


Figure 1: Berkeley DRIVE LAB test platform: 2008 Ford Escape Hybrid XGV

To demonstrate the ease-of-use of our hardware and software platform, we show in Section
4 the rapid integration of an automotive sensor, the Hella IDIS laser scanner, as well as our
approach to calibrating it with respect to a camera system.

2 Hardware Platform

In this section, we describe our vehicle along with other potential candidates and actuation
strategies. We also discuss our computing infrastructure and our sensors.

2.1 Vehicle Selection and Actuation

From our experience using an experimental vehicle for the first two DARPA Grand Challenges
[3, 4] and a self-actuated vehicle at the DARPA Urban Challenge [5], it was clear that a car
actuated by an OEM, or a specialized kit with support from a third-party supplier, would be the
best choices for minimizing actuation time and maximizing reliability and usable test time.

Our main criteria for selecting a vehicle were (i) energy efficiency, (ii) ease of actuation, (iii)

unobstructed manual operation, (iv) agility, (v) comfortable seating for four adults, (vi) spacious
trunk for computing equipment, (vii) low vibrations when engine on, and (viii) California street
legal.

Examining the success of DARPA Urban Challenge teams without previous autonomous



car infrastructure, the Volkswagen Passat and Tiguan were obvious choices because of VW’s
extensive experience actuating vehicles, the fuel efficiency of the turbo diesel injection (TDI)
engine, the optimization of the “Darmstadt” steering column for computer-controlled actuation,
the available CAN gateway and an electrical outlet in the trunk, and the fast vehicle delivery
(only a few weeks). The main drawbacks of a Volkswagen were its relatively high price (par-
tially due to the weak dollar) and Berkeley regulations favoring hybrid vehicles.

With the US military as a major potential sponsor, a military Humvee (Hummer) was an-
other obvious choice. Other advantages of the Humvee were its performance in rugged terrain
and spacious seating for in-car debugging. For automation, we considered the Kairos strap-
on autonomy kit from Kairos Autonomy, a Utah-based company; the autonomy kit could be
adapted to virtually any vehicle, but was mainly developed on a Humvee. Drawbacks of the
Humvee included its large turning radius, which would complicate navigation in tight urban
spaces; vibration that would make high-accuracy sensing more difficult; and the dubious street
legality of the strap-on autonomy kit, as well as its obstruction of manual operation.

The Ford Escape Hybrid was one of the first X-by-Wire cars on the US market. For ac-
tuation, the obvious choice was TORC Technologies’ ByWire XGV solution, which used the
experience of the DARPA Urban Challenge team Victor Tango to manually actuate the brake
and control all other functions via the ECU. Advantages of this vehicle and autonomy solution
included the fact that the actuation would not obstruct manual operation of the vehicle, that its
ground clearance would allow it to handle occasional grass fields and washed-out dirt roads (if
not true off-road use), and that electricity could be drawn from the hybrid battery in the trunk.
The major downside was that trunk space would be somewhat limited because of the large hy-
brid battery; however, we would would still be able to fit two shock-mounted computer racks
in the trunk.

After weighing the alternatives, we chose the Ford Escape Hybrid / ByWire XGV solution.
To compensate for the fact that the outer hull was made of thin sheet metal to save weight,
we contracted with a local automotive shop to reinforce roof attachment points for our sensor
mounting rack and to install a bull bar on the front to minimize the potential for deformation
during minor obstacle contact during testing. One problem to which we have not found an
adequate solution is that the vehicle cannot be used for some types of driver assistance, since
the steering wheel is actuated using the power steering motor, which has the potential to break
a human arm; we are currently experimenting with top-of-the-line game controllers, such as
the Logitech G25 Racing Wheel, as an alternative for prototyping such systems.

