
ADDiff: Semantic Differencing for Activity Diagrams ∗

Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe
Software Engineering

RWTH Aachen University, Germany
http://www.se-rwth.de/

ABSTRACT
Activity diagrams (ADs) have recently become widely used
in the modeling of workflows, business processes, and web-
services, where they serve various purposes, from documen-
tation, requirement definitions, and test case specifications,
to simulation and code generation. As models, programs,
and systems evolve over time, understanding changes and
their impact is an important challenge, which has attracted
much research efforts in recent years.

In this paper we present addiff , a semantic differencing
operator for ADs. Unlike most existing approaches to model
comparison, which compare the concrete or the abstract syn-
tax of two given diagrams and output a list of syntactical
changes or edit operations, addiff considers the semantics
of the diagrams at hand and outputs a set of diff witnesses,
each of which is an execution trace that is possible in the
first AD and is not possible in the second. We motivate the
use of addiff , formally define it, and show two algorithms
to compute it, a concrete forward-search algorithm and a
symbolic fixpoint algorithm, implemented using BDDs and
integrated into the Eclipse IDE. Empirical results and ex-
amples demonstrate the feasibility and unique contribution
of addiff to the state-of-the-art in version comparison and
evolution analysis.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.4 [Software Engineering]: Software/Program
Verification

General Terms
Documentation, Verification

∗S. Maoz acknowledges support from a postdoctoral Min-
erva Fellowship, funded by the German Federal Ministry for
Education and Research. J.O. Ringert is supported by the
DFG GK/1298 AlgoSyn.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

Keywords
software evolution, activity diagrams, differencing

1. INTRODUCTION
Activity diagrams (ADs) have recently become widely used

in the modeling of workflows, business processes, and web-
services, where they serve various purposes, from documen-
tation, requirement definitions, and test case specifications,
to simulation and code generation. Specifically, we are in-
terested in a variant of the standard UML 2 ADs, which is
rich and expressive, supporting guarded branches, parallel
(interleaving) process executions, inputs, assignments, etc.

As models, programs, and systems evolve over time, dur-
ing the development lifecycle and beyond it, effective change
management and controlled evolution are major challenges
in software development, and thus have attracted much re-
search efforts in recent years (see, e.g., [1, 2, 6, 11, 14, 21,
23, 32]). Fundamental building blocks for tracking the evo-
lution of software artifacts are diff operators one can use to
compare two versions of a program or a model. Most ex-
isting approaches to differencing concentrate on matching
between model elements using different heuristics related to
their names and structure and on finding and presenting
differences at a concrete or abstract syntactic level. While
showing some success, most of these approaches are also
limited. Models that are syntactically very similar may in-
duce very different semantics (in the sense of ‘meaning’ [10]),
and vice versa, models that semantically describe the same
system may have rather different syntactic representations.
Thus, a list of syntactic differences, although accurate, cor-
rect, and complete, may not be able to reveal the real im-
plications these differences may have on the correctness and
potential use of the models involved. In other words, such
a list, although easy to follow, understand, and manipulate
(e.g., for merging), may not be able to expose and represent
the semantic differences between two versions of a model, in
terms of the bugs that were fixed or the features (and new
bugs. . .) that were added.

In this paper we present addiff , a semantic diff operator
for ADs. Unlike existing differencing approaches, addiff is a
semantic diff operator. Rather than comparing the concrete
or the abstract syntax of two given diagrams, and outputing
a list of syntactical changes or edit operations, addiff con-
siders the semantics of the diagrams at hand and outputs
a set of diff witnesses, each of which is an execution trace
that is possible in the first AD and is not possible in the sec-
ond. These traces provide concrete proofs for the meaning

[MRR11d] S. Maoz, J. O. Ringert, B. Rumpe
ADDiff: Semantic Differencing for Activity Diagrams
In: Proc. Euro. Soft. Eng. Conf. and SIGSOFT Symp. on the Foundations of Soft. Eng. (ESEC/FSE'11), pp. 179-189, ACM, 2011.
se-rwth.de/publications

of the change that has been done between the two compared
versions and for its effect on the use of the models at hand.

We specify ADs using a variant of standard UML 2 ADs [24],
which can also be given textually using a grammar defined
in MontiCore [13, 22]. The syntax of an AD consists of ac-
tion nodes, pseudo nodes (initial, final, decision, merge, fork,
join), transitions, input variables, and local variables. Tran-
sitions outgoing decision nodes are guarded with Boolean
expressions over the input and local variables. Input vari-
ables values are set by the environment. Action nodes are
labeled with action names and may include assignments to
local variables.

We define the operational semantics of an AD using a
translation to a finite automaton with variables over finite
domains. This induces a trace-based semantics, i.e., a set
of action traces from an initial node to a final node, consid-
ering also the values of input variables. Branches outgoing
fork nodes describe parallel executions; they are used to suc-
cinctly specify concurrent interleaving traces. An overview
of the syntax and semantics of our ADs is given in Sect. 3.

Given two ADs, ad1 and ad2, addiff (ad1, ad2) is roughly
defined as the set of execution traces possible in the first AD
and not possible in the second. As there may be exponen-
tially many diff traces, we are specifically interested in the
shortest ones, i.e., ones that do not have a prefix which is
a differentiating trace. In addition, we restrict the operator
to provide only a single shortest diff trace for each possi-
ble assignment to input variables. To compute addiff we
transform each of the ADs into a module in SMV, the input
language of the SMV model checker [29]. We then present
two algorithms: a concrete forward-search algorithm and a
symbolic fixpoint algorithm. The second algorithm relies on
the technologies of symbolic model checking [3] in order to
address the state explosion problem of the first. We present
them both in order to allow their comparison. The formal
definition of addiff and the two algorithms are described in
Sect. 4.

We have implemented the two algorithms for addiff using
binary decision diagrams (BDDs), and integrated them into
an Eclipse plug-in. The plug-in allows the engineer to com-
pare two selected ADs, to check if they are equivalent, and
to textually and visually browse the diff witnesses found, if
any. We describe the plug-in implementation in Sect. 5. We
have evaluated the plug-in against all examples shown in this
paper and many other ADs. The results of our evaluation,
including a performance comparison of the two algorithms,
appear in Sect. 6.

In addition to finding concrete diff witnesses (if any ex-
ist), which demonstrate the meaning of the changes that
were made between one version and another, addiff can be
used to compare two ADs and decide whether one AD se-
mantics includes the other AD semantics (the latter is a
refinement of the former), are they semantically equivalent,
or are they semantically incomparable (each allows execu-
tions that the other does not allow). When applied to the
version history of a certain AD, as can be retrieved from
a version repository, such an analysis provides a semantic
insight into its evolution, which is not available in existing
syntactic approaches.

Model and program differencing, in the context of soft-
ware evolution, has attracted much research efforts in recent
years. In contrast to our work, however, most studies in this

internal

hire.v1register

assign to
project

add to
website

manager interview

!internal

assign to
project

get welcome pack

authorize payment

manager report

internal

hire.v2register

assign to
project

add to
website

manager interview

!internal

assign to
project

get welcome pack

authorize payment

manager report

assign
keys

Figure 1: Versions 1 and 2 of the hire activity

area present syntactic differencing, at either the concrete or
the abstract syntax level. We discuss related work in Sect. 7.

