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Abstract  

Process modelling is a broad field of research in different application areas, especially in in-
formatics. Corresponding notations (transport networks, etc.) usually contain sequences, splits 
and joins of processes. Between processes there are dependencies, which can have quite dif-
ferent semantics. These semantical relations are usually not explicitly expressed. 

In this article, we focus on a notation for a process, which has different aspects influencing 
the process, not only the input. This allows to connect different processes in specific ways, 
making clear what purpose the connection has, and thereby characterizing different kinds of 
dependencies between processes. This extended notation we call process interaction diagrams 
(PIDs). We can express standard interactions of processes more precisely and are also able to 
express nonstandard interactions.  

These diagrams can be applied in different domains, as mechanical engineering, informatics, 
etc. Interesting and complex interactions can be studied. The notation can be used for differ-
ent levels of processes, as lifecycle level, project management of development teams, etc. The 
usual process notations are extended to express interactions like ³a process creates a tool to be 
used in another process´. 

Keywords: process modelling, dependency relations between subprocesses, different as-
pects of a process, interaction of different processes, applications in different engineering 
disciplines 

1 Introduction 

There is a variety of notations for processes, which can be used for quite different kinds and 
levels of processes, as /AL 16, JB 96, We 99/ to name only a few. They can be classified (i) 
along their main application (logistics, business processes, cooperative work in offices, me-
chanical production, informatics, etc.), (ii) where in an overall process they are used 
(knowledge acquisition, pre development, development, preparation for production, mainte-
nance and customer relationship, etc.), (iii) according to their granularity (from lifecycle or 
ERP to fine-grained tasks), or (iv) whether they are static or allow dynamic changes, and so 
on.  

Process research can be classified into mining, analysis, formalization, classification, applica-
tion, evolution etc. The latter can be seen on single process level, on knowledge for processes 
and their change, on process type level, on knowledge level for specific processes and so on. 
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In most cases they connect processes mostly along output to input (the output of one process 
is the input of the next) and, therefore, corresponding to chain dependencies: The second pro-
cess is dependent from the first and can only start, if the first process has delivered a neces-
sary result. Such notations are widely and successfully used. 

All these notations can be used to structure processes by composing them from simpler ones 
(subprocesses) and thereby building nets of these subprocesses by dependency relations. In 
the graph theoretic sense these nets are transport networks /De 74/ which usually have a start-
ing node (source) and an ending node (target). The nodes of the network can be connected to 
form chains, splits, and joins. For organizational aspects of one specific process this may suf-
fice in many cases. 

In this paper we look more carefully on the way, how connections can be organized and de-
noted. Especially, we look what aspects influence a process, and take these aspects as targets 
of dependent process edges. Thereby, we differentiate dependency relations. We call the cor-
responding notation process interaction diagrams, in short PIDs, thereby adding a further 
meaning to the abbreviation ³PID´ /PID 21/. Roughly speaking, these diagrams differentiate 
incoming edges according to their purpose and, thereby make these networks more semanti-
cal, corresponding to the different ways, processes are connected.  

Predecessors of PIDs in simpler forms are SADT-diagrams /MM 88/, T-diagrams of N. Wirth 
/Wi 77/ for explaining compiler bootstrapping, or component / connector notations, as /IC 04/. 

The paper is as follows: After having introduced the different aspects of a process, which in-
fluence the way processes can be connected in PIDs in section 2, we discuss quite different 
examples of process interactions in PIDs in section 3. We present interesting and nontrivial 
examples of PIDs in section 4. A summary / characterization of the results and the list of ref-
erences closes this paper.  

In this paper we concentrate only on process interaction, although ± as it was discussed in /HJ 
08, NW 94/ ± a process is also tightly connected to its resulting product, and both also to the 
resources needed (active as actors or passive as pre results), the latter two in abstract form 
(e.g. abilities for abstract ressources) as well as in actual form (persons with competences).  

