
Reuse and Customization for Code Generators:
Synergy by Transformations and Templates

Robert Eikermann, Katrin Hölldobler, Alexander Roth, and Bernhard Rumpe

Software Engineering, RWTH Aachen University, Ahornstrasse 55, Aachen, Germany
{eikermann, hoelldobler, roth, rumpe}@se-rwth.de

http://www.se-rwth.de

1 PRINCIPLES OF CODE GENERATION

Model-driven development (MDD) relies on code generation as an essential in-
gredient to systematically generate source code from an abstract representation
of a software system. To generate source code, each concept of the input lan-
guage has to be mapped to concepts of the target language [6, 35]. The most
used approaches that have been proposed to perform this mapping are template-
based [36, 4] and transformation-based approaches [20, 6, 10, 9].

However, there is much more to say about good code generators. It is there-
fore worthwhile to first look at the important principles for a good code gener-
ator:

– Code generation facilitate the reuse of models and the generator.
Ideally, a code generator is independent of any model and thus can be reused
for many different models. Reuse, however, also works, when one model
is mapped to different target platforms and operating systems or evolving
hardware and software technology stacks.

– Within a project, code generation must be re-doable at each time and by any
developer.
As a consequence, generated code cannot be manipulated by hand. However,
handwritten code and generated code interact with each other and fine-
grained interaction patterns are necessary.
Another consequence is to not version control generated code, because re-
doing the generation in parallel may lead to conflicts (even if its only the
generation time stamp).

– Generated and handwritten code are strictly separated in different artifacts.
Some build processes (e.g. Apache Maven [39]) even separate these artifacts
into different hierarchies. The generation-gap problem can be overcome with
a variety of mechanisms, some of which are assisted by object-orientation,
such as subclass building. An interesting approach is for example the gener-
ation of classes that are embedded in a "sandwich", namely a handwritten
super-interface to allow function extensions and a handwritten subclass for
overriding [18].

[EHRR19] R. Eikermann, K. Hölldobler, A. Roth, B. Rumpe: 
Reuse and Customization for Code Generators: Synergy by Transformations and Templates. 
In: Model-Driven Engineering and Software Development, pp. 34--55, Springer, 2019. 
www.se-rwth.de/publications 



2 R. Eikermann, K. Hölldobler, A. Roth, and B. Rumpe

The need of embedding all code into classes complicates the interaction be-
tween handwritten and generated code, but higher order functional abstrac-
tions, partial classes and similar approaches further improve a conceptual
integration while keeping the code separate.

– Code generators needs to be flexible to adapt to different, and evolving tech-
nology stacks.
Pure development of a code generator is always more work than directly im-
plementing the system by hand. Code generators become interesting, when
they are reusable. That includes a given code generator can easily be adapted
to a new or evolving technology stack. Flexibility of the code generator in-
cludes the possibility to adapt the generation result without having to know
all details of the generator. Templates for example are a good technology to
adapt a generator, without going into its code.
Flexibility is potentially also necessary within the project, where some parts
of the model are mapped to different target stacks than other parts. Some-
times the target code needs to be enhanced by additional functionality, etc.

– Maintainability of the generator is important.
Maintaining a generator is necessary, when the technology stack of generator
changes, or when the generation has to be adapted. Thus maintainability
is to some extent covered by flexibility of the generator. If however, the
designated flexibility doesn’t suffice anymore, it is important to have access
to the generators source, e.g. from an open-source project, and the generator
architecture is well structured and the code readable.

– The generation process needs to be reliable and potential error messages un-
derstandable.
It is necessary, that the generation process doesn’t terminate with internal
errors – at least the user needs to get an understandable explanation and
should be able to act accordingly.
On the contrary, it’s also necessary that erroneous models are detected early
in the generation process and communicated to the developer. It is manda-
tory, that only correct code is generated. This includes that the generated
code is compilable, but also behaves well.

– The generated code needs to be reliable.
The generated code should be pretty robust against incorrect forms of usage.
Depending on the form of use, it should on the other hand either be very
robust (e.g. in airplanes) or early and quickly give errors and exceptions,
when detecting a misuse (e.g. when the generated code is itself used in a
batch tool).
Reliability also includes, the code uniformly behaves in the same way, or
that generated data structures are by construction correct and their data
cannot be corrupted. The DEx generator e.g. has taken deep efforts to ensure
correctness of generated classes and association codes at all (interesting)
times [28].

– A generator should be compositional.
Composition comes in several flavors: (1) Several different models are fed
into one generator, that internally is composed of several sub-generators,



Reuse and Customization for Code Generators 3

contributing to the same artifacts. (2) Several individual generators take the
same model and produce artifacts that can be composed (in the product).
(3) Several individual generators take individual models, but again produce
composable artifacts.
This task is difficult to achieve, because it either enforces that generators
exchange information about the targets they create, or the developers of
generators have an agreement, how the interfaces of the generated artifacts
interact. Sometimes, both is necessary.

– A generator should be smart.
One could even say, that a generator could be intelligent. That would mean
that some of the domain or technology knowledge is neither part of the
model, nor part of the hand written code that the generator generates
against. E.g. if a class diagram contains certain classes, such as Person, the
generator knows what kinds of attributes and functions should be embedded,
where to store the objects in the data base, etc.
A smart generator could allow much more concise and abstract models. That
would also mean that the purely mechanical view on generators (mentioned
above an in [6, 35]) would not be completely valid anymore.
It could be that it’s not the generator itself, but its customization through
templates, predefined models and code that are woven into the generated
code, which make a generator smart. However, from the users point of view
it’s the generator that bears smartness.

– A generator should assist agile development.
In principle a project agility becomes more agile, when we can use abstract
models instead of more detailed hand written code [29, 31].
However, agility also very much lives from early and immediate feedback. If
the generation process takes to long, the number of build script executions
goes down considerably, the feedback gets later and thus error finding more
complex. Furthermore, developers get bored and start doing other things,
which leads to an interruptions of the developer "flow".
As a consequence, a generator must be quick when generating and incremen-
tal, that means should detect, what really needs to be re-generated.