Finally, our work on semantic differencing does not come
to replace existing syntactic differencing approaches. Rather,
it is aimed at augmenting and complementing existing ap-
proaches with capabilities that were not available before.
We discuss the combination of syntactic and semantic dif-
ferencing as well as other future work directions in Sect. 6.

The next section presents motivating examples demon-
strating the unique features of our work. Sect. 3 provides
preliminary definitions of the AD language syntax and se-
mantics as used in our work. Sect. 4 introduces addiff and
the two algorithms to compute it. Sect. 5 presents the imple-
mentation, Sect. 6 presents an evaluation and a discussion,
Sect. 7 considers related work, and Sect. 8 concludes.

2. EXAMPLES
We start off with motivating examples for semantic dif-

ferencing of ADs. The examples are inspired by real-world
ADs we have obtained from several sources (see Sect. 6).

2.1 Example I
AD hire.v1 of Fig. 1 describes a company’s workflow when

hiring a new employee. Roughly, first the employee is reg-
istered. Then, if she is an internal employee, she gets a
welcome package, she is assigned to a project and added to
the company’s computer system (in two parallel activities
branching off a fork node), she is interviewed and gets a
manager report, and finally her payments are authorized.
Otherwise (note the decision node at the beginning of the
AD), if the new employee is external, she is only assigned to
a project before her payments are authorized.

After some time, the company deployed a new security
system and every employee had to receive a key card. A
revised workflow was created, as shown in hire.v2 of Fig. 1.

Later, a problem was found: sometimes employees are
assigned to a project but cannot enter the building since they
do not have a key card yet. This bug was fixed in the next
version, hire.v3, shown in Fig. 2. Finally, the company has
decided that external employees should report to managers
too. Thus, the merge between the two branches for internal
and external new employees has moved ‘up’, in between the

internal

hire.v3register

assign to
project

add to
website

manager interview

!internal

assign to
project

get welcome pack

authorize payment

manager report

assign
keys

internal

hire.v4register

assign to
project

add to
website

manager interview

!internal

assign to
project

get welcome pack

authorize payment

manager report

assign
keys

Figure 2: Versions 3 and 4 of the hire activity

interview and the report nodes. The resulting 4th version
of the workflow, hire.v4, is shown in Fig. 2

Given these four versions of the activity, an evolution
analysis is called for. Comparing hire.v1 and hire.v2 us-
ing addiff reveals that they are semantically incomparable:
some executions of hire.v1 are no longer possible in hire.v2,
and some executions of hire.v2 were not possible in hire.v1.
Moreover, it reveals that handling of internal employees has
changed, but handling of external ones remained the same
between the two versions.

Comparing hire.v2 and hire.v3 reveals that the latter
is a refinement of the former: hire.v3 has removed some
traces of hire.v2 and did not allow new traces. In partic-
ular, addiff (hire.v2, hire.v3) shows that the trace where a
person is assigned to a project before she gets a key card
was possible in hire.v2 and is no longer possible in hire.v3,
i.e., it demonstrates that the bug was fixed.

Finally, comparing hire.v3 and hire.v4 using addiff re-
veals that although hiring of external employees has changed
between the two versions, hiring of internal employees did
not: addiff (hire.v3, hire.v4) contains a single trace, where
the employee is external, not internal. That is despite the
syntactic change of moving the merge node from after to
before the report node, which is also part of the trace of
handling internal employees.

2.2 Example II
AD proj.v1 of Fig. 3 describes a company’s workflow when

receiving a new project. Roughly, first the project is regis-
tered. Then, the required work is defined, the office work is
done, the clients work is done, and a report is written. If
the project is of type small, the activity continues to final
report and is completed. If the project is of type large, a
second phase of the required work is defined, the office work
is done, the clients work is done, and a report is written,
before continuing to the final report and completion.

After some time, the activity designer suggested a refac-
toring: instead of the explicit duplication of the four work
actions in the diagram, a loop will be defined. The designer
added a local variable c, which is initialized when the project
is registered and is incremented when writing the report.

proj.v1

register
project

define
work

office
work

clients
work

final
report

office
work

clients
work

proj.v2

register
project

define
work

office
work

clients
work

final
report

proj.v3

define
work

office
work

clients
work

final
report

define
work

report report
report report

C=0

c=c+1

 c<2 &
type=large

c=2|type=small

register
project
C=0

c=c+1

c=2|type=small

type=large

type=small

 c<2 &
type=large

Figure 3: Versions 1-3 of the new project activity

The guards of the decision node were changed accordingly.
The resulting AD is proj.v2, shown in the same figure.

Before committing the new activity to the models reposi-
tory, the designer used addiff to compare proj.v1 and proj.v2.
Indeed, she found that addiff (proj.v1, proj.v2) =
addiff (proj.v2, proj.v1) = ∅. This proves that the refactor-
ing did not change the semantics of the activity and the new
version can be safely committed to the repository.

Finally, a consultant has examined the new project activ-
ity and suggested that in some cases, clients work can be
done before the office work. Following this recommenda-
tion, the designer added fork and join nodes to the activity,
to define the office work action and the clients work action
on separate branches of a fork. The resulting AD is proj.v3,
shown in the same figure.

Comparing proj.v2 and proj.v3 using addiff revealed that
the new version has introduced several new traces that were
not possible before: traces where clients work is done be-
fore office work (in the first or in the second iteration of
the loop). Thus, the comparison demonstrated that the re-
quired enhancement was added. Moreover, the comparison
showed that all traces of proj.v2 are still possible in proj.v3
(because addiff (proj.v2, proj.v3) = ∅). Thus, it proved that
no behavior was lost.

The above examples are simple and thus immediately re-
veal the differences when looking at them. We use them in
order to demonstrate our ideas. However, we have also done
experiments with larger, synthetic and real-world AD’s, where
differences were manually much harder to find. See Sect. 6.

3. PRELIMINARIES
We define the AD language syntax and semantics as used

in our work.

3.1 AD Language Syntax
An Activity Diagram is a structure

AD = 〈A, V inp, V loc, AN, PN, T 〉 where:

• A is a set of action names.

• V inp is a (possibly empty) set of immutable input vari-
ables over finite domains.

• V loc is a (possibly empty) set of local variables over
finite domains.

• AN is a set of action nodes an1, . . . , ank. Each action
node an is labeled with an action name acname(an) =
ac ∈ A, and a (possibly empty) set of assignment ex-
pressions to the variables in V loc.

• PN is a set of pseudo nodes, consisting of initial nodes
PN init, final nodes PNfin, decision nodes PMdec,
merge nodes PNmer, fork nodes PNfork, and join
nodes PN join.

• T is a set of transitions of the form t = 〈nsrc, ntrg, guard〉
where nsrc, ntrg ∈ (AN ∪PN) and guard is a Boolean
expression over the variables in V inp ∪ V loc. Unless
nsrc is a decision node, guard = true.

