
Retrofitting Type-safe Interfaces into Template-based Code Generators

Kai Adam, Arvid Butting, Oliver Kautz, Jerome Pfeiffer, Bernhard Rumpe and Andreas Wortmann
Software Engineering, RWTH Aachen University, Aachen, Germany

Keywords: Model-driven Development, Template-based Code Generation.

Abstract: Model-driven development leverages transformations to produce general-purpose programming language ar-
tifacts. Model-to-text (M2T) transformations facilitate ad-hoc transformation development by requiring less
preparation than model-to-model transformations. Employing template engines is common for M2T trans-
formations. However, the M2T transformation artifacts (templates) rarely provide interfaces to support their
black-box integration. Instead, composing templates requires in-depth expertise of their internals to iden-
tify and pass the required arguments. This complicates their reuse, and, hence, code generator development.
Where switching to more expressive template engines is not feasible, conceiving templates as models can
alleviate these challenges. We present a method to retrofit type-safe signatures into templates, generate typed
interfaces from these, and show how this can be utilized to compose independently developed templates for
more efficient code generator engineering.

1 INTRODUCTION

Model-driven development (France and Rumpe,
2007) lifts abstract models to primary development
artifacts. These are better suited to automated analy-
sis and transformation. For the transformation of mo-
dels, two paradigms have emerged: model-to-model
(M2M) and model-to-text (M2T). The former em-
ploy transformation languages, such as ATL (Jouault
et al., 2006), to translate models of a source language
into models of a target language, which requires ha-
ving a formalization of the target language at hand.
The latter translate models of a source language into
arbitrary textual artifacts. Usually, such M2T code
generators read models of the source language and
either use string concatenation or templates to pro-
duce general-purpose programming language (GPL)
artifacts. Templates encode transformations in text
resembling the target GPL augmented with static and
dynamic template language constructs such as condi-
tionals or loops. Parametrized template calls assign
the passed arguments to the templates’ variable ele-
ments (e.g., variables). In case the parameters ex-
pected by templates are not made explicit – such as
with FreeMarker (Forsythe, 2013) or Velocity (Har-
rop, 2004) – developers have to understand the in-
ternals of the templates to be (re)used and identify
their parameters manually. This requires cumbersome
white-box template inspection. Where switching to a

code generator employing a template engine suppor-
ting type-safe template integration is not possible due
to legacy constraints, retrofitting it into existing gene-
rators can facilitate their development.

We present a concept to retrofit type-safe template
integration into template-based code generators. To
this end, we conceive templates as models, integrate
signatures non-invasively, and generate GPL interfa-
ces that enable type-safe template calls. As most tem-
plate engines support using GPL APIs, the latter es-
pecially enables type-safe template integration from
other templates and facilitates reuse of templates by
enabling their type-safe black-box integration. The
contribution of this paper, hence, is:

• A concept for retrofitting type-safe template inte-
gration into existing code generators.

• The application of this concept using the Free-
Marker template engine.

• A case study on enhancing the code generators
of the MontiArcAutomaton architecture modeling
infrastructure.

In the following, Section 2 describes prelimina-
ries, before Section 3 motivates the benefits of type-
safe template integration. Afterwards, Section 4 in-
troduces our concept and Section 5 its implementa-
tion. Subsequently, Section 6 describes the case study.
Section 7 discusses related work and Section 8 de-
bates observations. Ultimately, Section 9 concludes.

Adam, K., Butting, A., Kautz, O., Pfeiffer, J., Rumpe, B. and Wortmann, A.
Retrofitting Type-safe Interfaces into Template-based Code Generators.
DOI: 10.5220/0006605001790190
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 179-190
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

179

[ABK+18] K. Adam, A. Butting, O. Kautz, J. Pfeiffer, B. Rumpe, A. Wortmann:
Retrofitting Type-safe Interfaces into Template-based Code Generators.
In: Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD'18), pg. 179-190. SciTePress, Jan. 2018.
www.se-rwth.de/publications

2 PRELIMINARIES

We demonstrate our concept using the FreeMarker
template engine. Therefore, we enrich templates
with signatures, parse these templates with the Mon-
tiCore language workbench, and produce Java clas-
ses wrapping the templates according to their signatu-
res. MontiArcAutomaton is used as a running exam-
ple throughout the paper to demonstrate the benefits
of retrofitting type-safe template integration into ex-
isting code generators. This section introduces Free-
Marker, MontiCore, and MontiArcAutomaton.

2.1 FreeMarker

The FreeMarker template engine (Forsythe, 2013)
supports features typical to template languages, such
as static text, comments, variables, control structures,
various built-in operations, and template calls. Pas-
sing arguments to templates is implicit with FreeMar-
ker: the invoked template inherits all variables from
the invoking template. This lack of explicit parame-
ters prevents template developers from identifying the
template’s contract, consisting of the parameters re-
quired to perform as desired, the returned values (if
any), and side effects (e.g., defining new variables).
Consequently, errors in parametrization (missing ar-
guments, wrong types) and issues caused by side ef-
fects that introduce dependencies (such as setting va-
riables expected by other templates) are detected at
template run time earliest.