We can also observe, that round-trip engineering, i.e., generating code from
models and retrieving models from code either only works for structurally equiv-
alent models, such as class diagrams and object-oriented programs. The other
alternative only was to embed the original model as an (unreadable) comment
and retrieve the model not from the code, but from the comment. While having
merits in some situations, both approaches are not really that helpful in normal
projects.

1.1 AN EXAMPLE FOR CODE GENERATION

After having discussed so many general principles, we have to admit that these
principles to some extent conflict. For example reliability of the generated code
very much depends on how much flexibility of generator is actually used. The



4 R. Eikermann, K. Hölldobler, A. Roth, and B. Rumpe

more and deeper adaptations are made to the generator, the riskier it is that a
generator doesn’t fulfill all required goals anymore.

Even though, we don’t have answers for all needs, we would like to demon-
strate in the following, how a combination of a template- and transformation-
based approach improves the situation with respects to several of the goals. These
ideas go back to several projects, including the MontiCore language workbench
[21, 22] itself, where this combination is widely used. Especially for data-centric
applications [25] practice has shown that using transformation- or template-
based code generation in isolation restricts flexibility when generating source
code for the presentation layer and the application layer (cf. [26]) and has dis-
advantages in realizing code generator modularity (cf. [41]).

Our approach targets object-oriented output languages and is subdivided into
three steps. First, after parsing the input model, an initial step applies a sequence
of transformations including a model-to-model transformation that translates
the input model to an intermediate representation (IR), which abstracts from
object-oriented programming languages and allows to describe structural aspects
of the generated code. Second, different transformations can be applied to the IR
to enrich the representation, e.g., by additional classes, methods, etc. that should
be generated. Flexibility of this code generation approach is achieved by allowing
to switch between both approaches, i.e., transform the IR or attach templates
to IR elements. Third, the transformed IR including the attached templates is
used as input for a template engine, which uses a default set of templates for
a target language to generate code based on the IR. The default templates are
used whenever there is no template attached to an element of the IR. Integrating
transformation- and template-based code generation and employing an IR allows
for target language independent transformations with additional target language
specific templates. The contribution of this paper are as follows:

– Flexible integration of transformation- and template-based code generation
– Proposal for a object-oriented domain-specific language for an IR
– Customization approach for code generation via template attachments

Hence, we first give an example in Section 2 to demonstrate the challenge
in MDD of data-centric applications. Afterwards, we form an understanding
of a code generator and template- and transformation-based code generation
in Section 3. Then, we present and discuss our approach for code generation
using templates and transformation in combination (Section 4). Next, we present
a use case, where we applied our approach in Section 5. Finally, an overview of
current research in this field is given in Section 6 and the paper is concluded in
Section 7.

2 MOTIVATING EXAMPLE

As a motivating example, we consider the MDD of data-centric applications.
Each data-centric application offers management functionality for structured
and consistent information described by a model [28]. On the left-hand side



Reuse and Customization for Code Generators 5

1 package bankingsystem;

...

15 abstract class Account {

16 long number; 

17 double balance;

18 double overdraft;

19 }

...

29 interface Employee;

30 class Consultant implements Employee {

31 String name;

32 }

...

55 association [1] Account <-> [[number]] Consultant;

package declaration

abstract class definition

class attribute

interface definition

inheritance definition

qualified association definition

CD4A

Fig. 1. Generation of Data-Centric Applications from Analysis Models.

in Figure 1, the model is an instance of the class diagram for analysis (CD4A)
domain-specific language (DSL) to describe class diagrams created during the
analysis phase (analysis model [31]). This model is systematically transformed
to the executable data-centric application, which offers SCRUD (search, create,
read, update, and delete) functionality shown on the right-hand side (Figure 1).

Due to varying user requirements, a data centric application has to be cus-
tomizable. In this example, the developer has to change the user interface gen-
erated for each class in the input model. Since no additional models are used
and adapting the generated source code in not practical, because it requires a
suitable approach for handwritten code integration (cf. [17, 18]) and customiza-
tion of each generated artifact, the developer aims to design a customizable code
generator.

In addition, the developer aims to reduce the development time of future
code generators by reusing parts of the data-centric code generator, e.g., the
part to generate the source code representing the data structure (i.e., Plain-Old-
Java-Objects). However, a code generator my use a different input and output
model (i.e., conforming to a different DSL). Hence, to make parts of the code
generator reusable, the developer plans to realize this part of the code generator
independent of the input and target language.

Besides customization and reuse concerns, the developer needs to choose
a code generation approach. However, generating data-centric applications has
multiple challenges. First, generating an application core requires the code gen-
eration to traverse the representation of the model and generation of mainly
changing code. Second, generation of a graphical user interface requires the gen-
eration of mainly static source code and from dedicated parts of the input models,
e.g., classes. Hence, the developer wants to mix both code generation approaches
to avoid unmaintainable templates and complex transformations.



6 R. Eikermann, K. Hölldobler, A. Roth, and B. Rumpe

3 TRANSFORMATION- AND TEMPLATE-BASED
CODE GENERATION

In model-driven development a software system that produces an implementa-
tion from a higher-level description of a (part of a) software is regarded as a
generator [6]. A code generator is a special kind of a generator that creates an
implementation in a programming language from a set of input artifacts, which
are, typically, models. Such code generators that always terminate and generate
at least one output artifact are build on top of existing compilers for program-
ming languages and consists of a front-end (language processing) and a back-end
(code generation) [28].

Language processing is concerned with parsing the models, checking language
constraints and creating an internal representation (abstract syntax tree and sym-
bol table). Code generation systematically transforms the internal representation
to concrete code, which is stored in generated artifacts. The most dominating
technical realizations of code generation are template-based and transformation-
based code generation. Subsequently, both approaches are explained in more
detail.

Model

Parser

AST
Template

Engine

Code,

Reports, etc.
Code,

Reports, etc.

Embedment

Helper
Template

Java

Key: uses/accesses input/output

CpD

Fig. 2. Overview of a template-based generation process.