We do not formally capture here obvious well-formedness
rules and context conditions such as: initial nodes have no
incoming transitions, final nodes have no outgoing transi-
tions, fork nodes must be followed by join nodes to remove
all concurrency when reaching a final node, actions should
not repeat in different forked branches, etc.

In addition, we assume that the Boolean expressions used
as guards on transitions outgoing decision nodes are seman-
tically exclusive, that is, no assignment to the diagram vari-
ables makes more than one of them true. Thus, the input
variables provide external non-determinism, while except for
forked branches, our ADs are internally deterministic.

We consider two concrete syntax definitions for ADs: a
concrete visual syntax based on UML 2 ADs and a concrete
textual syntax defined using MontiCore [13, 22]. We omit
the concrete syntax definitions from this paper.

The implementation we present in Sect. 5 supports a sub-
set of full UML 2 ADs: it supports action nodes and pseudo
nodes: initial, final, fork, join, decision and merge; each
AD has exactly one initial node but may have multiple final
nodes. For simplicity reasons but without loss of generality,
in our implementation no two pseudo nodes can follow each
other directly. In addition, local and input variables have
to be declared as such in the first action node; all variables’
finite domains need to be given as SMV types or enumera-
tions; and each local variable needs to be assigned a value
in the first action node. We support Boolean guards speci-
fied in the rich SMV expression language [4]. Assignments
to local variables can be made from any action node using
values from SMV expressions.

3.2 AD Language Semantics
We distinguish operational semantics and trace-based se-

mantics. The operational semantics is based on the defini-
tion of a state machine step, taking the AD from one state
to another, where a state consists of a set of current action
nodes and an assignment to all input and local variables.

The main idea of our operational semantics is to concep-
tually translate each ad ∈ AD into a finite state machine
(FSM). Each state is a configuration containing the values
of all local variables and input variables (recall that vari-
ables range over finite domains), the executed action, and
some extra variables with information on the control flow of
the AD. Based on this state and evaluated guards possible
transitions are computed that lead to the next state with an

executed action, possibly changed local variables values, and
a new configuration of the control flow tracking variables.

We formally define the operational semantics using a trans-
formation of an AD to a module of SMV, the language of the
SMV model checker [20, 29]. Our translation is inspired by
the work of [7], but extends this previous translation with
support for data. The complete translation, together with a
detailed example, appears in a separate document [17].

Local variables assist the AD engineer together with guards
to control the execution sequences of actions, e.g., by defin-
ing loops or activating/disabling branches of decision nodes.
Input variables, in contrast to local variables, are initialized
by the environment and do not change during the run of
an AD. The runs of two ADs are compared with the same
input, i.e., where common input variables of both ADs have
the same values. We consider all possible input values of
both ADs when comparing them.

Our semantics of ADs is rather expressive: it considers
values of input variables to be set by the environment (ex-
ternal non-determinism). However, we only support inter-
nal non-determinism through interleaved execution of forked
branches, and not through non-deterministic decision nodes;
the current configuration and the next executed action de-
termine the next configuration. Thus, for each assignment
to the input variables there could be many possible execu-
tions due to the interleaving semantics of fork nodes.

We define a trace-based semantics that is induced by the
operational semantics. Traces are sequences of states from
the state space of the AD’s FSM.

Definition 1 (AD state). A state of an AD ad is an
assignment to all variables defined in the VAR section of its
SMV module. This includes the last executed node acnode

and its action name ac, the values of variables v ∈ ad.V inp∪
ad.V loc and the values of control flow tracking variables.

AD states have a finite number of possible successor states
that can be reached within one step. By construction, each
such step executes an action or reaches a final node. We
define the successors of an AD state s as successors(s).

Definition 2 (Successor states). For every AD state
s, successors(s) is the set of AD states reachable from s in
one step of the SMV module.

Each run of an AD starts with an initial state in the initial
node. A sequence of successor states that describe a legal
execution of the AD’s FSM is a trace. A trace from the
initial to a final node of the AD is an accepting trace.

Definition 3 (AD traces). A sequence of AD states
tr = s0, s1, . . . , sk of AD ad with si+1 ∈ successors(si) and
s0.acnode ∈ ad.PN init is called a trace. The set of all traces
of an AD ad is denoted by traces(ad). A trace is called an
accepted trace if its last state’s node is a final node of the
AD. The set of all accepted traces of an AD ad is denoted
by acceptedTraces(ad).

4. ADDIFF

4.1 Definitions
Given two AD states, s1 ∈ ad1 and s2 ∈ ad2, we say that

s1 and s2 are corresponding, iff the action names and values
of equally named input variables of the two states are the
same. Formally:

Definition 4 (corresponding states). Given two ADs,
ad1 and ad2, and two states s1 ∈ ad1 and s2 ∈ ad2, we say
that s1 and s2 are corresponding, denoted s1 ∼ s2, iff the
following conditions hold:

1. s1.ac = s2.ac;

2. ∀v ∈ V inp
1 ∩ V inp

2 , s1.val(v) = s2.val(v).

The definition of corresponding states punctually extends to
traces in a natural way.

Given two ADs, a trace of the first AD is a diff trace
iff there exists a trace of the second AD where all states
except the last correspond to the states of the first trace,
but the last state of the first trace does not correspond to
any possible successor state of the second trace. Formally:

Definition 5 (diff trace). Given two ADs, ad1 and
ad2, a diff trace is a sequence of states tr1 = s01, s

1
1, . . . , s

k
1 , s

k+1
1

s.t.

1. tr1 ∈ traces(ad1)

2. ∃tr2 = s02, s
1
2, . . . , s

k
2 s.t. tr2 ∈ traces(ad2)

∧∀i, 0 ≤ i ≤ k, si1 ∼ si2
∧@sk+1

2 s.t. sk+1
2 ∼ sk+1

1 ∧s02, s12, . . . , sk2 , sk+1
2 ∈ traces(ad2).

tr2 is called a corresponding diff trace of tr1.

We denote the set of all diff traces of ad1 vs. ad2 by
diffTraces(ad1, ad2). Note that diffTraces is not symmetric.

We are now ready to present the definition of addiff . Note
that we are interested only in shortest diff traces: we restrict
addiff to diff traces that do not have another diff trace as
prefix. Moreover, to make the set addiff succinct, for each
initial state of ad1, if there is a diff trace that starts at this
initial state, we want only one such trace to be in addiff .
Formally:

Definition 6 (addiff). addiff(ad1, ad2) is a subset
of diffTraces(ad1, ad2) s.t.

1. ∀tr ∈ addiff(ad1, ad2), @tr′ s.t. tr′ ∈ addiff(ad1, ad2) ∧
tr′ < tr;

2. ∀s01 ∈ ad1.initials,
if ∃tr ∈ diffTraces(ad1, ad2) s.t. tr starts at s01
then |{tr ∈ addiff(ad1, ad2)|tr starts at s01}| = 1.

Finally, note that we do not require that diff traces can be
extended into accepting traces (ones that end at a final node,
see Def. 3). For an alternative definition, see the discussion
in Sect. 6.