2 Characterizations of Processes 

A process is influenced by different aspects, see fig. 1. The process has an input, and produc-
es an output of quite different kinds, as we are going to learn. The process has a goal, has to 
regard different constraints, and follows a certain way to proceed, expressed from rather 
vague to precisely determined. The process has an actor, usually for a complicated task a hu-
man being or a group of humans. The actor uses tools or available partial results/ solutions to 
be a part of the result of the process. Actors apply knowledge and / or experience. In /NF 03/ 
even more aspects of a process are discussed. We omit this here to keep the discussion sim-
pler. 

The upper part of fig. 1 corresponds to the planning part of the process (goal, constraints, way 
to proceed), the lower part determines the path in direction to the solution (partial solutions or 
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tools, actor, and experience/ knowledge). To be more precise, one should distinguish between 
a task and the process to solve the task. By reasons of simplicity, in this paper a process 
stands for both. Altogether, Ze haYe seYen µinput¶ aspects and onl\ one for the output. 

 

Fig. 1: Different aspects influencing a process P and its output 

The actor of a development process is usually a human. In automatic processes the actor can 
be a machine executing a program. In this case, the goal, the constraints, and the way to pro-
ceed are or should be incorporated in the automatic program. The same is true for knowledge 
and experience. The machine (actor) determines the level of the program (preciseness, degree 
of formality, etc.). 

A process corresponds to the solution of a task, which solves an underlying problem. The task 
may (a) demand for creativity, like acquisition or extension of knowledge, pre-development 
of a product, development of a novel and nontrivial product, extending a solution to a solution 
for a family, detecting deep reuse for a class of solutions by remarkably changing the process, 
and alike. In all these cases, the process is not determined, it asks for creativity and new ideas. 
The task may (b) be rather determined, like often executed processes in business administra-
tion or in production of mechanical engineering. Finally, a process may (c) run automatically, 
as to be found in process automation and control. In this case, everything is running automati-
cally being determined by a software program, eventually including interactions of the opera-
tor.  

Processes can be found on different granularity levels: We find (i) coarse grained processes, 
e.g. on lifecycle level, where we only distinguish subprocesses without looking into their 
structure, like design, programming. It can be (ii) medium grained, where we go down to 
identify actions of single developers in order to manage these developers, without regarding 
how a developer does his/her job, like the implementation of a certain component assigned to 
a developer, or how a subsystem is decomposed and the parts are assigned to different devel-
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constraints
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experience/
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opers. Finally, processes can be (iii) fine-grained, e.g. to look, how a designer is doing the 
task in detail assigned to him/ her. Even one further level down, we (iv) find the actions of a 
tool, used by a developer, to facilitate his/her job. Of course, tools can be used on any granu-
larity level of processes. 

Furthermore, development processes may be (1) local to a certain department of a company, 
(2) happen inside a company but involving different departments, or it may (3) spread over 
different companies. So, we distinguish local, from integrated, and inter-company processes. 

What we have said up to now is completely independent from the level and nature of a pro-
cess. It also applies to any kind of processes, from research, knowledge acquisition, pre-
development, development, realization, preparation, production, to after sales and mainte-
nance. I the last sentence we had mechanical engineering in mind. It could also have been, 
process engineering, material production, or anything else. 

Development processes of teams of developers have a certain structure, which can be found 
in every engineering discipline /Na 96/ determining or changing the requirements, the design, 
and the realization, the latter in engineering often called detail engineering. The product of a 
process is a complex configuration of different and mutually dependent artifacts. 

3 Process Interactions 

Process Chains for Different Purposes 

In fig. 2 we regard usual chains of processes in the sense that one process produces a result 
which, in the next step, is handled by the following process. However, the purpose of han-
dling is different. The examples are from the development level. In the first case, the second 
process P2 makes the next step of a process decomposed into steps, in the second example it 
produces a result consistent to the result of P1, in the third case it formalizes a given non-
formal result or it makes a formal result operational. Further examples are possible. The spe-
cific purpose of the output/ input relation can be given by an annotation to the relation. 

The purpose of these examples is to demonstrate that the chain dependency relation between 
P1 and P2 can have different semantics. The examples are on the same logical level and they 
are typical situations occurring in development processes carried out by humans. The exam-
ples could also be from any development domain and any application domain (informatics, 
production engineering, process engineering, etc.). 