3.1 Template-based Code Generation

The prerequisite for template-based code generation is a template language and
a corresponding template engine. A template forms the main artifact of interest



Reuse and Customization for Code Generators 7

and consists of plain target language code, which is the source code that is gener-
ated, and additional template language instructions. Each template is processed
by a template engine, which evaluates the template language instructions and
prints the plain target language code and the evaluation result into an output
file. As shown in the overview in Figure 2, after parsing the input model, the
abstract syntax tree (AST) (and possibly a symbol table) and a set of templates
is passed to the template engine, which systematically traverses the AST and
calls a template for each particular AST element type. Additionally, embedment
helpers can be used to outsource complex computations from templates. After
the template is evaluated, the resulting plain source code, e.g., Java, is written
into an output file.

This approach is simple and easy to use as it allows to directly write target
language code with additional template instructions whenever a value needs to
be computed from the given AST of the input model, e.g., the name of the AST
element. While this provides a comfortable way for code generator developers to
write generators, it has several disadvantages: (a) templates become complex,
hardly readable, and, in consequence, hardly maintainable; (b) an additional
infrastructure is necessary to handle complexity of templates (see embedment
helpers); and (c) no static checking of the generated source code before writing
into a file is possible because no internal representation exists.

3.2 Transformation-based Code Generation

In transformation-based code generation, transformations are the central arti-
fact. In this approach, an input model is parsed and an arbitrary number of
transformations is applied to the AST of the input model to create an output
model [20], i.e., an abstract syntax tree of the target language (cf. Figure 3). Note
that transformations can also be applied to the output model AST. Finally, the
output model AST is systematically transferred into a textual representation,
which conforms to the syntax of the output language, by using a pretty printer.

Transformations in this process are a sequence of endogenous transformations
modifying the input model and conform to the source modeling language [7]
followed by an exogenous transformation translating the input model to an IR-
AST. Within the generation process a structured representation is present that
can be checked for errors and processed by further transformations.

This approach has the advantage that calculations on and traversal of the
input model can be replaced by pattern matching. When domain-specific trans-
formations [1, 30, 34] are employed, the concrete syntax of the output language
can be used to describe the output [20]. In addition, the AST representation al-
lows for syntactic checks and extensibility of the generation by applying further
transformations before transferring the result into a code. This benefit implies
(a) the need for a grammar or meta model of the output language that precisely
defines its structure. Furthermore, (b) transformations my become to complex
and unmaintainable demanding for transformation development guidelines and
additional frameworks to compose transformations. Large plain target language



8 R. Eikermann, K. Hölldobler, A. Roth, and B. Rumpe

Model

Transformation Java

AST AST'

Transformation

Engine

exogenous
transformation

CpD

Key: uses/accesses              input/output transforms to

Parser

Pretty

Printer

Fig. 3. Overview of transformation-based generation.

code fragments for single model element can more easily be created with tem-
plates [26].

4 SYNERGETIC TRANSFORMATION- AND
TEMPLATE-BASED CODE GENERATION

To support reusable, customizable, and flexible code generator design, we pro-
pose an approach based on the conjunction of transformation- and template-
based code generation. As both approaches have their advantages and disad-
vantages (cf. Section 3), we have combined both in a way that retains their
advantages and minimizes their disadvantages.

An overview of a generation process is shown in Figure 4. The integration of
transformation- and template-based code generation results in a partitioning of
the overall code generation process into three steps (numbers in the figure).

Preprocessing. First, after the parser has created the abstract syntax tree
of the input model ( 1 in Figure 4), it is transforms into an abstract syntax tree
of an IR, which may either be completely built from scratch or may be based
on an existing AST that is adapted. In this step, the input model AST may be
manipulated by transformations before it is eventually transformed to the IR.

Transforming. In the second step, the IR-AST is consecutively transformed
by a sequence of transformations to enrich the intermediate AST with elements
that will be generated ( 2 in Figure 4). Each transformation adds, removes, or



Reuse and Customization for Code Generators 9

Model

CpD

AST

CD4Code-AST
Template

Engine

Code,

Reports, etc.
Code,

Reports, etc.
Code,

Reports, etc.

Templates

Key:

uses/accesses           input/output            transforms

1

23

Language

Processing

Endogenous

Transformation
Endogenous

Transformation
Endogenous

Transformation

Endogenous

Transformation
Endogenous

Transformation
Exogenous

Transformation

Endogenous

Transformation
Endogenous

Transformation
Endogenous

Transformation

Fig. 4. Integration of template- and transformation-based code generation consists of
three consecutive steps: pretransformation, intermediate transformation, and template-
based code generation.

updates elements in the AST and may also require the input model AST, which is
created after parsing, to perform its manipulations. Since the IR is independent
of the output language, additional output language specific templates can be
attached to elements of the intermediate AST.

Generating. Finally, in the last step ( 3 in Figure 4) a template engine is
used to generate code by passing the transformed AST including the attached
templates and a set of default templates for the output language and the AST
of the IR.

4.1 Intermediate Representation

As the IR forms the core for the transformations and the abstract representation
of the generated code, it should provide an abstraction of the output language
but should also be as input language independent as possible. As most software
systems are implemented using object-oriented programming languages, we de-
cided to choose a representation that provides an abstraction of the most com-
mon object-oriented programming concepts. As a consequence, this approach
is limited to generate source code that use the object-oriented programming
paradigm [11].

A natural choice to describe an IR is a DSL representing UML class diagrams
[37], which provide most of the concepts found in object-oriented languages.
Thus, our IR is a restricted version of UML class diagrams called class diagram
for design (CD4D). It only contains the most relevant parts including classes,
interfaces, abstract classes and enumerations. A class may extend another class



10 R. Eikermann, K. Hölldobler, A. Roth, and B. Rumpe

and implement interfaces. In addition, associations with navigation directions
and cardinalities are supported. An association as well as each of its role ends
may have names and can be ordered or qualified. Classes may have attributes
with associated types. From our choice of the IR, a second limitation to our
approach emerges: the IR can only describe structural aspects of the generated
code. Behavioral aspects have to be added using additional language specific
templates.