2.2 Computing and Electrical System

One of our first steps was to install two Star Case computer racks (20”x19” 8RU) in the trunk,
on shock-absorbing elastomeric isolation mounts. We dedicated one rack to computers, which
we mounted vertically to minimize the effect of any shock on the hard drives. We dedicated



the other rack to auxiliary devices such as power-supply equipment and a signal generator (see
Figure 1, bottom right inset). We contracted with TORC Technologies to install the power-
supply equipment: a UPS that we could plug into the wall when the car was stationary, and a
DC-DC converter to transform the 330V hybrid battery into an auxiliary battery for the UPS
(which had its buzzer disabled) for normal operation. The installed power system was rated
for 2500 Watts, which has proven to be more than adequate so far. In order to allow all of our
equipment to run on either car or wall power, we decided to power everything through the UPS,
instead of using DC power directly from the DC-DC converter for our DC sensors.

Our main criteria for our on-board computers were (i) high computing capacity, (ii) low en-
ergy consumption, (iii) small form factor, (iv) high reliability, (v) flash drives for the operating
system (more robust to vibration), and (vi) easily-removable hard drives for collecting sensor
data.

Because of our strict requirements, we decided to build our four base computers ourselves.
We built them around Intel Q6600 Core 2 Quad chips on Mini-ITX boards, mounted into ITS-
2814 Half-2U Mini-ITX cases from IdotPC International (which can be connected in pairs to
form 2U assemblies). The boards provide dual Gigabit Ethernet and can hold 4 GB of single-
sided RAM, although at the time we were only able to find 1 GB single-sided modules. The
operating system, Debian Linux, is stored on Compact Flash (CF) cards for reliability; the CF
cards are easy accessible from the outside of the case, for off-line copying as well as for fast
switching between operating systems or different versions of the entire software system.

All data is logged on standard 2.5” notebook SATA hard disks in Vantec EZ-Swap EX
enclosures. The EZ-Swap bays are connected to the on-board computers via SATA, and the
drive inserts also fit into bays in off-line desktop computers or can be connected to notebooks
via USB. The disks are mounted vertically to minimize drive failure; however, because the
operating system is stored on the CF cards, hard drive failure will not disrupt operation (other
than logging).

The latest addition to our onboard computers is a 2U full-width computer with dual Intel
50W TDP LV Xeon L5420 (2.50 GHz) quad core processors and 8 GB of memory—a cus-
tomized Titan-G2X / 200 from GamePC.com (future units will utilize low-power Xeon multi-
cores with HyperThreading support for even better computational efficiency). This computer
also features an EZ-Swap bay for a data-logging hard drive, but the flash drive for the OS and
BART is an internal flash SATA disk instead of a CF card. We use this machine to experi-
ment with parallel algorithms on the included NVidia Quadro FX 3800 GPU, which has 192
600 MHz processors and 1 GB of GDDR3 RAM, using a maximum of 108 Watts. Utilizing Ac-
celerEyes’ Jacket, we can prototype massive parallel algorithms on the car in MATLAB, or we
can create more performance-optimized implementations in CUDA. We also use Intel’s Thread
Building Blocks (iTBB) for parallel computation on the multi-core CPU, for computations with
a lower computation-to-storage ratio than can be optimized by using a GPU.

The passenger cabin is divided into two zones (see Figure 1, bottom left insert). We re-



placed the stock stereo with a Xenarc MDT-X7000 stereo with a fold-out 7-inch in-dash touch-
screen display and front USB access; a Logitech diNovo Edge wireless Bluetooth keyboard
with built-in touchpad is stored in the seat pockets. This allows high-level control of the au-
tonomy or assistance system by the front passengers. During development, it also allows the
display of debugging info or vehicle state data, in addition to minor debugging. For the back-
seat passengers, a Xenarc 1530YR 15.3-inch high-contrast and -brightness display folds down
from the roof and is easily readable even in bright light, unlike most notebook computers. All
vehicle computers, except for the one connected to the front display, are connected to this dis-
play and a keyboard with integrated touchpad via an IOGear GCS78KIT 8-port KVM switch.
Additionally, any notebook within the car and any computer within our lab can connect to any
car computer via several Ethernet cables or our in-car wireless router, and our Netgear JGS524
24-port Gigabit Ethernet switch.