 

P2 makes the next part of a solution. 
Example: successive computationa) b)

output – input

P1 P2P1 P2

output – input

P1 P2

output – input

P1 P2P1 P2

output – input

P1 P2

P1 produces a result, which is 
consistent to the output of P2.
Example: P1 delivers requirements for 
the design of P2
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Fig. 2: Process chain relations for different purposes 

Processes for Creating Components or Tools 

(a) Fig. 3.a shows that the process P1 can deliver a result, which makes the process P2 easier, 
as (a) P1 delivers a partial product, which is helpful for P2, or (b) P1 delivers a tool, which 
helps for the process P2 (fig 3.b). Please note that these supports (a) and (b) are possibly not 
restricted to P2. If this would be the case, the process P1 would deliver a part of the solution 
according to the scheme of fig. 2.a, which then is completed by P2. 

In fig. 3.c, P1 delivers a result, which supports the actor of P2, by delivering explicit knowl-
edge or experience, helpful for P2. This can be e.g. a checklist of items, which helps not to 
forget an aspect important for the process P2. Again, annotations can be used. 

 

                                     

Fig. 3: Actor support by delivering a part of the solution, a tool which helps, or valuable ex-
perience/ knowledge 

Clarifications for other Processes 

The process P1 can define/ make precise the goals of P2 (fig. 4.a), the constraints for P2 (fig. 
4.b), or the way to proceed in P2 (fig. 4.c). The latter can be from vague and exemplary to 
formal and complete. 

P1 P2P1 P2

P1 produces a result which is made 
formal or precise by P2c)

P1 creates a result which helps for P2, 
e.g. a needed componenta) b)

P1 delivers a tool which facilitates the 
process P2  

P1 P2P1 P2 P1 P2P1 P2

P1 P2

P1 improves P2, e.g. by delivering 
experience/ knowledge in explicit formc)
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Fig. 4: Clarifications: P1 delivers results for different aspects of P2 

Summing up, we see that the process P1 could deliver a helpful result for any of the ‘input’ 
aspects explained in fig. 1, see figs. 3 and 4. The composition of both processes P1 and P2 is 
different from those discussed in fig. 2. In all cases, we have a dependency of process P2 from 
process P1. However, we recognize that the semantics of the dependency is different for all 
cases. Annotations may give further distinctions. 

Actors and Machines 

In all examples of above, we had human actors. A human actor is intelligent and creative. The 
actor person can interpret constraints, evaluate a goal and compare a process result with the 
goal, it can follow advices to proceed, he/ she can build in partial results or apply tools to fa-
cilitate or improve a solution. The person can use experience or knowledge to apply. This is 
true for a scientist who is extending knowledge as well as for a worker, who is carrying out a 
fabrication subprocess. 

What is to recognize, if the process is automatic and what to obey, if we switch from a human 
to an automatic process? In informatics terms, an automatic process is a program executed by 
a machine. The program may be an executable specification, or a program formulated by an 
interpreter language together with an interpreter. It can also be a program Pr of a program-
ming language L, together with a machine for this language (compiler, runtime system, and 
target machine).  

Looking on fig. 4 and on P2, we now discuss that P2 is an automatic process. How does this 
change the situation? P1 can create the program and P1¶ the machine. Both are human process-
es. The program with the machine is the automatic process, see fig. 5.a.  

P1 determines/ improves/ clarifies the 
goal of P2a) b) P1 determines the constraints for P2  

P1 P2 P1 P2

P1 determines/ improves how P2 
should proceed by giving the steps, a 
plan how to proceed, or a methodologyc)

P1 P2P1 P2
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A different explanation in our notation is that P1 creates the program, i.e. the way to proceed, 
and P1¶ the actor of P2. The program has been written to follow the goal, to regard the re-
strictions, to use partial solutions or tools, and to adopt knowledge and experience. This, alto-
gether, is incorporated and fixed in the program Pr. So, all the other aspects of P2 (see fig. 1) 
are determined by the properties of the program. They are no more important for P2. Fig. 5.b 
shows this situation. 