1 interface Account {

2 long getNumber();

3 void setNumber();

50 }

...

65 abstract class AccountImpl implements Account {

66 private long number;

151 public long getNumber(){

152 return this.number;

153 }

266 }

JAVA
1 interface Account {

2 long getNumber();

3 void setNumber();

50 }

...

43 abstract class AccountImpl implements Account {

44 private long number;

70 public long getNumber();

121 }

...

CD4D

same keywords

no method bodies

Fig. 5. Example of the IR (right-hand-side) for Java code (left-hand-side).

An example that can be described with the IR is shown in Figure 5. Note
that we use concrete syntax rather than the abstract syntax for presentational
purpose. The example shows an excerpt of the Java source code (left-hand-side)
that is generated for the CD4A model shown on the left-hand side in Figure 1.
It shows the interface Account (ll.1-50) and the implementation AccountImpl
(ll.62-266). On the right-hand side, the textual notation of the CD4D DSL de-
scribing the object-oriented structure of the Java source code on the left-hand
side. The CD4D model uses the same keywords as the Java source code to denote
the corresponding UML class diagram concepts (inheritance, classes, interfaces,
etc.). It also contains visibility, e.g., private in l.44 and public in l.10 on the
right-hand-side. However, no method bodies are present in the IR (l.70 right-
hand side).

The IR serves as the abstract representation of the source code that is to be
generated. Model-to-model transformations successively enriched the IR with rel-
evant information regarding the generated code, e.g. additional technical classes
or methods. However, to make use of this language independent representation,
the input model needs to be mapped to the IR.

4.2 Model-To-Model Transformations

The first two steps, i.e., the transformational part, of our approach illustrated
in Figure 4, rely on model-to-model transformations [8]. Two types of trans-
formation can be distinguished within our approach, endogenous and exogenous



Reuse and Customization for Code Generators 11

transformation. After the model has been parsed and, thus, is available in its AST
representation our approach allows to manipulate the model endogenously, i.e.,
apply transformations that change the model but do not change the language
it belongs to. This initial transformations are helpful to reduce the high-level
concepts used in the model, i.e., normalizing [24] the input model, such that the
model only uses the core concepts of the source language. By first normalizing
the input model the subsequent transformations are simplified as only the core
concepts of the source language needs to be considered. By allowing normaliza-
tion first our approach is robust regarding newly introduced syntactic sugar as
this can be handled by adding further normalizing transformations.

After the input model is normalized an exogenous transformation translates
the input model to the IR. This transformation maps concepts of the input
language to concepts of the IR. Even though depicted as a single transformation
there is no need to construct the complete IR in one huge step. Our approach
allows to further transform the IR endogenously. Thus, this step just needs to
do minimal mapping of the input model to the internal representation.

Finally, the transformational part of our approach allows to stepwise extend
the created IR and attach templates to elements of the internal representation
as explained in the next section. Within this transformation the "final" IR is
constructed that serves as the basis for the template-based part of our code
generation. To ease the construction of the "final" IR each transformation step
is allowed to add, remove and update model elements as well as attach one or
several templates to specific elements and can even consider a former state of
the input model, e.g. the AST after the model has been parsed. The code gen-
erator developer is free to add as much information as she likes to the IR using
transformations and can even have recourse to results of arbitrary former trans-
formation steps. The final IR AST used for the template-based code generation
does not necessarily has to be too detailed about the generated structure, because
the templates can add missing details. However, by switching to template-based
code generation as the back-end of our approach there is no need for a pretty
printer for the output language. Furthermore, switching to templates provides a
simple way to merge the information stored in the IR, e.g. merge different parts
of a class or method generated by different templates without relying on output
language concepts such as partial classes that are present in C# but missing in
Java.

4.3 Template Attachment

Transformations on the IR allow to manipulate generic object-oriented program-
ming concepts, e.g. classes, attributes, and are target language independent.
However, in case target language specific code is needed a purely transformation-
based approach requires an abstract representation of the target language. To
avoid this and address customizability concerns (cf. Section 2), we allow to attach
templates to IR elements.

For instance, assume a transformation added a new method and the method
body should be defined. Rather than creating a new method body by using an



12 R. Eikermann, K. Hölldobler, A. Roth, and B. Rumpe

abstract representation and attaching it to the IR (which would make the IR
target language dependent), we attach a template for the new method. This
template contains the method implementation and may use the IR to access
values, e.g., the method name and parameters. To efficiently manage the tem-
plate attachments, we use an infrastructure that maps a template to a particular
AST element. It is, therefore, possible to attach multiple templates to one AST
element as shown in Figure 4 or even to attach one template to multiple AST
elements.

Besides attaching one or multiple templates, it is also possible to define the
order in which templates of a AST element are executed in the code generation
phase. The order of template execution is evaluated for each individual IR-AST
node. To modify template execution, the following operations are provided:

– Replace Operation: to replace a particular template from the template
extension.

– Add-Before Operation: to add a template at the beginning of the tem-
plate extension.

– Add-After Operation: to append a template at the end of the template
extension.

If multiple templates are marked to be executed first, last, or before a tem-
plate, the template registered first is executed. The operations for template at-
tachments may result in conflicting operations. For example, consider two replace
operations for the same template; or a cyclic replacement. Hence, conflicts are
handled as shown in Figure 6.

Cyclic add and replace operations, i.e., (a) and (b) in Figure 6, are resolved
by avoiding a transitive resolution of these operations and only resolve to depth
one, i.e., only one operation. For example, in (a) the first operation (execution
order is from top to bottom) is the replacement of template A with template B.
As a result, only the first operation is executed. Another example is shown in
(b) (execution order is from left to right and top to bottom), where only the
replacement of template A with template B is executed. Note that if a template
is replaced, all before and after templates of the replacing template are added.

