embedding OCL expressions into object
diagrams, is defined too. For example, the language permits the definition of
OCL/P variables inside object diagrams, e.g., to enable parametrized ODs, sim-
ilar to the extension mentioned in Sect. 6.2. Our work is to a great extent inspired
by these ideas. The UML/P language of [27] is far more expressive than MOD,
however, it has no supporting reasoning mechanism and implementation. MOD
can be viewed as a variant of UML/P ODs and their combination with OCL.

Some previous works consider the use of Alloy for the analysis of CDs (see,
e.g., [1,30]). These works focus on the formal definition of the transformation of
a single CD to an Alloy module at the level of a meta-model and on its implemen-
tation using a transformation language. Possible applications of the use of Alloy
to analyze a given CD are not discussed in depth in these works. In contrast,

the input for our transformation consists not only of a class diagram but also of
an object diagram (or a set of object diagrams). Moreover, the transformation
itself is different, as it follows a pragmatic approach: we are not suggesting a
meta-model level framework for general transformations but instead focus on
solving the concrete verification problem we have at hand. Defining and imple-
menting our transformation using QVT or other transformation language such
as ATL [16] is possible, but is outside the focus of our work.

A different use of Alloy is considered in [29], where the authors present a
meta-model directed model completion feature, in the context of code completion
support in editors of domain-specific modeling languages. Although the setup
and motivation are very different than ours, this work is somewhat similar to
our work, specifically in the way predicates are used to define partial models.

Some previous works consider various analysis problems related to CDs (see,
e.g., [2,10,21,31,33]). These include the finite satisfiability problem, the con-
sistency of UML models (with or without OCL constraints), the identification
of implicit consequences etc. Some of these use a direct translation into SAT
and provide experimental performance results [31]. Others use Description Logic
(DL) as their underlying formalism [33]. Some works include no implementation
but present theoretical results about the decidability and complexity of the prob-
lems at hand. In contrast, we introduce a modal extension to the OD language
and consider the problem of verifying that a given CD models a multi-modal
specification. We provide a solution, in a bounded scope, using a reduction to
an Alloy module and its analysis with a SAT solver.

Finally, in another paper in this conference [20] we have defined CDDIff, a
semantic differencing operator for CDs (used for semantic model comparison in
the context of model evolution), and have implemented it using a translation to
Alloy. However, the translation we use for CDDiff is very different than the one
we use here. The input for CDDiff consists of two CDs and its output is an OD
that represents an OM that is in the semantics of the first CD and not in the
semantics of the second. The input for MOD verification is a CD and an OD.
While in CDDiff, each of the two input CDs is represented using a predicate,
here we use the input CD as a base and the input OD induces a predicate that
constrains it.

9 Conclusion

We introduced modal object diagrams, as an expressive extension to the classical
object diagrams language. Moreover, we have presented a verification technique
that can be used to verify, in a bounded scope, whether a given class diagram
satisfies a multi-modal object diagram specification. We discussed a stepwise
design process, where domain experts and analysts provide MODs while software
engineers are responsible for designing class diagrams that satisfy them. The
extended language and the verification technique are fully implemented in a
prototype Eclipse plug-in.

The tradeoff of formality and expressiveness vs. intuitiveness and ease of
use is a major challenge in modeling languages design. We believe that MOD
addresses this tradeoff well: it is expressive enough to be valuable in specifying
structural requirements of object-oriented systems, yet it is also intuitive and
simple enough to be attractive to engineers.

Finally, we considered the advantages and limitations of our work. As dis-
cussed in Sect. 7, future work includes the development of heuristics to improve
the performance of our verification technique and allow it to scale, the embedding
of a subset of OCL inside the MOD language in order to extend its expressive
power, performing case studies that will evaluate the use of MOD in the design
of real-world systems, and the investigation of the problem of synthesizing a CD
from a multi-modal object diagram specification.

Acknowledgments We are grateful to Martin Schindler for defining the Mon-
tiCore language support for ODs and CDs. We thank Smadar Szekely and Guy
Weiss for their expert advice on Eclipse plug-in development. We thank Mira
Balaban, David Lo, and the anonymous reviewers for comments on a draft of
this paper.

References

1. K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. On challenges of model trans-
formation from UML to Alloy. Software and Systems Modeling, 9(1):69-86, 2010.

2. D. Berardi, D. Calvanese, and G. D. Giacomo. Reasoning on UML class diagrams.
Artif. Intell., 168(1-2):70-118, 2005.

3. M. Broy, M. V. Cengarle, H. Gronniger, and B. Rumpe. Definition of the System
Model. In K. Lano, editor, UML 2 Semantics and Applications. Wiley, 2009.

4. M. V. Cengarle, H. Gronniger, and B. Rumpe. System Model Semantics of Class
Diagrams. Informatik-Bericht 2008-05, Technische Universitat Braunschweig, 2008.