 

Fig. 5: Automatic actors: programs and machines 

4 Examples of Process Interaction Diagrams 

Production Engineering 

We now switch to the field of mechanical engineering. That differs from software develop-
ment in two ways. (a) The products are produced after their development in a more or less 
complicated production process. Furthermore, (b) also the facilities for production have to be 
looked at. Usually, this production machinery is used for different products. In the case of a 
novel product it might be that the machinery has to be developed specifically.  

Both is usually not the case for software. Only in rare cases, there is something like a produc-
tion of software. Even in these cases, the production is mostly only configuration and deliv-
ery. 

We now discuss the interaction of these three processes development, production and use, 
and production facility development /NF 03/. The production of the facility is usually done in 
other companies and these machines are in most cases produced to serve for different produc-
tion processes. The three processes are in three different dimensions, see fig 6.  

The example is on the level of coarse processes (level of lifecycle), which means that the pro-
cesses are not structured internally. For example, the product development is usually done in 
steps belonging to different levels (requirements, conceptual and detailed design, detail engi-
neering), which is not done in fig. 6. These levels are structured internally to express that dif-
ferent people do different things, which have to be consistent to each other. This we call mid-
dle-grained or organizational level, because it structures, how the cooperation of different 
developers is organized. 

P1

P1'

P2

Pr

M

Pr

M
outputinput

a)

P1

P1'

P2

Pr

M
outputinput

a)

P1

P1'

P2

Pr

input output

actor M

b) in P2 all other aspects are fixed
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In fig. 6 we see three process chains, which are orthogonal to each other:  
(a) In the middle and drawn horizontally, there is the physical product lifecycle. A product is 
produced, later it is used and maintained (physical maintenance), and even later we see the 
recycling. The production process uses parts, which are manufactured by suppliers. The chain 
has the usual output/ input dependency relation. 
(b) On top and drawn down, we find the development lifecycle, again presented in a coarse 
form with the usual output/ input relation. We start with pre-development, to show that the 
development is possible and can result in a reasonable product (we build a prototype and de-
cide to go further or to stop). Then, we develop the product, using different internal steps. If 
that was successful, we start with the production preparation, also consisting of different in-
ternal steps. The results delivers know-how, which either is useful and necessary for the man-
ufacturing process or which delivers corresponding experience/ knowledge. Production prepa-
ration also delivers constraints and ways to proceed (e.g. NC programs). 
(c) At the bottom and drawn upwards in fig. 6, we find the process to provide the platform for 
manufacturing. The platform is developed in two parallel steps: (i) How the production plat-
form is built up (determination of corresponding machine tools and how they are configured), 
and (ii) developing the corresponding automation and control programs. They are both com-
bined in the manufacturing plant. Typically, the manufacturing machine tools are not specifi-
cally developed and built up (that can happen in specific contexts, where no corresponding 
machine tools are available on the market). However, the machine tools may need some adap-
tation. Also, the automation and control infrastructure is available, but specific programs have 
to be written, adapted, or generated. The production plant together with the corresponding 
personnel is the actor of the manufacturing process. 

Summing up, we see that fig. 6 consists of three coarse processes in three dimensions: physi-
cal production, development of the product to be later produced, and making the production 
infrastructure (plant) available. The processes are connected with the business administration 
process (ERP) for sales, production of a number of products, logistics , maintenance of prod-
ucts in a repair center, after sales relations, etc. This ERP process is not shown in fig. 6.  

Any of these four processes is a cross-company process. The used intermediate products of all 
these processes also have a development and need a manufacturing infrastructure. All pro-
cesses interact in interesting and different ways. This is the main argument to sketch the situa-
tion here. 

Now, we make the process interaction even more complex by introducing further new tools 
which come up in the above three dimensions, see again fig. 6. Firstly, (i) a new tool is intro-
duced which makes the product development more efficient and/ or helps to avoid mistakes or 
errors. Secondly, (ii) a mechanical tool is developed needed for the specific production pro-
cess. Thirdly, (iii) a tool is introduced which helps in the design of the automation and control 
part, again for efficiency and quality improvement. These tools introduce further dimensions. 