However, operations on template attachments are executed sequentially, thus
run-time errors may occur. For example, when two replace operations sequen-
tially replace the same template, i.e., (c) in Figure 6, the latter replace operation
will fail, because the template has previously been replaced. In aspect-oriented
programming this is considered as the “fragile point cut” problem [32]. An ap-
proach to detect such errors is to process and analyze the sequence of template
attachment operations a priori to detect conflicts. However, this will involve
processing the complete code generator’s source code. Alternatively, another ap-
proach is to detect such conflicts at run-time of the code generator and inform
the developer but do not stop code generation.

The strong bond between templates and the IR AST demands for handling
template attachments, when the IR AST is transformed. For example, assume a
template tmpl is attached to the class C in the IR, then another transformation



Reuse and Customization for Code Generators 13

CpD
«template»

A

a) «replace»

«replace»
«template»

B

«template»

A

«replace» «template»

B

CpDb)

CpDc)

«template»

A

«replace» «template»

B

«replace»«template»

C

«template»

A

«replace» «template»

B

Key: resolved to

«template»

A

«replace» «template»

B

«replace» «template»

C

«template»

A

«replace» «template»

B

Fig. 6. Conflict resolution is done by only executing the first replace operation (a,c) in
a non-transitive manner (b).

changes C and attaches another template tmpl2. With one exception - AST
element deletion -, the result of this will be that the AST element will have
both templates attached tmpl and tmpl2. In the case, when the AST element is
deleted, we also delete the attachment.

4.4 Generating Code

After all transformations have successfully been applied and templates have been
attached to AST elements, the resulting IR needs to be mapped to concrete code.



14 R. Eikermann, K. Hölldobler, A. Roth, and B. Rumpe

The essential requirements for such a mapping is a clear understanding of how
to map each element of the IR to the output language source code and a set of
default templates for the output language that realizes this mapping.

As the main goal of the IR was to abstract from specific output language con-
cepts and provide only relevant object-oriented programming concepts, mapping
the IR to an object-oriented language is straight forward. This means classes,
interfaces, enumerations, and attributes can easily be mapped to object-oriented
programming languages. Association and composition are the only two concepts
with varying semantics, since different approaches have been proposed on how
to perform this mapping, e.g. [15, 14]. However, the most simplest approach is to
add a variable storing the associations links to the source class of the association
and add corresponding mutators and accessors for each association direction.
This simple mapping is realizable by every object-oriented programming lan-
guage.

Having a mapping of the IR AST to an output language, a set of templates
that realizes this mapping is needed. Indeed, this has to be done for each output
language that is to be generated. However, it allows for exchangability of the
output language, as the IR AST structure is not changed. However, it needs to
be considered that attached templates are written in the output language and
need to be exchanged as well.

As shown in Figure 4, the template engine is called with the transformed
IR AST and the default set of templates. The template engine traverses the
input AST and for each visited AST node the attached templates are called. If
no template is registered for an AST element, then a default template for this
type of AST element is used from the default template set. The output is either
written to a file or returned as a result to be embedded in another output.

4.5 DISCUSSION

Since this approach merges templates and transformation it needs to be discussed
in which cases to use templates and in which cases to use transformations. Cer-
tainly, this cannot be answered in general. However, in current literature [26] it
is proposed to use templates for code that does not require much computation
and is primarily static. For instance, graphical user interface code calls meth-
ods from libraries. In contrast, transformations should be used whenever static
checking is required for certain elements. For example, by adding a class to the
IR, certain properties can be checked. Moreover, changes that affect the overall
code generation, e.g., name of classes, and, thus, require changes that regard
different output files should be realized as transformations.

A disadvantage of the simplified IR is the lack of output language specific
concepts, e.g. Java annotations. While for most cases it is sufficient to neglect
them (e.g. @Override), they are of essential importance when generating e.g.
J2EE applications. However, the IR can be extended with additional stereotypes.
Each stereotype can then be used to define output language specific annotations.
Besides stereotypes, other output language specific concepts that cannot be rep-
resented using the IR. In this case, either the IR has to be extended or already



Reuse and Customization for Code Generators 15

unverified

SC Verification

setOverdraft

for Account

CD Banking

+

:State

initial = true

name = "unverified"

:Transition

from = "verified"

input = "setOverdraft"

to = "unverified"

:State

initial = false

name = "verified"

:Transition

from = "unverified"

input = verify

to = "verified"

name = "Verification"

:StateChart

input model ASTs

+

name = "Account"

:Class

name = "overdraft"

type = "double"

:Attribute

…

verified

verify

double overdraft

Account

name = "Banking"

:ClassDiagram

input models

Fig. 7. Graphical notation of input models and corresponding abstract syntax (con-
tinued in Figure 8).

existing concepts of the IR have to be reused. Perhaps, output language specific
templates can be used to resolve this issue.

As code generators are software systems on their own, they have to address
issues such as maintainability and complexity as well. In our approach we do not
particularly address these issues. Instead, we provide an approach to structure
the code generation as a whole. We try to tackle these challenges by providing
signatures for templates, i.e., templates have signatures such as methods and
can simply be invoked with different arguments. In addition, guidelines have to
be designed in order to prevent transformations and templates to become too
complex.

Another challenge that has to be addressed results from the operations on
template attachments, which can introduce syntax errors in the generated source
code. A typical cause for such syntax errors is the use of incomplete target
language statements in templates that combined with other templates produce
syntactically correct source code but if these templates are executed in the wrong
order or are replaced, the resulting source code may contain syntax errors. A
restriction of templates to only syntactically correct target language statements
has been proposed in [40, 41] to address this issue. However, this approach is not
of practical use because it restricts the flexibility of the proposed code generation
approach. Hence, the proposed approach is not restrictive and demands for a
methodological approach to handle this challenge.

5 USE CASE

To demonstrate the proposed approach, we provide an example that extends the
motivating example from Section 2 with Statecharts. In Figure 7, two different
representations of the input models are shown. On the left-hand side is the



16 R. Eikermann, K. Hölldobler, A. Roth, and B. Rumpe

graphical notation and on right-hand side is the condensed parsed form as an
AST. The class diagram provides the static part of a data-centric application,
i.e., the class Account with one single attribute overdraft (condensed model
from Section 2). This attribute stores the maximum possible amount of overdraft
for a specific account.