5. W. Damm and D. Harel. LSCs: Breathing life into Message Sequence Charts.
Formal Methods in System Design, 19(1):45-80, 2001.

6. Dresden OCL. http://www.reuseware.org/index.php/DresdenOCL. Accessed
4/2011.

7. Eclipse UML2 project. http://www.eclipse.org/modeling/mdt/?project=uml2.
Accessed 4/2011.

8. A. Evans, R. B. France, K. Lano, and B. Rumpe. The UML as a Formal Modeling
Notation. In J. Bézivin and P.-A. Muller, editors, Proc. 1st Int. Work. on the
Unified Modeling Language, Selected Papers, volume 1618 of LNCS, pages 336—
348. Springer, 1998.

9. FreeMarker. http://freemarker.org/. Accessed 4/2011.

10. M. Gogolla, M. Kuhlmann, and L. Hamann. Consistency, independence and con-
sequences in UML and OCL models. In C. Dubois, editor, TAP, volume 5668 of
LNCS, pages 90—104. Springer, 2009.

11. D. Harel and H. Kugler. Synthesizing state-based object systems from LSC speci-
fications. Int. J. Found. Comput. Sci., 13(1):5-51, 2002.

12. D. Harel and S. Maoz. Assert and negate revisited: Modal semantics for UML
sequence diagrams. Software and Systems Modeling (SoSyM), 7(2):237-252, 2008.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.
24.
25.
26.
27.
28.
29.

30.

31.

32.

33.

34.

D. Harel, S. Maoz, and 1. Segall. Some results on the expressive power and com-
plexity of LSCs. In A. Avron, N. Dershowitz, and A. Rabinovich, editors, Pillars
of Computer Science, volume 4800 of LNCS, pages 351-366. Springer, 2008.

IBM Rational Software Architect (RSA).
http://www.ibm.com/developerworks/rational/products/rsa/. Accessed 4/2011.
D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2006.

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A model transformation
tool. Sci. Comput. Program., 72(1-2):31-39, 2008.

S. Kent. Constraint diagrams: Visualizing assertions in object-oriented models. In
OOPSLA, pages 327-341, 1997.

H. Krahn, B. Rumpe, and S. Vdélkel. MontiCore: a framework for compositional
development of domain specific languages. International Journal on Software Tools
for Technology Transfer (STTT), 12(5):353-372, 2010.

E. Kuss. Using Alloy Analyzer for automated consistency checks between UML /P
class and object diagrams. Master’s thesis, Software Engineering, RWTH Aachen,
Germany, 2010. In German.

S. Maoz, J. O. Ringert, and B. Rumpe. CDDiff: Semantic differencing for class di-
agrams. In Proc. 25th Euro. Conf. on Object Oriented Programming (ECOOP’11),
2011. To appear.

A. Maraee and M. Balaban. Efficient reasoning about finite satisfiability of UML
class diagrams with constrained generalization sets. In D. H. Akehurst, R. Vo-
gel, and R. F. Paige, editors, ECMDA-FA, volume 4530 of LNCS, pages 17-31.
Springer, 2007.

MOD project materials. http://www.se-rwth.de/materials/mod/.

MontiCore project. http://www.monticore.org/.

O. Nierstrasz. Ten things I hate about object-oriented programming. Journal of
Object Technology, 9(5), Sept. 2010. (editorial [Banquet speech given at ECOOP
2010. Maribor, June 24, 2010]).

OMG (Object Management Group). Object Constraint Language (OCL).
http://www.omg.org/spec/OCL/2.2/. Accessed 4/2011.

Poseidon for UML. http://www.gentleware.com/. Accessed 4/2011.

B. Rumpe. Modellierung mit UML. Springer, 2004.

SAT4J project. http://www.satdj.org/. Accessed 4/2011.

S. Sen, B. Baudry, and H. Vangheluwe. Towards domain-specific model editors
with automatic model completion. Simulation, 86(2):109-126, 2010.

S. M. A. Shah, K. Anastasakis, and B. Bordbar. From UML to Alloy and back
again. In S. Ghosh, editor, MoDELS Workshops, volume 6002 of LNCS, pages
158-171. Springer, 2009.

M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler. Verifying
UML/OCL models using Boolean satisfiability. In DATE, pages 1341-1344. IEEE,
2010.

Sparx Systems Enterprise Architect. http://www.sparxsystems.com/. Accessed
4/2011.

R. V. D. Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using description
logic to maintain consistency between UML models. In P. Stevens, J. Whittle, and
G. Booch, editors, Proc. 6th Int. Conf. on The Unified Modeling Language, volume
2863 of LNCS, pages 326—340. Springer, 2003.

S. Uchitel, J. Kramer, and J. Magee. Negative scenarios for implied scenario elici-
tation. In SIGSOFT FSE, pages 109-118. ACM, 2002.

