On the Globalization of Domain-Specific
Languages

Betty H.C. Cheng', Benoit Combemale? 3 Robert B. France?,
Jean-Marc Jézéquel?, and Bernhard Rumpe®

! Michigan State University, East Lansing, USA
2 University of Rennes, Rennes, France
3 Inria, Rennes, France
benoit.combemale@irisa.fr
http://people.irisa.fr/Benoit.Combemale
4 Colorado State University, Fort Collins, USA
5 Software Engineering, RWTH Aachen, Aachen, Germany
rumpe@se-rwth.de

Abstract. In the software engineering community, research on domain-
specific languages (DSLs) is focused on providing technologies for design-
ing languages and tools that enable domain experts to develop system
solutions efficiently. Unfortunately, the current lack of support to explic-
itly relate concepts expressed in different DSLs makes it difficult for
software and system engineers to reason about information distributed
across models or programs describing different system aspects, at differ-
ent levels of abstraction. Supporting the coordinated use of DSLs is what
we call the globalization of DSLs. In this chapter, we introduce a grand
challenge of the globalization of DSLs, and we present a few motivating
scenarios for such a grand challenge.

Keywords: Domain-specific language DSL Globalization of DSLs
Model coordination Modelling

1 Introduction

The development of current and future complex software-based systems such
as avionic, intelligent transportation, smart grid, and smart city and building
lifecycle management systems, requires experts from diverse domains to work
in a coordinated manner on different aspects of the system. For example, the
development of a software system that provides energy-efficient building lifecycle
management support for energy-aware development, occupation, maintenance,
and demolition of smart buildings, typically requires a system development team
that includes experts from a variety of domains, including building architecture,
material sciences, environmental sciences, energy management, urban/city/town
planning, cybersecurity, software engineering, and sensor networks. Each domain
has its own knowledge space that is supported by specialized software languages,
techniques, and tools. A major problem facing such development teams is how

(© Springer International Publishing Switzerland 2015
B.H.C. Cheng et al. (Eds.): Globalizing Domain-Specific Languages, LNCS 9400, pp. 1-6, 2015.

DOI: 10.1007/978-3-319-26172-0-1
- E [CCF+15b] B. H. C. Cheng, B. Combemale, R. B. France, J.-M. Jézéquel, B. Rumpe:
L= On the Globalization of Domain Specific Languages.
. In: Globalizing Domain-Specific Languages (Dagstuhl Seminar), LNCS 9400, pp. 1-6, Springer, 2015.
= www.se-rwth.de/publications

2 B.H.C. Cheng et al.

to bridge the expertise gap between the diverse domains during system develop-
ment. Communication among the different domain experts is difficult to achieve
due to the lack of a common vocabulary and/or mechanisms that effectively
relate domain-specific system information expressed in the different models,
tools, techniques, and processes used by the domain experts. Coordination of
development activities across the different domains of expertise is particularly
necessary when the domains are intertwined, that is, when system decisions made
by experts in one domain depends on or influences decisions made by experts in
other domains. This type of dependency is common in modern complex systems
and can add significant complexity to these systems.

2 Domain-Specific (Modeling) Languages

Model-Driven Engineering (MDE) aims at reducing the accidental complexity
associated with developing complex software-intensive systems [8]. A primary
source of accidental complexity is the large gap between the high-level concepts
used by domain experts to express their problem statements and the low-level
abstractions provided by general-purpose programming languages [4]. Manually
bridging this gap, particularly in the presence of changing requirements, is costly
in terms of both time and effort. MDE approaches address this problem through
the use of modeling techniques that support separation of concerns and auto-
mated generation of major system artifacts (e.g., test cases, implementations)
from models. In MDE, a model describes an aspect of a system and is typically
created for specific development purposes. Separation of concerns is supported
through the use of different modeling languages, each providing constructs based
on abstractions that are specific to an aspect of a system. For example, General-
ized Stochastic Petri Nets can be used to create performance models [1], while the
notation provided by the Simulink! tool is adapted to simulation models. MDE
technologies also provide support for manipulating models; for example, there
exists tool support for querying, transforming, merging, and analyzing (including
executing) models. As such, modeling languages are at the core of MDE.
Incorporating domain-specific concepts and best practices development expe-
rience into MDE technologies can significantly improve developer productivity
and system quality. This realization has led to work, starting in the late nineties,
on MDE-based language workbenches that support the development of domain-
specific (modeling) languages (DSLs) and associated tools (e.g., model editors
and code generators) [3]. A DSL provides a bridge between the (problem) space
in which domain experts work and the implementation (programming) space.
Domains in which DSLs have been developed and used include those for auto-
motive, avionics, and cyber-physical systems (CPS). More and more details are
also used to describe technical domains, such as configuration of distributed sys-
tems and communication networks, deployment structures, mappings of high-
level messages to low-level signals, or script languages that guide and control the
generation, compilation and deployment processes. It is worthwhile to distinguish

! http://www.mathworks.com/products/simulink.