Throughout our test building, 802.11G wireless Internet access is provided by several D-
Link DWL-3200AP access points in wireless distribution system (WDS) mode. By using D-
Link ANT24-0700 omni-directional high-gain antennas on the vehicle’s roof, as well as a cus-
tom outdoor antenna on the top of our building, wireless access is available virtually anywhere
on the test track. Beyond streaming live video data, this connection can be used for remote
control, online updates of BART or the Linux OS, or general Internet access. However, for se-
curity reasons, the connection can be quickly unplugged, to separate the wired core computers
from any auxiliary wirelessly-connected computers.

2.3 Environment Perception

As outlined in [2], our main goal is to demonstrate intelligent cars via relatively cheap, com-
mercial off-the-shelf sensors. SICK LMS laser scanners are a staple in most autonomous cars
for environment perception, as are our Point Grey Flea2 visible light cameras (mounted in Pelco
enclosures). Thermal IR “night vision” is provided by FLIR ThermoVision A320G cameras.
Global position data and inertial measurements are provided by a NovAtel SPAN / ProPak with
a Honeywell HG1700 IMU. Our newest sensor addition is a automotive laser scanner, the Hella
IDIS, which we discuss further in Section 4. All sensors are mounted on MayTec rails, which
enable both fixed mounts and rapid prototyping / experimentation.

For higher-accuracy comparison data, we use two sensors that are more expensive—we do
not envision these sensors as part of any autonomy or driver assistance solution. We use a
NovAtel GPS receiver and 900MHz wireless modem for differential GPS, as well as a top-of-
the-line NovAtel SPAN (Synchronous Position, Attitude and Navigation) GNSS+INS with a
tactical grade iMAR IMU-FSAS and magnetic wheel sensors, for more accurate vehicle state
data. Similarly, we utilize a Velodyne HD LIDAR for high-resolution 360 degree environment
perception.

One of the most important features of our sensor setup is that all data is accurately and con-



sistently timestamped by embedded systems before it arrives at the primary vehicle comput-
ers. The FireWire cameras are implicitly timestamped by an external trigger from our Agilent
33210A signal generator. All other production sensors (this set does not include the Velodyne,
which produces an extremely large volume of data) are connected to NetBurner microproces-
sor boards by either serial or CAN. These NetBurner boards are also connected to the camera
trigger via a hardware interrupt pin, which they use to maintain an accurate and consistent time.
All of the data that passes through the NetBurner boards is timestamped and then sent out to any
subscribed vehicle computer using the Spread Toolkit [6]. Although all sensor data is times-
tamped before it reaches the vehicle computers, we also synchronize the vehicle computers
using the Network Time Protocol (NTP). We are considering using a Meinberg GPS synchro-
nized NTP server in the future for high-precision time synchronization, as well as real-time
remote control capabilities.

For more details on our sensing and navigation algorithms, see [2].

3 Berkeley Aachen Robotics Toolkit (BART)

The Berkeley Aachen Robotics Toolkit (BART) is the fusion of Berkeley’s Intelligent Robotics
Toolkit (IRT) and Aachen’s Hesperia Software Environment. IRT and Hesperia were initially
developed separately, but since they complement each other they have joined forces to create a
stronger toolkit.

3.1 Intelligent Robotics Toolkit

The Intelligent Robotics Toolkit (IRT) was originally based on a codebase for autonomous
helicopter mapping and landing that had overgrown its flat filesystem layout. We needed to
organize the codebase hierarchically by function, generalize the build system (a static Make-
file) to other platforms (we had problems even with other Linux systems) and separate it into
different files for different modules, and create a test infrastructure to ensure consistent code
quality. The final result can be broken down into two pieces: (i) an advanced infrastructure for
code organization, reuse, building, and testing; and (ii) a set of software modules for robotics
and artificial intelligence that use this infrastructure.