2.2 MontiCore

MontiCore (Haber et al., 2015) is a workbench for ef-
ficient modeling language development. It employs
EBNF-like, context-free grammars (CFGs) for inte-
grated definition of concrete and abstract syntax. To
validate constraints not expressible with CFGs, Mon-
tiCore features a compositional context condition fra-
mework (Völkel, 2011), where context conditions are
well-formedness rules reified in Java. From a lan-
guage’s CFG, MontiCore generates the corresponding
abstract syntax classes and an infrastructure to parse
textual models into abstract syntax tree (AST) instan-
ces. The AST instances store the content of models,
free from concrete syntax. For code generation, Mon-
tiCore also features a template-based code generation
framework based on FreeMarker to translate AST in-
stances into arbitrary target representations. Moreo-
ver, MontiCore supports compositional language in-
tegration (Clark et al., 2015) via inheritance, embed-
ding, and aggregation (Haber et al., 2015).

component PathEvaluator[int min] {

port in int dist,

port out boolean pathBlocked;

behavior automaton {

states f, b;

initial f;

f -> f [dist >= min] / pathBlocked = false;

f -> b [dist < min] / pathBlocked = true;

b -> b [dist < min] / pathBlocked = true;

b -> f [dist >= min] / pathBlocked = false;

}

}

01

02

03

04

05

06

07

08

09

10

11

12

13
embedded automaton language

directed ports to
the environment

MAA

Figure 1: Atomic component embedding an automaton mo-
del of another stand-alone language.

2.3 MontiArcAutomaton

MontiArcAutomaton (Ringert et al., 2015) is an ar-
chitecture modeling infrastructure realized with Mon-
tiCore. It comprises a component & connector archi-
tecture description language (ADL) (Medvidovic and
Taylor, 2000) and several code generators translating
models into various GPL realizations (Ringert et al.,
2014). Its ADL leverages MontiCore’s language em-
bedding features to integrate modeling languages into
components that describe their behavior.

MontiArcAutomaton distinguishes component ty-
pes (denoted components) and component instan-
ces (denoted subcomponents), which are the units of
computation and define interfaces of typed, directed
ports. Composed components yield configurations of
subcomponents that exchange messages via connec-
tors between their interfaces. Atomic components
instead embed a behavior description of a suitable
modeling language. A corresponding model of an
atomic component is depicted in Figure 1. The com-
ponent of name PathEvaluator is used to determine
whether there are obstacles in front of a mobile robot.
To this end yields the configuration parameter min as
a threshold (l. 1) and an interface of two ports (ll. 2-
3). Its behavior is governed by an automaton model
(ll. 6-11), which is embedded from another modeling
language.

MontiArcAutomaton employs the parsers and
AST classes generated by MontiCore from its CFG to
translate textual architecture models into AST instan-
ces. It uses MontiCore’s template-based code gene-
ration framework to translate the ASTs into GPL ar-
tifacts. To support embedding different behavior lan-
guages into MontiArcAutomaton components, being
able to efficiently combine their code generators is
obligatory. Consequently, understanding the contract
of their templates is crucial.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

180

3 EXAMPLE

Consider developing a code generator translating
MontiArcAutomaton component models to executa-
ble Java artifacts using FreeMarker. With different
component behavior languages available, this also re-
quires integration of their respective code generators.
Obviously, development begins with implementing a
template for transforming each component model to
Java. An excerpt of the template responsible for pro-
ducing a class from the component model is depicted
in Figure 2.

public class ${ast.name} {

<#list ast.ports as port>

<#include "cd/Attribute.ftl">

</#list>

<#list ast.subcomponents as sc>

private ${sc.type.name} ${sc.name}(${sc.params});

</#list>

public void compute() {

<#if ast.behavior.isAutomaton>

<#include "automaton/Main.ftl">

<#else>

<#list ast.subcomponents as sc>

this.${sc.name}.compute()

</#list>

</#if>

}

// Additional transformation parts

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

FM

access to
model under

transformation

FreeMarker
constructs

template
composition

Figure 2: Excerpt of a template transforming component
models to Java. To this end, it includes the template Attri-
bute (l. 3) for the creation of Java attributes.

This template produces a class of the same name
as the component model (referencing to the model un-
der transformation as ast, l. 1). Afterwards, it itera-
tes of each port and produces a Java attribute by reu-
sing the template Attribute from a generator transla-
ting class diagrams to Java (ll. 2-4). To this effect,
the developer has to specify path and parameters of
that template. As the latter are not part of the tem-
plate call, she has to investigate the included template
and identify which of its variable parts are expected as
parameters. This may entail following the chain of in-
cluded templates to identify all expected parameters.
After creating members for each subcomponent (ll. 5-
7), it produces a method that is invoked whenever the
component should compute its behavior (ll. 9-17). In
this method, the template distinguishes between em-
bedded automata (l. 11) and composed components
(ll. 13-15). In case of an embedded automaton, a cor-
responding template from the respective generator is
included. This, again, requires comprehending its in-
ternals to pass the correct arguments. For composed
components, their compute() method is called.

The included template Attribute is depicted
in Figure 3. It does not explicate, which of its vari-
ables parts are expected as parameters (here type and

<assign instanceName = name.toLowerCase()>

private ${type.qualifiedName} ${instanceName};

public ${type.getFullName()} get${instanceName}() {

return ${instanceName};

}

01

02

03

04

05

06

FM

Figure 3: Template creating attributes of a Java class.

name) other than by not defining these. Consequently,
it also does not explicate their expected types. Whet-
her type is actually a type-related object with various
properties or just the type’s name is not elaborated.
To successfully include this template, the developer
hence must understand its internals.

Consequently, the template integration depicted in
Figure 2 will fail at run time as executing the Attribute
template without type and name yields errors. Instead
of switching to another, type-safe, template engine –
which entails redeveloping all existing code genera-
tors – the developer desires to make template calls in
to already employed engine type-safe and to report
related errors as soon as possible. This raises the fol-
lowing challenges:

RQ1 The parameters expected by a template are ex-
plicit and statically typed.

RQ2 The side effects of template integration, such as
defining new variables relevant to other templates,
are made explicit.

RQ3 The compatibility of template arguments can be
checked at design time.

RQ4 The resulting concept enables reusing existing
templates without modifications.

The next section presents a concept that addres-
ses these requirements via explicit template signatu-
res and enables a more efficient reuse of templates.