The presented application in Figure 1 provides functionality to load and
store data. However, this data is not validated. We use the flexibility of the
presented approach to extend this with behavioral aspects using Statecharts.
It is important to verify all changes on the overdraft attribute, thus we use a
Statechart to keep track if the current overdraft is verified (by an internal process
of the bank).

The Statechart Verification is bound to the class Account using the for
Account tag. It defines two states for the corresponding class unverfied and
verified, meaning each instance of Account gets it’s own associated state. The
state unverified is the initial state. Each new account needs verification of the
overdraft. Two stimuli are defined which handle the transitions between states
during lifetime of an Account. The internal verification process is encapsulated
in the stimulus verify. The process is designed in such a way, that it always
ends with a verified account, but may include adjustment of overdraft. Every
time the overdraft changes the state switches to unverified.

Both input models are parsed (separately) into independent ASTs as shown
in Figure 7. Parsing of the models and creation of the AST is easily possible
with the MontiCore Language Workbench [22]. The AST of the Banking class
diagram consists of the class Account and has the attribute overdraft of type
double attached. The Statechart AST consists of the two states verified and
unverfied and two connecting transitions verify and setOverdraft. Since no
initial transformations have to be performed (but could be if e.g. the Statechart
would have hierarchical states), the next step is to build up the IR from both
ASTs, as shown in Figure 8 (cf. Section 4).

FreeMarker

1 public class ${ast.getName ()}{
2 <#list ast.attributes as attr >
3 ${include("PrivateAttributeDecl")}
4 </#list >
5 //...
6 <#list ast.methods as method >
7 ${include("EmptyMethodBody")}
8 </#list >
9 }

Listing 1. Default Template to generate a Java Class.

As we are aiming at an object-oriented target programming language, we use
the AST of the CD4D DSL (cf. Section 4.1). The root element CDDefinition



Reuse and Customization for Code Generators 17

(left-hand-side in Figure 8) bundles all classes and associations. The input class
Account is directly transformed in the corresponding class element CDClass from
CD4D. Attached is the overdraft attribute that was modeled in the input.
Additionally, the Statechart AST is transformed into three classes implementing
the Statechart pattern [12] and an association. The class VerificationState
is the abstract super class for the two states, which are implemented by the
classes Unverified and Verified. The Statechart Verification is bound to
the Account class and thus an association connecting each Account. Its actual
state is the class VerificationState, which is attached to the CDDefinition
root element. Note that the SC tag in the IR-AST denotes the elements created
from the Statechart input model, whereas the CD tag denotes the elements
created form the class diagram input model.

In a next step, the IR is transformed by endogenous transformations to lift
the stimuli into the Account class by creating a method for each stimulus: verify
and setOverdraft (right-hand-side in Figure 8). Via template attachment, the
corresponding method body is attached as shown for the verifymethod. For the
method setOverdraft, we attached (a) setter functionality from the input class
diagram and (b) the Statechart transition handling. Further transformations on
the IR can add persistence functionality, builders for all classes, or a GUI.

Finally, in the last step, the IR needs to be mapped to Java code. A default
set of templates is required to perform this mapping. Having such a default
set, code is generated by traversing the IR-AST and calling a template, which
is either attached or defined as a default template for this particular type of
AST elements. An example of a default template to generate a Java class from
the IR is shown in Listing 1. It shows that classes of the IR can directly be
mapped to Java classes. It also defines that for all attributes, which will become
global variables in the Java source code, the PrivateAttributeDecl template is
called if no attachment is defined. For methods, the EmptyMethodBody template
is used. With respect to the above example, for the verify method, this default
template is neglected and the attached template is called.

This use case shows two of the main benefits of the approach: (a) generating
Java code from the IR is straight forward, and (b) default templates are small and
maintainable (the generator consists of 8 templates only to generate arbitrary
Java classes).

6 RELATED WORK

Code generation as an integration of transformations and templates, is based on
several approaches that have been proposed in order to improve code genera-
tion. Additionally, there are approaches used in reverse engineering that involve
transformations and code generation such as [3]. However, their main focus is
on model extraction instead of a flexible combination of transformation- and
template-based code generation.

An approach to integrate template-based code generation into graphical
model transformations has been proposed in [16]. It allows to graphically model



18 R. Eikermann, K. Hölldobler, A. Roth, and B. Rumpe

:CDClass

name = "Verified"

extends = "VerifactionState"

:CDClass

name = "VerifactionState"

abstract = true

intermediate AST

:CDAttribute

name = "overdraft"

type = "double"
«CD»

«SC»

«SC»

:CDClass

name = "Unverified"

extends = "VerifactionState"

«SC»

:CDAssociation

left = "Account"

right = "VerificationState"

rightRole = "state"

«SC»

«CD»

:CDClass

name = "Account"

AST elements added
by transformation

Template

Engine

Java Template Set Java

intermediate AST

public void verify(){

verificationState.verify();

}
«SC»

attached template

:CDAttribute

name = "overdraft"

type = "double"
«CD»

:CDMethod

name = "setOverdraft"

«CD» + «SC»

:CDMethod

name = "verify"

«SC»

:CDClass

name = "Verified"

extends = "VerifactionState"

«SC»

:CDClass

name = "VerifactionState"

abstract = true

«SC»

:CDClass

name = "Unverified"

extends = "VerifactionState"

«SC»

:CDAssociation

left = "Account"

right = "VerificationState"

rightRole = "state"

«SC»

«CD»

:CDClass

name = "Account"

:CDDefinition

name = "BankingApp"

:CDDefinition

name = "BankingApp"

derived from Statechart

derived from class diagram

Fig. 8. Constructing an IR from the input models (left-hand-side) and attaching tem-
plates to methods (right-hand-side).

endogenous transformations and use a template language to generate strings to
define method bodies. A similar approach has been presented in [2]. As opposed
to these approaches, our approach is broader as it allows for endogenous and
exogenous transformations by employing an IR. Moreover, our approach regards
templates as the primary artifact to generate concrete source code. Templates
may not only be used to generate method bodies but also complete target lan-
guage constructs such as classes with methods.