3.1.1 Infrastructure

The IRT infrastructure is centered around a build system that uses Python and SCons [7] for
cross-platform portability. The build system reads a file in each directory that contains declar-
ative sections about the targets that can be built in that directory, including their (compile-
time, run-time, required, and optional) dependencies, which can be anywhere in the reposi-
tory. By convention, less-common third-party dependencies are included in the repository’s
third_party directory, and build rules for finding more-common third-party dependencies



are included in the repository’s third_party/external directory. At compile time, we
can specify either a specific target to build or allow the build system to build all targets in
the repository; the build system tells us what targets it is able to build, and the reason why
it is unable to build some specific targets, e.g. a missing dependency. We can also specify a
cross-compilation, e.g. to a specific NetBurner architecture.

We support C/C++, Python (including C/C++ Python extensions), and MATLAB (including
C/C++ MATLAB extensions). Unit tests are built into the IRT infrastructure—we use Google’s
gtest C++ unit test library [8] and the built-in Python unittest package. At the end of every
build, the build system creates a Python script that can be used to run all of the unit tests that
were compiled, in addition to a shell script or batch file that can be used to set all necessary
environment variables.

For cross-platform portability, we rely on our architecture compatibility layer (archcompat),
which is a thin wrapper over the system’s API to make it compatible with the standard Linux
API. For communication, we use our chardevice library, which provides both cross-platform
portability and the ability to seamlessly switch between different communication protocols,
such as serial, TCP, UDP, and the Spread Toolkit [6]. For any remaining portability issues, we
rely on our build system’s ability to create configuration C/C++ header files or Python modules
based on conditions such as whether certain external libraries are found; these configuration
modules can be used for conditional compilation (C/C++) or run-time adaptation (Python).

To enable further modularity within the project, we use the concept of plugins. Our plugins
system allows a subclass to register that it implements a specific interface, which allows its
library to be dynamically loaded at runtime if the user requests its specific implementation,
e.g. the UDP implementation of chardevice or the SICK implementation of the laser scanner
driver. Our plugins library makes it easy for a new base class to support plugins using only a
few simple macros.

3.1.2 Modules Overview

In this section we give a brief overview of our most important software modules:

Communication
cdterm terminal program that supports all chardevice protocols (GUI for

chardevice)
chardevice transparent and cross-platform communication via for serial, TCP,

UDP, and the Spread Toolkit [6], with data logging and playback

Control
pathplaner implementation of the model predictive controller (MPC) [2]

Math
graphcluster graph segmentation—implementation of [9]



image object-oriented, multi-type image library based on OpenCV [10]
matrix object-oriented matrix library based on LAPACK [11], BLAS [12],

and OpenCV [10]
maxflow graph max flow—implementation of [13]

Sensor
camera driver for FireWire cameras
common common sensor driver functionality, including client/server
ins driver for several INS devices
ladar driver for several LADAR devices
radar driver for several radar devices

Simulation
imgrender renderer for sequences of synthetic images, using Blender [14],

from texture and elevation images

Third Party
gtest C++ unit-testing framework [8]
external contains build rules for finding external libraries
openjaus implementation [15] of the JAUS [16] component and communi-

cation architecture—used to communicate with the TORC XGV
system

scons cross-platform Python build tool—the base of our build system [7]
sicktoolbox a single-threaded version of the Sick LIDAR Matlab/C++ Toolbox

[17]
spread Spread Toolkit for multicast communication [6]
trio cross-platform stdio implementation [18]

Utilities
archcompat architecture compatibility layer to ease portability between Linux,