4.2 Computing ADDiff
We present two different algorithms, a concrete forward-

search algorithm and a symbolic fixpoint algorithm.

4.2.1 Algorithm I
We compute addiff (ad1, ad2) using a BFS-like traversal

of the state space of ad1 that is used to ‘guide’ a BFS-like
traversal of the state space of ad2. Roughly, the algorithm
uses a queue for corresponding states-pairs that have been
reached but whose successors have not yet been traversed
(the use of the queue guarantees that shortest paths will be
found first). It also maintains a list of visited corresponding
state-pairs and a list of rejecting state-pairs. Initially, all
corresponding initial states-pairs are inserted in the queue,
and all initial states of ad1 that do not have a corresponding

initial state in ad2 are added to the list of rejecting state-
pairs. Then, for each state-pair taken out from the queue,
the algorithm checks that each successor state of the first ele-
ment in the state-pair (the state in ad1), has a corresponding
successor state of the second element in the state-pair (the
state in ad2). Every corresponding pair found, if not visited
before, is inserted to the queue. If no corresponding suc-
cessor is found, we know we have found the end state of a
(shortest) diff trace: we add it to the list of rejecting state-
pairs and we remove from the queue all the state-pairs whose
input variables values for ad1 are the same as the ones for
the state we have found. When the queue is empty, the list
of visited state-pairs is used to construct the traces leading
back from the rejecting state-pairs to the initial states.

A pseudo-code for the algorithm is given in Proc. 1, which
uses Proc. 2 and 3. We describe these procedures below.

The algorithm uses a structure Pair made of two pairs
of states: predecessor and current state in ad1, pre1 and
cur1, and predecessor and current state in ad2, pre2 and
cur2. Two pairs are considered equal if their current states
are equal (ignoring predecessor states). Pair is used to keep
track of pairs of visited states, one state from each AD, and
of their predecessors, as found during the traversal of the
state space. The predecessors are used in the reconstruction
of the traces from the lists of rejecting and visited pairs.

Proc. 1 defines the required structures (l. 1-3): a queue
of pairs, a list of visited pairs, a list of rejecting pairs, and a
list of list of pairs, which will hold the computed diff traces.
It iterates over all initial states of ad1, and for each of them,
looks for a corresponding initial state in ad2. If a correspond-
ing state is found, the new pair is inserted to the queue and
to the visited list (l. 8). If no corresponding state is found,
a pair where only the ad1 current state is defined is added
to the list of rejecting state pairs (l. 13).

After initialization, the algorithm calls traverse (Proc. 2),
to iterate on the queue until it is empty. For each dequeued
pair, the procedure iterates over all the successors of its cur-
rent ad1 state. For each successor, it tries to find a corre-
sponding successor of the current ad2 state. If a correspond-
ing state is found, the new pair is inserted to the queue and
to the visited list (l. 9). If no corresponding state is found,
a pair where only the ad1 current state is defined is added to
the list of rejecting states (l. 15). In addition, all state-pairs
whose current ad1 state agrees with the current ad1 state in
the rejecting pair on input variables, are removed from the
queue (l. 16-17). This ensures that no further searching of
diff traces outgoing the same initial state will be done.

Finally, trace (Proc. 3) is used to reconstruct the traces
leading from initial states to the rejecting states that have
been found. The procedure works backward: it starts from
the rejecting pairs and uses the predecessor states to build
the required traces, from the rejecting states back to the
initial states, using the pairs saved in the visited list. It
continues as long as their predecessor states are defined, i.e.,
as long as it has not reached an initial state.

4.2.2 Algorithm II
We compute addiff (ad1, ad2) using a symbolic least-fixpoint

algorithm. The algorithm relies on the technologies of sym-
bolic model checking [3], and is inspired by the classic fix-
point algorithm to compute a maximal simulation relation,
and, more specifically, by the synthesis algorithm of [26],

Procedure 1 concrete-addiff(ad1,ad2)

1: define queuePairs as queue of Pair
2: define visited, rejects as list of Pair
3: define traces as list of lists of Pair
4: for all ini1 ∈ ad1.initials do
5: foundCorresponding ← false
6: for all ini2 ∈ ad2.initials do
7: if corresponding(ini1, ini2) then
8: add Pair(−, ini1,−, ini2) to queuePairs, visited
9: foundCorresponding ← true

10: end if
11: end for
12: if not foundCorresponding then
13: add Pair(−, ini1,−,−) to rejects
14: end if
15: end for
16: visited, rejects ← traverse(ad1,ad2)
17: traces ← trace(visited,rejects)
18: return traces

Procedure 2 traverse(ad1,ad2)

1: while queuePairs is not empty do
2: p← pair from queuePairs
3: for all suc1 ∈ p.cur1.successors do
4: foundCorresponding ← false
5: for all suc2 ∈ p.cur2.successors do
6: if corresponding(suc1, suc2) then
7: newPair ← Pair(p.cur1, suc1, p.cur2, suc2)
8: if newPair /∈ visited then
9: add newPair to queuePairs, visited

10: end if
11: foundCorresponding ← true, break
12: end if
13: end for
14: if not foundCorresponding then
15: add Pair(p.cur1, suc1, p.cur2,−) to rejects
16: remove all pair from queuePairs
17: where p.cur1.inputs = pair.cur1.inputs
18: end if
19: end for
20: end while
21: return visited, rejects

where intermediate values from the fixpoint computation are
used in the construction of a concrete winning strategy.

Roughly, our symbolic algorithm starts with a represen-
tation of all non-corresponding states. It then moves ‘back-
ward’, and adds to the current set of states, states from
which there exists a successor in ad1 such that for all suc-
cessors in ad2, the resulting successor pair is in the current
set of states. Most importantly, to help in the construction
of diff traces later, at each step backward, the algorithm re-
members the newly computed set of added states. The steps
‘backward’ continue until reaching a least fixpoint, that is,
until no more states are added.

When the fixpoint is reached, the algorithm checks whether
the last computed set (the fixpoint set) includes initial states.
For each such initial state, if any, the algorithm uses the
sets of states computed during the backward steps to move
forward (from the minimal position it can start from) and
construct shortest diff traces.

We present our algorithm in general set notation, with the
set-operations of union, intersection, and complementation.
In the pseudo code below, sets with no subscript are sets
of states over the union of all variables from ad1 and ad2.
For i ∈ {1, 2}, sets with subscript i are sets of states over

Procedure 3 trace(visited,rejects)

1: for all rejectingPair ∈ rejects do
2: define tr as list of Pair
3: curPair ← rejectingPair
4: while curPair is not null do
5: add curPair to tr
6: if curPair.pred1 is not null then
7: curPair ←

getV isited(curPair.pred1, curPair.pred2, visited)
8: else
9: break

10: end if
11: end while
12: add tr to traces
13: end for
14: return traces

Procedure 4 symbolic-addiff(ad1,ad2)

1: define traces as list of lists of Set
2: define mem as array of Set
3: mem ← least-fixpoint-with-mem(ad1,ad2)
4: if mem.last ∩ initials 6= ∅ then
5: traces ← build-traces-from-mem(ad1,ad2,mem)
6: end if
7: return traces

the variables of adi. The operator S|adi is used to restrict
the variables of the set S to the variables of adi (all other
variables are existentially quantified out). The operation
choose one relates to choosing a single element from the
relevant set (a single concrete assignment to the variables).
The sets corr and initials are the set of corresponding states
and the set of joint initial states, respectively. When inter-
secting a set Si over the variables of adi with a set S over
the union of all variables from both ADs, the result is a set
over the union of variables where the variables of adi agree
with their possible assignments in the set Si.