A fully transformation-based approach that systematically transforms the
input model into concrete source code has been proposed in [20]. It is based on a
meta-model of the target language that is extended with additional concepts to
allow merging the generated code, e.g. partial classes. By using transformations
the target language meta-model is consecutively transformed and the result is
pretty printed to an target file. To explain practical use of code generation as
model transformations, the approach has been evaluated for generating code
from sequence diagrams [23]. Another transformation-based approach for a Java-
based IR has been proposed by [10]. Their IR is enriched with EJB specific
concepts to generate Java EJB applications. After applying all mode-to-model
transformations, a model-to-text transformation pretty prints the target into
a file. In contrast, our approach does not require a meta-model of the target
language but uses an intermediate representation instead to be target language
independent. Moreover, all templates attached to the AST are not regarded by
the transformations, which allows templates to neglect the resulting code.



Reuse and Customization for Code Generators 19

In [13] an approach has been presented that transforms the input model to
a token tree first and, afterwards, to a search tree to, finally, use templates to
generate code. In contrast to our proposed approach, this approach does not
make use of one intermediate representation but instead for each model a differ-
ent token and search tree is created. Moreover, only one template is attached to
the root element of the tree. It then handles all children. Our approach allows
to attach multiple templates to every AST element of the IR.

Another approach that separates transformations and template-based code
generation has been described by the openArchitectureWare system [19], which
is now part of the Xtext project [38, 5]. It proposes a workflow that involves
a transformation step prior to the code generation step. The basic idea of our
approach is similar but we extend it to allow a set of default templates, an
intermediate representation, and allow template attachments to instances of AST
elements rather then types of AST elements.

The Clearwater code generation approach uses an XML-based IR [33]. Al-
though the IR is not restricted to an input or a target language, because it
accepts arbitrary new tags, this IR hampers well-formedness checking due to its
XML basis.

In [27], an IR for template-based code generation to separate the input model
and the target source code from the code generation process and achieve flexibil-
ity has been proposed. However, the IR is restricted to class diagrams as input
and mixes AST and additional symbol related information.

Additionally, a meta-model transformation-based approach, which uses the
target language’s meta-model as an IR, has been proposed in [20]. A similar
approach based on a Java IR with additional EJB extensions to generate Java
EJB applications is described in [10]. Both meta-model-based approaches use
target language meta-models, which makes them target language dependent and
reduces developers flexibility because it contains every detail of the generated
code.

7 CONCLUSION

Code generation in model-driven development targets generation of source code
from abstract models. Even though approaches exist for performing this transfor-
mation, they mainly focus on code generation and neglect aspects as flexibility,
reusability, and maintainability. In the introduction, we have therefore discussed
the main principles necessary for a good code generator.

Afterwards we have presented an approach that integrates template- and
transformation-based code generation to address those principles. As a result, a
user of this approach is able to flexibly choose how much of the generation process
is done by transformations and at which point templates are better suited for the
remaining generation process. For this purpose, we separated the code generation
process into three phases. First, as a preparation the abstract syntax tree can be
normalized and once this is done, be mapped to an intermediate representation
(IR). It represents an abstraction from object-oriented programming languages



20 R. Eikermann, K. Hölldobler, A. Roth, and B. Rumpe

and forms a lightweight version of UML class diagrams. With this abstraction
the whole code generation is output language independent. In the second phase,
the IR can be refined and output language specific templates can be added
to add detailed output dependent information. In the last phase, we employ
a template engine and a set of templates for an output language to generate
concrete source code. The template engine traverses the IR AST and calls the
attached templates. If no template is attached, a default template defined for
the particular AST type is used.

It is, however, difficult to decide without much empirical evidence, whether
this form of combined code generation will be appropriate to get more every-day
developers and especially agile developers towards using abstract models and
code generators, instead of handcoding. However, in our projects, a number of
them are industry relevant, we experienced that this form of code generation is
really of help and improves the overall productivity. However, we are somewhat
biased and thus don’t count as empirical evidence. It would be nice, if others can
comment on these principles and the presented approach, to get more knowledge
about what does work well and what needs to be changed.



Bibliography

[1] Baar, T., Whittle, J.: On the Usage of Concrete Syntax in Model Transformation
Rules. In: 6th International Andrei Ershov Memorial Conference on Perspectives
of Systems Informatics. Springer-Verlag (2007)

[2] Balogh, A., Varró, D.: Advanced Model Transformation Language Constructs in
the VIATRA2 Framework. In: ACM Symposium on Applied Computing. ACM
(2006)

[3] Brunelière, H., Cabot, J., Dupé, G., Madiot, F.: MoDisco: A model driven reverse
engineering framework. Information and Software Technology 56(8) (2014)

[4] Chared, Z., Tyszberowicz, S.S.: Projective Template-Based Code Generation. In:
CAiSE’13 Forum at the 25th International Conference on Advanced Information
Systems Engineering. vol. 998. CEURS-WS.org (2013)

[5] ekkes corner: Mobile && iot. https://ekkescorner.wordpress.com/2009/07/
16/galileo-openarchitectureware-moved-to-eclipse-modeling-projects-
oaw5/ (October 2015)

[6] Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

[7] Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
2nd OOPSLA’03 Workshop on Generative Techniques in the Context of MDA
(2003)

[8] Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3) (2006)

[9] Di Ruscio, D., Eramo, R., Pierantonio, A.: Model Transformations. In: Formal
Methods for Model-Driven Engineering, LNCS, vol. 7320. Springer Berlin Heidel-
berg (2012)

[10] El Beggar, O., Bousetta, B., Gadi, T.: Automatic code generation by model trans-
formation from sequence diagram of system’s internal behavior. International
Journal of Computer and Information Technology 1(02) (2012)

[11] Eliens, A.: Principles of Object-Oriented Software Development. Addison-Wesley
Longman Publishing Co. Inc. (1994)