The new tool for development (i) influences and changes the development process. Especial-
ly, it also changes the experience / knowledge of this process and it also changes the actors of 
this process. The change might be gradual or dramatic. The same is true (iii) for the new tool 
helping to develop the automation and control part. A tool helping for configuring the produc-
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tion plant (not shown in fig. 6) would influence the configuration process in the same way. 
Another role has (ii) the tool for a tool machine in the production process. It is produced (usu-
ally without a development or a complicated production process), and it has to be replaced 
after some time, due to wear and tear. 

           

Fig. 6: Interleaved and orthogonal processes in production engineering 

product 
development

order 
intermediate 

products

use/ 
repair recycle

tools for 
machines

produce

phys ical pro duct lifecyc le

production
preparation

pre-
development

tool for 
product 
development

determine
variants

intermediate
basic products

product deve lopme nt

(ii)

(i)

(iii)



10 
 

Mostly tool development is not done in parallel to product or facility development or produc-
tion. Usually it is used for the next product cycle. However, it can be that it is even needed in 
in the running process. The development of a new production tool is usually done in parallel. 

The ‘Analogous’ Situation in Software Engineering 

Now we switch to a similar situation as that of fig. 6, but now in the field of software devel-
opment. The figure changes noticeably. This change characterizes the difference to a field, 
which produces mainly physical products (machines, chemical plants, etc.) on the one hand 
from a field, where mainly nonphysical products (software) are created. So, not only the 
characterization of the change but also the difference of the fields are interesting.  

As in software development immaterial products are created, there is usually no production 
process (horizontal chain of fig. 6). Software is usually only copied and distributed. I only 
saw once something like a production process for software products. That was with the com-
pany DATEV, which provides and delivers software and IT services for tax consultants /DA 
21/. As there are 40.000 consultants being supported by DATEV, which have quite different 
profiles and also various and different IT infrastructures, delivering an update, extension, or 
porting of software is a rather complex configuration but also delivering process. In such a 
situation, we find something like a µproduction¶ process. That, however, is not generally typi-
cal in the case of software. 

As there is usually no production process, also production preparation - the last big step of 
product development in mechanical engineering - does not appear, or it appears only in a 
primitive form. The same is true for the infrastructure to produce the products in production 
engineering. The production is immaterial, so does not need to be produced by a sophisticated 
infrastructure. 

Therefore, mainly the product development process of fig. 6 remains. This process, however, 
can include all the relations between subprocesses, we have sketched in this paper. Further-
more, software as an immaterial product, is more flexible w.r.t. changes and also transfor-
mations in direction of applying reuse strategies. 

Hierarchies in and Management of Software Development 

We show some process interactions, which are possible within software development, by 
sketching some of many situations in this subsection. 

Firstly, we look on the dependency relations between Requirements Engineering, where the 
requirements for a future software system or the requirements for a change of an existing 
software system are made precise and the following realization of the system, see fig. 7.a. In 
this activity area requirements engineering (modelling and changing requirements) quite dif-
ferent results are produced.  

One result is the requirements specification, which determines what the following system is 
going to do, which is often called functional requirements specification. This part is (i) the 
input of the realization process. It is used to build up a system in several steps, which is con-
sistent with the functional specification, see fig. 2.b. The requirements area is producing fur-
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ther determinations: (ii) the goal of the system to be built or changed, (iii) the constraints 
which the future system has to follow, e.g. efficiency parameters, (iv) fixing some of the ways 
to produce the result, e.g. such that the process shares similarities with other development 
processes already finished or being in parallel progress (e.g. ways to structure the interactive 
input, such that it is uniform to existing systems). Furthermore, it can (v) determine (v.a) 
some of the external components to be used or (v.b) some tools to be applied, and (vi) prede-
termine the development process, e.g. by fixing the corresponding quality assurance proce-
dures. Finally, they may (vii) state which experiences or which knowledge are to be applied.  