In the implementation, the sets are represented using BDDs.
A pseudo-code for the algorithm is given in Proc. 4, which
uses Proc. 5 and 6.

Note that in the final iteration of the loop in Proc. 6,
reached with i = 1, the assignment to next2 is guaranteed
to set next2 ← ∅, because the first location in the memory
array equals corr. This guarantees that the last state in each
diff trace assigns no values to the variables of ad2: indeed,
the last ad1 state in the trace should have no corresponding
ad2 state in the trace.

If the user is interested only in checking the existence of
differences but not in the set of all witnesses, we can stop
the steps backward as soon as the set of added states in-
cludes an initial state (by checking whether p∩ initials = ∅
already after line 9 in Proc. 5). In some cases, as our eval-
uation shows (see Sect. 6), this is indeed much faster than
waiting for the fixpoint to be reached and for all traces to be
enumerated. Note that trace enumeration is not symbolic
and thus may not scale well.

Finally, for both algorithms, the concrete and the sym-
bolic, correctness and completeness are proved by induction
on the length of the traces and rely on the fact that the ADs
are internally deterministic.

5. IMPLEMENTATION AND USES
We have implemented addiff and integrated it into a pro-

totype Eclipse plug-in. The input for the implementation are

Procedure 5 least-fixpoint-with-mem(ad1,ad2)

1: define mem as array of Set
2: define p, z, oldz as Set
3: define i as number
4: z ← corr, oldz ← ∅
5: i← 0
6: mem[i]← z
7: while z 6= oldz do
8: oldz ← z
9: p← { (s1, s2) | s1 ∈ ad1∧s2 ∈ ad2∧∃suc1 ∈ s1.successors

s.t. ∀suc2 ∈ s2.successors (suc1, suc2) ∈ z}
10: z ← z ∪ p
11: i← i + 1
12: mem[i]← z
13: end while
14: return mem

Procedure 6 build-traces-from-mem(ad1,ad2,mem)

1: for all ini1 ∈ (mem.last ∩ initials)|ad1 do
2: define tr as list of Set
3: find minimal j s.t. ini1 ∩mem[j] 6= ∅
4: ini2 ← choose one from (ini1 ∩ initials)|ad2
5: CS ← CombinedState(ini1, ini2)
6: add CS to tr
7: for i = j down to 1 do
8: next1 ← choose one from

(CS|ad1 .successors ∩mem[i− 1]|ad1)
9: next2 ← choose one from

(next1∩corr∩mem[i−1])|ad2 ∩(CS|ad2 .successors)
10: CS ← CombinedState(next1, next2)
11: add CS to tr
12: end for
13: add tr to traces
14: end for
15: return traces

UML 2 ADs, drawn and parsed using Eclipse UML 2 APIs.
The plug-in transforms the input ADs into SMV format. It
then computes addiff via the APIs of JTLV [27], a frame-
work for the development of verification algorithms, using
bdd-based symbolic mechanisms. The underlying BDD pack-
age used is CUDD [30]. Both algorithms are implemented
and the engineer can choose which one to use. The plug-in,
together with all the example ADs we used in the evaluation,
is available from [28].

5.1 Browsing diff traces
The plug-in allows the engineer to compare two selected

ADs, and to textually and visually browse the diff traces
found, if any. Fig. 4 shows an example screenshot, where the
engineer has selected to compare diagrams hire.v2 (top) and
hire.v4 (middle) (presented in Sect. 2), and is browsing one
of the two diff traces that were found. Note the numbered
and highlighted action nodes, which visually show the states
along one of the diff traces that the plug-in has found: the
trace register, get welcome pack, assign to project is
possible in hire.v2 and is not possible in hire.v4.

A textual representation of the diff trace is displayed on
the lower pane. This representation of a trace is a special
case of a model-based trace (see [15, 16]). It shows the details
of each state in the current diff trace in both ADs, consisting
of the action name and all variable values. This textual
representation is important because it is more detailed and
because it scales better than the visual representation when
handling long traces.

Clicking Check Difference checks whether the seman-
tics of the second AD includes the semantics of the first.
Clicking Compute Witnesses computes the diff traces and
shows a message telling the engineer how many traces were
found, if any. The Next and Previous buttons browse for
the next and previous diff traces. The Switch Direction

button switches the order of comparison. The Concrete and
Symbolic buttons toggle between the two addiff algorithms.

5.2 High-level evolution analysis
Another application enabled by the plug-in is high-level

evolution analysis. The plug-in supports a compare com-
mand: given two ADs, ad1 and ad2, the command checks
whether one AD is a refinement of the other, are the two
ADs semantically equivalent, or are they semantically in-
comparable (each allows traces the other does not allow).
Formally, compare(ad1, ad2) returns one of four answers:

< if addiff (ad1, ad2) = ∅ and addiff (ad2, ad1) 6= ∅
> if addiff (ad1, ad2) 6= ∅ and addiff (ad2, ad1) = ∅
≡ if addiff (ad1, ad2) = ∅ and addiff (ad2, ad1) = ∅
<> if addiff (ad1, ad2) 6= ∅ and addiff (ad2, ad1) 6= ∅

Given a reference to a series of historical versions of an
AD, as can be retrieved from the AD’s entry in a revision
repository (e.g., SVN), the plug-in can use the compare com-
mand to compute a high-level analysis of the evolution of
the AD: which new versions have introduced new behaviors
relative to their predecessors, which new versions have elim-
inated behaviors relative to their predecessors, and which
new versions included only syntactical changes that have not
changed the semantics of the AD. For example, applying this
evolution analysis to the ADs presented in Sect. 2 reveals:
hire.v1 <> hire.v2, hire.v2 > hire.v3, hire.v3 <> hire.v4,
proj.v1 ≡ proj.v2 and proj.v2 < proj.v3.

6. EVALUATION AND DISCUSSION

6.1 Evaluation
We have tested our implementations of addiff against

synthetic ADs and against real-world ADs, selected and
adapted from several sources: (1) selected ADs from a li-
brary of more than 700 business process models by IBM [8]
(our selection is representative of the size and complexity
statistics of the models in this library, as described in [8]),
(2) several models (with version history) we have obtained
from Nokia Corp., Test Management, and (3) from a third
company (which requested to remain unnamed). The IBM
models did not include version history information so we
have manually added some mutations (e.g., action additions
and removals, change of branching conditions). The models
from Nokia and the third company included version history.
All the models we have used are available in a dedicated
evaluation project that is attached to the plug-in so that all
experiments we report on below can be reproduced. The
experiments were performed on a regular laptop computer,
Intel Dual Core CPU, 2.8 GHz, with 4 GB RAM, running
Windows Vista. Running times are reported in milliseconds.