Unix, NetBurner, and Windows
asyncproc asynchronous process with messaging, locking, and logging
logger file logger
messager inter-thread messaging
plugins plugin system
properties configuration file reader and generic properties interface
repository base for repositories (such as frame repository in camera module),

checkin/checkout interface with ability to write items to disk

Vehicle
xgv joystick demo and JAUS-based XGV simulator



Vision
checkerboarddetector checkerboard detector
elevationmap modular elevation map used for terrain reconstruction
rmfpp the Recursive Multi-Frame Planar Parallax (RMFPP) algorithm

[19, 20]

3.2 Hesperia Software Environment

The Hesperia Software Environment is a strictly object-oriented toolkit written in highly portable
ANSI-C++ to support the development of distributed applications especially in real-time envi-
ronments with embedded software. The main focus is on the virtualized software development
for sensors- and actuators-based systems by providing an appropriate model of the system’s
context to be used for interactive and unattended system simulations. On the one hand, these
simulations can be used interactively by the software developer to feed data into the system
under development (SUD) for evaluation; on the other hand, these simulations can be used
unattendedly to perform an evaluation automatically comparable to the well-known unit tests.

Hesperia was inspired by the experiences from the TU Braunschweig’s contribution “Car-
oline” to the 2007 DARPA Urban Challenge. However, it was completely written from scratch
extending and exchanging the concepts used for developing software for “Caroline.”

3.2.1 Architectural Design of Hesperia

In Fig. 2, the core design of the Hesperia Software Environment is shown. It consists of two
main libraries namely “libcore” and “libhesperia.” The former library is the encapsulating
library to the operating system or any hardware interfaces. Thus, it ensures platform indepen-
dence and interoperability between heterogeneous systems by providing core point-to-point
and broadcast communication concepts as well as thread-safe data storage and filter methods.
Currently, this core library is available for Microsoft Windows XP, Microsoft Windows Vista,
Microsoft Windows 7, openSUSE, Debian, Ubuntu, FreeBSD, and NetBSD.

The latter library, “libhesperia” is a further layer on top of the previous library. In this
library, a domain specific language (DSL) for describing the system’s context is integrated to
model a system’s context [21] for providing synthetic input data for various layers as described
in the following. Moreover, a ready and easy to use concept for communication between dis-
tributed applications called “Client Conference” is provided. This concept allows a fast, exten-
sible, scalable, and non-reactive communication for an unlimited number of participants.

On top of this library, the actual system is running. In general, sensors- and actuators-based
autonomous systems can be divided into three major parts: A “Perception Layer” which per-
ceives the system’s surroundings by gathering and fusing raw sensor data, a “Decision Layer”
which evaluates and interprets the abstract environmental model to derive an abstract action,



Figure 2: Overview of the architectural design of the software framework Hesperia: The frame-
work consists of two main parts: “libcore” and “libhesperia.” The former is a library for en-
capsulating and abstracting all interfaces to a specific operating system or hardware platform
by providing convenient interfaces and wrapper classes; the latter is a library especially for
supporting the development of sensors- and actuators-based autonomous systems by providing
convenient concepts which reuse and further encapsulate the interfaces from “libcore.” More-
over, “libhesperia” provides ready and easy to use, thread-safe communication concepts and
data-storage.

and the final “Action Layer” which transforms the abstract action into necessary set values for
the actuators and their controllers. To perform simulations to support the development of such a
sensors- and actuators-based system, the aforementioned three layers must be closed altogether
or separately into a loop; in the former case synthetic input data must be provided for the “Per-
ception Layer” and the system’s reaction must be evaluated at the “Action Layer” to generate
new input data. In the latter case, layer-dependent input data must be provided. Therefore, the
so-called “Virtualization Layer” is used to generate the necessary input data by evaluating the
DSL which describes the system’s context.