We see that the requirements area produces quite different results important for the following 
development process which specify what to do (i, ii), the determinations and constraints (iii, 
iv), determining the product (iv, v), and the process (v, vi, vii). This can be nicely separated 
and expressed by the different facets of process P and A (figs. 1 and 7.a). This example is one 
of the rare cases, that all forms of the dependency relations occur between two processes, here 
between DR and R of fig. 7.a. 

      
    

 
Fig. 7: Hierarchy, balancing, and evolution 

The following realization process is structured internally, see fig. 7.b. It starts with the pro-
cess for architecture modelling A. Most of the realization process¶ incoming edges to R have 
to be directed towards this process (by so-called balancing). This is easy to see, as require-
ments determinations mostly deal with or influence the architectural structure of the system. 
Only some of the relations may also influence following component realization processes.  

We assume that the architectural process is simple, it can be carried out by one designer and, 
therefore, need not be decomposed. For the following realization processes for components of 
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the system we can only say that they appear. But we do not know how many such processes 
will come up, so we do not know which components have to be realized. This is fixed not 
until the architectural process A has delivered its result, namely a part or the complete archi-
tecture of the system. So, in the running process R, by the result of a process A it is deter-
mined, how the following processes look like, see again fig. 7.b. Furthermore, the dependency 
relations between these processes are also determined (the process for the component PCj is 
dependent on that for PCi). Thus, a subnet of the process net is determined by the result of A, 
see again fig. 7.b. This situation we called dynamics due to evolution /Kr 98, Sc 02/.  

It should be noted that the extension of the process net of R to get the processes for the com-
ponents is done by another process, which does not appear in fig. 7.b. This process is usually 
done by a human, the process manager or chief designer, who looks at the architecture (the 
product of A) and then makes the extension, possibly supported by a tool. The extension in 
fig. 7.b - a net of subprocesses and their dependency - is the result of this activity. There are 
further and more complex dynamic situations possible, some of which we sketch in the sum-
mary. 

Bootstrapping and Compilers 

We come back to the discussion of automatic processes at the end of section 3. We are going 
to discuss combinations of those automatic processes. The example we take is bootstrapping 
of compilers /Wi 77/. With this example, we show that our notation allows to smoothly con-
nect human and automatic processes. 

Bootstrapping uses so-called T-diagrams /Wi 77/, see fig. 8.a. A T-diagram denotes a specific 
automated process, namely a translation of programs written in a programming language. The 
left part of fig. 8.a shows a T-diagram translating programs of a language So (for source) to 
programs of Ta (for target), written in the language I (for implementation). So, the T form 
SoMTa is executable, if a corresponding machine M for the language M is available (right part 
of fig. 8.a). This M-program can be executed and translates a So to a Ta program. The pro-
gram M and the corresponding machine M form a process, see explanation at the end of sec-
tion 3. 

Such T-diagrams can be connected, see lower part of fig. 8.a. If a IMM is available, it is a M 
program translating I to M, it can be used for the SIT as input, which is an I program. The result 
is SMT, an M program translating S to T. Such combinations can be used for bootstrapping, .i.e. 
for compiling compilers with reduced effort. 

Bootstrapping can be used for different tasks. We discuss here the extension of a program-
ming language and developing the compiler for the extended language, see fig. 8.b. For that 
we need a compiler for S written in S (e.g. a Pascal compiler written in Pascal /Wi 77/) and 
one S compiler producing M and written in M, both in green. In two development steps and 
two automatic steps we get the result.  

We take the given SSM compiler and modify it (1) to become an S’SM compiler (human process). 
We translate this compiler with the available SMM compiler and get an S’MM compiler (automat-
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ic task (2)). This compiler is used in the last automatic step. Then, we (3) modify the S’SM com-
piler to a S’S’M compiler (human task), i.e. by using the extended features of S’ in the compiler. 
Finally, we translate this compiler, using the S’MM compiler of step (2) and get the result (au-
tomatic process (4)).  

Altogether we have extended the SMM compiler to a S’MM compiler. Step (2) and step (4) pro-
duced an S’MM compiler. The advantage of the last one of step (4) is that it makes use of the 
advanced features of S’ in its implementation. These steps for extension (1) to (4) can be used 
repeatedly to further extend the language and the compiler. 