6.1.1 Quantitative evaluation
Table 1 (upper part) shows results from executing addiff

over the examples presented in Sect. 2 and selected real-
world ADs from the sources mentioned above. For each
two versions we report the number of nodes, the size of the

Figure 4: The prototype plug-in, comparing two ADs, hire.v2 and hire.v4. The highlighted and numbered
nodes show one of the two diff traces found by addiff : for an internal employee, the trace register, get

welcome pack, and assign to project is possible in hire.v2 and is not possible in hire.v4. A detailed textual
representation of this diff trace is provided in the lower pane.

(reachable) state space, the number of diff traces found, the
length of the shortest and longest diff traces found, and the
times it took the concrete and the symbolic algorithms to
(1) decide the existence of at least one diff trace and (2) to
compute all diff traces.

To examine scalability, we used synthetic ADs of compa-
rable or much larger size (in both number of action nodes
and state space), divided into two families of ‘worst case’
ADs: a family of ‘forking ADs’ with concurrent section of
length L and growing width W , and a family of ‘linear ADs’
with two linear fragments of length L seperated by a single
decision over a domain of increasing size D. The lower part
of Table 1 shows results from executing addiff on these ADs,
with versions created using synthetic mutations: replacing,
deleting, or moving of actions.

These results suggest the following observations. First,
on small ADs, the two algorithms show similar performance
results. However, as the ADs grow, the symbolic algorithm
performs much better than the concrete one. On the largest
ADs, the concrete algorithm performance is not practical
while the symbolic algorithm stays within less than 4 seconds
(on all real-world ADs). We believe this means addiff can
be used by engineers in practice.

Second, checking for the existence of a difference is some-
times much faster than listing all diff traces, specifically
when there are many diff traces or when the shortest one
is much shorter than the longest one. Again, as the ADs
grow, the symbolic algorithm outperforms the concrete one.

That said, we do have synthetic ‘worst case’ examples
where the symbolic algorithm is not better than the concrete
one. This happens, e.g., in the extreme case of a long linear
AD with no branches or forks. It also happens when the
number of diff traces is large and enumerating them takes

much time. Moreover, the specific change done between the
two ADs may have significant effect on both algorithms’
performance: two very syntactically similar mutations (e.g.,
a rename in one branch or in another), may induce dramatic
changes in the number of diff traces. Complete results of and
models used in our experiments are available from [28].

6.1.2 Qualitative evaluation
As mentioned above, we have obtained several real-world

ADs with version history information from Nokia Corp.,
Test Management, and from another company. We used
our plug-in to compare different versions and analyze the
evolution of these ADs. We have also used other publicly
available diff tools (Eclipse default differencing mechanism
and EMFCompare [5]) in the analysis and compared them
with addiff . Screen captures from our analysis sessions are
available from [28].

Classical textual differencing was, as expected, not help-
ful in comparing the ADs, as it merely compared their XMI
representations. EMFCompare [5] reported correct addition
and removal of actions and transitions and presented them
on the abstract syntax tree structures of the two ADs. Still,
this was not so helpful in understanding the differences be-
tween the ADs because (1) the comparison was done on
the AST level and abstracted the control flow away, and
(2) the results were shown on the AST and not on the
ADs themselves: we saw the changes in the AST and had
to manually search for their concrete manifestation on the
ADs. Moreover, in many cases, the list of additions and
removals reported by EMFCompare was too large to be use-
ful, e.g., when comparing hire.v2 and hire.v4 (presented
earlier), EMFCompare reported 23 additions and removals,
much more than one would intuitively expect for these two

AD names # Nodes Reachable state spaces # Wit. Shortest/Longest Alg. I decide/all (ms) Alg. II decide/all (ms)
hireV1/hireV2 14/15 18/26 1 6/6 69/80 57/75
hireV2/hireV3 15/15 26/21 1 4/4 53/69 53/68
hireV3/hireV4 15/15 21/22 1 4/4 50/60 54/61
projV1/projV2 13/9 22/22 0 0/0 52/52 44/47
projV2/projV3 9/11 22/28 0 0/0 53/53 41/50
IBM3561-1/2 18/18 121/122 2 7/61 105/173 113/243
IBM2905-1/2 39/39 2680/2680 80 9/10 3010/7360 911/3667
IBM2568-1/2 50/50 3834/3834 128 5/5 2725/4503 1328/3508
IBM0863-1/2 23/23 1136/1136 76 5/8 1186/2970 200/844
IBM3735-1/2 16/15 118/99 5 4/9 57/101 57/89
IBM2557-1/2 17/15 275/175 6 7/7 66/95 74/120
NokiaAV1/2 15/17 38/44 4 4/9 48/67 47/71
NokiaAV2/3 17/23 44/96 4 7/7 71/101 76/111
NokiaAV3/4 23/23 96/76 4 7/7 84/119 98/137
AnonV1/2 15/15 37/37 2 6/6 50/64 47/61
AnonV2/3 15/19 37/80 1 8/8 67/72 57/70

forking(W1/L6)/mutated 12/12 11/11 1 9/9 57/79 49/58
forking(W2/L6)/mutated 18/18 89/89 1 15/15 121/135 100/138
forking(W3/L6)/mutated 24/24 887/887 1 21/21 1293/1332 496/667
forking(W4/L6)/mutated 30/30 8237/8237 1 27/27 88878/89399 5892/7757
lbl(L12/D16)/mutated 34/34 496/496 1 15/15 367/608 373/507
lbl(L12/D32)/mutated 34/34 992/992 1 15/15 698/1377 678/895
lbl(L12/D64)/mutated 34/34 1984/1984 1 15/15 2242/4874 1651/2161
lbl(L12/D128)/mutated 34/34 3968/3968 1 15/15 9867/23529 5789/6685

Table 1: Results from computing addiff for selected example, real-world, and synthetic ADs (see Sect. 6.1.1).
For each two versions we report the number of nodes, the reachable state space, the number of diff traces
found, the length of the shortest and longest diff traces found, and the times it took the concrete and the
symbolic algorithms to (1) decide the existence of at least one diff trace and (2) to compute all diff traces.

ADs (addiff reports a total of three diff witnesses for this
example (two in one direction, one in the other)).

In contrast, our plug-in computed diff traces and high-
lighted them, visually, on the ADs themselves. Thus, in
addition to the semantic characteristics of the comparison,
which shows the actual meaning of the changes that were
done, we have also experienced the advantages of language-
specific differencing over language-agnostic differencing as
well as the advantage of showing the differences directly on
the original diagrams rather than in a separate list.

The following lessons learned are noteworthy. First, in
some cases the number of traces returned by addiff was
large and the usefulness of the results was limited. To ad-
dress this in the future we consider adding filters, e.g., to
group together traces that agree on the list of actions and
differ in the values of input variables, and present only a
representative trace from each group. Similarly, we consider
user interaction: the engineer would choose a node of inter-
est and the plug-in would limit the results to diff traces that
include/exclude this node.