For the running example of this paper, the library “libvehiclecontext” provides some mod-
els for the vehicle dynamics. For allowing unattended and automatable system simulations and
evaluations, the library “libcontext” is used to abstract from the current real system clock and
to control all running applications. Thus, comparable to unit tests, more complex system simu-
lations can be described in a machine-processable manner to run and evaluate the SUD nightly
or even more often by integrating into a continuous integration system.

For convenience, further applications are included in the Hesperia Software Environment.
The application “supercomponent” is used to provide centralized and thus consistent configu-



ration data using the “Dynamic Module Configuration Protocol” (DMCP) which is inspired by
the well-known DHCP to configure remotely operating applications; furthermore, it supervises
all running applications and tracks their life-cycle. The applications “recorder” and “player” are
used to capture non-reactively all communication for later replay. The application “rec2video”
is used to render a 3D video from a running system also using the aforementioned DSL which
describes the system’s context; for the running example this could be for example an intersec-
tion in an urban-like environment with some trees, buildings, and of course moving traffic. The
last application which is called “monitor” is used to inspect non-reactively a running system
or even a system simulation without modification. Using this application, the data at any stage
of the processing chain can be visualized in various representations: Embedded into a 3D con-
text, aggregated in charts, or any desired representation by easily extending the plug-in-based
monitor application.

3.2.2 Sensor Raw Data Provider

As described in the previous section, the “Virtualization Layer” is used to generate different
input data for the aforementioned layers. While the required input data for the “Action Layer”
is rather simple to describe and thus to generate necessary input data for, the “Decision Layer”
requires an abstract representation of the perceived system’s surroundings. However, this rep-
resentation can be modeled and thus provided for this layer with manageable effort. For the
left-most layer which is dealing with the gathering and processing of the sensors’ raw data, the
model and generation of the required input data is rather complex.

Figure 3: Application “monitor” which visualizes synthetic sensors’ raw data: On the left hand
side three single-layer laser scanners are modeled which are used to detect obstacles from the
vehicle’s surroundings; on the right hand side input data from a color camera is depicted. Both
data is generated from one single source following the single point of truth (SPOT) principle:
The DSL of the system’s context.

In Fig. 3, the application “monitor” is shown which visualizes non-reactively synthetic
sensors’ raw data from three independent single-layer laser scanners and one color camera.



For generating the input data for the laser scanners, a GPU-based algorithm is implemented
as outlined in [22]. Therefore, the DSL which describes the system’s context is transformed
automatically into a render-able representation by OpenGL at run-time. This render-able rep-
resentation is loaded on the GPU and analyzed using the aforementioned algorithm. The result
is transformed into the sensor specific data format and sent to all interested applications. The
same OpenGL representation of the DSL can be used to provide images to simulate a color
camera as well.

4 Application: Hella IDIS

The Hella IDIS LIDAR sensor is marketed as a cost-effective infrared distance sensor. It pro-
vides the lateral position and width of objects and can be mounted into the radiator grille of a
car. It has a range of 3-150 meters, and a field of view of 12 degrees (US model) horizontally
and 3 degrees vertically. While Hella makes a model that allows the sensor to estimate the
trajectories of objects, if it is provided with additional data from the car, we opted for raw data
output and fusing the data ourselves.

4.1 Technical Integration

Our IDIS was delivered with mounting brackets, connectors, and instructions for standard car
installation. For on-car use, a weather-proof US-car connector is needed; however, for bench
testing a simple molex connector will do. We install the sensor on our car’s bull bar for evalu-
ation; we will ultimately mount it between the radiator and the plastic grille.

4.2 Software Integration

Integrating the Hella IDIS into IRT requires two steps: (i) create a chardevice driver for a CAN
interface, as this is our first CAN-connected sensor, and (ii) create the sensor driver itself.