 

            

Fig. 8: Bootstrapping for language extension, the PID contains human and automatic 
 processes 
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The notation of fig. 8.b has automatic steps (2) and (4) made precise by combinations of T-
diagrams, but also informal human tasks (1) and (3), characterized by bold lines.  

What has this discussion to do with this paper? We explain this in two steps. 

T-diagrams represent automated and very specific processes. They make a translation of two 
formal and executable languages. And, they are formulated in a formal and executable lan-
guage. So, the input and output of fig. 1 is formal and fixed and the program how to do is 
formal and fixed, too. Restrictions, goals, support, knowledge and experience (see fig. 1) are 
now irrelevant, they all are expressed in the translating program. For this special case, we can 
use a special notation, which is done by T-diagrams. We can say, the T-diagram part of fig. 
8.a is only an abbreviation for a part usually expressed by PIDs. The expressiveness of PIDs 
is not needed for this special case. Furthermore, these T-diagrams have the properties of com-
bination and automatic translation. 

It remains to show, that the human steps are better explained by our notation. We look at step 
(1) of figs. 8.b, 8.c and give the version in our notation for the process P1, see fig. 8.c. We 
discuss the different aspects of the process P1: 
(a) The goal is to extend the compiler such that it translates the extended language S’. So, the 
difference S’-S has to be translated in addition. 
(b) The restriction is to take the SSM compiler and add the compilation of S’-S. 
(c) The way to proceed is to directly add the missing source code for the difference, written in 
the language S. 
(d) The support is to start with the given SSM compiler. The missing part can be directly coded. 
Or available and more efficient techniques from compiler construction can be used to facili-
tate coding. 
(e) The actor is a person familiar with compiler writing. 
(f) Necessary knowledge and experience is bootstrapping, compiler writing (eventually ad-
vanced techniques), experience with the programming languages S and S’. 

The explanations (a) to (f) may appear as annotations in the diagram. You get the correspond-
ing text, if you click an annotation.  

The second human step can be described similarly. So, altogether we have a notation consist-
ing of T-diagrams, which we can regard as shortcut abbreviations of the PIDs of this section. 
They denote special cases. The human processes can be expressed by PIDs with annotations. 
So, the complete diagram is a PID. 

All examples of this section (see figs. 6, 7, and 8) were nontrivial and unconventional for pro-
cess diagrams. Therefore, they demanded for a suitable notation. Usual process notations do 
not offer the necessary concepts.  

Another interesting example for showing interaction of processes would have been to show, 
how a software development process and product is changed, if we use applications of more 
or less deep reuse mechanisms. Here, the different interactions of subprocesses are interesting 
for any level of reuse. Especially, it is interesting to look on the change of the development 
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process when the next level of reuse is applied and how the interaction of subprocesses 
changes correspondingly. We leave this discussion to a paper on reuse /Na 21/. 

5 Summary  

What we have achieved 

We have generalized process notations in order to explicitly express different influencing pa-
rameters for processes, not only input and output, but also goal, restrictions, how to proceed, 
actor, helpful means (directly used components or tools), and experience or knowledge, see 
fig. 1. The purpose was to make the dependency relations between processes - one needs the 
µresults¶ of one for the other - more specific.  

That allows to express the interactions of processes more precisely, especially the dependency 
relations. That is why we named that notation process interaction diagrams (PIDs). We see 
that the output of one process can have quite different semantical influences on another pro-
cess, not only input, but also to define the goals, the restrictions, the planned proceeding to go, 
the actor, components or tools, experience and knowledge for another process, see figures of 
section 2. These semantical dependency relations make the diagrams more meaningful. 

In section 3, we discussed some nontrivial examples, as interleaving processes (design of the 
product and planning its production, life cycle of the product, and design, and configuration of 
the producing infrastructure. A similar example of a simpler complexity was discussed for 
software engineering. Further examples were the relation between requirements determination 
and realization, changes due to process evolution, and showing that management and tech-
nical processes are intertwined. Finally, the bootstrapping example showed that processes by 
humans and automatic ones can also interact. All examples were nontrivial and, therefore, 
have profited from the extended notation introduced in this paper. Section 4 also shows that 
the ideas presented in this paper are applicable to any engineering domain. 