Second, some of the ADs we have analyzed included ‘swim
lanes’, which relate action nodes with roles. It seems that
‘swim lanes’, which are optional in the UML standard [24],
are rather popular, so in the future it may be useful to add
the role information to the semantics of ADs and consider
it in computing the differences.

Finally, some of the ADs we have investigated were only
semi-formal or included minor changes in action names, which
seem to indeed be ‘renames’ rather than new actions with
similar names. addiff considers such ‘renames’ as new ac-
tions, and we had to manually identify these cases and ‘cor-
rect’ them. To better address these cases in the future, a
matching heuristics needs to be employed, based perhaps not
only on syntactic structural similarity matching but also on
natural language and domain-specific ontology.

6.2 Discussion

6.2.1 Alternatives and extensions
Our current definition of diff traces does not require that

they can be extended into accepting traces (ones that end
at a final node, see Def. 3). We have chosen not to require
this, in order to support the comparison of incomplete and
perhaps inconsistent ADs, ones where not all executions are
eventually accepted. Such ADs may exist, mainly at the
early stages of the version history of a model (indeed in our
evaluation we have seen such ‘incomplete’ ADs). We could
have given a more restrictive definition that limits diff traces
to ones that can be extended to accepted traces. Adapting
the algorithms we have presented to this restricted definition
is not difficult.

Moreover, we have chosen to compute only a single short-
est representative of the diff traces outgoing each initial AD
state (that is, a single shortest diff trace for each assignment
to input variables of the first AD). We consider this to be
a good choice, as it keeps the addiff results relatively suc-
cinct and thus easy to read and understand by engineers,
in most typical cases. Alternatively, one may suggest to
compute a larger set, containing all diff traces. Adapting
the algorithms to this more permissive definition is possible,
however, as there may be exponentially many such traces,
performance may be a problem. On the other hand, and in
contrast, following the lesson learned in our evaluation we
consider an alternative that would limit the number of diff
traces to present: group them according to the list of ac-
tions they include and present a single representative trace
of each group together with a predicate that describes the
input variable values that are common to the traces in the
group. We believe this may be computed symbolically, i.e.,
while avoiding the enumeration of all traces in the compu-
tation. We leave this for future work.

Finally, our current work supports a subset of the UML
2 AD language. In particular, we do not yet support struc-
tured activity nodes, which allow hierarchical nesting of ac-
tion nodes or reference from a node to another activity. Hi-
erarchy is useful in medium and large scale designs, so sup-
porting it is important. Moreover, a hierarchy induces an
abstraction mechanism, which a semantic comparison may
take advantage of. Additional language features may be
added. We leave these for future work.

6.2.2 Syntactic differencing and matching
Semantic differencing in general, and addiff in particular,

do not come to replace existing syntactic differencing ap-
proaches. Rather, they are aimed at augmenting and com-
plementing existing approaches with capabilities that were
not available before. Thus, combining addiff with exist-
ing approaches to matching and syntactic differencing (see,
e.g., [14, 32]), is an important direction for future work. For
example, we may extend the applicability of semantic dif-
ferencing in comparing diagrams whose elements have been
renamed or moved in the course of evolution, by applying
a syntactic matching before running the semantic differenc-
ing. The result of such an integrated solution would be a
mapping plus a set of diff traces. As another example, we
may use information extracted from syntactic differencing
as a means to localize and improve the presentation and
performance of the semantic differencing computation.

7. RELATED WORK
We discuss related work on AD formal semantics and anal-

yses, and on model and program comparisons.
Eshuis [7] presents symbolic model checking of ADs. The

work transforms ADs into SMV and uses the NuSMV model
checker to verify LTL properties. The semantics given is
partly inspired by the semantics of STATEMATE [9]. Our
translation of ADs into SMV is somewhat similar to the two
translations suggested in [7]. [7] does not handle data while
our work does. The motivation of [7] is model checking while
our motivation is model comparison. Störrle [31] defines a
denotational semantics for UML 2 ADs as a mapping to
procedural Petri nets. He also surveys and compares several
previous studies that deal with a semantics for ADs, in terms
of their semantic domain and expressiveness. Knieke and
Goltz [12] present an executable semantics for UML 2 ADs
with step semantics adapted from [9]. The works of [7, 12]
support object nodes and several types of action nodes, while
our current work supports only basic action nodes. Our work
can be extended to support object nodes and other types
of action nodes. Our focus is not on the different possible
variants of ADs and their semantics but on the definition
and the computation of the semantic diff operator we have
presented, and on its use in evolution related tasks.

Model and program differencing, in the context of software
evolution, has attracted much research efforts in recent years
(see [1, 6, 14, 21, 23, 32]). In contrast to our work, almost all
studies in this area, however, present syntactic differencing,
at either the concrete or the abstract syntax level.

Alanen and Porres [1] describe the difference between two
models as a sequence of elementary transformations, such
as element creation and deletion and link insertion and re-
moval; when applied to the first model, the sequence of
transformations yields the second. Kuster et al. [14] inves-
tigate differencing and merging in the context of process

models, focusing on identifying dependencies and conflicts
between change operations. Engel et al. [6] present the use
of a model merging language to reconcile model differences.
Comparison is done by identifying new/old MOF IDs and
checking related attributes and references recursively. Re-
sults include a set of additions and deletions, highlighted in
a Diff/Merge browser. Mehra et al. [21] describe a visual dif-
ferentiation tool where changes are presented using editing
events such as add/remove shape/connector etc. Xing and
Stroulia [32] present an algorithm for object-oriented design
differencing whose output is a tree of structural changes,
reporting differences in terms of additions, deletions, and
moves of model elements, assisted by a set of similarity met-
rics. Ohst et al. [23] compare UML documents by traversing
their abstract-syntax trees, detecting additions, deletions,
and shifts of sub-trees.

As the above shows, some works go beyond the concrete
textual or visual representation and have defined the com-
parison at the abstract-syntax level, detecting additions, re-
movals, and shifts operations on model elements. However,
to the best of our knowledge, no previous work considers
model comparisons at the level of the semantic domain, as
is done in our work.

Some works, e.g. [5, 32], use similarity-based matching be-
fore actual differencing. As our work focuses on semantics,
it assumes a matching is given. Matching algorithms may
be used to suggest a matching before the application of se-
mantic differencing. The result of such an integration would
be a mapping plus a set of differentiating traces.

We are aware of only a few studies of semantic differenc-
ing between programs. Jackson and Ladd [11] summarise
the semantic diff between two procedures in terms of ob-
servable input-output behaviors. Apiwattanapong et al. [2]
present a behavioral diff for object-oriented programs based
on an extended control-flow graph, and a tool that imple-
ments it in the context of Java. Finally, Person et al. [25]
suggest to compute a behavioral characterization of a pro-
gram change using a technique called differential symbolic
execution. We focus on model comparison and not on pro-
gram comparison. Also, while our work is somewhat similar
to these works in terms of motivation, it is very different in
terms of technology.