On the Globalization of Domain-Specific Languages 3

technological DSLs and application DSLs, and to recognize that typically several
of those DSLs need to be coordinated within a given project.

Through an empirical study, Whittle et al. identified practices and trends
that seem to indicate that DSLs can pave the way for wider industrial adop-
tion of MDE [9]. Research on systematic development of DSLs has produced
a technology base that is sufficiently robust to support the integration of DSL
development processes into large-scale industrial system development environ-
ments. Current DSL workbenches support the development of DSLs to create
models that play pivotal roles in different development phases.

Workbenches such as Microsoft’s DSL tools?, MetaCase’s MetaEdit+3,
JetBrains’s MPS?, Eclipse Modeling Framework (EMF)®, MontiCore® and the
Generic Modeling Environment (GME)” support the specification of the abstract
syntax, concrete syntax and the static and dynamic semantics of a DSL. These
workbenches address the needs of DSL developers in a variety of application
domains.

3 A Grand Challenge of the Globalization of DSLs:
Looking Ahead

The development of modern complex software-intensive systems often involves
the use of multiple DSLs that capture different system aspects [2]. In addi-
tion, models of the system aspects are seldom manipulated independently of
each other. System engineers are thus faced with the difficult task of relating
information presented in different models. For example, a system engineer may
need to analyze a system property that requires information scattered in mod-
els expressed in different DSLs. Current DSL development workbenches provide
good support for developing independent DSLs, but provide little or no support
for integrated use of multiple DSLs. The lack of support for explicitly relating
concepts expressed in different DSLs makes it difficult for developers to reason
about information distributed across different models.

Past research on DSLs focused on their use to bridge the wide problem to
implementation gap. A new generation of complex software-intensive systems, for
example, smart health, smart grid, smart home, intelligent automation, build-
ing energy management, and intelligent transportation systems, presents new
opportunities for leveraging modeling languages. The development of these sys-
tems requires expertise in a variety of domains. Consequently, different types
of stakeholders (e.g., scientists, engineers and end-users) must work in a coor-
dinated manner on various aspects of the system across multiple development
phases. DSLs can be used to support the work of domain experts who focus

2 http://www.microsoft.com/en-us/download /details.aspx?id=2379.
% http://www.metacase.com/fr/mwb/.

* https://www.jetbrains.com/mps.

® http://www.eclipse.org/modeling/emf.

5 http://www.monticore.de.

" http:/ /www.isis.vanderbilt.edu/projects/gme/.

4 B.H.C. Cheng et al.

on a specific system aspect (e.g., network communication or security), but they
can also provide the means for coordinating work across teams specializing in
different aspects and across development phases.

Supporting coordinated use of DSLs leads to what we call the globalization
of DSLs, that is, the use of multiple DSLs to support coordinated development
of diverse aspects of a system. We can make an analogy with globalization in
the real world, in which relationships are established between sovereign coun-
tries to regulate interactions (e.g., travel and commerce related interactions),
while preserving each country’s independent existence. The term “DSL global-
ization” is used to highlight the overarching objective that DSLs developed in
an independent manner to meet the specific needs of domain experts should
also have an associated framework that regulates interactions needed to support
collaboration and work coordination across different system domains.

Globalized DSLs are intended to support the following critical aspects of
developing complex systems: communication across teams working on different
aspects, coordination of work across the teams, and well-defined management
of the teams to ensure product quality. In the vision for globalized DSLs, inte-
grated DSLs support teams working on systems that span many domains and
concerns to determine how their work on a particular aspect influences work
on other concerns. The objective is to offer support for communicating relevant
information, and for coordinating development activities and associated tech-
nologies within and across teams. In addition, globalized DSLs should provide
support for imposing control over development artifacts produced by multiple
teams.

Coordination and related separation of concerns issues have been the focus of
software engineering since early work on modularizing software [7]. For example,
Parnas’ use of the term “work product” to denote a module that can be the
source of independent development is also a focus of team demarcation across
design and implementation tasks. Modularity in modern software-intensive sys-
tems development leads to well-known coordination problems, such as problems
associated with coordinating work over temporal, geographic or socio-cultural
distances [6]. This line of work has also led to the recognition of socio-technical
coordination, including coordination of the stakeholders and the technologies
they use to perform their development work, as a major system development
challenge [5].