Example processes can be on different levels: coarse (figs. 6, 7.a), middle (7.b, 8), or even 
fine-grained (not used in this paper). We saw human and automatic processes, different situa-
tions of mechanical engineering, application to software engineering, and also software engi-
neering in the systems development domain, namely compiler compilers. So, the notation can 
be used in quite different situations w.r.t. granularity, domains, character of subprocesses, etc. 

As in above discussions the output of a process is connected to one of the aspects of another 
process by a dependency . We could also have combined processes by gluing them at the right 
side of the octagon of fig.1. The upside side is given in bold. Fig. 9 shows the results for the 
figures 2, 3, 4, and 5 in that glue notation.  

This notation can be used only in simple cases, as in complex situations one looses track of 
which side is connected to which side. Furthermore, the order of connections and executions 
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cannot be seen easily. As an example, combine fig. 9.e with 9.f.  

     

Fig. 9: Gluing process elements, a notation only for simple cases 

As we have seen above, the T-diagrams are a specific notation for a special case. The same is 
true for SADT-, SA- and similar diagrams. They are only able to express some of the aspects 
of PID-diagrams (see fig.1). 

Activities in Process Research 

Some words for our activities in process modelling: We have been active for quite a while in 
that area and mostly there on the middle-grained level, namely how to organize processes, 
where their parts are carried out by different persons and also mostly in the development field 
/We 99, NW 94/. There, we mostly specialized on the models and tools aspects. Especially, 
we focused on dynamics problems, i.e. changes that occur in a process in execution. The dif-
ferent aspects are changes due to evolution (only in the running process we see by a result, 
how to proceed further /Kr 98/, see fig. 7.), backtracking (a mistake in the development im-
plies that we have to go back in the process; however, we want to preserve useful results and 
minimize the modifications of others), extending process knowledge (new experience and 
knowledge in form of new process type definitions or workflow pieces should be used in the 
running process /He 11, Sc 02/), and cross-company processes (where all the above problems 
occur and a grey-box model is needed, which allows cooperation (both sides know of each 
other) but also protection (of the knowledge of subcontractors) /He 08, Jä 03/. Thus, a central 
challenge in all these cases was to guarantee changeability at process runtime. 

There were many applications and studies. Those with the most influence were in the IPSEN 
project dealing with new and tightly integrated tools for software development /Na 96/, in the 
SUKITS project on a posteriori extensions of tools in mechanical engineering /NW 99/, and 
in the IMPROVE project on new tools and a posteriori extensions of given tools in chemical 

g)g)
Ma-

chine

Automate

d)

def. goal

PP
e)

def. constraints

PPP

P

Pro-
gram

f)

way to proceed

PPP

Clarifications for P

Actor Support

c)

delivers exp. / 
knowledge for P

PPP

b)

PPP

helps for P

a)
PP

Sequence



17 
 

engineering /NM 08/. Most of our studies developed novel tools, but we also studied exten-
sions of given tools /He 11, Wö 10/.  

As indicated above, we concentrated in our research on the middle-grained processes (and a 
bit on the coarse-grained processes, fig. 6, 7.a). Furthermore, we concentrated on the product 
part (the outcome) of processes, by building tools to make the product of a process easier to 
get or of a better quality and, thereby, supporting the process as well. We did not regard fine-
grained processes, i.e. how a single developer is planning or doing his/her work. This was 
studies in a neighboring group, where activity patterns on this level were retrieved and used to 
build corresponding tool actions on fine-grained level /MJW 08/. 

As indicated above, we specialized in this paper only on the process part of process modelling 
and ignored the product, the human actor, and the support part, all of them on abstract and 
detailed level. The research we carried out (see citations of above) included these parts. The 
results, presented above in this paper, could be used to reformulate and extend the process 
part of the literature cited above. Therefore, this paper remains in the tradition of having a 
clear focus in this broad domain of process investigations. 
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