4 TYPE-SAFE TEMPLATE
INTEGRATION

This section presents a notion of template signatures
and the process of translating these into a GPL code
generator API able to invoke templates in a stable,
black-box fashion while supporting reuse of existing
templates. To this end, first the desired properties of
template signatures are be defined and reified in the
template language. Afterwards, these signatures are
translated into GPL classes usable as strongly-typed
template interfaces. Finally, this is retrofitted into ex-
isting code generators. The concept’s activities are
depicted in Figure 4, which is explained in the re-
mainder of this section.

Retrofitting Type-safe Interfaces into Template-based Code Generators

181

Det. well-

formedness

rules

Determine

signature

properties

Identify

reification

requirements

Create

stand-alone

language

Reify

template

language

[no]

template language

already reified?

Add well-

formedness

rules

Implement

interface

generation

AD

[needs

rules]

[does not require rules]

act Retrofit Template Engine

Extend with

in-place

elements

[no]

[yes] [yes]

separate

artifacts?

Ensure

backwards

compat.

Figure 4: Retrofitting a template engine.

4.1 Defining Template Signatures

A template signature defines the contract of a tem-
plate as typed inputs and outputs. A typed signature
includes an ordered list of typed arguments and, op-
tionally, an ordered list of typed return value para-
meters. With this, template signatures are similar to
method signatures in common imperative or object-
oriented GPLs: The unambiguous fully qualified met-
hod name of a method signature is analogous to the
fully qualified name of the template that defines the
signature. The typed and named method parameters
of a method signature correspond to the typed and na-
med parameters defined by a template signature. The
return type of a method signature is the similar to a
template signature’s return values. Multiple return va-
lues in a template signature can be bundled, e.g., to a
complex return type that comprises all return types as
members.

A template signature’s arguments define all inputs
required by the template (RQ1). Except for local va-
riables, only these arguments may be used inside the
template. The effect of a template call therefore only
depends on the passed input arguments. Explicitly de-
fining a template’s return value parameters enables
explicating the side effects of its execution (RQ2).
This, for instance, can be new variables calculated for
future use. We propose supporting multiple return va-
lues to facilitate returning multiple side effects.

4.2 Reifying Template Signatures

Retrofitting type-safe template signatures into exis-
ting template engines requires means to associate

these signatures with the corresponding templates.
This requires integrating signatures into the template
language of choice. A key challenge in extending
templates with signatures is that the template en-
gine still must be able to process extended templa-
tes, hence there are three integration options: (1) crea-
ting a dedicated modeling language for out-place sto-
red signatures similar to the header files in C/C++;
(2) reifying the template language with the language
workbench of choice; or, if this already exists, (3) ex-
tend the reified template language with signatures
using the extension mechanism of the selected lan-
guage workbench. As the former increases complex-
ity in maintaining and evolving the two separate arti-
facts (templates and their signature models), we pro-
pose to integrate signature information into the tem-
plate language. For this, its grammar (or metamo-
del and syntactic mapping) must be available. Where
a grammar exists, rebuilding a template parser using
grammar-based language workbenches, such as Mon-
tiCore (Krahn et al., 2010), Neverlang (Vacchi and
Cazzola, 2015), Spoofax (Wachsmuth et al., 2014),
or Xtext (Eysholdt and Behrens, 2010), is straight-
forward. Where the template language already was
reified, changes to it might break existing tools (such
as template analyses). Hence, in the latter two cases,
integration also requires to ensure backwards com-
patibility of the templates. This, for instance, can
be achieved by eliminating the signature informa-
tion through a pre-processing model transformation
prior to executing the templates. Afterwards, well-
formedness rules need to be identified. This includes
the uniqueness of template parameters, the availabi-
lity of their types, etc. and can implemented using
the realizing language workbenches’ facilities. This
can have the form of Java context conditions (Monti-
Core), OCL rules (Xtext), or a specific meta-language
(Spoofax). After realizing and integrating these rules,
templates can be parsed and their well-formedness
can be checked. Ultimately, a generator translating
templates into template interface classes is developed.

4.3 Generating Template Interfaces

The process of generating template interface classes
from signatures retrofitted into the template language
of choice is depicted in Figure 5: From a template
augmented with signature, a corresponding parser
(produced by the language workbench of choice) pro-
duces an instance of its abstract syntax (its AST). In
case as stand-alone template signature language was
created, the parser processes these models. Other-
wise, it processes the templates. During this, context
conditions check the validity of the templates with re-

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

182

Template

Parser

:

_:__:_

_:__:_

AST of templatetemplate with signature

reads

generates

generated template interface and return types

Interface

Generator

creates

Figure 5: Generating template interfaces.

spect to the parameters. This includes checking that
the name of each parameter and return types is unique
and that the templates does not reference inexistent
variables or parameters (RQ3). A template interface
generator specific to the signature language (which
can be the template language) and the GPL of tem-
plate engine’s API produces a GPL class representing
the template’s interface. This class yields methods to
invoke the template with parameters and return ty-
pes as defined by its signature. The generator used
for producing the template interface can be different
from the template engine to be wrapped. Hence, this
also supports cross-engine code generation for tem-
plate engines supporting the same GPL.

output
artifacts

M2T

Generator

Model

Parser

:

_:__:_

_:__:_

reads creates

AST of modelinput model

generates

calls

processes

generated template
interface and return types

Figure 6: Using the generated interfaces.

This signature facilitates reusing provided templa-
tes via the generated interface classes as illustrated
in Figure 6. Similarly, an input model of the lan-
guage to process is translated into its AST represen-
tation. This representation is used by a M2T genera-
tor specific to the target language that now can rely
on the generated template API to invoke templates in
a type-safe fashion to produce the output artifacts as
required. Assuming that the wrapped templates’ en-
gine supports leveraging GPL code (e.g., for perfor-
ming complex calculations during code generation),
the generated template interfaces enables to use the
same pattern for invoking templates from within ot-
her templates as well as from within GPL code arti-
facts. Not enforcing to use the generated GPL interfa-
ces supports reusing templates employing the legacy
template integration method (RQ4) where necessary,
i.e., its integration does not break existing code ge-

nerators. Ultimately, the generated template interface
class wraps a template and liberates template users
from in-depth knowledge about its internal structure.