The implementation of CanCharDevice is system-specific; we handle this using conditional
compilation. Although in practice we will use the NetBurner version of CanCharDevice with
the IDIS, for simplicity we only present here the version for SocketCAN [23] on Linux. Sock-
etCAN was originally developed by Volkswagen Research under the name ”Low Level CAN
Framework” (LLCF); it extends the Berkeley sockets API with a new protocol family, PF CAN,
and is supported by the Linux kernel in version 2.6.25 and above. Our CAN-to-USB adaptors
are SocketCAN-compatible. Listing 1 shows a simple implementation of CanCharDevice for
SocketCAN / Linux with only basic error handling.



Listing 1: A (simplified and edited for space) implementation of CanCharDevice for Socket-
CAN / Linux� �

# i n c l u d e <c h a r d e v i c e / c h a r d e v i c e . h>
# i n c l u d e <can / can . h>

/ / I m p l e m e n t a t i o n f i l e p o r t i o n o f r e g i s t e r i n g CanCharDevice as
/ / a CharDevice p l u g i n .
PLUGIN DEFINE ( CanCharDevice )

i n t CanCharDevice : : open ( void ) {
s t r u c t s o c k a d d r c a n add r ;
s t r u c t i f r e q i f r ;
char ∗ t o k e n s [ 2 ] ;
i n t numTokens = 0 ;
s = : : s o c k e t ( PF CAN , SOCK RAW, CAN RAW) ;
i f ( s < 0) e x i t ( 1 ) ;
s t r c p y ( i f r . i f r n a m e , "can0" ) ; / / d e f a u l t t o can0
i f ( s t r l e n ( o p t i o n s ) > 0) {

numTokens = s t r s p l i t d e s t r o y ( o p t i o n s , ’,’ , t okens , 2 ) ;
i f ( ( numTokens == 1) && ( t o k e n s [ 0 ] != NULL) )

s t r c p y ( i f r . i f r n a m e , t o k e n s [ 0 ] ) ;
}
i o c t l ( s , SIOCGIFINDEX , &i f r ) ;
add r . c a n f a m i l y = AF CAN ;
add r . c a n i f i n d e x = i f r . i f r i f i n d e x ;
b ind ( s , ( s t r u c t s o c k a d d r ∗)&addr , s i z e o f ( add r ) ) ;
re turn 1 ;

}

s s i z e t CanCharDevice : : r e a d ( void ∗buf , s i z e t c o u n t ) {
i f ( c o u n t < s i z e o f ( s t r u c t c a n f r a m e ) ) re turn −1;
e l s e {

s t r u c t : : c a n f r a m e frame ;
i n t n b y t e s = : : r e a d ( s , &frame , s i z e o f ( f rame ) ) ;
i f ( n b y t e s != 16 | | f rame . l e n + 2 > c o u n t ) re turn −1;
∗ ( ( u i n t 1 6 t ∗) buf ) = f rame . i d ;
memcpy ( & ( ( ( u i n t 8 t ∗) buf ) [ 2 ] ) , f rame . da t a , f rame . l e n ) ;
re turn f rame . l e n + 2 ;

}
}

i n t CanCharDevice : : c l o s e ( void ) {
re turn : : c l o s e ( s ) ;

}� �
Now that we have a chardevice implementation that supports CAN, we can test it using a
GUI that is already built into IRT: cdterm "can,can0" (“can” specifies the CAN plugin,
and “can0” is the configuration given to the CAN plugin—it specifies the name of the CAN
interface). In the GUI, we can connect and disconnect; when we are connected, we will see all
of the CAN messages on the bus. If we implemented CanCharDevice::write(), we could use
the cdterm GUI to write messages to the CAN bus.

The next step is to write the IDIS sensor driver. Since we cannot yet release the exact
interface of the IDIS, we will only outline some of the steps in this section. However, we hope
to be able to release the complete source code soon, including this driver.

Although the IDIS is a LIDAR, it is conceptually more similar to a radar in that it returns
information about a small set of obstacles instead of a dense set of range data. Thus, all that is
left to do is to write an plugin for the radar driver subsystem; the only functions that we need
to implement are for initializing the sensor, and for reading a dataset.