[12] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional (1995)

[13] Geiger, L., Schneider, C., Reckord, C.: Template- and modelbased code generation
for MDA-tools. Tech. rep. (2005)

[14] Génova, G., Del Castillo, C.R., Llorens, J.: Mapping UML Associations into Java
Code. Journal of Object Technology 2(5) (2003)

[15] Gessenharter, D.: Implementing UML Associations in Java: A Slim Code Pattern
for a Complex Modeling Concept. In: Workshop on Relationships and Associations
in Object-Oriented Languages (RAOOL ’09). ACM (2009)

[16] Girschick, M.: Integrating Template-Based Code Generation into Graphical Model
Transformation. In: Modellierung 2008. Berlin (2008)

[17] Greifenberg, T., Hölldobler, K., Kolassa, C., Look, M., Mir Seyed Nazari, P.,
Müller, K., Navarro Pérez, A., Plotnikov, D., Reiss, D., Roth, A., Rumpe, B.,
Schindler, M., Wortmann, A.: A Comparison of Mechanisms for Integrating Hand-
written and Generated Code for Object-Oriented Programming Languages. CoRR
abs/1509.04498 (2015)



22 R. Eikermann, K. Hölldobler, A. Roth, and B. Rumpe

[18] Greifenberg, T., Hölldobler, K., Kolassa, C., Look, M., Mir Seyed Nazari, P.,
Müller, K., Navarro Pérez, A., Plotnikov, D., Reiss, D., Roth, A., Rumpe, B.,
Schindler, M., Wortmann, A.: Model-Driven Engineering and Software Develop-
ment: Third International Conference, chap. Integration of Handwritten and Gen-
erated Object-Oriented Code. Springer International Publishing (2015)

[19] Haase, A., Völter, M., Efftinge, S., Kolb, B.: Introduction to openarchitecture-
ware 4.1. 2. In: MDD Tool Implementers Forum at TOOLS Europe. http:
//www.dsmforum.org/events/mdd-tif07/oAW.pdf (2007)

[20] Hemel, Z., Kats, L.C.L., Groenewegen, D.M., Visser, E.: Code generation by model
transformation: a case study in transformation modularity. Software & Systems
Modeling 9(3) (2010)

[21] Krahn, H., Rumpe, B., Völkel, S.: Monticore: Modular development of textual
domain specific languages. In: Proceedings of Tools Europe (2008)

[22] Krahn, H., Rumpe, B., Völkel, S.: Monticore: a framework for compositional de-
velopment of domain specific languages. In: International Journal on Software
Tools for Technology Transfer (STTT). vol. 12, pp. 353 – 372 (2010)

[23] Kundu, D., Samanta, D., Mall, R.: Automatic code generation from unified mod-
elling language sequence diagrams. Software, IET 7(1) (2013)

[24] Mens, T., Czarnecki, K., Gorp, P.V.: A Taxonomy of Model Transformations. In:
Language Engineering for Model-Driven Software Development. Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und Forschungszentrum (IBFI) (2005)

[25] Mir Seyed Nazari, P., Roth, A., Rumpe, B.: Mixed Generative and Handcoded
Development of Adaptable Data-centric Business Applications. In: Proceedings of
the Workshop on Domain-Specific Modeling. ACM (2015)

[26] Mohan, R., Kulkarni, V.: Model Driven Development of Graphical User Interfaces
for Enterprise Business Applications - Experience, Lessons Learnt and a Way
Forward. In: Model Driven Engineering Languages and Systems, LNCS, vol. 5795.
Springer Berlin Heidelberg (2009)

[27] Reiß, D.: Modellgetriebene generative Entwicklung von Web-
Informationssystemen. Ph.D. thesis, RWTH Aachen University, Aachen
(2015)

[28] Roth, A., Rumpe, B.: Towards Product Lining Model-Driven Development Code
Generators. In: 3rd International Conference on Model-Driven Engineering and
Software Development. Springer International Publishing (2015)

[29] Rumpe, B.: Modeling with UML. Springer (2016)
[30] Rumpe, B., Weisemöller, I.: A Domain Specific Transformation Language. In:

Workshop on Models and Evolution. vol. 11 (2011)
[31] Rumpe, B.: Agile Modeling with UML: Code Generation, Testing, Refactoring.

Springer International (2017)
[32] Störzer, M., Koppen, C.: PCDiff: Attacking the Fragile Pointcut Problem. In:

European Interactive Workshop on Aspects in Software (2004)
[33] Swint, G.S., Pu, C., Jung, G., Yan, W., Koh, Y., Wu, Q., Consel, C., Sahai, A.,

Moriyama, K.: Clearwater: Extensible, Flexible, Modular Code Generation. In:
20th IEEE/ACM international Conference on Automated software engineering.
ACM (2005)

[34] Visser, E.: Meta-programming with Concrete Object Syntax. In: Generative Pro-
gramming and Component Engineering, LNCS, vol. 2487. Springer Berlin Heidel-
berg (2002)

[35] Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L.,
Visser, E., Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages. dslbook.org (2013)



Reuse and Customization for Code Generators 23

[36] Wachsmuth, G.: A Formal Way from Text to Code Templates. In: Fundamental
Approaches to Software Engineering, LNCS, vol. 5503. Springer Berlin Heidelberg
(2009)

[37] www: OMG UML Specification. http://www.omg.org/spec/UML/2.5/ (October
2015)

[38] www: openarchitectureware. https://web.archive.org/web/20140225123932/
http://www.openarchitectureware.org/index.php (October 2015)

[39] www: Apache maven project. https://maven.apache.org/ (August 2017)
[40] Zschaler, S., Rashid, A.: Symmetric Language-Aware Aspects for Modular Code

Generators. Tech. Rep. TR-11-01, King’s College, Department of Informatics
(2011)

[41] Zschaler, S., Rashid, A.: Towards modular code generators using symmetric
language-aware aspects. In: Proceedings of the 1st International Workshop on
Free Composition. pp. 6:1–6:5. FREECO ’11, ACM, New York, NY, USA (2011)