5 TYPE-SAFE TEMPLATE
INTEGRATION FOR
FREEMARKER

We present an implementation of our concept using
FreeMarker, which leverages a MontiCore realization
of the FreeMarker language that is extended with tem-
plate signatures. Based on these, we produce template
interfaces as explained above. The overall activities
required to either develop new templates for type-safe
interfaces or to retrofit existing templates are illustra-
ted in Figure 7.

First, the generator developer has to decide whet-
her she wants to create a new template from scratch
or retrofit an existing template. For the former, she
needs to determine the template’s parameters and side
effects. The side effects are translated into return va-
lues from which a template-specific return data type is
generated. She specifies both in the template’s signa-
ture and adds its body, which is performing the M2T
transformation. In case the developer needs to retrofit
an existing template, she has to comprehend the tem-
plate under development to identify the parameters it
expects and the side effects it causes (such as assig-
ning values to other variables used by other templa-
tes). She specifies the side effects as return values and
adjusts the template accordingly. After creating or re-
trofitting a template, it is parsed and its GPL interface
class is generated. Additionally, in case the template
defines not only required arguments but also provi-
ded return values, a result data structure capable of
storing these is generated as well. The template inter-
face class yields a single generate(..) method that
takes the parameters specified in the template as input,
starts template processing using the FreeMarker API,
and returns an instance of the result data structure.

5.1 Integrating Template Signatures

Our concept relies on explicating the parameters and
side effects of templates. To this effect, we reify the
FreeMarker template language as a MontiCore lan-
guage and extend it with template signature elements.
We developed a MontiCore grammar for the FreeMar-
ker template language and augmented it with optional
template signatures. From this, MontiCore automati-
cally generates a parser and abstract syntax classes
for instances of the language. Our implementation

Retrofitting Type-safe Interfaces into Template-based Code Generators

183

Identify

template

parameters

Add

template

signature

Identify

template

side effects

Define

template

parameters

Create

template w.

signature
Parse and

check

template

Add

template

body
Generate

GPL

interface

Define

template

side effects

parameters

parameters

template template AST

results

results

[retrofit]

[create]

ADact Create Template Interface

Figure 7: Overview of the generation process with statically typed template interfaces.

requires String name, Type type

provides String instanceName

<assign instanceName = name.toLowerCase()>

private ${type.qualifiedName} ${instanceName};

public ${type.getFullName()} get${instanceName}() {

return ${instanceName};

}

${results.setInstanceName(instanceName)}

01

02

03

04

05

06

07

08

09

10

11

template
signature

stores side effect instanceName
in results data structure

Figure 8: Template generating an attribute implementation.
Its signature defines parameters and return values.

executes this parser and checks for each parsed tem-
plate whether its signature definition is correct (i.e.,
no redundant names, referenced types exist, etc.) and
valid in the template context (i.e., no missing parame-
ters). It also prevents multiple signature definitions in
a template. If the template can be parsed and the con-
text condition checks pass, the implementation conti-
nues with generating the template interfaces.

Regarding the data types of parameters and return
types, we exploit that FreeMarker features a Java API
and assume that the types are either built-in or han-
dcrafted Java types and that they are referenced via
their fully qualified names. Template developers de-
fine a template’s signature directly at the beginning of
the template. The signature comprises a list of typed
and named parameters (RQ1) and, optionally, a list of
typed and named return values (RQ2). As signatures
are optional, this guarantees backward compatibility
(RQ4) by construction. After parsing the template,
this information is made explicit in the template AST.

Figure 8 depicts an improvement of the
Attribute template of Figure 3: the template’s
new signature defines that it requires two parameters
(l. 1) and provides a single return value (l. 2). The
definition of parameters begins with the keyword
requires and is followed by a list of input parame-
ters consisting of the parameters’ types and names.
Similarly, the definition of returned values starts

with the keyword provides and is followed by a list
of typed and named return values. Both, required
and provided parameters are optional. However, for
generating a template interface class, at least required
parameters (l. 1) must be provided. The subsequent
list of provided return values (l. 2) is optional for this
as well. In the template body, parameters are accessi-
ble by their names (e.g., l. 4). A structure generated
from the template’s return values is accessible as
results from within the template and can be used
for explicating side effects (l. 11). Its methods and
attributes are derived from the templates provided
parameters. The interfaces generated for templates
(a more detailed description is given in Section 5.2)
enables passing arguments in a type-safe fashion and
are usable from inside the template as well. Invoking
the generate() method of an interface derived from
a template yields an instance of its return value type
that stores the text and all return values produced
during template execution.

5.2 Generating Template Interfaces

The template interface generator implementation uses
MontiCore’s code generation framework, which itself
employs FreeMarker. It takes an AST of a parsed tem-
plate as input and produces a Java API (template in-
terface) for template integration. The generated API
enables type-safe template integration with respect to
the arguments passed to a template and the return va-
lues produced as side effect during template execu-
tion. This ensures invoking templates in a type-safe
fashion and, hence, facilitates their integration, and
ultimately their reuse. For each retrofitted FreeMar-
ker template the generator produces the following two
artifacts:
1. A class of the template’s name serving as the

interface for type-safe template integration (cf.
JAttribute of Figure 9),

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

184

2. A class wrapping the return values of the tem-
plate’s signature to capture its side effects (cf. the
Java class JAttributeResults of Figure 9).
Generating and using these classes relies on ot-

her non-generated classes part of the run-time envi-
ronment of our implementation. The quintessential
types of our run-time environment are the Java inter-
face IResult (bottom-left of Figure 9) and the Java
class GeneratorEngine.