8. CONCLUSION
We presented addiff , a semantic differencing operator for

activity diagrams. Unlike existing approaches to model com-
parison, addiff performs a semantic comparison and outputs
a set of diff witnesses, each of which is an execution trace
that is possible in the first AD and is not possible in the
second. We have formally defined addiff , described two al-
gorithms to compute it, a concrete one and a more scalable
symbolic one, and demonstrated its application in compar-
ing ADs within the Eclipse IDE. addiff can help developers
to understand and evaluate the differences between versions
of ADs so that they can reason about the impact of changes.
When applied to the version history of a given AD, addiff
provides a semantic insight into its evolution, which is not
available in existing syntactic approaches.

We suggested a number of future work directions in Sect. 6,
among them, the development of more succinct, symbolic,
or task-oriented representation of diff traces, the integration
of addiff with existing approaches to matching and syntac-
tic differencing, and the extension of addiff to cover a larger

subset of the UML 2 AD language, in particular, handling
hierarchical actions, which are useful when considering the
specification of medium and large scale activities.

Finally, addiff is part of a larger project that applies the
idea of semantic differencing and computation of diff wit-
nesses to several modeling languages [19]. We have recently
presented our work on semantic differencing for class dia-
grams [18] and hope to report additional results from this
project in future papers.

Acknowledgements We are grateful to Tuula Pääkkönen
for help in obtaining the models from Nokia Corp., to Dirk
Fahland for suggesting the use of the library of process mod-
els by IBM, to Yaniv Sa’ar for advice on the implementation
of the algorithms in JTLV, and to Smadar Szekely and Guy
Weiss for advice on Eclipse plug-in development.

9. REFERENCES
[1] M. Alanen and I. Porres. Difference and union of

models. In P. Stevens, J. Whittle, and G. Booch,
editors, Proc. 6th Int. Conf. on the UML, volume 2863
of LNCS, pages 2–17. Springer, 2003.

[2] T. Apiwattanapong, A. Orso, and M. J. Harrold. JDiff:
A differencing technique and tool for object-oriented
programs. Autom. Softw. Eng., 14(1):3–36, 2007.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. J. Hwang. Symbolic model checking: 1020

states and beyond. Inf. Comput., 98(2):142–170, 1992.

[4] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren,
E. Olivetti, M. Pistore, M. Roveri, and A. Tchaltsev.
NuSMV User Manual, 2005.

[5] EMF Compare.
http://www.eclipse.org/modeling/emft/?project=compare.

[6] K.-D. Engel, R. F. Paige, and D. S. Kolovos. Using a
model merging language for reconciling model
versions. In A. Rensink and J. Warmer, editors,
ECMDA-FA, volume 4066 of LNCS, pages 143–157.
Springer, 2006.

[7] R. Eshuis. Symbolic model checking of UML activity
diagrams. ACM Trans. Softw. Eng. Methodol.,
15(1):1–38, 2006.

[8] D. Fahland, C. Favre, B. Jobstmann, J. Koehler,
N. Lohmann, H. Völzer, and K. Wolf. Instantaneous
soundness checking of industrial business process
models. In U. Dayal, J. Eder, J. Koehler, and H. A.
Reijers, editors, BPM, volume 5701 of LNCS, pages
278–293. Springer, 2009.

[9] D. Harel and A. Naamad. The STATEMATE
Semantics of Statecharts. ACM Trans. Softw. Eng.
Methodol., 5(4):293–333, 1996.

[10] D. Harel and B. Rumpe. Meaningful modeling:
What’s the semantics of “semantics”? IEEE
Computer, 37(10):64–72, 2004.

[11] D. Jackson and D. A. Ladd. Semantic diff: A tool for
summarizing the effects of modifications. In H. A.
Müller and M. Georges, editors, ICSM, pages 243–252.
IEEE Computer Society, 1994.

[12] C. Knieke and U. Goltz. An executable semantics for
UML 2 activity diagrams. In Proc. Int. Workshop on
Formalization of Modeling Languages (FML), 2010.

[13] H. Krahn, B. Rumpe, and S. Völkel. MontiCore: a
framework for compositional development of domain
specific languages. Int. J. on Software Tools for
Technology Transfer (STTT), 12(5):353–372, 2010.

[14] J. M. Küster, C. Gerth, and G. Engels. Dependent
and conflicting change operations of process models.
In R. F. Paige, A. Hartman, and A. Rensink, editors,
ECMDA-FA, volume 5562 of LNCS, pages 158–173.
Springer, 2009.

[15] S. Maoz. Model-based traces. In M. R. V. Chaudron,
editor, MoDELS Workshops, volume 5421 of LNCS,
pages 109–119. Springer, 2008.

[16] S. Maoz. Using model-based traces as runtime models.
IEEE Computer, 42(10):28–36, 2009.

[17] S. Maoz, J. O. Ringert, and B. Rumpe. An
Operational Semantics for Activity Diagrams using
SMV. Technical Report AIB 2011-07, RWTH Aachen
University, Germany, 2011.

[18] S. Maoz, J. O. Ringert, and B. Rumpe. CDDiff:
Semantic differencing for class diagrams. In
M. Mezini, editor, Proc. 25th Euro. Conf. on Object
Oriented Programming (ECOOP’11), volume 6813 of
LNCS, pages 230–254. Springer, 2011.

[19] S. Maoz, J. O. Ringert, and B. Rumpe. A manifesto
for semantic model differencing. In J. Dingel and
A. Solberg, editors, MoDELS Workshops, volume 6627
of LNCS, pages 194–203. Springer, 2011.

[20] K. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[21] A. Mehra, J. Grundy, and J. Hosking. A generic
approach to supporting diagram differencing and
merging for collaborative design. In ASE, pages
204–213. ACM, 2005.

[22] MontiCore project. http://www.monticore.org/.

[23] D. Ohst, M. Welle, and U. Kelter. Differences between
versions of UML diagrams. In Proc. ESEC /
SIGSOFT FSE, pages 227–236. ACM, 2003.

[24] OMG. UML, version 2.2, OMG Specification, 2009.

[25] S. Person, M. B. Dwyer, S. G. Elbaum, and C. S.
Pasareanu. Differential symbolic execution. In
SIGSOFT FSE, pages 226–237. ACM, 2008.

[26] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of
reactive(1) designs. In E. A. Emerson and K. S.
Namjoshi, editors, VMCAI, volume 3855 of LNCS,
pages 364–380. Springer, 2006.

[27] A. Pnueli, Y. Sa’ar, and L. Zuck. JTLV: A framework
for developing verification algorithms. In T. Touili,
B. Cook, and P. Jackson, editors, CAV, volume 6174
of LNCS, pages 171–174. Springer, 2010.

[28] Semantic diff project.
http://www.se-rwth.de/materials/semdiff/.

[29] SMV model checker.
http://www.cs.cmu.edu/˜modelcheck/smv.html.

[30] F. Somenzi. CUDD: CU Decision Diagram package.
http://vlsi.colorado.edu/˜fabio/CUDD/, 1998.

[31] H. Störrle. Semantics of control-flow in UML 2.0
activities. In VL/HCC, pages 235–242. IEEE
Computer Society, 2004.

[32] Z. Xing and E. Stroulia. Differencing logical UML
models. Autom. Softw. Eng., 14(2):215–259, 2007.