We can read CAN data from chardevice like this:



Listing 2: Reading CAN data using chardevice� �
# i n c l u d e <c h a r d e v i c e / c h a r d e v i c e . h>

u i n t 8 t buf [ 1 8 ] ;
/ / f a l s e means do n o t w a i t f o r d a t a when c a l l r e a d ( )
CharDevice ∗cd = new CharDeviceWrapper ("can,can0" , f a l s e ) ;
/ / r e a d any a v a i l a b l e CAN message
i n t n = cd−>r e a d ( buf , 1 8 ) ;
i f ( n > 2) {

/ / p r i n t message i n f o ( f i r s t 2 b y t e s a r e message ID )
p r i n t f ("id = %hx (%d bytes)\n" , ∗ ( ( u i n t 1 6 t ∗) buf ) , n − 2 ) ;

}
/ / when f i n i s h e d , c l o s e c h a r d e v i c e
d e l e t e cd ;� �

In HellaRadar::init(), we open the chardevice. In HellaRadar::read() we call the non-blocking
chardevice read() method until no CAN message is returned; if a returned CAN message has an
ID of interest, we extract the relevent information and continue reading CAN messages—we
always return the most recent information available from the sensor.

Now that we have a Hella plugin for the radar subsystem, we can use it like any other radar
driver—we can, for example, run the driver in server mode on a NetBurner board, which will
timestamp the data (using a clock maintained from its external trigger signal) and forward it
over Ethernet to any vehicle computer that is running a radar driver in client mode that has
connected to that NetBurner’s radar server (using e.g. the Spread Toolkit).

4.3 Calibration

In order to effectively fuse data from a camera, a Hella IDIS, and a SICK LMS laser scanner,
we must determine the rigid body transformation between each pair of sensors. We choose the
focal point of the camera as the origin of the local coordinate system; we must then determine
the extrinsic calibration of the two laser scanners with respect to the camera. Once we have de-
termined these transformations, the 3D coordinates from each laser scanner can be transformed
to the camera’s coordinates and back-projected onto the camera images for further processing.

In order to determine the 3D vector (through the camera focal point) on which the point
represented by a given pixel is constrained to lie, we must obtain the intrinsic calibration of the
camera. We determine these internal parameters of the camera by using the Caltech camera
calibration toolbox [24].

We compute the extrinsic calibration between the camera and a given laser scanner only
once, as the sensors are rigidly mounted relative to each other. We perform this calibration using
at least three points in 3D space that we can identify in both sensors—the laser scanner (either
the IDIS or the SICK) measures the 3D location of the point in its coordinate system directly,
and we can convert the vector through the camera pixel to which the point is projected into a
3D coordinate in the camera’s coordinate system by using space resection. Within a RANSAC
[25] framework, we use the 3-point algorithm [26] to determine the depth of the points in the



Figure 4: Three pairs of correspondences between the camera and the laser scanner serve to
determine the relative sensor pose.

camera coordinate system and then use Horn’s method [27] to find the rigid transformation
between the two sets of 3D point correspondences. The geometry is illustrated in Figure 4, and
the procedure is explained in full detail in [28, 29].

5 Conclusion & Outlook

In this paper we have introduced the Berkeley DRIVE Lab: our infrastructure, our hardware
architecture, and our software toolkit BART, a fusion of Berkeley’s Intelligent Robotics Toolkit
(IRT) and Aachen’s Hesperia Software Environment. We have also showcased our software’s
usability by demonstrating the rapid integration and calibration of a new automotive sensor.
We hope to soon finish a final clean-up of the software and its documentation, and release it to
the general public under a three-clause BSD license.

We would like to thank everyone who chatted with us during a DARPA race, showcased
their vehicles to us, gave talks to us, and provided information about their vehicle hardware and
software architectures online.

We hope that our work inspires others, and we invite both feedback and participation. Thank
you.
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