IResult. One feature all generated template in-
terfaces have in common is that invoking their
generate() method produce the text resulting from
applying the wrapped template to the passed argu-
ments. Consequently, all implementations of return
value types must implement this interface, which spe-
cified that the return value type at least features the
methods setText(String) and getText().

Generator Engine. Each template interface uses
the class GeneratorEngine (cf. Figure 9) as facade
to the Java API of FreeMarker). The class provides a
default generator setup, which enables to use the tem-
plate interface without in-depth generator engine con-
figuration knowledge. To this effect, it wraps all re-
levant generator configuration parameters. Neverthe-
less, in situations in which a generator configuration
might be indispensable (e.g., generator integration),
the generator developer is able to modify the default
configuration parameters by a smart generation gap.
The GeneratorEngine class features a process met-
hod invoking the FreeMarker API to trigger type-safe
template execution. The following focuses on the ge-
neration steps.

Based on the run-time environment types we pro-
duce two classes per template: return value type and
its interface.

Return Value Type Generation. Our approach
permits defining multiple return values in template
signatures and aims at generating a high-level Java
API in form of template interfaces. However, Java,
for instance, only allows defining single method re-
turn types. Thus, to enable returning multiple re-
turn values in response to a template interface inte-
gration, for each template, the interface generator pro-
duces a class containing a field for storing the gene-
rated text and a field for each of the template’s re-
turn values. Thus, an instance of the class returned
after template integration contains the text generated
by the template and the return values produced during
template execution as side effects. For instance, the
class ComponentResults is generated from the tem-
plate Component that is illustrated in the top right part

Component

ComponentResults generate(String compName,

List<ASTPort> ports)

generate(Path filePath, String compName,

List<ASTPort> ports)

String text

String className

ComponentResults

String text

JAttributeResults

generated from parameters

generated from return values

JAttribute

JAttributeResults generate(ASTType type,

String name)

generate(Path filePath, ASTType type,

String name)

requires ASTType type,

String name

JAttribute.ftl

01

02
requires String compName,

List<ASTPort> ports

provides String className

Component.ftl

01

02

03

String getText()

«interface»

IResult

wraps FreeMarker API

1

1

GeneratorEngine

process(Path templatePath, Map<String,Object>)ru
n
-t

im
e

e
n
v
ir

o
n
m

e
n
t

g
e
n
e
ra

te
d
 a

rt
if
a
c
ts

te
m

p
la

te
s

Figure 9: Different cases of template signatures and derived
template interfaces.

of Figure 9. For each return value of the template’s
signature, the class yields a member of the same type
and name as well as corresponding getters and setters.

In case a template does not define any return va-
lues, the generated class only contains a field for
storing the generated text (cf. template JAttribute
in Figure 9). Each generated class wrapping return
values implements the interface IResult that pro-
vides the method getText() for retrieving the text
produced during template execution. This facilitates
generator integration via ordered GPL template calls
and further processing of the generated text, as well
as template integration via inline-template calls.

Template Interface Class Generation. For each
template that contains a signature, the generator pro-
duces a class with the same fully qualified name as
the template. This provides a static generate() met-
hod for template integration (Figure 9). For instance,
the classes Component and JAttribute are genera-
ted of the respective same named templates. Each ge-
nerated class is associated to the GeneratorEngine
class, which is used by the generated method to wrap
FreeMarker’s Java API. For each of the template’s pa-
rameters, the generate() method signature has a pa-
rameter of the same type and name. The order of the
method’s parameters is the same order as defined by
the parameter list in the template signature. This fa-
cilitates type-safe template integration as inaccurate
template interface method integration are detectable
at design time (RQ3). The return type of the first
generated method is given by the Java type genera-
ted from the template’s return values. Besides the
generate() method described above, the generator
produces another generate() method that takes a

Retrofitting Type-safe Interfaces into Template-based Code Generators

185

public ComponentResults generate(

String compName, List<ASTPort> ports) {

ComponentResults results = new ComponentResults();

HashMap<String, Object> params = new HashMap<>();

params.put("compName", compName);

params.put("ports", ports);

params.put("results", results");

String artifactAsString = this.generatorEngine

.process(templatePath, params);

results.setText(artifactAsString);

return results;

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Figure 10: Derived generate() method of the Component
interface that returns an instance of ComponentResults.

file path as additional parameter. This method wri-
tes the text resulting from internally calling the first
generate() method into a file located at the speci-
fied file path. While the first generate() method is
mainly used for template and generator integration,
the second generate() method is used for genera-
ting files.

The implementation of the first generate() met-
hod of the Component class is presented in detail in
Figure 10. First, an object for wrapping the text re-
sulting from template execution and the return va-
lues produced by side effects is instantiated (l. 4).
Then, the attributes passed to the method are added
to a HashMap instance params (ll. 6-8). As the return
value wrapping object is added as additional explicit
template execution parameter (l. 9), manipulating its
content during template execution is possible. The
map is passed to a (not type-safe) process method
call on the GeneratorEngine (ll. 11-12), which ta-
kes care of removing template signatures from tem-
plates for backwards compatibility to the FreeMarker
engine. Afterwards, the result from calling the tem-
plate engine’s API is stored in the designated field of
the return value wrapping instance (l. 14), before the
method returns it (l. 15). The generated method is in-
vocable within templates and directly in Java artifacts.