In this context, DSLs can be used to support socio-technical coordination
by providing the means for stakeholders to bridge the gap between how they
perceive a problem and its solution, and the programming technologies used to
implement a solution. DSLs also support coordination of work across multiple
teams when they are supported by mechanisms for specifying and managing their
interactions. In particular, proper support for coordinated use of DSLs leads to
language-based support for social translucence, where the relationships between
DSLs are used to extract the information needed to make teams working on
different aspects of the system aware of the project activities from other teams.

On the Globalization of Domain-Specific Languages 5

Such awareness is needed to minimize the counter-productive form of social
isolation that can occur when work is distributed across different teams.

4 Motivating Scenarios for the Globalization of DSLs

We now discuss several motivating scenarios for the globalization of DSLs. For
each, we describe the typical scenarios encountered by engineers that lead to the
need for globalization and show the impact on the overall globalized ecosystem.

Global System Checking: The need for the globalization of DSLs first arises
when a system engineer wants to assess a system property that requires
crosscutting information scattered in various models. In such a case, sys-
tem engineers face the difficult task to either build a global structural or
behavioral specification of the system from the various models to be able
to check the global property or to enhance coordination techniques at hand
that enable coordinated models to be checked for global properties.

Model Consistency Checking: In complex software intensive systems where
different intertwined DSLs are used to describe the models of the various
aspects of the same system, evolving a DSL or a model may have important
consequences on the system design as a whole. Since the models of the dif-
ferent system aspects are seldom manipulated in isolation, the development
of a model expressed in one DSL can directly influence the form of models
created using other DSLs. Similarly, if the different DSLs used for different
aspects of a system are tightly coupled, then it is likely that evolving one of
them will impact the others. In both cases, syntactic and semantic consis-
tency relationships defined across the DSLs can be used to ensure that the
different models and DSLs are consistent with one another.

Traceability for Impact Analysis: As a particular case of consistency check-
ing, one may analyze the impact of a change in one model with respect
to other models. For instance, when a requirement changes, one may eval-
uate the impact on the entire system design. In such cases, traceability
links between the various models built all along the development process
are required.

Language Evolution: By definition, DSLs evolve as the concepts in a domain
and the expert understanding of the domain evolves. As such, it is essential to
address consistency between models and DSLs when the DSL specifications
change. As a DSL evolves, the conforming models need to evolve accord-
ingly in order to remain consistent with new constructs, new constraints,
or changes in the semantics. These consistency demands might lead to a
snowball effect, where all the tools, transformations, or workbenches defined
around a language need to be updated. In typical large projects, neither all
languages nor all models of these languages are evolved in parallel. Therefore,
it is necessary to coordinate the parallel use of models in different variants
of the same language as well.

Model Composition: Separation of concerns is achieved in MDE by defining as
many models as concerns of the system. Eventually, all the different models

6 B.H.C. Cheng et al.

must be composed in order to support, for example, the generation of the
entire system implementation. When different DSLs are used to define the
various models, composition rules must be defined between the DSLs.

Simulation: Unfortunately, a simulation of a substantial part of the real world
needs to describe different parts and aspects of the world typically using
several languages. To run simulations, we need a stable coordination of lan-
guages and their respective models for execution. This coordination enables
us to understand, for example, whether the models fit together and whether
they correctly describe the real world and system to be designed. Examples
for coordinated model simulation can be found in various domains, including
climate that models whether flow of water, cultivation of areas, run in par-
allel, and etc. Other simulations are used to understand how control devices
in a car cooperate or how the multitude of existing devices in an airplane
can be managed by pilots for example.

References

1. Balbo, G.: Introduction to generalized stochastic petri nets. In: Bernardo, M.,
Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 83-131. Springer, Heidelberg
(2007)

2. Combemale, B., Deantoni, J., Baudry, B., France, R., Jézéquel, J.-M., Gray, J.:
Globalizing modeling languages. Computer 47, 68-71 (2014)

3. Erdweg, S., et al.: The state of the art in language workbenches. In: Erwig, M.,
Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 197-217. Springer,
Heidelberg (2013)

4. France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: Briand, L.C., Wolf, A.L. (eds.) Proceedings of the Future of Software
Engineering Symposium (FOSE 2007), pp. 37-54. IEEE, July 2007

5. Herbsleb, J.D.: Global software engineering: the future of socio-technical coordi-
nation. In: Briand, L.C., Wolf, A.L. (eds.) Proceedings of the Future of Software
Engineering Symposium (FOSE 2007), pp. 188-198. IEEE, July 2007

6. Herbsleb, J.D., Grinter, R.E.: Architectures, coordination, and distance: Conway’s
law and beyond. IEEE Softw. 16, 63—70 (1999)

7. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15(12), 1053-1058 (1972)

8. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. IEEE Com-
put. 39(2), 25-31 (2006)

9. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. IEEE Softw. 31(3), 79-85 (2014)