The process method of the class GeneratorEn-
gine expects as argument a map that assigns attribute
names to Object instances. The instance assigned
to an attribute name represents the attribute’s value.
As the Java type Object is a super type of any ot-
her Java type, no fine grained assurances (except for
the assurances made by type Object) are given by
the arguments. Thus, the process() method of the
GeneratorEngine class (as well as the FreeMarker
API) is not type safe as arbitrary Java type instances
may be passed to it. However, as this method is invo-
ked by a method generated from the template’s signa-
ture, its type-safe use is entailed by construction.

te
m

p
la

te
s

g
e

n
e

ra
te

d

a
rt

if
a

c
ts

h
a

n
d

c
ra

ft
e

d

a
rt

if
a

c
ts

ru
n

-t
im

e

e
n

v
ir

o
n

m
e
n
t

requires String compName,

List<ASTPort> ports

provides String className

Component.ftl

01

02

03

requires ASTType type,

String name

JAttribute.ftl

Component

ComponentResults generate(String compName,

List<ASTPort> ports)

generate(Path filePath, String compName,

List<ASTPort> ports)

JAttribute

JAttributeResults generate(ASTType type,

String name)

generate(Path filePath, ASTType type,

String name)

ComponentMain

void generate(Path path,

ASTComponent node)

«Interface»

IGenerator

void generate(Path path, T node)

T extends ASTNode

comprises ordered
template calls

standardized
interface for
generator
composition

extension of
ASTNode

01

02

Figure 11: An overview of the artifacts generated and used
for generator integration.

5.3 Using Type-safe Template Calls

Our approach guides generator developers to an easier
and less error-prone development of template-based
code generators by using generated template interfa-
ces. Hence, an in-depth knowledge about the genera-
tor engine is not required.

Using Template Interfaces. Generator developers
can either use the default or a custom generator en-
gine configuration by a smart generation gap. In addi-
tion, the generate() methods of the template interfa-
ces are statically typed. Consequently, faulty parame-
trization of template integration is recognized by the
Java compiler at implementation time. For instance, if
the generator developer invokes the attribute template
(cf. Figure 8) via its template interface (i.e., its method
generate(ports)), the Java compiler recognizes in-
correct parameters and causes an error. Furthermore,
our approach generates an interface specific Result
class that wraps the templates content and additional
side effects as members.

It provides setters to assign values to the result pa-
rameters within the template for further processing.
For instance, the Attribute template uses the set-
ter method of this specific wrapper instance to as-
sign the instance name of the artifact to the result
instanceName (cf. l. 6 in Figure 8). Hence, the gene-
rator developer can access the result after M2T trans-
formation and use it for further processing steps, such
as generator and template integration.

Template Integration for Generators. Figure 11
illustrates the overview of the generated and used ar-
tifacts for generator integration. The IGenerator in-
terface is part of our run-time environment and provi-

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

186

des a generate() method with parameters path and
node. While the first parameter path enables the ge-
nerator developer to set the file path, the second pa-
rameter node is a generic extension of the ASTNode,
which must be specified in the generator implementa-
tion. In contrast to the generated template interfaces,
generator integration requires a handcrafted generator
implementation that implements the IGenerator in-
terface. They enable template orchestration, such as
manifesting template integration orders for various in-
terfaces, employing transformations of template inte-
gration resulting return values, and passing those va-
lues into consequent template invocations.

For instance, the ComponentMain generator im-
plements the IGenerator interface and enables the
generator developer to employ this generator on in-
stances of the ASTComponent type. An invocation
of the generate method reuses the generated inter-
faces JAttribute and Component and hands spe-
cific ASTComponent substructures, such as a list of
ASTPort instances, to the corresponding template in-
terfaces. Ultimately, this enables reusing and com-
posing template interfaces, as well as composing ge-
nerators with a standardized generator interface. The
next section presents a case study that introduces an
application of generator integration using MontiArc-
Automaton.

6 CASE STUDY

This section presents the integration of our type-safe
template integration mechanism into the MontiArc-
Automaton code generation framework. The aim of
the integration is to facilitate integration of the Monti-
ArcAutomaton structure code generator (responsi-
ble for translating ports, connectors, message pas-
sing, etc.) with the code generators responsible for
translating models of embedded behavior languages.
Prior to applying our retrofitting concept, the reusing
FreeMarker-based code generators required invoking
the templates responsible for translating embedded
behavior models directly. This raised the aforemen-
tioned problems of having to comprehend template
internals to pass the correct number and type of ar-
guments expected by the respective templates.

The code generators of MontiArcAutomaton com-
prise 55 FreeMarker templates and 41 Java classes
that are responsible for organizing template calls and
calculations of template arguments outgoing from
the passed component models. In our case study,
the component structure generator employs two be-
havior implementation generators to generate beha-
vior of components: one translates embedded Ja-

Automata

Trans
Val

List

Reqs Expr

MAA Generator

Comp Behavior

Conn
Sub

Comp

MainMain

black-box
template

integration

Port

Figure 12: Behavior generator integration realization.

va/P (Schindler, 2012) programs, the other embedded
I/O automata. Additionally, we reuse parts of a ge-
nerator translating UML/P (Rumpe, 2016) class di-
agrams to Java. The quintessential templates of the
MontiArcAutomaton structure generator and the I/O
automaton generator are depicted in Figure 12. Each
generator features a main template that defines its
configuration (e.g., assigning variables) and invokes
other templates.

The MontiArcAutomaton component structure
generator comprises a Component template that
invokes templates transforming ports, connectors,
subcomponents, and embedded behavior models. The
latter invokes the main template of the integrated be-
havior generators. As neither the main template, nor
the templates it invokes explicate the required para-
meters, the developer of the Behavior template must
comprehend the internals of each template of the I/O
automaton behavior generator. Similarly, the Port
template of MontiArcAutomaton’s structure genera-
tor uses the Member template of the class diagram ge-
nerator, which entails the same challenges.

Each template of the MontiArcAutomaton code
generation framework, the two behavior code gene-
rators, and the class diagram generator is post-hoc
equipped with a signature. With this, all necessary
template parameters are explicitly visible in the tem-
plate’s signatures. Therefore, our implementation ge-
nerates a statically typed interface for the template
calls, which facilitates the reuse of templates of ot-
her code generators. For example, the Java genera-
tor of MontiArcAutomaton generates private mem-
bers with getters and setters for ports in generated
component implementations. Similar to Java attribu-
tes, ports have a type and name.

With the generated template interfaces in place,
reusing templates of the class diagram generator to
produce class members from ports (passed as type and
name) is straightforward and prevents producing re-
dundant template code.

Retrofitting Type-safe Interfaces into Template-based Code Generators

187

requires: ASTComponent comp

provides: String className, String behaviorKind

public class ${comp.name} {

${results.setClassName(comp.name + "Impl")}

<#if comp.isAtomic>

${results.setBehaviorKind(comp.behavior.kind)}

</#if>

<#list comp.ports as p>

${JAttribute.generate(p.type,p.name).getText()}

</#list>

}

01

02

03

04

05

06

07

08

09

10

11

12
type-safe template integration

through generated interface class

Figure 13: Component template that returns the kind of the
embedded behavior description if the component is atomic.

The correctness of the arguments passed to
the templates is checked at design time, as the
generate() methods of the template interface are
statically typed with the type of the signatures’ pa-
rameters. Furthermore, some of the MontiArc-
Automaton templates additionally define results in
their signatures. The results are used to perform post-
generation steps that are closely related to or depend
on the generated code. In MontiArcAutomaton, for
instance, this is leveraged to realize generator inte-
gration of the MAAGenerator and the generators of
employed behavior languages. The template, which
generates a component implementation, returns the
kind of the embedded behavior language (cf. l. 3 in
Figure 13). MontiArcAutomaton then decides, which
behavior generators should be called.

Black-box integration of generators relieves gene-
rator developers from knowledge about template in-
ternals and thus facilitates template reuse, which ulti-
mately decreases the time required to implement code
generators. As this use case example demonstrates,
our concept supports to apply extension mechanisms
from software language engineering to realize com-
positional, extensible code generators.

7 RELATED WORK

To the best of our knowledge, our concept to retrofit
type-safe template integration into existing template
engines is unique. The results in can achieve, howe-
ver, are comparable to type-safety in existing template
engines. This section discusses these relations and ag-
gregates the results in Table 1, where the last column
depicts the features of applying our template inter-
face generation concept to FreeMarker as presented
in Section 5.

Acceleo (WWWa, 2017) provides a M2T trans-
formation language that supports developing transfor-
mations as plain text files containing transformation
commands as well as target language text. Its tem-
plates yield a signature containing at least the abstract

syntax concept being transformed. It supports an op-
tional third parameter enabling to pass a list of argu-
ments (of the same type). Hence, it supports type-
safe template calls with the limitation of passing ar-
guments of the same type or their most common base
type only. It does, however, not support specifying
the templates’ return types.

The shortcomings of FreeMarker (Forsythe, 2013)
are already discussed in Section 2.1. The Epsilon Ge-
neration Language (EGL) (Rose et al., 2008), Velo-
city (Harrop, 2004), and XPand (Klatt, 2007) are tem-
plate engines similar to it. All support developing
transformations as plain text files containing code
generation commands between target language frag-
ments. Velocity and XPand also rely on inheriting lo-
cal variables to called, signature-less templates. EGL
templates can be called from a template coordination
DSL that can pass maps of arguments to the tem-
plate. As the called template’s required parameters
are not made explicit, this does not allow for static
type-safety checking.

The template engines Jamon (WWWb, 2017) and
Twirl (Saxena, 2015) both support explicit signatu-
res of template parameters and the generation of GPL
template interfaces. Hence, both support statically ty-
ped template calls. Neither supports specifying the
templates’ return types, which complicates explica-
ting the side effects of template integration.

Templates of the Java Emitter Templates
(JET) (WWWc, 2017) feature a signature that
consists of the qualified name of the Java class to
be generated and a list of loosely typed parameters
(Java Objects). While facilitating tracing between
model (parts) and GPL artifacts, it does not support
type-safe template integrations.

Xtend (Bettini, 2016) is a programming language
extending Java with templating features that facili-
tate string concatenation. Using directives and con-
trol structures embedded into the template parts of a
Xtend method supports producing the target language
text using the methods’ signature for the embedded
template. While this returning complex structure to
capture the side effects of template execution, the
Xtend methods are not generated, hence they either
require handcrafting the specific return types or rely
on passing loosely typed structures (such as sets of
Java’s objects).

We captured the features of these template engi-
nes with respect to the capabilities of our retrofitting
concept in Table 1. Fully configurable typed template
parameters are supported by only half of the template
engines and template return types are supported only
by Xtend. However, none of the inspected template
engines supports type-safe and complete specification

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

188

Table 1: Features of template engines compared to the results of applying our concept to FreeMarker (last column).

Feature Acceleo EGL FreeMarker Jamon Twirl JET Velocity XPand Xtend Retrofit
Typed template
parameters

(X) × × X X X × × X X

Template return
types

× × × × × × × × X X

Side effect speci-
fication by con-
struction

× × × × × × × × × X

Statically typed
template calls

× × × X X × × × X X

GPL template in-
terfaces

× × × X X X × × X X

of side effects by construction as proposed through
generating result data structures from provided tem-
plate parameters. While this can be emulated with
Xtend by developing these data structures manually,
for each template method, this requires greater effort
and is more error-prone. However, where typed tem-
plate parameters are supported, this usually employs
GPL template interfaces that allow for statically ty-
ped template calls. Overall, this suggests that many
existing template engines could benefit from retrofit-
ting type-safe template integration into their langua-
ges and infrastructures.

8 DISCUSSION

Our approach to retrofit type-safe template integration
into template engines exploits conceiving templates
as models. It rests on making the parameters expected
by templates explicit and deriving a strongly typed
GPL API from these. Hence, each template’s parame-
ters are easily accessible and errors in their parame-
trization are detected by the compiler GPL at design
time. This reduces the need to analyze the internals of
the template to be (re-)used.

Although our concept reifies template signatures
on GPL level and we strongly recommend to use the
generated API even from within templates, we do not
eliminate unsafe operations from the template engine.
Considering, for instance, FreeMarker again, it is still
possible to call templates using its built-in include()
method and inheriting variables to the called template.
Eliminating this could be achieved easily by enfor-
cing a context condition prohibiting the related tem-
plate language elements, but would break backward
compatibility with existing templates.

Similar to M2M transformations, our approach
supports to optionally specify return types of templa-
tes, e.g., in terms of the abstract syntax classes pro-
duced by the respective template. This supports to

combine it with M2M transformations by interleaving
these with template calls and ultimately enables de-
velopers to choose the most suitable transformation
paradigm as appropriate.

9 CONCLUSION

We presented a concept to support the development of
template-based code generators by enabling a type-
safe template integration that ultimately facilitates
template reuse and hence code generator develop-
ment. This concept relies on considering templa-
tes as models and reifying their template languages
in a machine-processable fashion. Based on this,
template interfaces are generated that support static
checking of template argument compatibility, making
side effects of template execution explicit, and ena-
bling using the same template integration mechanism
from GPL artifacts and from within other templates.
We also illustrated the benefits of this concept using
its FreeMarker-based MontiCore realization for im-
proving code generators of the MontiArcAutomaton
architecture modeling infrastructure. Despite strong
requirements (especially reifying the employed tem-
plate language), we believe that formalizing the inter-
faces of code generators can greatly facilitate their de-
velopment and, ultimately, adoption of model-driven
development.

REFERENCES

Bettini, L. (2016). Implementing domain-specific languages
with Xtext and Xtend. Packt Publishing Ltd.

Clark, T., den Brand, M., Combemale, B., and Rumpe, B.
(2015). Conceptual Model of the Globalization for
Domain-Specific Languages. In Globalizing Domain-
Specific Languages, pages 7–20. Springer.

Eysholdt, M. and Behrens, H. (2010). Xtext: implement
your language faster than the quick and dirty way.

Retrofitting Type-safe Interfaces into Template-based Code Generators

189

In Proceedings of the ACM international conference
companion on Object oriented programming systems
languages and applications companion, SPLASH
’10, pages 307–309, New York, NY, USA. ACM.

Forsythe, C. (2013). Instant FreeMarker Starter. Packt Pu-
blishing.

France, R. and Rumpe, B. (2007). Model-driven Develop-
ment of Complex Software: A Research Roadmap.
Future of Software Engineering (FOSE ’07), (2):37–
54.

Haber, A., Look, M., Mir Seyed Nazari, P., Navarro Perez,
A., Rumpe, B., Völkel, S., and Wortmann, A. (2015).
Composition of Heterogeneous Modeling Languages.
In Model-Driven Engineering and Software Develop-
ment, volume 580 of Communications in Computer
and Information Science, pages 45–66. Springer.

Harrop, R. (2004). Introducing Velocity, pages 1–8. Apress,
Berkeley, CA.

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., and Val-
duriez, P. (2006). ATL: a QVT-like transformation
language. In Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems,
languages, and applications, pages 719–720. ACM.

Klatt, B. (2007). Xpand: A Closer Look at the model2text
Transformation Language.

Krahn, H., Rumpe, B., and Völkel, S. (2010). Monti-
Core: a Framework for Compositional Development
of Domain Specific Languages. International Jour-
nal on Software Tools for Technology Transfer (STTT),
12(5):353–372.

Medvidovic, N. and Taylor, R. (2000). A Classification
and Comparison Framework for Software Architec-
ture Description Languages. IEEE Transactions on
Software Engineering.

Ringert, J. O., Roth, A., Rumpe, B., and Wortmann, A.
(2014). Code Generator Composition for Model-
Driven Engineering of Robotics Component & Con-
nector Systems. In Model-Driven Robot Software En-
gineering Workshop (MORSE’14), volume 1319 of
CEUR Workshop Proceedings, pages 66 – 77.

Ringert, J. O., Roth, A., Rumpe, B., and Wortmann, A.
(2015). Language and Code Generator Composition
for Model-Driven Engineering of Robotics Compo-
nent & Connector Systems. Journal of Software En-
gineering for Robotics (JOSER), 6(1):33–57.

Rose, L. M., Paige, R. F., Kolovos, D. S., and Polack,
F. A. (2008). The epsilon generation language. In
European Conference on Model Driven Architecture-
Foundations and Applications, pages 1–16. Springer.

Rumpe, B. (2016). Modeling with UML: Language, Con-
cepts, Methods. Springer International.

Saxena, S. (2015). Mastering Play Framework for Scala.
Packt Publishing Ltd.

Schindler, M. (2012). Eine Werkzeuginfrastruktur zur
agilen Entwicklung mit der UML/P. Aachener
Informatik-Berichte, Software Engineering, Band 11.
Shaker Verlag.

Vacchi, E. and Cazzola, W. (2015). Neverlang: A fra-
mework for feature-oriented language development.
Computer Languages, Systems & Structures, 43:1–40.

Völkel, S. (2011). Kompositionale Entwicklung domänen-
spezifischer Sprachen. Aachener Informatik-Berichte,
Software Engineering, Band 9. Shaker Verlag.

Wachsmuth, G. H., Konat, G. D. P., and Visser, E. (2014).
Language Design with the Spoofax Language Work-
bench. IEEE Software, 31(5):35–43.

WWWa (2017). Acceleo 3.1.0 user documentation. Acces-
sed: 2017-06-08.

WWWb (2017). Jamon Java Template Engine - Jamon web-
site http://www.jamon.org/. Accessed: 2017-05-03.

WWWc (2017). Java Ermitter Templates - JET Project web-
site https://eclipse.org/modeling/ m2t/?project=jet.
Accessed: 2017-05-12.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

190

